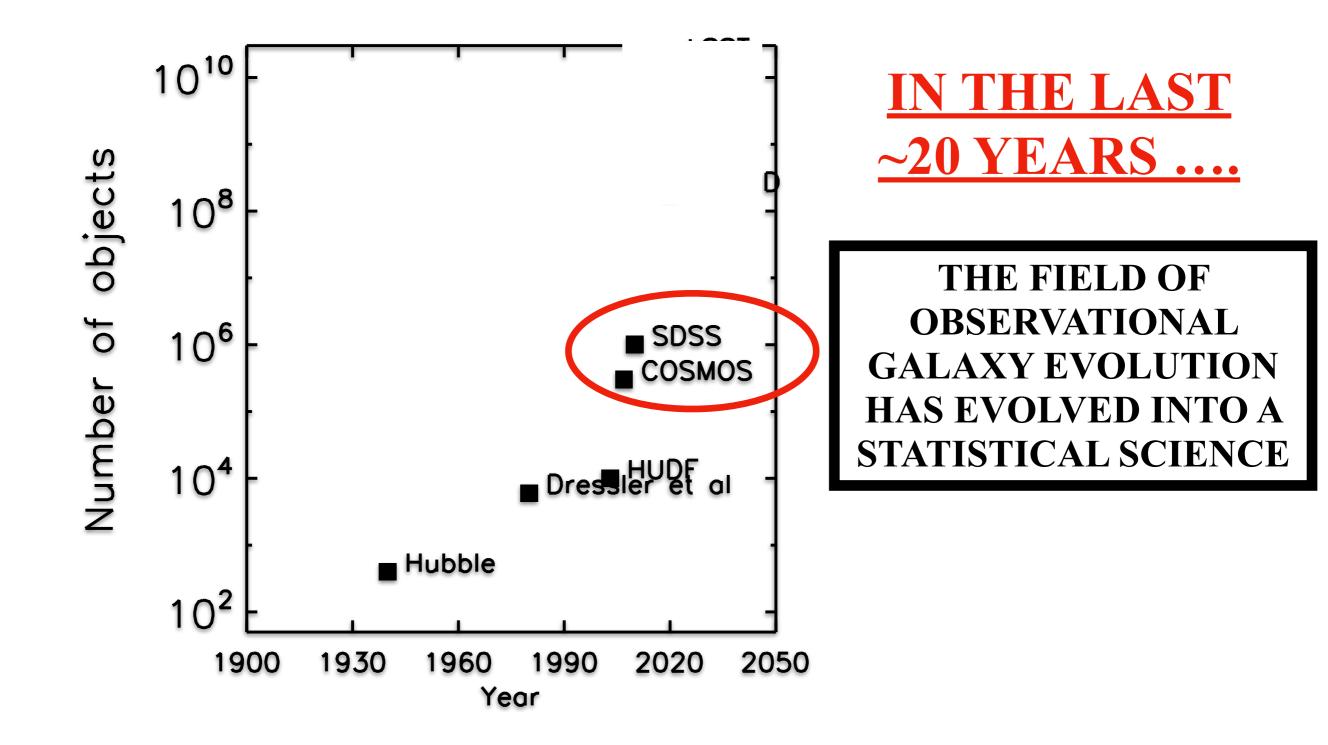
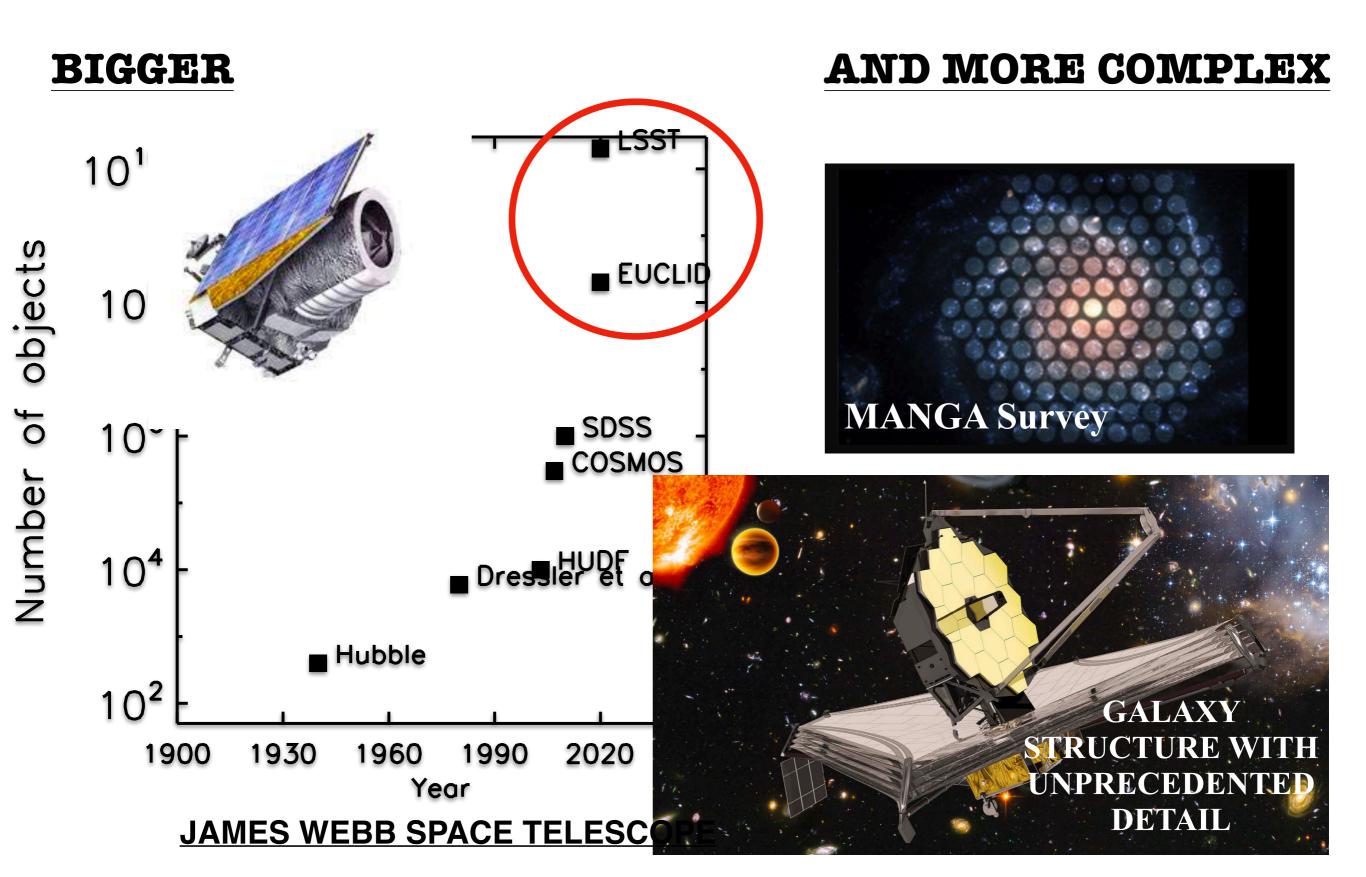
The impact of deep learning applied to galaxy surveys

