

SEA Prize PhD in Instrumentation, Computing and Technological Development in Astronomy and Astrophysics (2017-2018)

"PANIC, una cámara infrarroja de gran campo para el Observatorio de Calar Alto"

Dr M. Concepción Cárdenas Vázquez

Max-Planck-Institut für Astronomie, Germany

INSTITUTO DE ASTROFÍSICA DE ANDALUCÍA M. Concepción Cárdenas Vázquez

Supervisor: Dr Julio F. Rodríguez Gómez (IAA-CSIC)

PhD thesis:

"PANIC, una cámara infrarroja de gran campo para el Observatorio de Calar Alto"

(PANIC, a wide-field infrared camera for the Calar Alto Observatory)

Defence: December, 2018

Outline

- 1. Introduction
- 2. Objectives
- 3. Requirements and Specifications
- 4. Design of PANIC

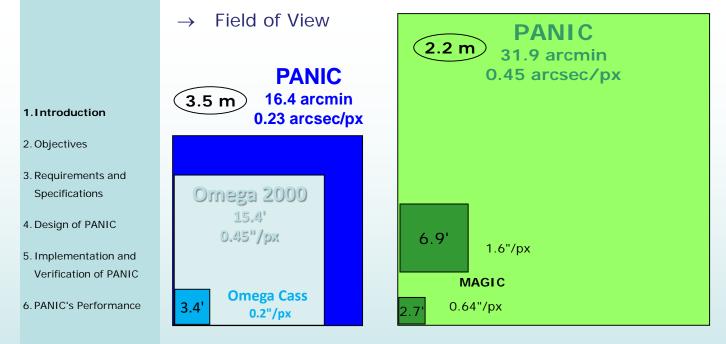
5. Implementation and Verification of PANIC

6. PANIC's Performance

Max-Plank-Institut für Astronomie

1.Introduction

- 2. Objectives
- 3. Requirements and Specifications
- 4. Design of PANIC
- 5. Implementation and Verification of PANIC

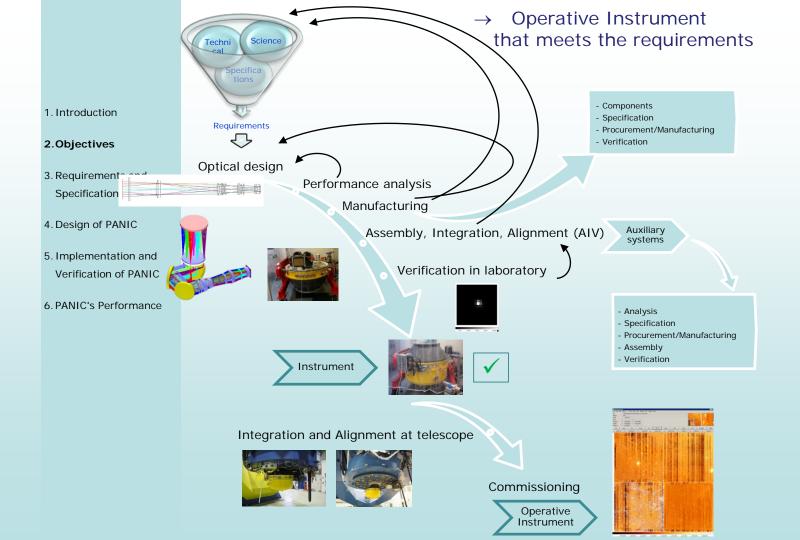

6. PANIC's Performance

- A wide-field infrared camera for the 2.2 m and the 3.5 m telescopes
- 1st instrument in the Program of development of new instrumentation in collaboration between IAA and MPIA
- PI: Matilde Fernández (IAA-CSIC)
- PI: Klaus Meisenheimer (MPIA)

Instrument	Spectral range (µm)	Pixel scale (arcsec/pix)	FoV (arcmin ²)	Operation started	Telescope / Location	Science community
NEWFIRM	1-2.4	0.4	780 / (28×28)	2010	Mayall (4 m) / Kitt Peak (USA) Blanco (4 m) / Cerro Tololo (Chile)	USA
WFCAM	1-2.5	0.4	780 / (28×28)	2005	UKIRT (3.8 m) / Hawaii (USA)	USA / Hawaii / NASA
WIRCAM	0.9-2.5	0.3	460 / (21.5×21.5)	2006	CFHT (3.6 m) / Hawaii (USA)	Canada / France / Hawaii
Omega 2000	0.8-2.4	0.45	235 / (15.4×15.4)	2003	CAHA (3.5 m) / Almería (Spain)	Germany / Spain
PANIC	0.8-2.5	0.45 0.23	940 / (30.7×30.7) 240 / (15.6×15.6)	2015	CAHA (2.2 m) / Almería (Spain) CAHA (3.5 m) / Almería (Spain)	Germany / Spain

- General purpose wide-field imager
- Useable for surveys
- Not tailored to a special application

· Solar system: Comets, searches for transneptunians & minor bodies.


• Stellar evolution: Brown dwarfs, accretion disks of young stars, post-AGBs, exoplanets, supernovae searches, asteroseismology.

- Galactic astronomy: Large-scale structure of the Milky Way and the Galactic components in hidden areas.

• Extragalactic astronomy: Cosmic evolution in the z range 1.5 – 2.0: photometric redshifts in the redshift desert (narrow band filters in clean windows of z and J reducing the background sky, GRBs at high redshift, GRB host galaxies.

 \cdot Clusters and Superclusters of galaxies at intermediate redshift: Search for objects with strong IR excess, Selection of candidates for supermassive starbursts, Broad band + narrow band filter imaging matching the redshifted H α line.

Morphology of nearby galaxies

Project timeline

10/2006 Kick-off **Requirements Collection and Specifications definition** 11/2007 • PDR **Preliminary Design Phase** • FDR Optics 09/2008 • FDR Mechanics 12/2009 **Final Design Phase** Cryo, Electronics FDR Software 02/2010 05/2009-08/2014 Subsystems Manufacturing and Acceptance MAIV AIV phase and Final tests at laboratory • First light 10/2014 Instrument alignment with telescopes Instrument verification at both CAHA • Commissioning 10/2014-03/2015 telescopes

\rightarrow High Level Requirements

-		quirements	2.2 m
	Parameter	Requirement	Techni Science
	Telescope	T22	Specifica
	Focal Station	Cassegrain Focus	tions
	Operation mode	Direct Imaging, over the whole FoV	
	Wavelength range	(0.8 – 2.45) μm	Requirements and Specifications
	Filters	Broad band: Z Y J H K_s Narrow band: ~1%	specifications
nd	Pixel scale	0.45 arcsec/px	
	FoV	(32×32) arcmin, for 0.45 arcsec/px	
	IR Detector	4K x 4K mosaic of 2x2 HAWAII-2RG 18 μm pixel 2.5 μm cut-off	B.
nd	Entrance pupil	Telescope primary mirror	31.9' 0.45"/px
IC	Pupil image available	Cold stop	
nce	Thermal background	S/N maximum, specially in K band	
	Operating conditions	80 K (liquid nitrogen) vacuum	
	System focusing mechanism	Telescope secondary mirror	
	Second pixel scale	0.25 arcsec/pixel / FoV 18 arcmin	
	Camera optics solution	Mono-beam/Refractive/non-collimated stage	

