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Deep learning meets very-high-energy gamma-ray astronomy
Reconstructing events from imaging atmospheric Cherenkov telescopes with deep convolutional neural networks
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Abstract
Imaging atmospheric Cherenkov telescopes (IACTs) are excellent tools to inspect the very-high-energy (few tens of GeV 
and above) gamma-ray sky. This kind of telescope captures images of the air showers, originated by the absorption of 
gamma rays and cosmic rays by the atmosphere, through the detection of Cherenkov photons emitted in the shower. 

One of the main factors determining the sensitivity of IACTs to gamma-ray sources is how well reconstructed the 
properties of the primary particle triggering the air shower are: specifically, this particle reconstruction enables us to 

classify gamma-ray events from the much more frequent background of cosmic-ray events, and to infer the energy and 
arrival direction of the gamma-ray-like events. In this contribution we will discuss how deep convolutional neural 

networks (DCNs) are being explored as a promising method for IACT event reconstruction. We illustrate the discussion 
with some preliminary results from CTLearn: a Python package under development that includes modules for running 

deep learning models with TensorFlow, using pixel-wise camera data as input, for IACT event reconstruction.

http://ucm.es
http://ucm.es
http://columbia.edu
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Imaging atmospheric Cherenkov telescopes

o Detection of extended air showers using the 
atmosphere as a calorimeter

o Huge gamma–ray collection area  (~105 m2)

o Energy window: tens GeV - tens TeV

o Large background from charged CR 
• Partly irreducible (e-/e+, single-EM, with 

current methods)

o Event reconstruction from images:
• Primary classification (gamma / CR)
• Primary energy estimation
• Primary arrival direction

o Current reconstruction methods: 
• Classical machine learning (Random Forest, 

Boosted Decision Trees) and look-up-tables 

o Event reconstruction directly affects IACT 
sensitivity to gamma-ray sources
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o High-level Python package for using deep learning for 
IACT event reconstruction 

o Configuration-file-based workflow and installation with 
conda drive reproducible training and prediction 

o Supports any TensorFlow model that obeys a generic 
signature 

o Open source on GitHub: 
https://github.com/ctlearn-project/ctlearn
https://pos.sissa.it/358/752

Core developers
DN, Tjark Miener (IPARCOS-UCM) 
Ari Brill, Qi Feng (Columbia)
Bryan Kim (UCLA, now at Stanford)

Deep learning for IACT event reconstruction: CTLearn
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CTLearn: some results on event classification for CTA 

• 5-20 fold better sensitivity w.r.t. current IACTs
• 4 decades of energy coverage: 20 GeV to 300 TeV
• Improved angular and energy resolution
• Two arrays (North/South)

Low-energy range:
23 m ø
Parabolic reflector
4° - 5° FoV
Energy threshold 20 GeV

Mid energy-range:
12 m ø modified Davies-Cotton reflector
9.7 m ø Schwarzschild-Couder reflector
7° - 8° FoV
Best sensitivity in the 
100 GeV – 10 TeV range

High-energy range:
4 m ø Davies-Cotton reflector
4 m ø Schwarzschild-Couder reflector
9 - 10° FoV
Several km2 area at 
multi-TeV energies

www.cta-observatory.org/ Science with CTA, arXiv:1709.07997

Networks trained on 
labeled, simulated data

Camera images courtesy of T. Vuillaume

the observatory for  
ground-based 
gamma-ray astronomy

cherenkov 
telescope 
array

http://www.cta-observatory.org/
https://arxiv.org/abs/1709.07997
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CTLearn: some results on event classification for CTA 

Training metrics for the single-tel model

Training metrics for the CNN-RNN model

CTLearn: Deep Learning for Gamma-ray Astronomy D. Nieto

Events/Images LST MST-F MST-N MST-SC SST-1M SST-C SST-A All
Training 89/187 259/770 279/891 231/626 206/440 198/440 192/472 392/3827

Test 18/39 54/160 58/185 48/130 43/92 41/92 40/98 82/796

Table 1: Statistics of the datasets used in this work. The numbers represent thousands of triggered
events and total number of images generated in those events, broken down by telescope type.

Single-tel model LST MST-F MST-N MST-SC SST-1M SST-C SST-A
Validation Acc 0.701 0.762 0.784 0.795 0.781 0.753 0.733

AUC 0.786 0.849 0.869 0.878 0.862 0.828 0.818
Test Acc 0.697 0.757 0.778 0.785 0.776 0.748 0.725

AUC 0.778 0.842 0.863 0.866 0.853 0.822 0.808
CNN-RNN model LST MST-F MST-N MST-SC SST-1M SST-C SST-A
Validation Acc 0.740 0.802 0.816 0.820 0.817 0.801 0.771

AUC 0.819 0.896 0.912 0.912 0.900 0.902 0.861
Test Acc 0.732 0.800 0.816 0.812 0.809 0.796 0.771

AUC 0.815 0.890 0.909 0.902 0.893 0.898 0.862

Table 2: Accuracy and AUC values for the single-tel and the CNN-RNN models, for both validation
and test sets, broken down by telescope type.

3.2 Benchmark results

We trained the single-tel model on 50,000 batches of 64 images each and the CNN-RNN model
on 40,000 batches of 16 events each. Both were validated every 2,500 batches. These settings were
chosen to end training approximately when validation loss stops decreasing, and thus provide an
illustration of the learning capacities of the models. Images from cameras featuring hexagonal
pixel layouts were mapped to 2D arrays using bilinear interpolation. The evolution of the accuracy,
AUC, and loss as a function of number of samples run through the model can be found in Fig. 3
for both models and telescope type. The accuracy and AUC values for the validation and test sets
are summarized in Table 2. We found an excellent match between the metrics obtained from the
validation and test sets, with the smallest and largest discrepancies being 0.6% and 1.2% in AUC
for the simgle-tel model, and 0.1% and 1.0% in AUC for the CNN-RNN model. Test AUC values
for the single-tel model range from 0.78 and 0.81 in the case of the LST and SST-A, respectively,
to the 0.84 – 0.87 range where the rest of the telescope types are located. Test AUC values for the
CNN-RNN model are located around 0.90 for most telescopes.

No quality cuts or data preselection were enforced during training, so the models were fed
with all images that triggered the telescopes, as opposed to the conventional analysis, where data
preselection and quality cuts are routinely performed. In order to illustrate how data preselection
cuts affect the learning performance we trained the CNN-RNN model imposing a telescope mul-
tiplicity cut for those events entering the training, namely, we only passed events that triggered a
minimum number of telescopes. Results on the validation set demonstrate a substantial improve-
ment in terms of AUC, boosting this metric beyond 0.90 for all telescope types and a multiplicity
cut of 4 triggered telescopes per event (a standard multiplicity cut in the analysis of simulated CTA

5

Results for the single-tel and CNN-RNN models

Effect of image multiplicity cut for the CNN-RNN model
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Outlook
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o Current-generation IACTs have enhanced their performances through ML

o Next-generation IACTs may profit from latest developments in ML

o Ongoing efforts to exploit deep learning as an event reconstruction method 

for IACTs

§ Event classification over non-parametrized images demonstrated!

§ Working on:

§ optimizing architectures

§ multi-task learning

§ support for current-generation IACTs (MAGIC, VERITAS, H.E.S.S.)
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