Marc Huertas-Company

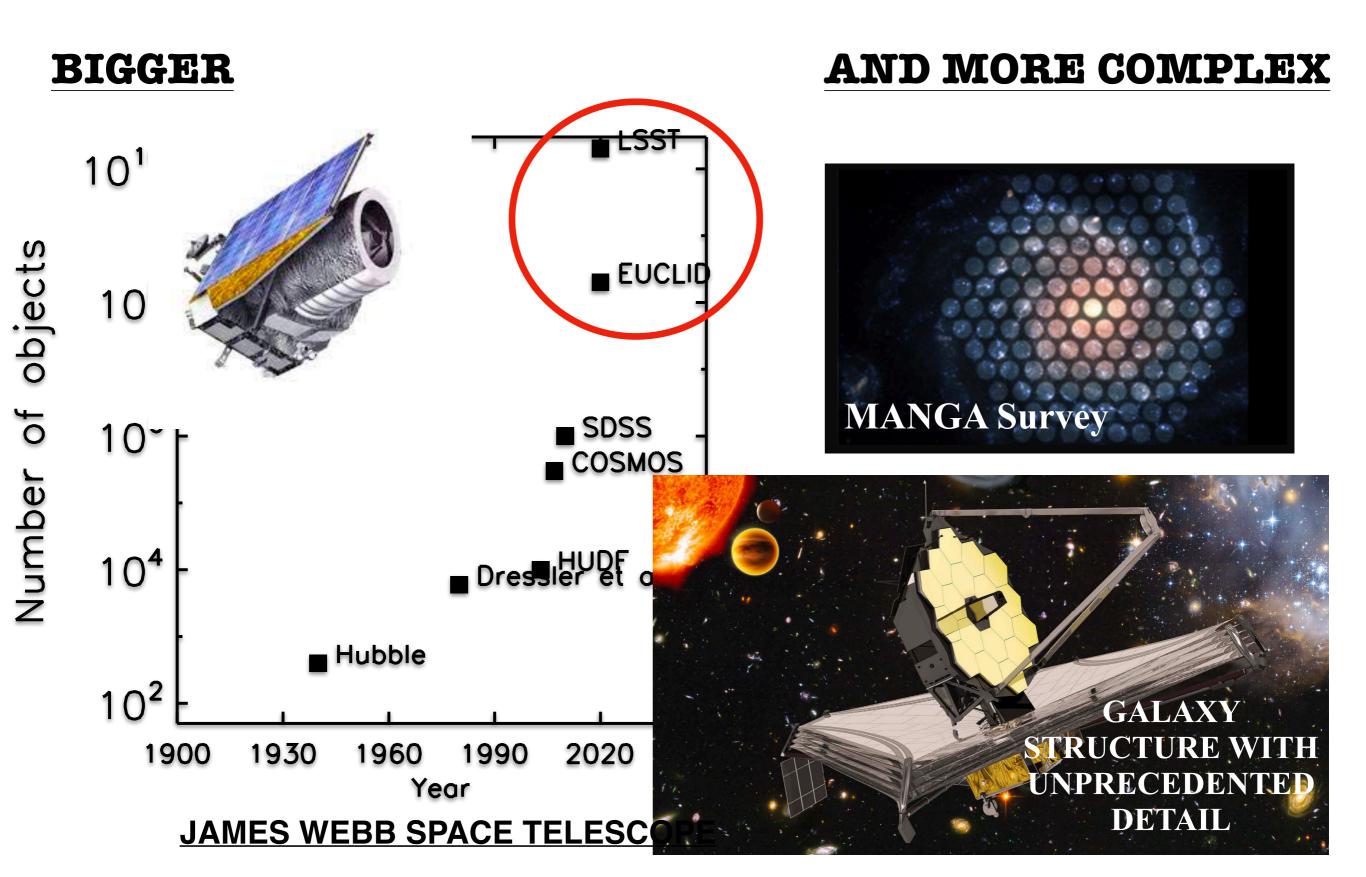
Cuarta Sinergia SEA Inteligencia Artificial y Astrofísica - 09/02/22