M2

M1

RC focus

1. Introduction

2. Objectives

- 3.Requirements and Specifications
- 4. Design of PANIC
- 5. Implementation and Verification of PANIC
- 6. PANIC's Performance

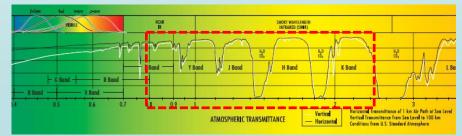
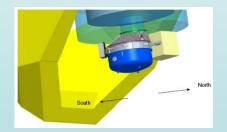


Imagen: Raytheon Vision Systems

High Level Requirements \rightarrow

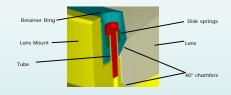

System Specifications \rightarrow

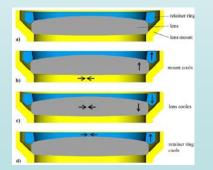
	Parameter	Requirement		
1. Introduction	Image Quality, for 0.45 arcsec/px	$D_{EE80} \le 0.9 \text{ arcsec}=2 \text{ px}$		
	Image Quality, for 0.25 arcsec/px	$D_{EE80} \le 0.75 \text{ arcsec}=3 \text{ px}$		
2. Objectives	Distortion	≤ 1.5 %		
3.Requirements and Specifications	Ghosts: Relative intensity Size at the detector	≤ 10 ⁻⁴ ≥ 10 arcsec		
	Narrow-band filters: max λ_c shift	≤ 0.3 %		
4. Design of PANIC	Optical Transmission	Maximize		
5. Implementation and	Instrument Weight	≤ 400 kg		
Verification of PANIC	Instrument length from the telescope focal plane	≤ 110 cm		

1. Introductio

4. Design of P

6. PANIC's Performance

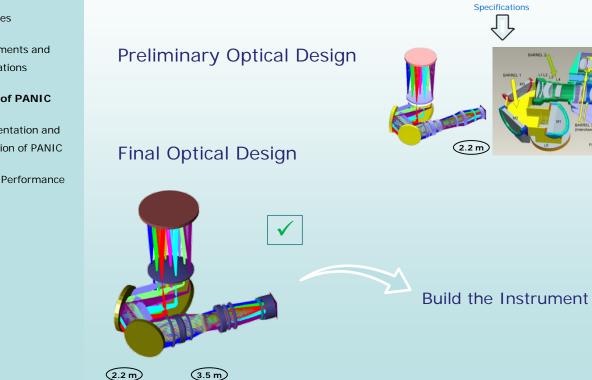

- → High Level Requirements
- → System Specifications


\rightarrow Other Requirements

- Maximization of the S-N in K band
 - · Field Stop: cold
 - Aperture Stop: cold
 - Stray light: Baffling, optics manufacturing.
- Pupil re-imager

Detailed Specifications

- Optical materials [$n(\lambda,T)$, CTE(T)]
- Tolerances: manufacturing, positioning, integration
- Interfaces with other subsystems
- Lens mounts: mechanical design
- Iterations with manufacturers
- Cryostat window
- Space between lenses
- Packing: folding



1. Introduction

2. Objectives

3. Requirements and

- Specifications
- 4. Design of PANIC
- 5. Implementation and Verification of PANIC
- 6. PANIC's Performance

Optical System Implementation

Science

FILTER WHE

Techni

Requirements and

1. Introduction

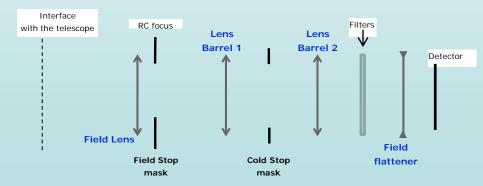
- 2. Objectives
- 3. Requirements and Specifications

4. Design of PANIC

- 5. Implementation and Verification of PANIC
- 6. PANIC's Performance

A) Optical Design Approach

U					
Parameter	0.45 arcsec/px	0.25 arcsec/px			
Infrared detector	рх	4096;	(4096		
Space between detectors	рх	14	17		
Pixel size	μm	18			
Plate scale	arcsec/px	0.45	0.25		
Plate scale	arcsec/mm	25.0	13.9		
	рх	4096+147			
FoV	mm	76.374			
	arcmin	31.82	17.68		
Lateral Magnification	adim	0.4685	0.8433		
Effective focal length	mm	8251	14851		
Focal ratio, F#	adim	3.750	6.75		


M1

(2.2 m

Foco RC

M2

B) The Initial Optical System

1. Introduction

2. Objectives

3. Requirements and Specifications

4. Design of PANIC

- 4.1. Optical system development
- 4.2. Preliminary Optical Design
- 4.3. Final Optical Design
- 5. Implementation and Verification of PANIC
- 6. PANIC's Performance

A) Optical Design Approach

C) Optical system Model

- Object
- Entrance Pupil: localization and size
- FoV
 - Wavelength range
 - Magnification
 - Plate Scale
 - Optical materials:
 - n (λ, T)
 - CTE (T)
 - Constrains: Temperature, telescope, focus mechanism.
 - Field Stop and Aperture Stop: localization and size

