Cosmology and high-z Universe

Fernando Buitrago

XIV.0 Reunión Científica

13-15 julio 2020
Sánchez Blázquez et al.: Survey presentation
Oñorbe et al.: High-z observ. and synergies

Deep IFU spectroscopy of 20 galaxy clusters and filaments at z~0.15 down to m_{AB} = 22
Lyα emitters at 1.6 < z < 3.2, Lyα blobs, cold accretion, counterparts of Damped Lyα systems...

Observed λ: 320-760 nm
Sp. resolution: 1000-2000

SINFONI stellar and gas kinematics comparison in local LIRGs: implications at high-z
SINFONI@VLT H- and K-band study of a local sample of 10 LIRGs similar to star-forming high-z galaxies
XIV.0 Reunión Científica

GC064 Infante-Sáiz et al.: SDSS PSF

This is the Coma Cluster

Infante-Sáiz et al.: SDSS PSF

GC014 Buitrago & Trujillo: Disk truncations up to z = 1 in the CANDELS fields

GC006 Baena-Gallé et al.: Subaru HyperSupriCam PSF

Low surface brightness

GC005 Baena-Gallé et al.: SDSS Stripe 82 PSF
XIV.0 Reunión Científica

GC029 Díaz-García et al.: Stellar populations in mini-JPAS

The test-bench for JPAS is already exploring the stellar content of galaxies up to $z = 1$

MUFTIT (Díaz-García +15)

SED fitting code

$z = 0.39 \quad \log_{10} M_\star = 10.69 \quad r_{SFR} = 18.64 \pm 0.02 \quad \chi^2 = 1.07$

GC083 Salvador Rusiñol et al.: Young stellar populations from NUV spectroscopy in massive early-type galaxies

Stacked spectra of SDSS ETGs at $z \sim 0.4$

X-SHOOTER stacked spectra of 6 BCGs at $z \sim 0.05$

Result: Young stars are concentrated in the galaxy cores of massive central cluster galaxies

GC039 García-Argumánez et al.: Self-consistent spatially resolved Star Formation Histories of $2 < z < 3$ massive galaxies

Fits to 2D photometry from the Illustris simulations reproduce SFHs than integrated photometry

Stellar populations

XIV.0 Reunión Científica
XIV.0 Reunión Científica

GC022 Costantin et al.: Spectro-photometric bulge-disk decoupling in SHARDS

100 M_* > 10^{10} M_☉ galaxies at z < 1 in SHARDS GOODS-N

GC087 Sotillo Ramos et al.: GAMA: the interplay between mass, metallicity and SFR in galaxy groups

> 700 galaxies up to z = 0.35 with different ranges of galaxy mass and clustercentric distance

GC017 Castellanos et al.: Extended Ionized Gas in Galaxy Clusters: low surface luminosity regions as tracers of galaxy evolution

Quenching / Environment

12 hours taken with OSIRIS at GTC Hα images, Abell2029 @ z~0.23

Low brightness signal recovered
GC037 Galbany: Supernovae in the InfRAred Avec Hubble (SIRAH) survey

24 Hubble flow (0.02 < z < 0.07) SNe Ia with WFC3 2 GTC and 1 NOT/TNG follow-up programmes

GC038 Galbany et al.: The All-weather MUse Supernova Integral-field Nearby Galaxies (AMUSING) survey

VLT MUSE filler programme for 10 semesters
Over 600h for 713 galaxies and 796 SNe
1st data release later this year
GC066 Navarro Martínez et al.: The luminosity function of the Hβ emitters at z~0.87 from the OTELO survey

50 arcmin2 in EGS with OSIRIS@GTC to a limiting mag of 27.8 with R = 700

GC016 Cabello et al.: First results of the GOYA survey: low-mass star-forming galaxies 0.7 < z < 1.5 with the EMIR@GTC MOS mode

GC057 Lumbreras-Calle et al.: [OIII] emission-line galaxies at 0.4 < z < 0.8 in SHARDS (200h at OSIRIS@GTC)

Emission line galaxies

z = 0.897
log (Mass/M_\odot) = 9.76
mag F125W (AB) = 21.87

Going beyond Lumbreras-Calle+19a,b
GC016 Cabello et al.: Deep near-IR narrow-band imaging with CIRCE@GTC: searching for Lyα-emitters at $z \sim 9.3$

Using a 11 nm FWHM filter in EGS for > 18 hours
No high-z objects, but many interlopers

GC077 Rodríguez Espinosa et al.: An ionised bubble before the epoch of recombination

Observations of a proto-cluster of Lyα-detected galaxies at $z \sim 6.5$
Lyα leakage able to ionized surrounding medium
GC024 Cueli et al.: Observational constraints on the halo mass function

1. 3-parameter ST-like fit
2. 4-parameter Tinker-like fit
3. 4-parameter Bhattacharya-like fit

- "Narrow" bounds for low masses
- Just upper bounds on the high-mass end

- $z \sim 0$ halo mass function
- 1st observational constraints!