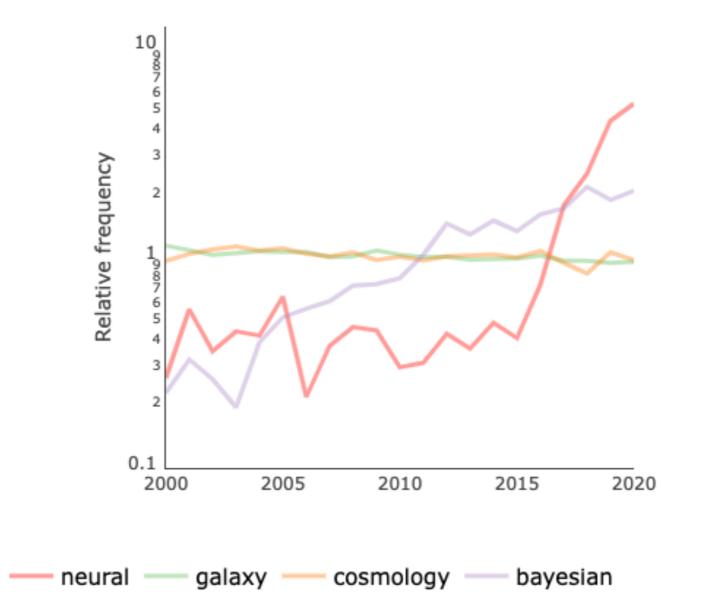
THE DATA-DRIVEN ASTRONOMY ERA



THE DATA-DRIVEN ASTRONOMY ERA

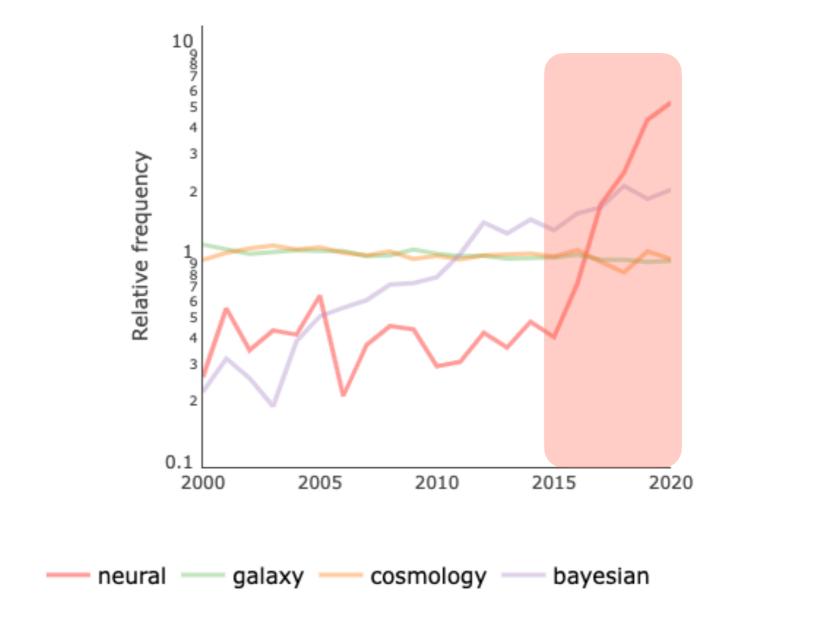


Evolution of keywords frequency in astro-ph papers



Source: ArXivSorter

Evolution of keywords frequency in astro-ph papers

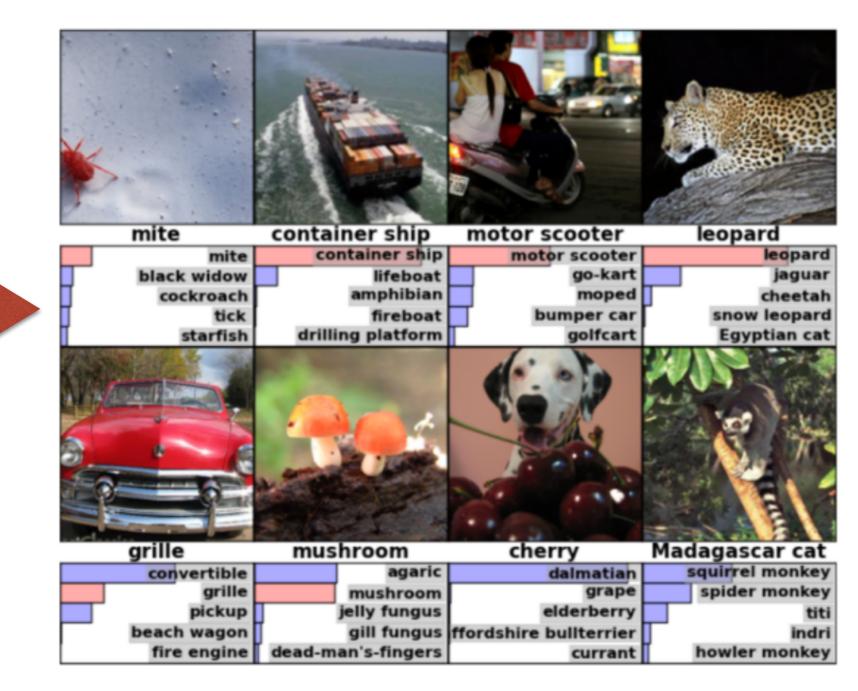


Source: ArXivSorter

BEFORE 2012....ML WINTER

TRIVIAL HUMAN TASKS REMAINED CHALLENGING FOR COMPUTERS

2012+: the deep learning era



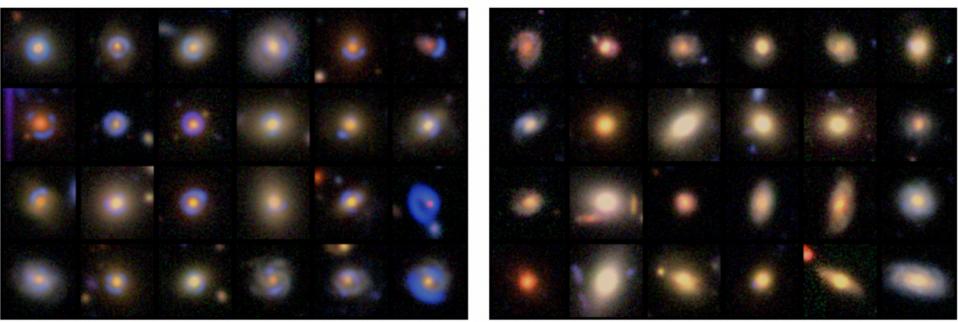
IT HAS BECOME TRIVIAL....

<u>A decade of deep learning, six years in astronomy...</u>

what type of applications?

1. Deep Learning for low level data processing	close to standard computer vision applications for natural images with no or reduced domain specific content
2. Deep Learning for galaxy properties	used to replace existing algorithms with a faster and more efficient solution
3. Deep Learning for emulation of simulations	similar to 2 but forward modelling - learning the galaxy-halo connection
4. Deep Learning for assisted discovery	data exploration and visualization of complex datasets, identification of new objects
5. Deep Learning for hidden correlations	properties of galaxies which are not directly accessible with known observables
6. Deep Learning to constrain cosmology	bypass summary statistics and constrain models using all available data

1. Deep Learning for low level data processing



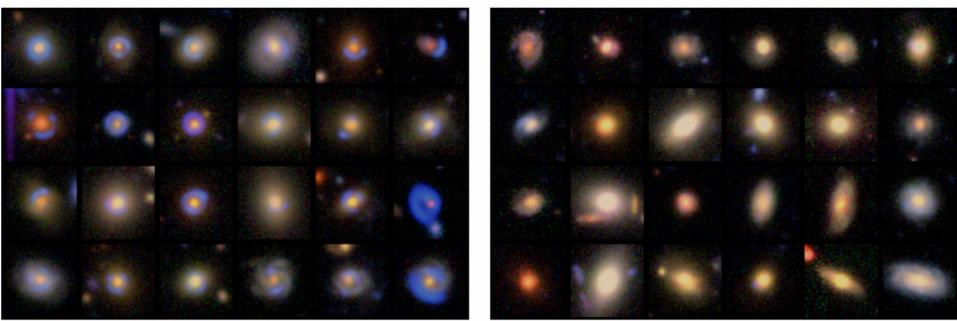
Rare events, valuable to constrain cosmology. Future surveys will increase the samples by orders of magnitude.

LENS

NON-LENS

<u>Jacobs+17</u>

1. Deep Learning for low level data processing

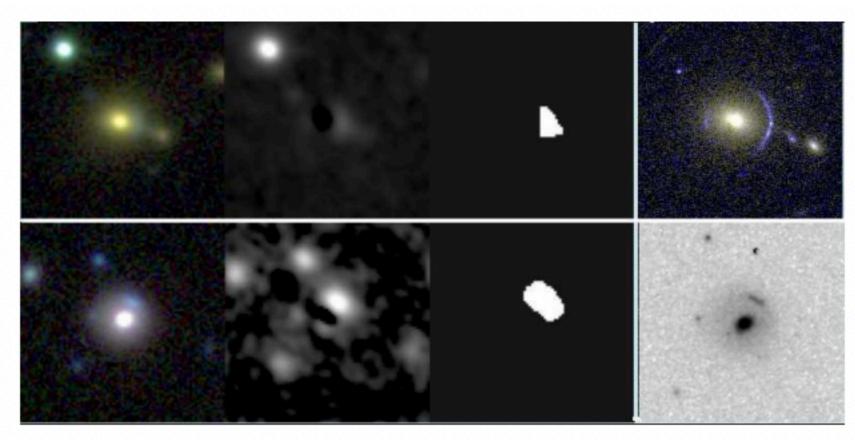


Rare events, valuable to constrain cosmology. Future surveys will increase the samples by orders of magnitude.

LENS

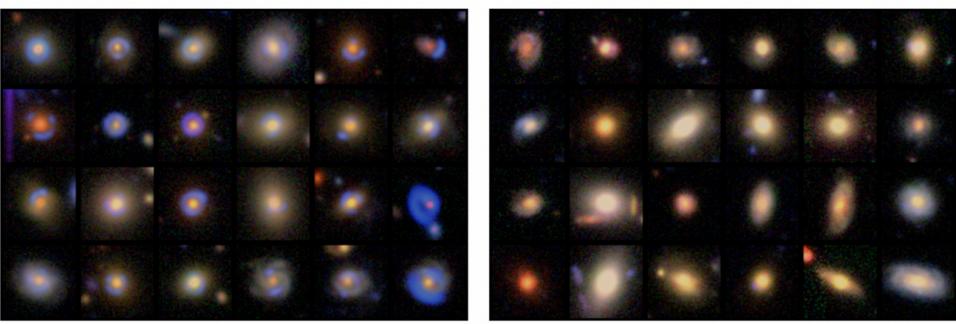
NON-LENS

<u>Jacobs+17</u>



"Pre Deep Learning" Approach

1. Deep Learning for low level data processing



Rare events, valuable to constrain cosmology. Future surveys will increase the samples by orders of magnitude.