No Setup Analyze Optrion Tolanamo	Ubraries	Part Designer	Programming Help	•	۹. R.	v	×											Search
New Open Save Save Inset No. As Lans Comparator	Achie	Archive Files	Unework * Dieck Dox 1	Controps	strat To Corvet SC Orcup Formet	5	Di											
Lens Rie	3475		Diport		Convert	Diplote												
Systen Diplorer 👔 🔹 🖌 1	/ 10 km	Data 🗙 🚺 ži Sha	ini Mahi 🦯 💱 3: S	pet Dagram 1) 31 30 Lage	v. / Escala	Deferition	/ 🐤 🕫 Spot Die	geen2 /	C Maril Paralase	Eiller							
Update: Editors Only -	Lindson Edit	ton Coly - C. C.	+ 🛛 🛍 🖂 🔏 🕯	e ≱ ± C)- 🛫 🗲 🐑	1 2 · · · → Ø												
- Aperture		· Il Propetties									uration 1/2	0						
Apatonic Type1		e a sudiennes (1								Canal	and the state							
Critrance Pupil Diameter	(a) 3	Gerthen Type	Connect	Reflex	Thickness	Meterial	Contro	Gen Seni Dia	Conic	Par 1) mused)	Per Junearly	Par 4) mased)	Per Gjunur	red (
Aparture Value	e onre	Stendard +		interv.	(etchy			infeity U	0.00000									
2000.0	1 0005	Stevievi *	500040 0850LB	interv.	4433.00000	/487		1182.47650 0	0.00000									
Application Type:	2 STOP	Frien Arghere +	PRIMIRY MIRROR		4958 00000	MRROR	105	1100.30094 0		0.00000	4 00000	0.00000	0.00000					
Linton	3 (mm)	Fren Apphene +	SECOND MIRROR		6540 00000 F	MRROR	105	405.26472 8		0 00000	121002-19	0.00000	0.00000					
Gar Soni Dandar Narah Telendera	4 0640		TELESCORE FLAN	Interry.	as cares	/482		948-43567 U										
	6 open		INTRANCE WINDOW	intery	35 00005	RNN,5602,60K	1965	162.00000 0										
	6 (spec)	Stendard *		Intelly	376 72308		1965	162.00000 U										
Ocar Seni Daweter Nargin %	7 (899)	Stendard •	13	440.775EP	25 20000	PAN, 502, 800	1966	177.00000 8										
	a own	Stevlevi •		interry.	31 (430)		1 965	127.00000 U										
Glubal Coordinate Reference Surface	B (spst) 10	Standard * Coordinate Break *	TELESCOPE POCUS	intery	107 11300			117.05308 U	0.00000	0.00000	45 00000	0.00000	0.00000					
7						MERCE		6.00000 142.00000 U	0.00000	0 00000	45 00000	0.00000	0.00000					
Tolecartric Object Space	11 (npwr) 12	Standard • Coordinate Reads #	M	Interty.	-351 00000	MERCE	105	142.00000 U	0.00000	0.00000	41 00001 P	0.00000	0.00000					
F Mocal Image Space	10	Coordinate Break *			0.00000			0.00000		0 00000	41 00000 9	46.00000	0.00000					
Entropy Solves When Updating	13 (8997)	Standard *	M2	interior.	0,0000	MESCO	105	130 15000 U		0 80000	0 0000	+6.00000	0.00000					
First Seni-Okameters		Coordinate Break *	N/	many	274 99900	RIGHT	116	0.00000	0.0000	0.00000	0 00000	45.00000 P	0.00000					
Charle CE21 Agentures	15	Coordinate Break *			0 00000			0,00000		0 00000	0.00000	46.00000	0.00000					
* Talda	17 (1011)	Standard *	NO	interar.	0.00000	MRSOR	105	117.40000 U	0.00000									
Green Phild Curls Differ		Coordinate Break +			-124 59700			0.00000		0 00000	0,0000	45.00000 0	0.00000					
Cipan Plan Cana Cana	12 (1001)	Standard *	12	-428.17255	-31,54000	PAN, CAP2, KK	1255	88.43920 U	0.00000									
F Settings	20 (100)	Standard *		256,54725	-3142100			00-43900 U	0.00000									
Field 1 (X = 0.00000, Y = 0.00000, Weight = 1.701 Field 2 (X = 0.15400, T = 0.15400, Weight = 1.201	21 (101)	Standard *		176.05420		FAR STURS	1965	79.47220 U		Multi-Co	15gure5on 6830r							
> Red 3 (X = 0.21800, Y = 0.21800, Weight = 1.501	22 (and)	Shendard *		436.78482	-17 43300		1965	79.47200 U		Linden Dr.	ten Orikin 💊 🗎	X a la	1 m m C	60 2 -				
Field 4 (X = 0.25500, Y = 0.25600, Weight = 4.500 b Anti Date	23 (104)	Standard *		146.73091	-13 00000	PAN_SIDE_SOK	1.565	80.00000 U	0.00000			2.0						
* Wendanthy	24 (apa)	Standard *		140,70006	-8.00800		1965	80.00000 U	0.00000	· Opecas	d 4 Properties	00						
 Settings 	25 (ssr)	Standard •	13	-250.07454	-1674700	PAN, BAY2, SOK	1985	76.45900 U	0.00000	Attes	97 Cordig St	Config	2	Coefig 3	Config 6	Config 6	Controls	Cm
 Wandarigh 1 (18200 un, Trayle - 1,0000) Wandarigh 2 (1,9900 un, Trayle - 1,0000) 	28.0642	Shendard •		Interly.	-105 54000		1565	78.49920 0		1 200-		0.3		0.26600	0.20600	0.26400	0 20600	0.3
* Wardarigh 5 (2/9000 un, 10ad); = 1,00000)	27 (494)	Standard *		-410.55242		PAGEP1M16	1565	76.47700 U		2 MOFF -								
 Act Wavelength 	26 (spc)	Standard +		-13/.82741	-25 56000		1.565	76.47700 U		a (TT +	0 NOMINAL	NOVINA, R	CST .	2.0000	YOND	JAVAD	10400	Ka
 Environmant. Estavitation 	28 (657)	Standard •	U U	+15/.26148	-25 50000	DAN, BAR2, SOK	1985	/1.4/900 U		4 18157 *	1 0.0000	0.41	1000	0.82520	0 00000	1 07500	1.00000	1.03
 Advanced 	38.5642	Standard +		1319.32829	+1635/00		1569	/1.4/900 0		6 WHAT *	2 10000	1.63	1500	0 80300	1.03/00	1.20800	16/700	2.5
 Rey Alming Mutanal Cataloga 	31 (spo)	Standard +	65	-250.96763	-16.40000	I NACOROLISON	1.565	/5.00000 0		6 WR -	3 24000	2.41	1000	0.99600	1.07900	1.34600	178600	2.4
 TEIn/Tintes 	32 (apro)	Standard +		Intergy	-152.81100		1.585	/5.00000 0		7 110 -	2 4453 00000	4109-00	1011 V 44	CA 01877 V	4103 99170	1400 8500 1	/ 4455.00010 V	1109.00
* sla	33 (647)	Standard •	HUBS	Interly.	-8.99922	LAN"ROS"ROK	1.99	62.50000 U										
 Lister Cost Extender 	54 (644)	Standard +		Trans/	-29.14/00		1.99	82.90000 U										
	35 (spc) 36 (spc)	Standard +		116.30315	-30 56000	PAR, SICE, SOK	1565	65.00000 U						-				
					-16 53988			65.00000 U										

1. Introduction

- 2. Objectives
- 3. Requirements and
 - Specifications

4. Design of PANIC

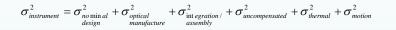
4.1. Optical system development

4.2. Preliminary Optical Design

- 4.3. Final Optical Design
- 5. Implementation and Verification of PANIC
- 6. PANIC's Performance

B) The Initial Optical System

D) Optical System **Optimization**


- Variables set up
 - \rightarrow RoC, Thickness, Materials
- Merit figures
 - \rightarrow Image Quality
 - $\rightarrow\,$ Optical Distortion
- Constrains Set up
 - \rightarrow Mechanical
 - \rightarrow Optical

- A) Optical Design **Approach**
- C) Optical system **Model**

E) Optical system **Evaluation**

- Merit figures: Performance
- Constrains fulfilment
- Mechanical
- Optical
- Margin for errors

- B) The Initial Optical System
- D) Optical System **Optimization**
- F) Error Budget

- Sensitivity \rightarrow worst offenders \rightarrow compensators
- Tolerances \rightarrow Budget
 - Manufacturing Errors
 - Assembly and alignment Errors
- Final performance Prediction \rightarrow Montecarlo analysis

