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Observed dwarf galaxies present very diverse and puzzling properties.

Some Local Group dwarf galaxies
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Zoom-in cosmological hydrodynamical (DM, gas and stars) simulations of galaxy formation as tools to
understand dwarf galaxy formation/evolution in a LCDM context: High resolution to focus on smallest scales

TieA Gy A B W - o - .
Large volume dark matter-only A small region centered in a main ...and resimulated at high resolution
cosmological box halo is selected. .. m,,~108 Msol ..iIncluding hydrodynamics

My,s ~10% Msol

QI CLUES Project (Yepes+14), MaglCC Project (Brook+12), NIHAO Project (Wang+15), PDEVA-5004 (Domenech-Moral+12), Aquarius-Ca (Springel+08,Tissera+)
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LCDM predicts a unique rotation curve for galaxies of a same mass scale.

However, observed rotation curves of dwarf galaxies reveal a diversity of shapes.
DIVERSITY OF DWARF GALAXY ROTATION CURVES: THE ‘CUSP-CORE’ PROBLEM.
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Diversity can be achieved by feedback-driven baryonic outflows that lead to the
expansion of the dark matter halo

Pontzen&Governato+12
THE MASS DISCREPANCY - ACCELERATION RELATION (+SCATTER) IS REPRODUCIBLE IN LCDM (Santos-Santos+16)
Examples of rotation curves of

MaGICC simulated galaxies
See Stinson+13,Brook+14
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Dark matter halo expansion in LCDM can reproduce the most extreme
slowly-rising rotation curves observed (i.e. largest COres) saossantos+1s
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The cuspiest cases remain a
problem for galaxy formation
models that allow for DM halo

expansion
(see Santos-Santos,Navarro et al. 2020c)
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Circular velocity computed from the ‘true’ gravitational potential (instead of assuming spherical symmetry)
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Recent Herschel observations of dwarf galaxies show a diversity of submm-IR

SED shapes, as compared to massive galaxies
INFRARED SPECTRAL ENERGY DISTRIBUTIONS

Remy-Ruyer+15: DGS

Galametz+09 /\
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Low intensity of PAH bands Broadening of the IR peak

 Dwarf galaxies show particular spectral features = ‘special’ DUST emission

« Current models invoke the need for extra dust components but cannot give a physical explanation
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The interplay of molecular clouds and cirrus (dense and diffuse dust phases), as modeled
in GRASIL-3D, can explain the characteristic SED features observed in dwarf galaxies.

Santos-Santos+17

Dominguez-Tenreiro+14

Separate treatment: dense & diffuse gas phase

ERVSIEEIDE ©  Age-dependent dust reprocessing of stellar populations | Star-forming
radiative Detailed Dust model - | dwarfs from

transfer code D/G o 79, and PAH abund. as observed in dwarfs | CLUES

RT solved in a grid

a) MC emission dominates: b) Two dust components of similar intensity: c) No (or very weak) MC emission:

Stellar emission

: Molecular clouds
1 Cirrus

1 Total SED
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MECHANISM DRIVING DIVERSITY: AMOUNT OF ENERGY ABSORBED BY ‘MOLECULAR CLOUDS’
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Satellite galaxies are spatially VPOS as seen edge-on | OSItION GPoA as seen from the MW |
. . . ! ! | 1 200 ‘ ‘ |
distributed in planes around 200- 0 ¥ M31 o
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not frequent in DM-only large-volume

cosmological LCDM simulations
(Pawlowski+14,Cautun+15)

Orbital angular momentum
= —_— /—" PE—— 6(0

* Do they form in hydro-simulations of disc
galaxies? What are their characteristics and

trends?
(see Gillet+15, Ahmed+16, Maji+17, Garaldi+18)

L B N N N N N N § § N N N N § B B §N § § § § N ¥ § § § §B §8 § § § §B & § § §N § § |

SEA 2020 e Isabel Santos Santos



A method to identify predominant planar arrangements of satellites in both observational
data or simulations: “4-galaxy-normal density plots” Ppawouski+13 santossantos+20a

S kW~

SEA 2020 e Isabel Santos Santos

Fit a plane (Tensor of Inertia; wez+07) t0 every possible combination of 4 different satellites out of Ntot
Draw the density map with the projection of “4-galaxy-normals” ; weighted by log (aib)
|dentify location of high-density peaks

For each peak: Count satellites contributing to 4-galaxy-normals placed within 15° from peak.