CN1

CN2 CN3

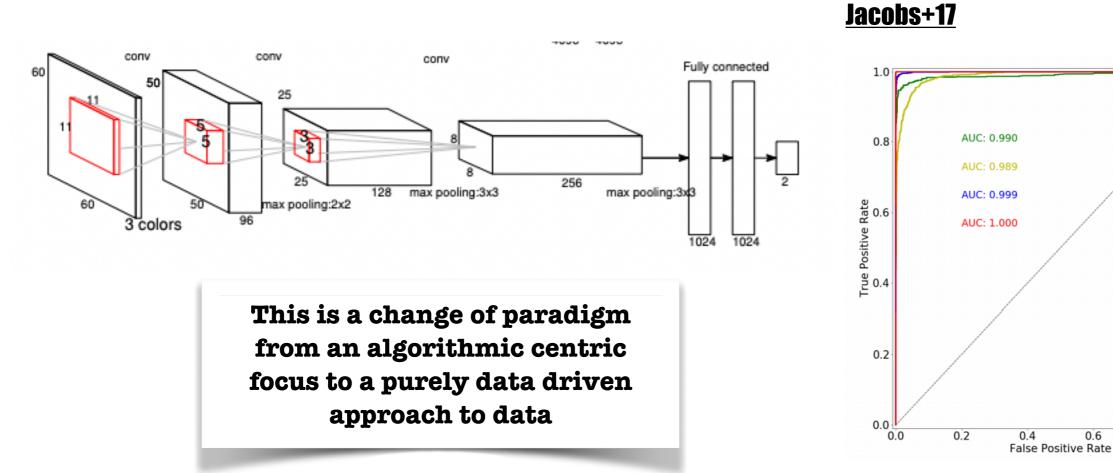
CN4

1.0

0.8

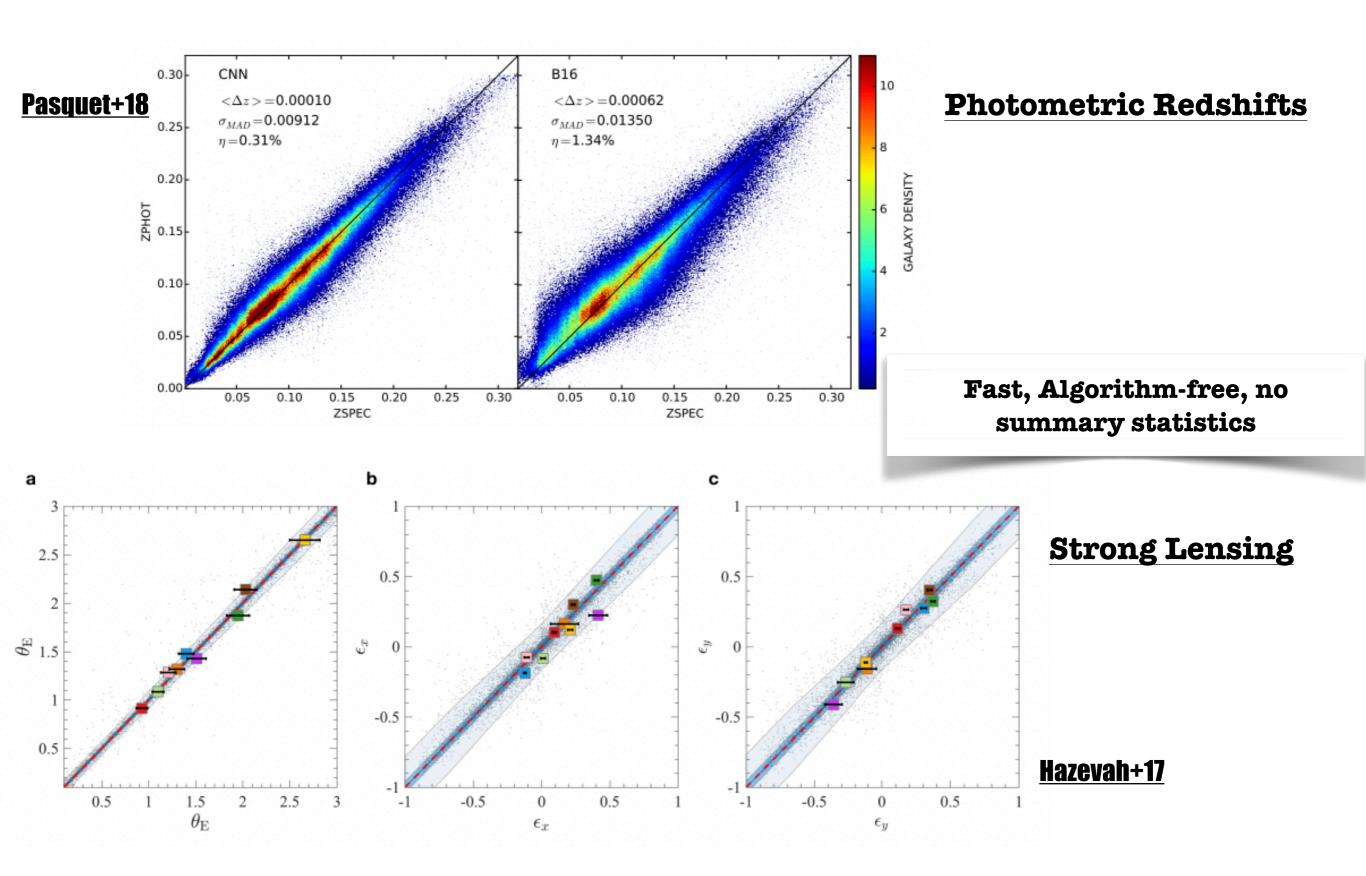
LENS

NON-LENS



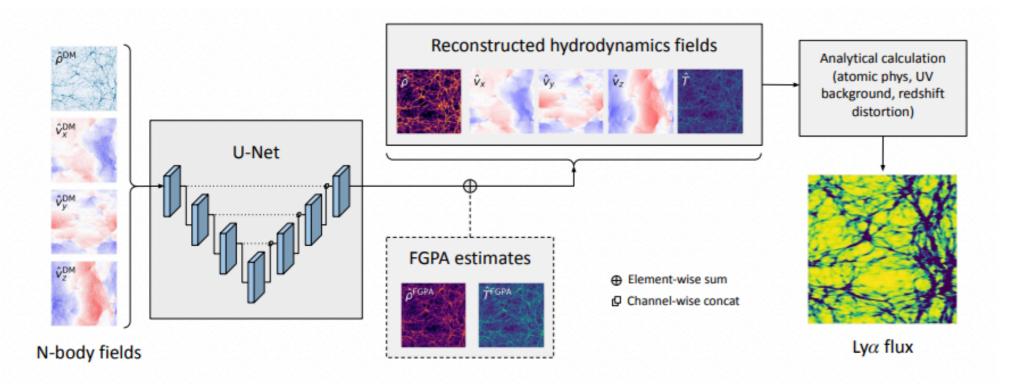
Dieleman+15, Huertas-Company+15, Aniyan+17, Charnock+17, Gieseke+17, Jacobs+17, Petrillo+17, Schawinski+17, Alhassan+18, Dominguez-Sanchez+18, George+18, Hinners+18, Lukic+18, Moss+18, Razzano+18, Schaefer+18, Allen+19, Burke+19, Carrasco-Davis+19, Chatterjee+19, Davies+19, Dominguez-Sanchez+19, Fusse+19, Glaser+19, Ishida+19, Jacobs+19, Katebi+19, Lanusse+19Liu+19, Lukic+19, Metcalf+19, Muthukrishna+19, Petrillo+19, Reiman+19, Boucaud+20, Chiani+20, Ghosh+20, Gomez+20, Hausen+20, Hlozek+20, Hosseinzadeh+20. Huang+20, Li+20, Moller+20, Paillassa+20, Tadaki+20, Vargas dos Santos+20, Walmsley+20, Wei+20, Allam+21, Arcelin+21, Becker+21, Bretonniere+21, Burhanudin+21, Davison+21, Donoso-Oliva+21, Jia+21, Lauritsen+21, Ono+21, Ruan+21, Sadegho+21, Tang+21, Tanoglidis+21, Vojtekova+21, Dhar+22Hausen+22, Orwat+22, Pimentel+22, Rezaei+22, Samudre+22, Shen+22, Walmsley+22

