

Institutional contributions to TARSIS

J. Gallego (UCM), J. Iglesias (IAA-CSIC), E. Carrasco (INAOE), A. Gil de Paz (UCM) & TARSIS Consortium (IAA-CSIC, UCM, INAOE, Fractal SLNE, U. Sevilla, U. Granada, U. Almería, CAB (INTA-CSIC)).

Abstract: TARSIS is the new IFU instrument proposed for the CAHA 3.5m telescope. It will have a 3x3 arcmin² IFU with ~2x2 arcsec² spaxels at the Cassegrain focus of the telescope covering ³/₄ of the FoV with 3 identical spectrographs optimized for the NUV/blue range of the optical spectrum, 320 - 520 nm, and ¼ being covered with a red-optimized spectrograph, from 510 to 760 nm. TARSIS instrument relies on the replication of a high-efficiency, all-refractive, VPH-based, blue-optimized spectrograph which is based on that developed for the MEGARA instrument for the Gran Telescopio Canarias. TARSIS is composed by (1) its focal-plane optics and (2) four spectrographs, which host four l-optimized CCDs. Here we describe the facilities and expertise of three of the TARSIS consortium institutions, UCM, IAA-CSIC and INAOE for the development of TARSIS (other participating consortium institutions are US, UGR, UAL, CAB). The project was selected by the CAHA board on July 3rd 2020 to move on the Conceptual Design phase along with another competing instrument.

designed for long trips with unknown destinies...

6

SEA

Tetra-ARmed Super-Ifu Spectrograph

TARSIS

Focal-plane optics F/10 → F/3 Fiber system or image slicer Fore optics

F/3 col & F/1.5 camera Pupil diameter = 160 mm Volume phase holographic (VPH) gratings

5 lenses collimator, VPH, 7 lenses camera & CCD (a $15\mu m 4k \times 4k$) Each spectrograph projects 2 parallel slits on the CCD \rightarrow doubling the FoV (8 portions) R= 1300 @ 420 nm wavelength (blue spectrograph)

Control system. Instrument Control System (ICS) for mechanisms (focus), CCD electronics, control & power cabinets @ Cassegrain and real time Data Reduction Pipeline (DRP)

Instrument related Work Packages:

Optics & Mechanics: Optics manufacturing: Fore optics and DRP:

IAA – CSIC expertise

2nd largest astrophysics research institute in Spain

TARSIS co-PI from IAA-CSIC (J. Iglesias)

Consolidated scientific teams @ extragalactic astronomy, Solar System, Planetary nebulae & High energy astrophysics

MEGARA @ GTC Software architecture Control of robotic positioners FMPT (Fiber MOS positioning tool) **CARMENES**@ CAHA Cryogenic control (CARMENES)

PANIC @ CAHA Data Reduction Pipeline

designed for long trips with unknown destinies...

XIV.0 Reunión Científica

13-15 julio 2020

Calar Alto "Tetra-ARmed Super-Ifu Spectrograph" Survey

UCM facilities for optics, mechanics, detectors and integration

UCM: **leader institution of MEGARA** @ GTC - a case of success! PI from UCM: A. Gil de Paz

- Responsibilities in MEGARA: Management Optical bundles Spectrograph & CCD Control System Data reduction pipeline
- CCD and CMOS characterization Optical components characterization Surface quality tests
- Gratings: VPH quality Filter transmission quality Optical fibers characterization Assembly of opto-mech. instruments @ LICA ISO7 clean area @ LICA (ISO5 requested)

MEGARA at UCM LICA

New ISO7 Clean Room

INAOE facilities for optical manufacturing

TARSIS: (5 coll lenses + 2 VPHs windows + 7 cam lenses) x 4 spectrographs = **56** optical elements

MEGARA: INAOE manufactured **73** elements: 13 lenses + 36 VPHs windows + 24 VPHs prisms WEAVE: INAOE manufactured **15** elements: 1 collimator mirror + 14 camera lenses

INAOE:

Demanding specifications Large diameters (320 mm) Different materials

Cementing

High precision opto-mechanics Integration of optics + optomechanics Tests at subsystem level

Conclusion and future work

IAA-CSIC, UCM & INAOE

Offer expertise in key areas for TARSIS development:

- Facilities as laboratories & workshops
- Experienced manpower
- Know-how from MEGARA, CARMENES & PANIC: design, construction, commissioning and scientific exploitation
- A consolidated & committed team

XIV.0 Reunión Científica

 \rightarrow Ready for **TARSIS** Conceptual Design Phase

designed for long trips with unknown destinies...

13-15 julio 2020