Deep learning meets very-high-energy gamma-ray astronomy

Reconstructing events from imaging atmospheric Cherenkov telescopes with deep convolutional neural networks
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Abstract
Imaging atmospheric Cherenkov telescopes (IACTs) are excellent tools to inspect the very-high-energy (few tens of GeV
and above) gamma-ray sky. This kind of telescope captures images of the air showers, originated by the absorption of
gamma rays and cosmic rays by the atmosphere, through the detection of Cherenkov photons emitted in the shower.
One of the main factors determining the sensitivity of IACTs to gamma-ray sources is how well reconstructed the
properties of the primary particle triggering the air shower are: specifically, this particle reconstruction enables us to
classify gamma-ray events from the much more frequent background of cosmic-ray events, and to infer the energy and
arrival direction of the gamma-ray-like events. In this contribution we will discuss how deep convolutional neural
networks (DCNs) are being explored as a promising method for IACT event reconstruction. We illustrate the discussion
with some preliminary results from CTLearn: a Python package under development that includes modules for running
deep learning models with TensorFlow, using pixel-wise camera data as input, for IACT event reconstruction.
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Imaging atmospheric Cherenkov telescopes ESCAPE

Detection of extended air showers using the
atmosphere as a calorimeter

Huge gamma-ray collection area (~10° m?)
Energy window: tens GeV - tens TeV

Large background from charged CR
» Partly irreducible (e/e*, single-EM, with
current methods)

Event reconstruction from images:
*  Primary classification (gamma / CR)
* Primary energy estimation
*  Primary arrival direction

Current reconstruction methods:
» Classical machine learning (Random Forest,
Boosted Decision Trees) and look-up-tables

Event reconstruction directly affects IACT
sensitivity to gamma-ray sources
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% Deep learning for IACT event reconstruction: CTLearn
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o High-level Python package for using deep learning for
|ACT event reconstruction

o Configuration-file-based workflow and installation with
conda drive reproducible training and prediction

o Supports any TensorFlow model that obeys a generic
signature

o Open source on GitHub:
https://github.com/ctlearn-project/ctlearn
https://pos.sissa.it/358/752
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https://arxiv.org/abs/1709.07997
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;// CTLearn: some results on event classification for CTA ESCAPE
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‘// Outlook Escape
o Current-generation IACTs have enhanced their performances through ML Particle Energy rival
o Next-generation IACTs may profit from latest developments in ML
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o Ongoing efforts to exploit deep learning as an event reconstruction method Dreeeet 1 1 1 |
Dense T
for IACTs | '
IDropout T |
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= multi-task learning . ' -] .
= support for current-generation IACTs (MAGIC, VERITAS, H.E.S.S.)
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