2. Deep Learning for galaxy properties (inference)



Hazevah+17, Perreault-Levasseur+17, Morningstar+18, Stark+18, Tuccillo+18, Bom+19, Lovell+19, Madireddy+19, Pearson+19, Simet+19, Pasquet+19, Wu+19, Menou+19, Aragon-Calvo+20, Chianese+20, Stahl+20, Surana+20, Shuntov+20, Cabayol-Garcia+20, Campagne+20, Buck+21, Grover+21, Hayat+21, Li+21, Maresca+21, Qiu+21, Rhea+21, Schuldt+21, Tohill+21, Yao-Yu+21, Dey+21, Lee+21, Zhou+21, Henghes+21, Ansari+21

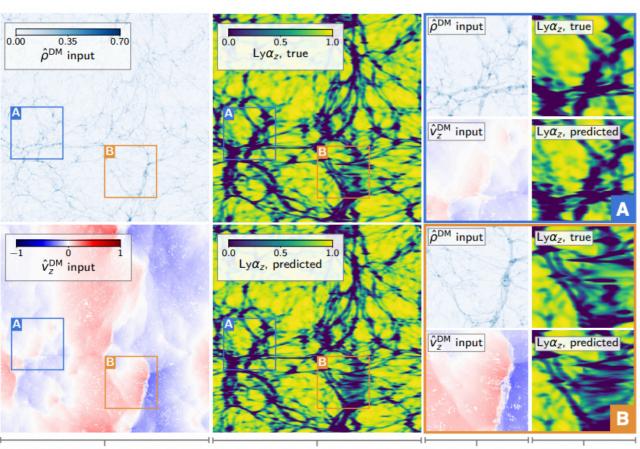
3. Deep Learning for emulating (cosmological) simulations



Harrington+21

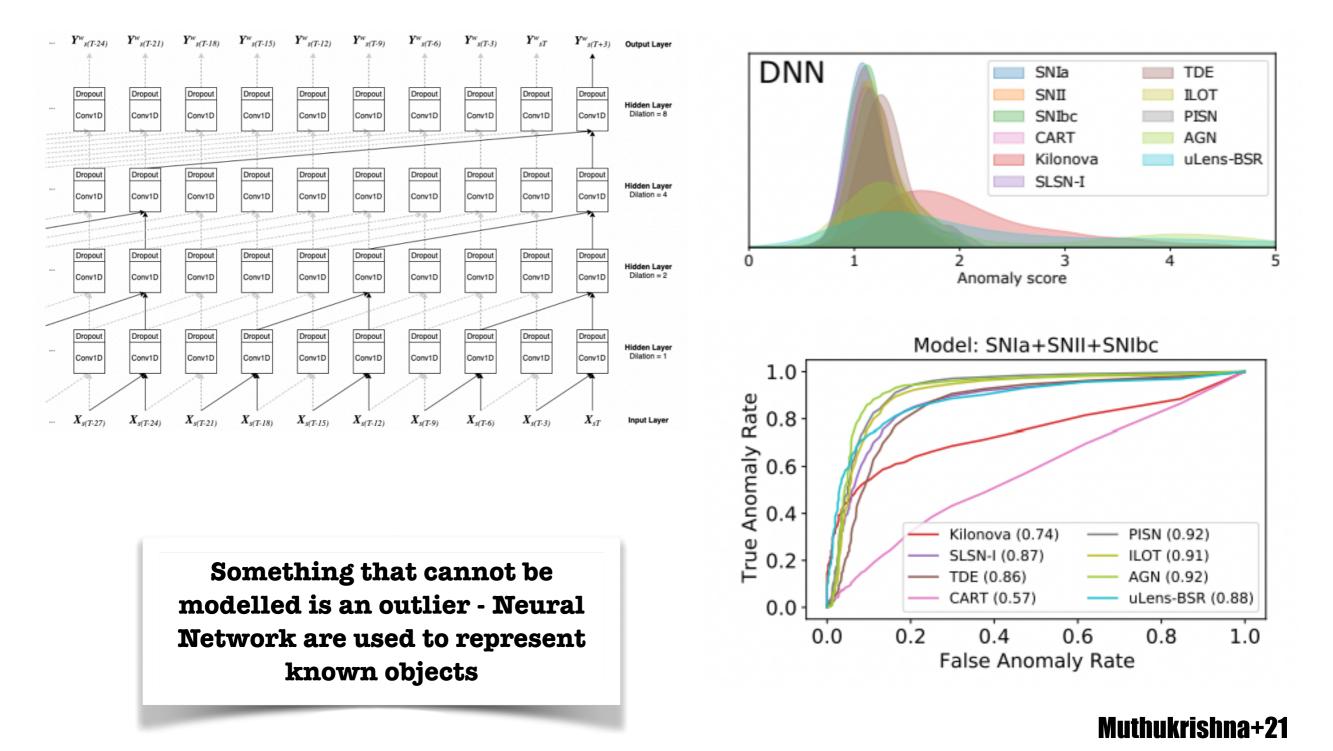
Neural Networks are used to learn the non-linear mapping between cheap dark matter only simulations to expensive baryonic physics

Rodriguez+19, Modi+18, Berger+18, He+18, Zhang+19, Troster+19, Zamudio-Fernandez+19, Perraudin+19, Charnock+19, List+19, Giusarma+19, Bernardini+19, Chardin+19, Mustafa+19, Ramanah+20, Tamosiunas+20,
Feder+20, Moster+20, Thiele+20, Wadekar+20, Dai+20, Li+20, Lucie-Smith+20, Kasmanoff+20, Ni+21, Rouhiainen+21, Harrington+21, Horowitz+21,
Horowitz+21, Bernardini+21, Schaurecker+21, Etezad-Razavi+21, Curtis+21