Error	σ (μm)	Verification
Nominal Optical Design	5.22	Optical Design: nominal (T22+PANIC)
Lenses manufacturing	4.33	200 Montecarlo (PANIC+ lenses manufacturing) rms spot radius: 5.22 to 6.78 (μm)
Assembly/Integration /Alignment	6.10	200 Montecarlo (PANIC+subsystem) rms spot radius: 5.22 to 6.37 (μm)
Non compensable	0.66	200 Montercarlo (PANIC+indix+Abbe) Numerical model (glasses inhomogeneity) rms spot radius: 5.22 to 5.26 (μm)
Thermal	1.72	Numerical model (thermal gradient) rms spot radius: 5.22 to 5.50 (μm)
Movement	0.92	200 Montercarlo (PANIC+mechanical flexions) rms spot radius: 5.22 to 5.30 (μm)
Margin	0.50	
Total	9.36	≤ 10.03 μm

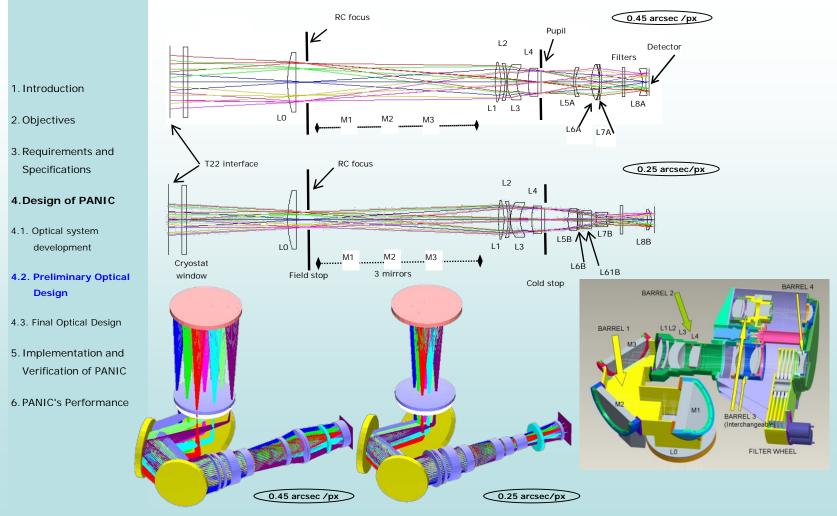
1. Introduction

2. Objectives

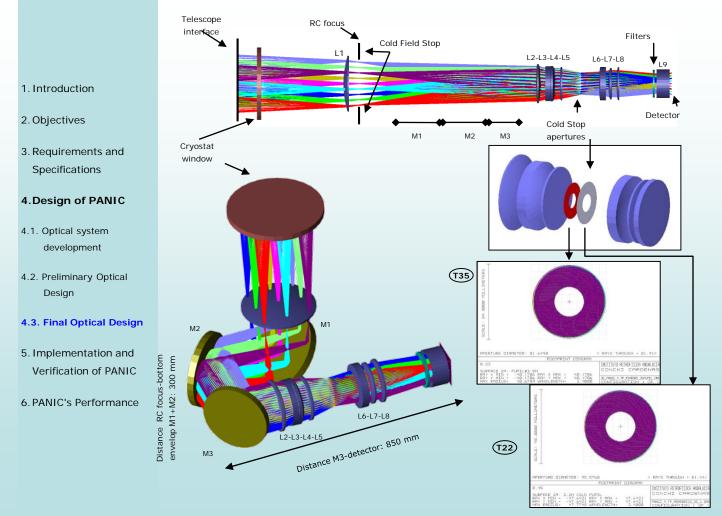
3. Requirements and Specifications

4. Design of PANIC

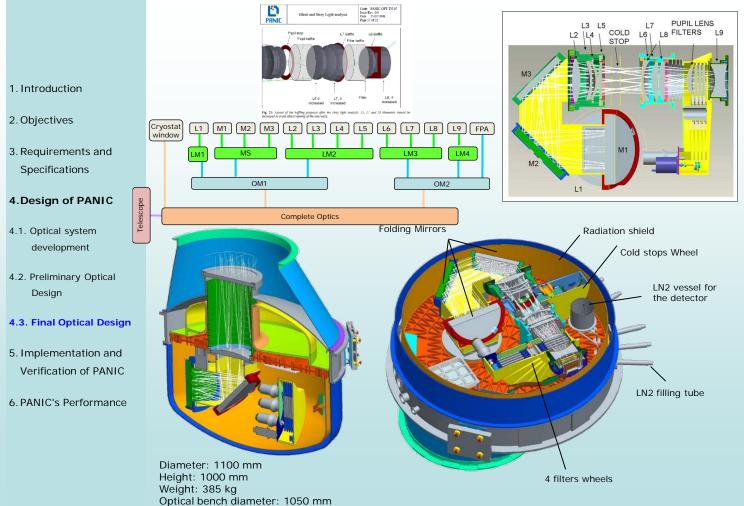
4.1. Optical system development


4.2. Preliminary Optical Design

4.3. Final Optical Design

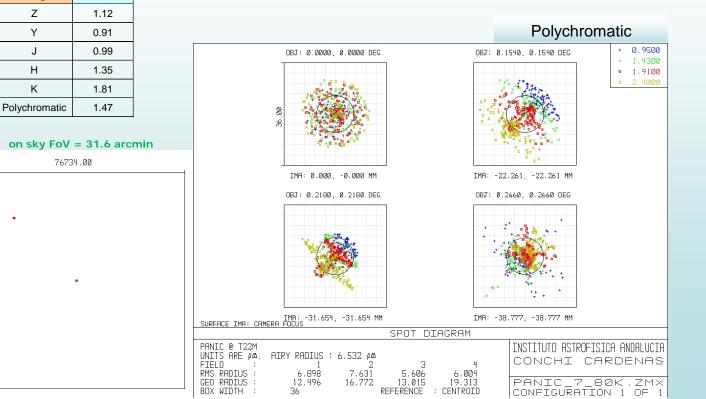

5. Implementation and Verification of PANIC

6. PANIC's Performance


• PDR Optical Design

• FDR Optical Design

• Interaction between Optical Design and Mechanics-Cryogenics


Requirement: $D_{EE80} \le 2 \text{ px}$

λ range

D_{EE80} (pix)

Image quality

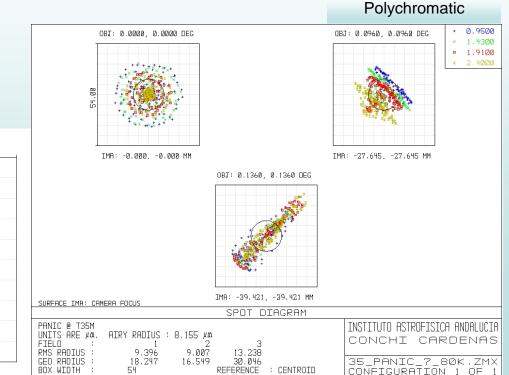

2.2 m telescope

Image quality

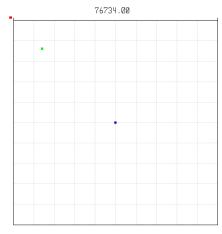
3.5 m telescope

 Requirement: DEE80 ≤ 3 px

 λ range
 DEE80 (pix)