GC042 González-Nuevo & Bonavera: SHALOS: Statistical Herschel-ATLAS lensed objects selection

- Increasing by x5 the number of galaxy-galaxy strong lensing events within the Herschel-ATLAS data set

GC011 Bonavera, Cueli & González Nuevo: Cosmology with the submillimetre galaxies magnification bias

- arXiv: 2006.09185
GC011 Bonavera & González-Nuevo: Point Source Detection with Fully-Convolutional Networks: Performance in Realistic Microwave Sky Simulations

- Similar completeness, better reliability
- "Confidence factor" controls spurious sources but as a consequence underestimates flux densities
- Performance slightly worsen for images other than the training ones

143, 217 and 353 GHz Planck channels

GC086 Sarmiento: Galaxy morphology classification using unsupervised machine learning techniques

Work in progress: Simple Contrastive Learning of visual Representations (SimCLR) on 377419 SDSS cut-outs of galaxies at $z < 0.15$
GC061 Mena-Fernández: BAOs DES Y3

5000 deg² imaged in u, g, r, i, z

0.8 < z < 0.9, redMaGiC

GC079 Rodríguez-Monroy et al.: Galaxy clustering DES Y3

GC045 Guidi et al.: Wide-survey of the QUIJOTE CMB experiment

MFI instrument, full northern hemisphere

20,000 deg²

~1 year in nominal mode

Sensitivities in Q, U:

≈55 μK/1° beam @ 11, 13 GHz

≈40 μK/1° beam @ 17, 19 GHz
GC060 Mateu Lucena et al.: Using convergence tests to understand the performance of a parallel parameter estimation sampler for gravitational wave applications

Bayesian inference applied to gravitational wave detections, specifically nested sampling for the event GW190412

GC026 De Vicente: A new Cosmological paradigm (Cosmic Lensing)

\[D_L = D_A (1+z) \] instead of \(D_L = D_A (1+z)^2 \)

GC004 Asorey et al.: HIR4: Cosmology from a simulated neutral hydrogen full sky using Horizon Run 4

Cosmological parameters with auto and cross-correlations

Forecast for the Tianlai pathfinder
We show that quasar microlensing magnification statistics induced by a population of point microlenses distributed according to a mass-spectrum can be very well approximated by that of a single-mass, "monochromatic", population. When the spatial resolution (physically defined by the source size) is small as compared with the Einstein radius, the mass of the monochromatic population matches the geometric mean of the mass-spectrum. Otherwise, the best-fit mass can be larger. Taking into account the degeneracy with the geometric mean, the interpretation of quasar microlensing observations under the hypothesis of a mixed population of primordial black holes and stars, makes the existence of a significant population of massive black holes ($\sim 100 M_\odot$) unlikely but allows, within a two-σ confidence interval, the presence of a large population (40% of the total mass) of very small black holes ($\sim 0.01 M_\odot$).

<table>
<thead>
<tr>
<th>MOCK - Bimodal Distribution</th>
<th>MODEL - Single Mass Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\kappa_T = \kappa_{\text{star}} + \kappa_{\text{BH}} = 0.55$</td>
<td>$\kappa_T = \kappa_{\text{smooth}} + \kappa_\star = 0.55$</td>
</tr>
<tr>
<td>$\kappa_{\text{star}} = \kappa_{\text{BH}} = 0.275$</td>
<td>$\kappa_\star = \text{variable}$</td>
</tr>
<tr>
<td>$M_{\text{star}} = 0.01$</td>
<td>$M_\star = \text{variable}$</td>
</tr>
<tr>
<td>$M_{\text{BH}} = \text{variable}$</td>
<td></td>
</tr>
</tbody>
</table>

Special mention (as we forgot about this contribution)

13-15 julio 2020