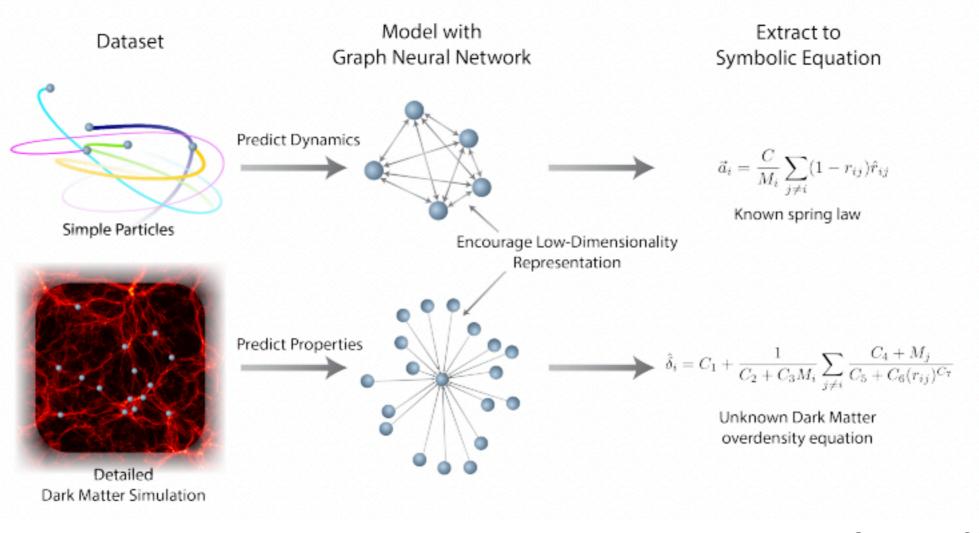
20 cMpc/h 20 cMpc/h 5 cMpc/h 5 cMpc/h

4. Deep Learning for assisted discovery



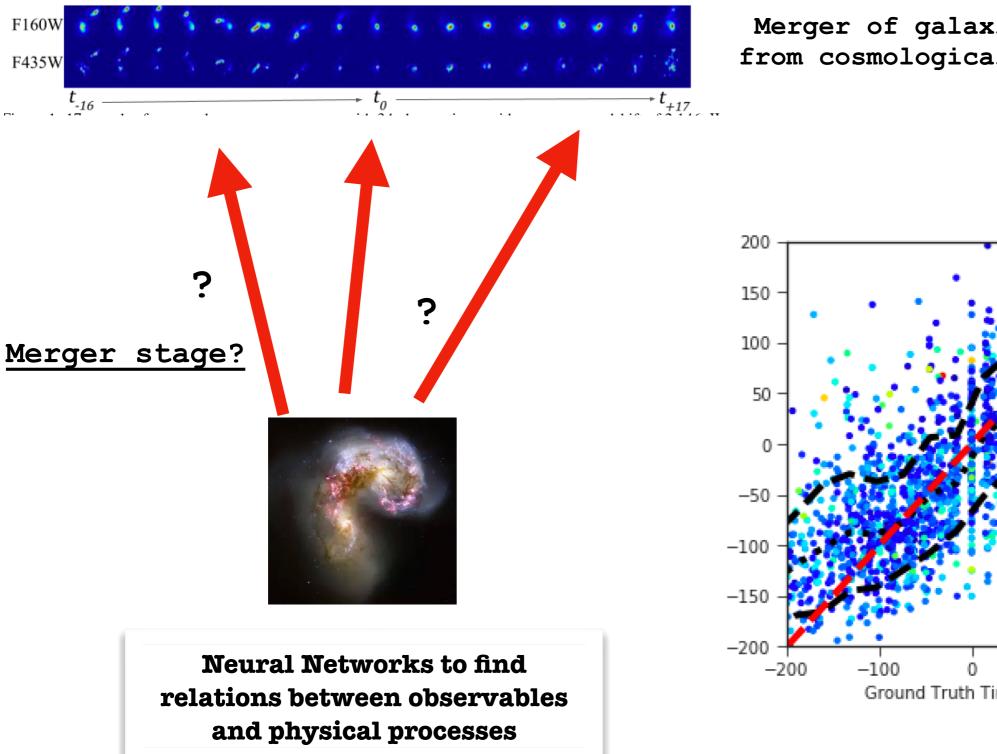
Teimoorinia+16, Ma+19, Pruzhinskaya+19, Cheng+20,21, Cranmer+20, Galvin+20, Margalef-Bentabol+20, Mesarcik+20, Portillo+20, Skoda+20, Villar+20, Boone+21, Chan+21, Hayat+21, Lochner+21, Malanchev+21, Muthukrishna+21, Sánchez-Sáez+21, Sarmiento21, Sravan+21, Stein+21ab, Storey-Fisher+21, Tanaka+21, Turner+21, Villar+21, Zanisi+21, Zhou+21, Spindler+21, Li+22