 Z
 1.72

 Y
 1.72


 J
 1.80

 H
 1.94

 K
 2.18

 Polychromatic
 1.97

on sky FoV = 15.9 arcmin

	Dorformonoo	Parameter	Requirement	PANIC
	Performance	Wavelength range	(0.8 – 2.42) μm	~
		System	Within a cryostat	~
		Temperature (liquid nitrogen)	~ 80 K	✓
		Pressure	10 ⁻⁶ mbar	✓
		Focus mechanism	Telescope secondary mirror	✓
1. Introduction		Optical system solution	Refractive	✓
2. Objectives		Optical surfaces	Spherical and flat Minimize number of aspherics and conics	Spherical and flat ✓
3. Requirements and		Elements	2 barrels for cold stop re-imaging 2 flat-fields	✓
Specifications		Lenses mechanical constrains	Implementation of chamfers at the edge Edge thickness \geq 6.5 mm	~
4.Design of PANIC		Broad-band filters	Z, Y, J, H у K _s	\checkmark
n besign of France		Narrow-band filters	$FWHM/\lambda_c 100 \sim 1\%$	✓
4.1. Optical system		Narrow-band filters, λ_c shift	≤ 0.3 %	✓
development		Re-imagined System Entrance Pupil	Physically available to introduce a cold stop within the camera optical track	~
4.2. Preliminary Optical		Image quality for the re-imagined System Entrance Pupil	Flux loss in K band: < 10%	< 2% ✓
Design		Aperture stop	Cold	✓
4.3. Final Optical Design		Cold stop diameter degradation	≤ 3 % in K band	✓
		Field Stop	Cold	✓
5. Implementation and		Stray Light reduction	Optimized for K band	\checkmark
Verification of PANIC		Ghosts: relative intensity	< 10 ⁻⁴	\checkmark
6. PANIC's Performance		Ghosts: size on the detector	> 10 arcsec(in case of relative intensity violation)	~
		Back focal distance	> 10 mm	✓
		Length focal plane - bottom	≤ 110 cm	✓
		Weight	≤ 400 kg	385 kg ✓
		Transmission	> 45 % (complete wavelength range)	~ 50.6 % 🗸
		Distortion	\leq 1.5 % (complete wavelength range)	< 1.42 % ✓
		Lateral magnification	0.4685 ± 0.0025	0.468 ± 0.003 ✓

• Performance

2.2 m

M2		T22	
	Parameter	Requirement	PANIC
	Plate scale	(0.450 ± 0.007) arcsec/px	(0.445 ± 0.003) arcsec/px ✓
	FoV, square	(32.0 ± 1.0) arcmin	(31.6 ± 0.3) arcmin ✓
м1	Image quality, D _{EE80}	\leq 2 px = 36 μm = 0.900 arcsec	≤ 1.5 px = 26.4 μm = 0.65 arcsec ✓

Foco RC

	T35									
	Parameter	Requirement	PANIC							
	Plate scale	(0.226 ± 0.004) arcsec/px	(0.224 ± 0.002) arcsec/px ✓							
	FoV, square	(16.1 ± 0.5) arcmin	(15.88 ± 0.11) arcmin ✓							
	Image quality, D _{EE80}	\leq 3 px = 54 μ m = 0.678 arcsec	≤ 2.0 px = 35.5 μm = 0.45 arcsec ✓							
M1										

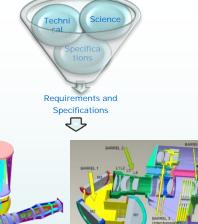
1. Introduction

- 2. Objectives
- 3. Requirements and Specifications

4. Design of PANIC

- 4.1. Optical system development
- 4.2. Preliminary Optical Design

4.3. Final Optical Design


- 5. Implementation and Verification of PANIC
- 6. PANIC's Performance

Foco RC

3.5 m

2.2 m

Build the Instrument

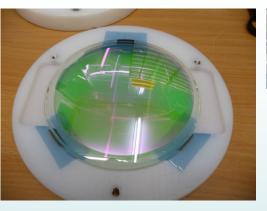
1. Introduction

2. Objectives

Auxiliary systems designed for PANIC

- 3. Requirements and Specifications
- 4. Design of PANIC

5. Implementation and Verification of PANIC

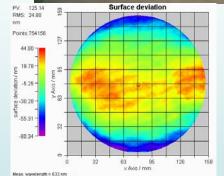

- 5.1. Components: Manufacturing and Acceptance
- 5.2. Instrument in the Laboratory: AIV and Final tests
- 5.3. Instrument at

Telescope: Alignment and Verification

6. PANIC's Performance

November/2008 \rightarrow April/2012

• Lenses and Cryostat window



1. Introduction

- 2. Objectives
- 3. Requirements and Specifications
- 4. Design of PANIC
- 5. Implementation and Verification of PANIC
- 5.1. Components: Manufacturing and Acceptance
- 5.2. Instrument in the Laboratory: AIV and Final tests
- 5.3. Instrument at Telescope: Alignment and Verification
- 6. PANIC's Performance

- Lenses and Cryostat window
- Folding Mirrors

- 2. Objectives
- 3. Requirements and Specifications
- 4. Design of PANIC
- 5.Implementation and Verification of PANIC
- 5.1. Components:

6. PANIC's Performance

- Lenses and Cryostat window
- Folding Mirrors
- Science Filters

1. Introduction

- 2. Objectives
- 3. Requirements and Specifications

4. Design of PANIC

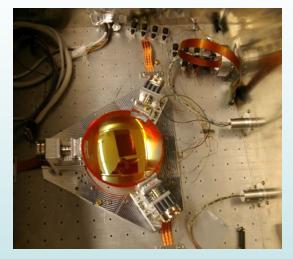
5.Implementation and Verification of PANIC

5.1. Components:

Manufacturing and Acceptance

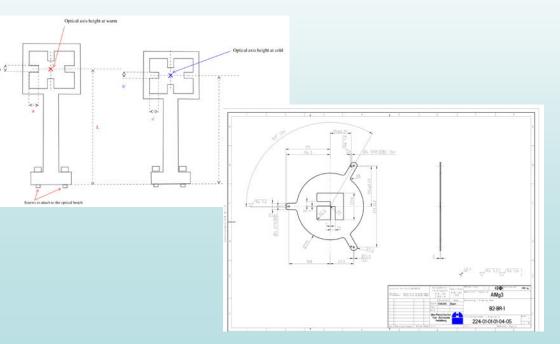
- 5.2. Instrument in the Laboratory: AIV and Final tests
- 5.3. Instrument at

Telescope: Alignment and Verification


6. PANIC's Performance

Filtro	λ _c (μm)	FWHM (µm)	T (%)		
Z	0.877	0.095	> 80		
Y	1.020	0.100	> 70		
J	1.250	0.160	> 80		
н	1.635	0.290	> 80		
Ks	2.150	0.301	> 80		
H ₂	2.122	0.032	> 65		