Order satellites by weighted-counts

New: Fit plane to group of N, satellites as ordered by contribution: Ng, = 7,8,9... Ny,

90°

Santos-Santos+20 a,b
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A method to identify predominant planar arrangements of satellites in both observational
data or simulations: “4-galaxy-normal density plots” Ppawouski+13 santossantos+20a

Fit a plane (Tensor of Inertia; wez+07) t0 every possible combination of 4 different satellites out of Ntot
Draw the density map with the projection of “4-galaxy-normals” ; weighted by log (aib)
|dentify location of high-density peaks

For each peak: Count satellites contributing to 4-galaxy-normals placed within 15° from peak.

Order satellites by weighted-counts

New: Fit plane to group of N, satellites as ordered by contribution: N, = 7,8,9... N

A Nsat=Ntot

S kW~

_ We obtain a collection of
Contribution to normals in planes, each with

direction of density peak 1 different N

sat -

® Santos-Santos+20 a,b
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Identifying predominant planar spatial alignments of satellites santossantos+20a
APPLICATION TO MW/M31 DATA
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Thickness of the planar structure as a function of the number of satellites involved

————— 0.4 —m—m——————————1—————T1—
: ' 7 [ =— Peak 1 ]
’ One main overdensity 0.3 == Peak2 ;
,,,,,,,,,,,,,,,,,,,,,,,,,, PO (ic.planar structure); ® 02k ]
@ perpendicular to the - ]
Galactic disc 0.1F plane remains thin even
L : - when including all satellites!
oOo0bm—m o
90° 10 15 20 25
Nsat
M31
| I T U WA ey 0.6 f — peak1 1 =
T U U [ — peak2  Flanes show ]
‘ - comparable thickness -
0° 0.4 N -
g5 | Two distinct planar [ at Nsat~18 :
Sy L [ SN S'r\CtUrcs, perpendicular i
M31spin 7 1
. VAR (0 cach other

SEA 2020 e Isabel Santos Santos



There are two perpendicular planes of satellites in Andromeda, with similar
‘qualities’ (i.e., number of satellites involved, thickness) santssantos+20s
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Planes of satellites around LCDM simulated disc galaxies
SATELLITES ARE SPATIALLY ORGANIZED IN PLANES DURING THE ENTIRE EVOLUTION OF THE SYSTEM Santos-Santos+20b

PDEVA-5004 Aquarius-Ca
Serna+03,D h-Moral+12; . . . . . . . . . .
Domingeez. Tamghort5. Springel+08, Pedrosa&Tissera15 Thinnest plane found at given time including certain fraction of satellites
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Planes of satellites around LCDM simulated disc galaxies
CO-ORBITING SATELLITES DEFINE TIME-PERSISTENT PLANES  Santos-Santos et al. In prep )

e e

Q Group of co-orbiting satellites: aligned orbital poles _15,;; /

0°

Different to the rest of satellites: Projection of orbital poles

= Higher specific orb.ang.mom P v NN
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= QOrbit more perpendicularly to galactic disk
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What is the origin of persistent planes of satellites? Links to the Local cosmic web

Ag-Ca = Direction of
1000 mass coIIapse =
1 Bl Co-orbiting satellites
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Plane of co-orbiting satellites coincides with plane of local Cosmic Web at
high-redshift, where mass is accumulating at large scales
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@ |ocal Cosmic Web defines, at high-z,
the common dynamical properties of
kinematically-coherent satellites

See also Libeskind+12 14,15

@ Overall quiet merger history allows
some of these satellites to conserve
their original orbital angular
momentum-> persistent plane



Conclusions of this thesis:

Dark matter halo expansion can increase the diversity of rc shapes within a lcdm context. In
particular, it allows to recover the largest cores observed and can explain the scatter of the mass
discrepancy-acceleration relation.

The particular IR SED features observed in dwarf galaxies can be explained by the two-component
dust model in GRASIL-3D (consisting of dense molecular clouds and diffuse cirrus).

There is a second plane of satellites in M31 that is similar in thickness to the GPoA and
perpendicular to it.

Satellites around simulated MW-type disc galaxies with quiet merger histories are organized in
planar structures. During certain periods of cosmic evolution these are very thin and mostly
perpendicular to the galaxy disc.

Groups of co-orbiting satellites are found around simulated disc galaxies. These define planes of
satellites that are persistent in time. Their origin may be linked to the local cosmic web at high
redshift.
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