4. Deep Learning for assisted discovery

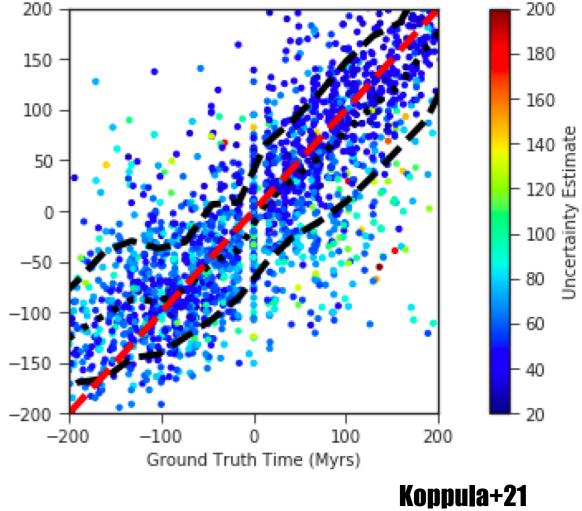


Cranmer+20

5. Deep Learning for hidden correlations

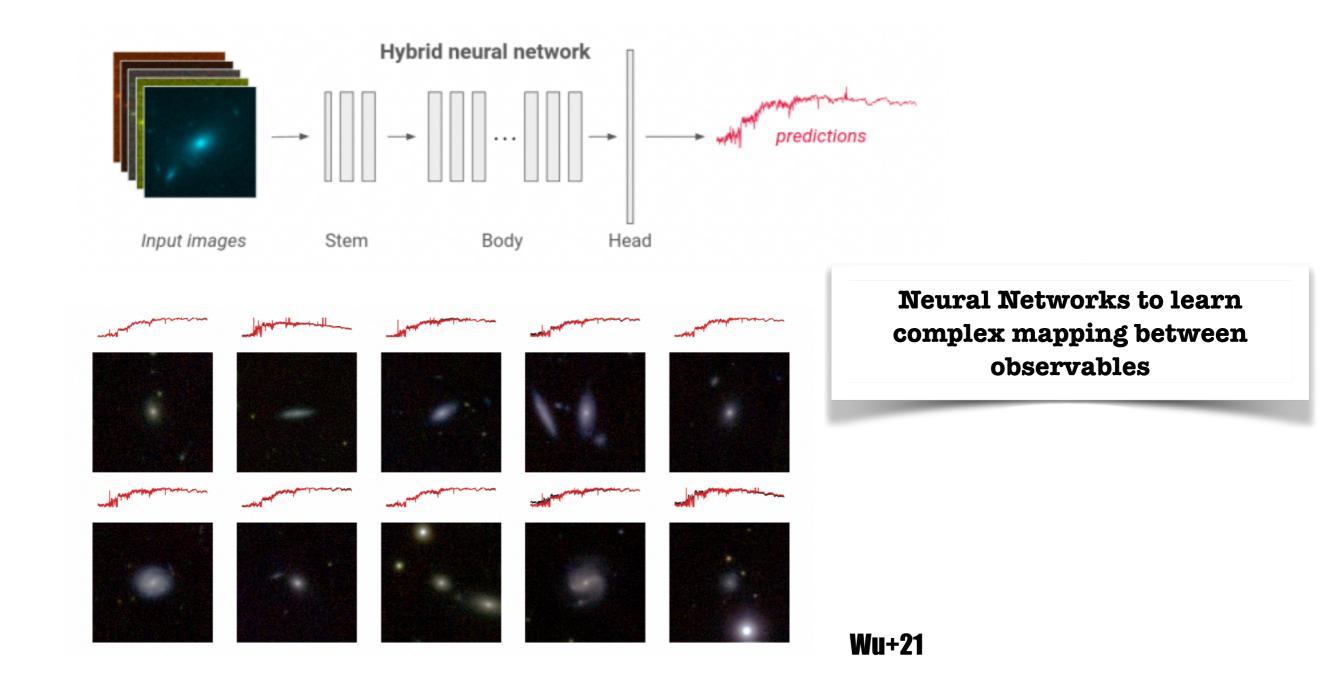


Merger of galaxies sequence from cosmological simulations



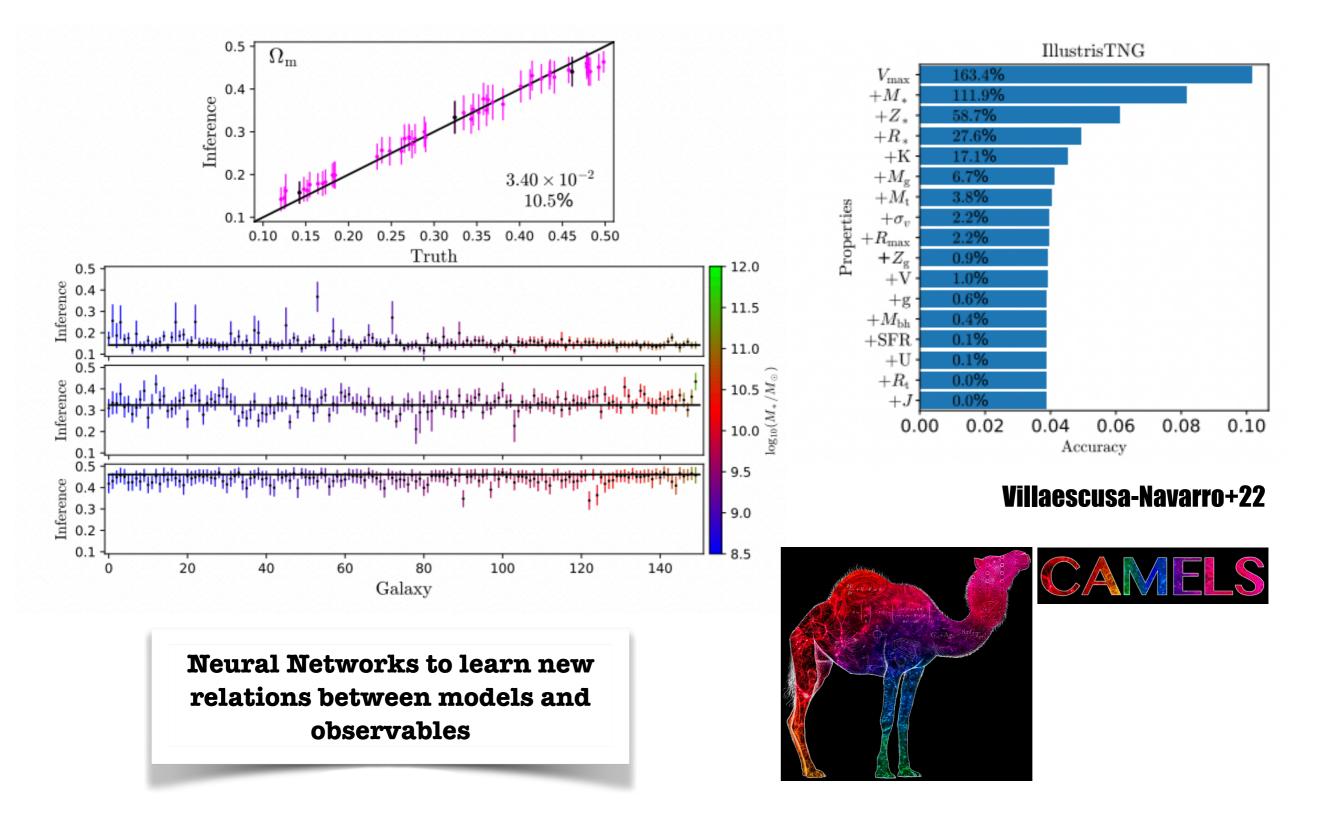
Ntampaka+16, Huertas-Company+18, Schawinski+18, Armitage+19, Bottrell+19, Calderon+19, Diaz+19, Ho+19, Pearson+19, Cai+20, Ferreira+20, Hansen+20, Kodi Ramanah+20, Wu+20, Yan+20, Gupta+20, de Andres+21, Bickley+21, Ciprijanovic+21, Ho+21, Koppula+21, von Marttens+21, Shao+21, Villanueva-Domingo+21, Whithney+21, Holwerda+21

5. Deep Learning for hidden correlations



Ntampaka+16, Huertas-Company+18, Schawinski+18, Armitage+19, Bottrell+19, Calderon+19, Diaz+19, Ho+19, Pearson+19, Cai+20, Ferreira+20, Hansen+20, Kodi Ramanah+20, Wu+20, Yan+20, Gupta+20, de Andres+21, Bickley+21, Ciprijanovic+21, Ho+21, Koppula+21, von Marttens+21, Shao+21, Villanueva-Domingo+21, Whithney+21, Holwerda+21

6. Deep Learning to constrain cosmology



Ravanbakhsh+17, Brehmer+19, Ribli+19, Pan+19, Ntampaka+19, Alexander+20, Arjona+20, Coogan+20, Escamilla-Rivera+20, Hortua+20, Vama+20, Vernardos+20, Wang+20, Mao+20, Arico+20, Villaescusa_navarro+20, Singh+20, Park+21, Modi+21, Villaescusa-Navarro+21ab, Moriwaki+21, DeRose+21, Makinen+21, Villaescusa-Navaroo+22

How deep learning techniques penetrate the community?

Model			CNNs	Enc.	Gene.	BNNs	RNNs	Trans.	GNNs
Application			chills	Enc.	Gene.	Dititis		inuns.	0.1113
Data Processing	Classification	Morphology	\checkmark	\checkmark					
		Strong Lenses	✓*	✓*					
		Transients					✓*	✓*	
	Segmentation			✓*	✓*				
Galaxy Properties		Photoz	\checkmark			\checkmark			
		Structure	✓*						
		Stellar Populations	✓*						
		Lensing	✓*			✓*			
Discovery		Visualization	\sim	\checkmark	\checkmark				
		Outliers	\sim	\checkmark	\checkmark		\checkmark		
		Laws							∕*
Un-observables		Galaxy Evolution	∕*						
		Dark Matter	✓*			✓*			✓*
Emulation			✓*	✓*	✓*	✓*			
Cosmological Model			✓*		✓*	✓*			