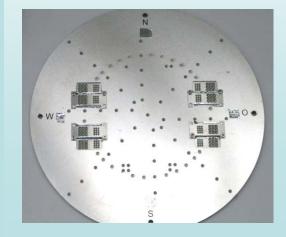
- Lenses and Cryostat window
- Folding Mirrors
- Science Filters
- 1. Introduction
- 2. Objectives
- 3. Requirements and Specifications
- 4. Design of PANIC
- 5.Implementation and Verification of PANIC
- 5.1. Components: Manufacturing and Acceptance
- 5.2. Instrument in the Laboratory: AIV and Final tests
- 5.3. Instrument at Telescope: Alignment and Verification
- 6. PANIC's Performance



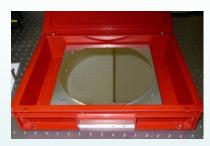
- Lenses and Cryostat window
- Folding Mirrors
- Science Filters

- 1. Introduction
- 2. Objectives
- 3. Requirements and
- Specifications
- 4. Design of PANIC
- 5. Implementation and Verification of PANIC
- 5.1. Components: Manufacturing and Acceptance
- 5.2. Instrument in the Laboratory: AIV and Final tests
- 5.3. Instrument at Telescope: Alignment and Verification
- 6. PANIC's Performance

• Alignment targets (at warm, alignment DEC X and DEC Y)

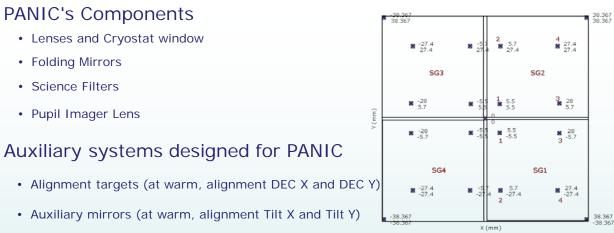

- Lenses and Cryostat window
- Folding Mirrors
- Science Filters

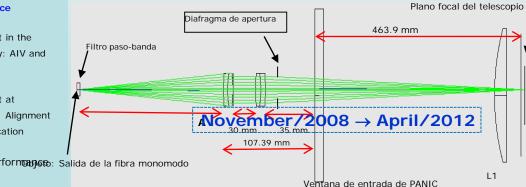
• Pupil Imager Lens


- 1. Introduction
- 2. Objectives
- 3. Requirements and Specifications
- 4. Design of PANIC
- 5. Implementation and Verification of PANIC
- 5.1. Components: Manufacturing and Acceptance
- 5.2. Instrument in the Laboratory: AIV and Final tests
- 5.3. Instrument at Telescope: Alignment and Verification
- 6. PANIC's Performance

Auxiliary systems designed for PANIC

- Alignment targets (at warm, alignment DEC X and DEC Y)
- Auxiliary mirrors (at warm, alignment Tilt X and Tilt Y)
- · Auxiliary cryostat exit window (for opto-mechanical axis verification at cold)
- Focal mask (for detector positioning at the instrument focus)




- · Lenses and Cryostat window
- Folding Mirrors
- Science Filters

• Pupil Imager Lens

- 1. Introduction
- 2. Objectives
- 3. Requirements and Specifications
- 4. Design of PANIC
- 5. Implementation and Verification of PANIC
- 5.1. Components: Manufacturing and Acceptance
- 5.2. Instrument in the Laboratory: AIV and Final tests
- 5.3. Instrument at Telescope: Alignment and Verification
- 6. PANIC's Performence: Salida de la fibra monomodo

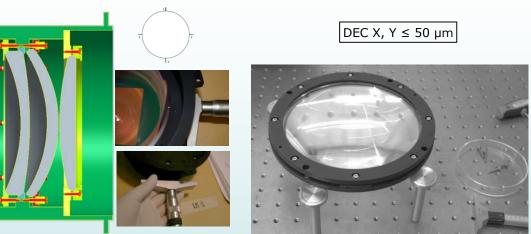
- Auxiliary cryostat exit window (for opto-mechanical axis verification at cold)
- Focal mask (for detector positioning at the instrument focus)
- Star Simulator (for instrument image quality measurements at laboratory)

Folding Mirrors Structure

$May/2010 \rightarrow August/2014$

- 2. Objectives
- 3. Requirements and Specifications
- 4. Design of PANIC
- 5. Implementation and Verification of PANIC
- 5.1. Components: Manufacturing and Acceptance
- 5.2. Instrument in the Laboratory: AIV and Final tests
- 5.3. Instrument at Telescope: Alignment and Verification
- 6. PANIC's Performance

Static conditions: Tilt X = (5 ± 1) arcsec Tilt Y = (15 ± 7) arcsec


Dynamic conditions: Tilt X,Y \leq 20 arcsec

- Folding Mirrors Structure
- Lenses

$May/2010 \rightarrow August/2014$

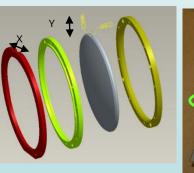
1. Introduction

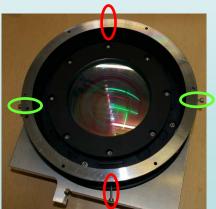
- 2. Objectives
- 3. Requirements and Specifications
- 4. Design of PANIC
- 5. Implementation and Verification of PANIC
- 5.1. Components: Manufacturing and Acceptance
- 5.2. Instrument in the Laboratory: AIV and Final tests
- 5.3. Instrument at Telescope: Alignment and Verification
- 6. PANIC's Performance

- Folding Mirrors Structure
- Lenses
- Filters and PIL

- 1. Introduction
- 2. Objectives
- 3. Requirements and Specifications
- 4. Design of PANIC
- 5. Implementation and Verification of PANIC
- 5.1. Components: Manufacturing and Acceptance
- 5.2. Instrument in the Laboratory: AIV and Final tests
- 5.3. Instrument at Telescope: Alignment and Verification
- 6. PANIC's Performance

$May/2010 \rightarrow August/2014$


- Folding Mirrors Structure
- Lenses
- · Filters and PIL


1. Introduction

- 2. Objectives
- 3. Requirements and
- Specifications
- 4. Design of PANIC

5.1 mplementation and Verification of PANIC

- 5.1. Components: Manufacturing and Acceptance
- 5.2. Instrument in the Laboratory: AIV and Final tests
- 5.3. Instrument at Telescope: Alignment and Verification
- 6. PANIC's Performance

$May/2010 \rightarrow August/2014$

System level

- Operation temperature changed: from 80 K to 95 K
- · Final optical design: Feedback with the optical as-built parameters
 - \rightarrow As-built Optical model
- Calculation of the mechanical compensators: L2-L3 and L7-L8 distances
- Lenses Barrels: mechanical compensators, decentering L2 and L6

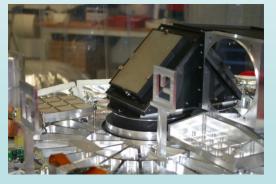
- Folding Mirrors Structure
- Lenses
- Filters and PIL