Training with simulations

ed Ur

Unsupervised

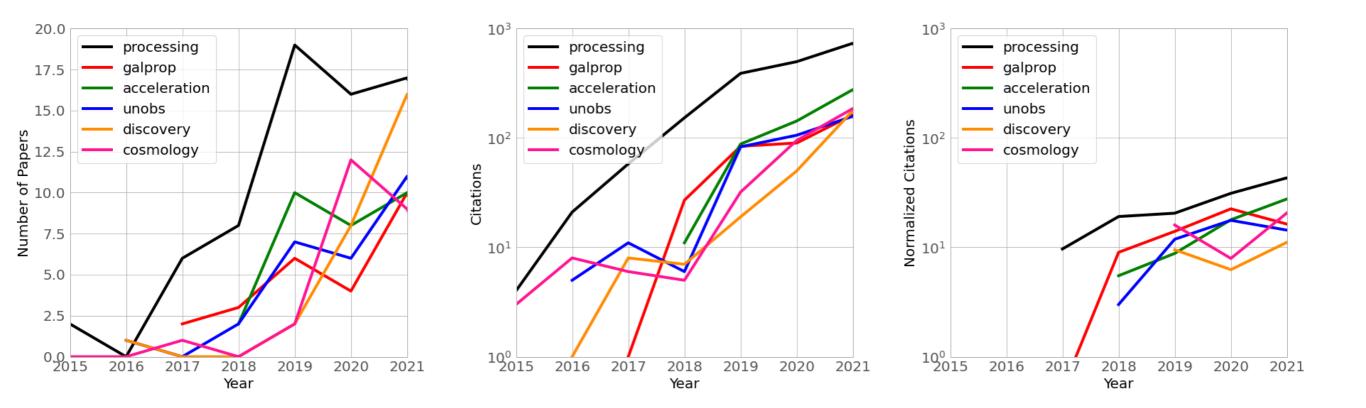
*

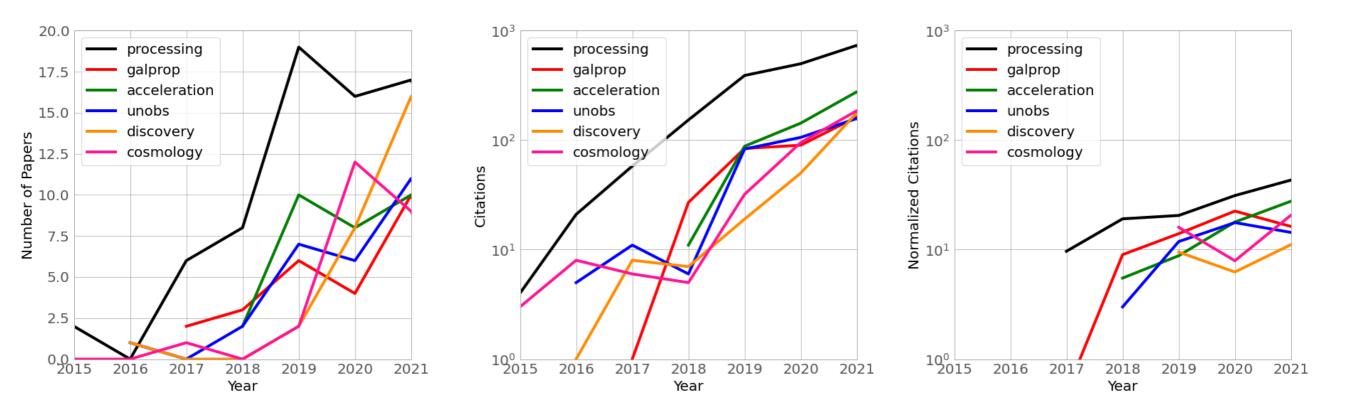
Supervised

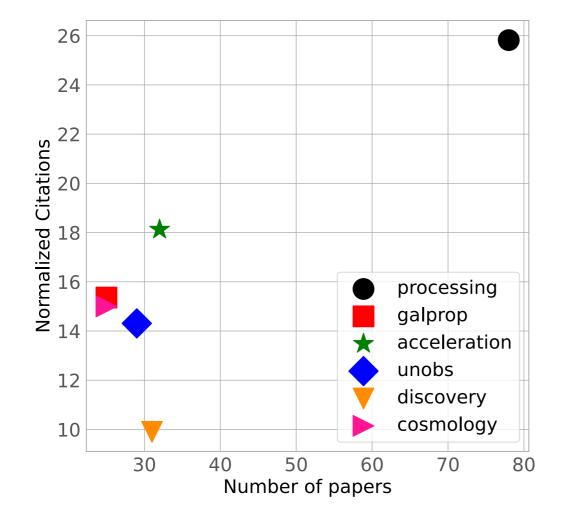
The community uses in general state-of-the art ML techniques quickly after they become popular in the ML community: <u>Good transfer of knowledge</u> However, little domain specific adaptation, in general

Training on simulations is very common in many applications

Measuring the impact of deep learning publications for galaxy surveys

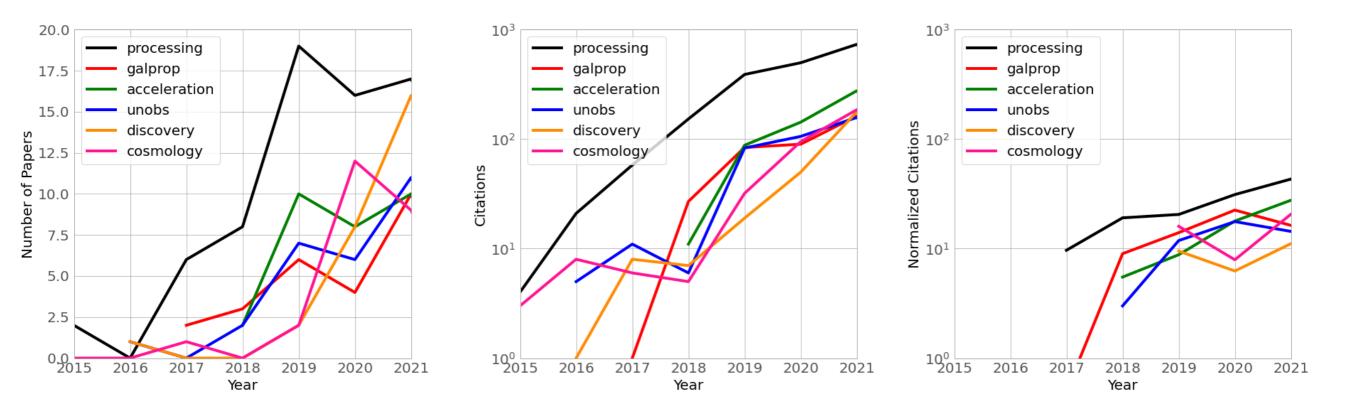


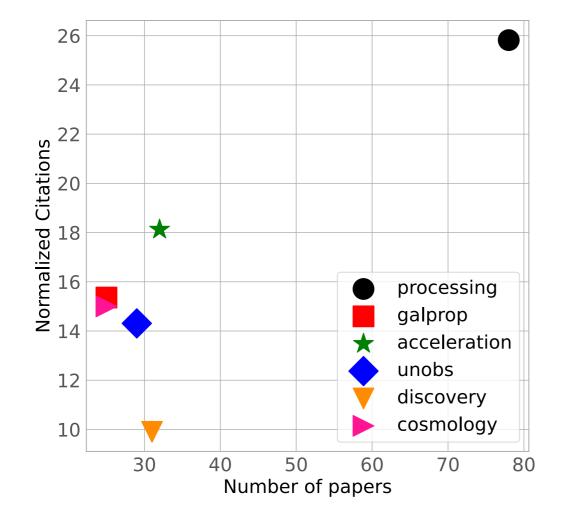




1. Most of the impact of deep learning is still on basic data processing tasks (e.g. mostly incremental science)

2. Despite an increasing trend, and popular interest, potentially novel applications still have a low impact in terms of citations (e.g. discovery)





1. Most of the impact of deep learning is still on basic data processing tasks (e.g. mostly incremental science)

2. Despite an increasing trend, and popular interest, potentially novel applications still have a low impact in terms of citations (e.g. discovery)

WHY?

Possible reasons for limited impact

1. The majority of new datasets have not arrived yet (e.g. Euclid, LSST, Roman, JWST)

2. Too young, still. It is just a matter time. Proof-of-concept stage.

3. Some key issues remain unsolved. Lack of trust.

Current Challenges (and possible solutions)

Challenge 1 Small labeled datasets	
Solution 1.A Transfer Learning	Domínguez Sánchez et al. (2019) Samudre et al. (2022) Lukic et al. (2019)
Solution 1.B Simulated dataset	Jacobs et al. (2017) Vega-Ferrero et al. (2021)
Solution 1.C Self-supervised learning	Hayat et al. (2021)
Challenge 2 Uncertainty	
Solution 2.A Bayesian approximations	Walmsley et al. (2020) Perreault Levasseur et al. (2017)
Solution 2.B Density Estimators	Kodi Ramanah et al. (2020)
Challenge 3 Interpretability	
Solution 3.A Saliency maps and similar	Huertas-Company et al. (2018)
Solution 3.B Symbolic regression	Cranmer et al. (2020)
Challenge 4 Domain Shift	
Solution 4.A Transfer Learning	Tuccillo et al. (2018)
Solution 4.A Domain Adaptation	Ćiprijanović et al. (2021)
Challenge 5 Robustness	
Solution 5.A Out of distribution detection	Lee & Shin (2022)

Summary: Revolution or Incremental Science?

 Deep Learning has rapidly penetrated the field of extragalactic astronomy (surveys)

2. State of the art ML techniques are rapidly tested

3. The most impactful applications are low level "out-of-the-box" applications (incremental science)

4. Potentially novel applications have emerged but remain at the proof-of-concept stage with moderate impact