System level

1. Introduction

- 2. Objectives
- 3. Requirements and
- Specifications
- 4. Design of PANIC

5. Implementation and Verification of PANIC


Calculation of the mechanical compensators: L2-L3 and L7-L8 distar

· Final optical design: Feedback with the optical as-built parameters

• Operation temperature changed: from 80 K to 95 K

- Lenses Barrels: mechanical compensators, decentering L2 and L6
- 5.1. Components: Manufacturing and Acceptance
- 5.2. Instrument in the Laboratory: AIV and Final tests
- 5.3. Instrument at Telescope: Alignment and Verification
- 6. PANIC's Performance

Subsystem level

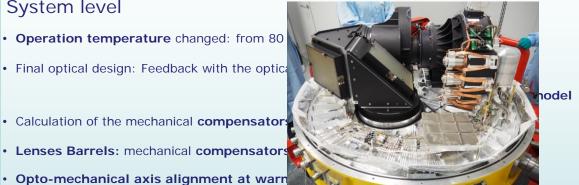
- Folding Mirrors Structure
- Lenses

•

Filters and PIL

System level

1. Introduction


- 2. Objectives
- 3. Requirements and
- Specifications
- 4. Design of PANIC
- 5.1 mplementation and Verification of PANIC
- 5.1. Subsystems: Manufacturing and Acceptance
- Opto-mechanical axis alignment at warn
- · Complete instrument alignment at warm and verification at cold

Common Opto-mechanical axis: DEC X/Y \rightarrow 100 – 50 μ m Tilt X/Y \rightarrow 1 -1.5 arcmin

Subsystem level

- Folding Mirrors Structure
- Lenses
- Filters

System level

1. Introduction

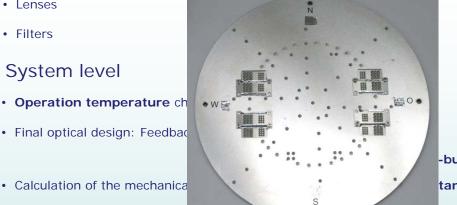
- 2. Objectives
- 3. Requirements and Specifications
- 4. Design of PANIC

5.1. Components:

5. Implementation and Verification of PANIC

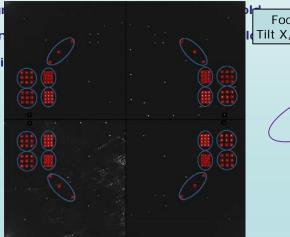
Manufacturing and

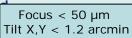
- Opto-mechanical axis aligitized
- Complete instrument align
- 5.2. Instrument in the


Acceptance

Mosaic of detectors: positi

•


$May/2010 \rightarrow August/2014$



Lenses Barrels: mechanical compensators, decentering L2 and L6

-built Optical model

tances

let

- 1. Introduction
- 2. Objectives
- 3. Requirements and Specifications
- 4. Design of PANIC
- 5. Implementation and Verification of PANIC
- 5.1. Components: Manufacturing and Acceptance
- 5.2. Instrument in the Laboratory: AIV and Final tests
- 5.3. Instrument at

Telescope: Alignment and Verification

6. PANIC's Performance

$October/2014 \rightarrow March/2015$

Reassembly after transport

- 1. Introduction
- 2. Objectives
- 3. Requirements and Specifications
- 4. Design of PANIC

5.Implementation and Verification of PANIC

- 5.1. Components: Manufacturing and Acceptance
- 5.2. Instrument in the Laboratory: AIV and Final tests
- 5.3. Instrument at Telescope: Alignment and Verification
- 6. PANIC's Performance

• Reassembly after transport

• Image quality tests at laboratory (after transportation)

- 1. Introduction
- 2. Objectives
- 3. Requirements and Specifications
- 4. Design of PANIC

5. Implementation and Verification of PANIC

- 5.1. Components: Manufacturing and Acceptance
- 5.2. Instrument in the Laboratory: AIV and Final tests
- 5.3. Instrument at Telescope: Alignment

and Verification

6. PANIC's Performance

$October/2014 \rightarrow March/2015$

October/2014 \rightarrow March/2015

- Reassembly after transport
- Image quality tests at laboratory (after transportation)

• At 2.2 m telescope: alignment

1. Introduction

2. Objectives

- 3. Requirements and Specifications
- 4. Design of PANIC

5. Implementation and Verification of PANIC

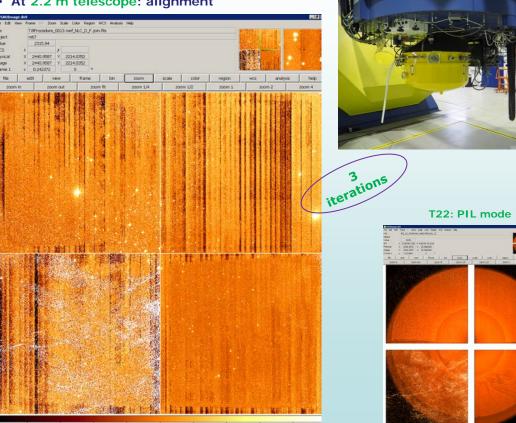
- 5.1. Components: Manufacturing and Acceptance
- 5.2. Instrument in the Laboratory: AIV and Final tests
- 5.3. Instrument at **Telescope: Alignment** and Verification
- 6. PANIC's Performance

1.97e+003

2.06e+003

2.15e+003

2.240+003

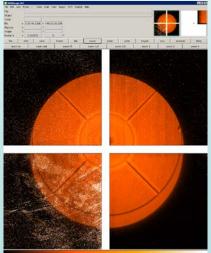

2.338+003

2.41e+003

2.5e+003

2.596+003

2.688+003

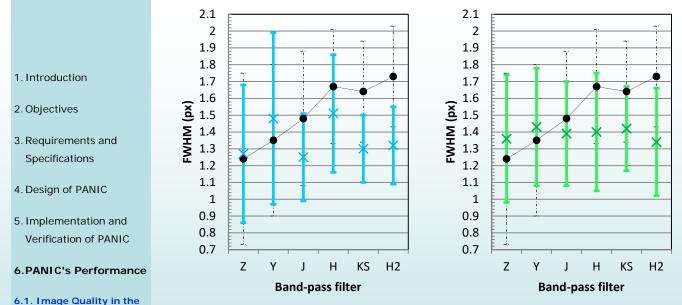

- Reassembly after transport
- Image quality tests at laboratory (after transportation)
- At 2.2 m telescope: alignment
- At 3.5 m telescope: alignment

October/2014 \rightarrow March/2015

T35: PIL mode

1701 38-6 9036 Faith USA 12120 12979 14856 38514

1. Introduction


2. Objectives

3. Requirements and Specifications

4. Design of PANIC

5. Implementation and Verification of PANIC

- 5.1. Components: Manufacturing and Acceptance
- 5.2. Instrument in the Laboratory: AIV and Final tests
- 5.3. Instrument at Telescope: Alignment and Verification
- 6. PANIC's Performance

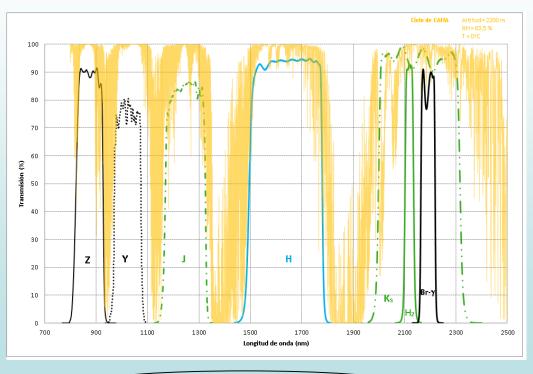
laboratory

6.2. Filters Set

6.3. Commissioning at both telescopes

x Experimental data at laboratory: <u>before</u> transport

• as-built Optical model


x Experimental data at laboratory: <u>after</u> transport

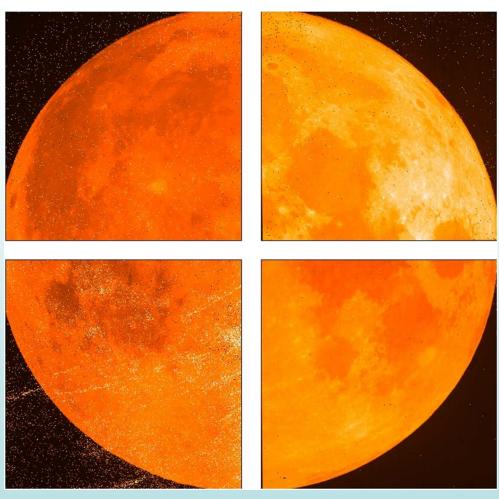
		Position					
		1	2	3	4	5	6
Wheel	#1	Y	н	PIL	Blank	J	Open
	#2	z	Ks	Blank	H ₂	dummy	Open
	#3	dummy	dummy	Blank	dummy	dummy	Open
	#4	dummy	dummy	Blank	dummy	Br-γ	Open

1. Introduction

- 2. Objectives
- 3. Requirements and Specifications
- 4. Design of PANIC
- 5. Implementation and Verification of PANIC
- 6.PANIC's Performance
- 6.1. Image Quality in the laboratory
- 6.2. Filters Set
- 6.3. Commissioning at both telescopes

Operation temperature: 100 K

	T22				
	PANIC performance	Expected As-built Optical system	Measured (M) Derived from measurements (D)		
1. Justice doubtle in	Lateral magnification	0.4676 ± 0.0014	(D) 0.470 ± 0.020		
1. Introduction	Focal ratio, F#	3.7434 ± 0.0016	(D) 3.76 ± 0.17		
2. Objectives	Plate scale	(0.4456 ± 0.0022) arcsec/px	(M) (0.4484 ± 0.0017) arcsec/px		
3. Requirements and	FoV, square	(31.65 ± 0.15) arcmin	(M) (31.67 ± 0.11) arcmin		
Specifications	Image quality, D _{EE80}	(25.9 \pm 0.6) μm = (1.44 \pm 0.03) px (\leq 2 px)	(D) ≤ 2 px		
	Distortion	≤ (1.332 ± 0.016) %	(M) ≤ 0.73 %		
4. Design of PANIC	Gap between detectors	≤ 167 px = 75 arcsec	(M) ~ 156 px = 70 arcsec		
5. Implementation and Verification of PANIC	Pupil image diameter (on the detector)	(72.4 ± 0.9) mm	(M) ~ 71.5 mm		
6.PANIC's Performance	Performance T35				
6.1. Image Quality in the laboratory	PANIC performance	Expected As-built Optical system	Measured (M) Derived from measurements (D)		
6.2. Filters Set	Focal ratio, F#	4.6744 ± 0.0022	(D) 4.70 ± 0.21		
0.2. There's Set	Plate scale	(0.2239 ± 0.0013) arcsec/px	(D) (0.226 ± 0.009) arcsec/px		
6.3. Commissioning at both telescopes	FoV, square	(15.90 ± 0.09) arcmin	(D) (16.0 ± 0.8) arcmin		
both telescopes	Image quality, D _{EE80}	$(32.4 \pm 0.8) \ \mu m = (1.80 \pm 0.04) \ px \ (\le 3 \ px)$	(M) ≤ 2 px		
	Distortion	(1.381 ± 0.020) %	(D) ≤ 0.73 %		
	Gap between detectors	≤ 167 px = 38 arcsec	(D) ~ 156 px = 35 arcsec		
	Pupil image diameter (on the detector)	(55.7 ± 0.6) mm	(M) ~ 55.3 mm		


1. Introduction

- 2. Objectives
- 3. Requirements and Specifications
- 4. Design of PANIC
- 5. Implementation and Verification of PANIC

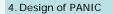
6.PANIC's Performance

6.1. Image Quality in the laboratory

- 6.2. Filters Set
- 6.3. Commissioning at both telescopes

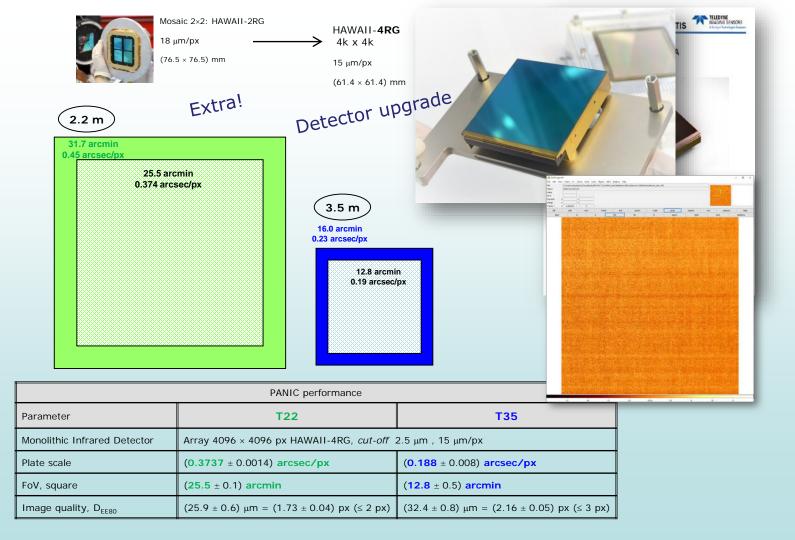
First light image, full Moon: T22, H2, 30 arcmin

DR18, T22, JHKs, 15 arcmin Fernando Comerón et al. (in preparation)


Infrared bright source RAFGL5475, T22, JHKs, 15 arcmin Fernando Comerón et al. A&A 622, A134 (2019)

- 2. Objectives
- 3. Requirements and Specifications
- 5. Implementation and

6.1. Image Quality in the laboratory


- 6.2. Filters Set
- 6.3. Commissioning at both telescopes

- 1. Introduction

Verification of PANIC

6.PANIC's Performance

¡Gracias!

- · Concepción Cárdenas Vázquez: conchi@mpia.de
- Thesis available at: http://digibug.ugr.es/handle/10481/54456
- · This talk in English at EAS 2020 annual meeting: https://youtu.be/q530WQD87tg?t=3263
- · PANIC web site: http://panic.iaa.es