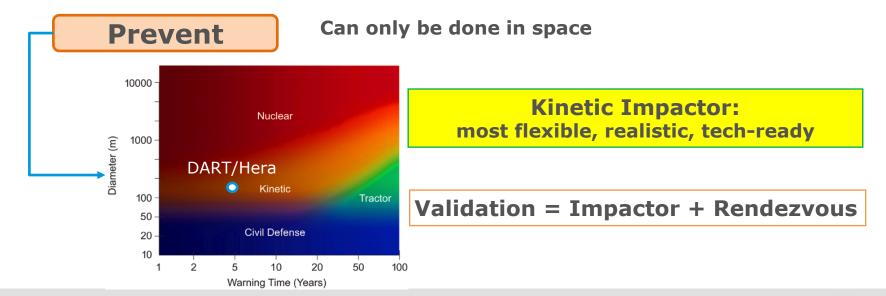


Adriano Campo Bagatin

Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías (Universidad de Alicante) Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal (Universidad de Alicante)

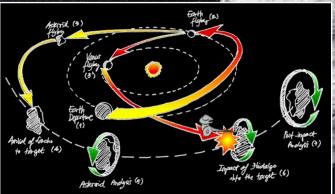
Planetary defence strategy from NEOs



Find & follow up NEOs

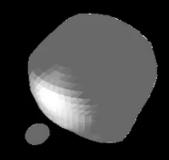
From **ground**, ongoing (~5 new NEOs/day)

Assess threat


From **ground**, ongoing (NEOCC + SENTRY)

From the 'Don Quijote mission' to the AIDA collaboration

The AIDA collaboration (DART, NASA + Hera, ESA): Asteroid Impact and **Deflection Assessment** DART BASELINE POST-IMPACT
DETAILED CHARACTERISATION PHASE 06/10 ⊢ DART IMPACT CUBESATS RELEASE HERA
DEEP SPACE MANOEUVRE


Don Quijote mission. (ESA, 2003)

ESA UNCLASSIFIED - For Official Use

DART + Hera target: Binary NEA (65803) Didymos

Heliocentric eccentricity <i>e</i>	e = 0.383752501 +/- 7.7e-9	
Heliocentric semimajor axis a	1.6444327821 +/- 9.8e-9 AU	
Heliocentric inclination to the ecliptic <i>i</i> ⁵	3.4076499° +/- 2.4e-6°	
Diameter of Primary <i>Dp</i> ¹	0.780 km +/- 0.03 km	
Didymos A extents along principal axes x; y; z	832 ± 3% m; 837 ± 3% m; 786 ± 5% m;	
Diameter of Secondary Ds	0.164 km +/- 0.018 km	
Bulk density of the primary $ ho p^2$ 2170 kg m ⁻³ +/- 350 kg m ⁻³		
Secondary (shape) elongatio	n 1.3 †/- 0.2	

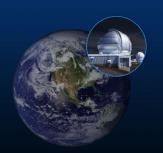
Secondary (shape) elongation <i>as/bs</i>	1.3 i/- 0.2
and b_s/c_s (assumed) ³	>1 (assumed 1.2)
Distance between the centre of	1.19 km +/- 0.03 km

primary and secondary a_{orb}	111) 1111 1/ 0109 1111
Total mass of system	5.278e11 kg +/-0.54e11 kg4
Geometric Albedo	0.15 +/- 0.04
Rotation period of the primary	2.2600 h +/-0.0001 h

Obliquity to the heliocentric orbit	175° +/- 9°
Diameter ratio <i>Ds/Dp</i>	0.21 +/- 0.01
Secondary orbital period <i>P_{orb}</i>	11.9217 h +/- 0.0002 h

S type (maybe LL analogue meteorite)

DART outline



Falcon 9, VAFB Ballistic Trajectory

Launch: July 22nd, 2021

LICIACube

(Light Italian Cubesat for Imaging of Asteroids) ASI contribution

IMPACT: September, 2022

DART Spacecraft

650 kg 6.65 km/s **Dimorphos**

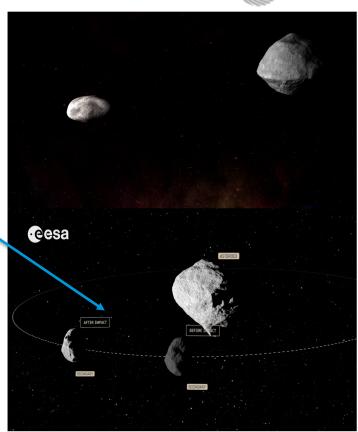
163 m 11.92-h orbital period 65803 Didymos (1996 GT)

1,180-m binary separation

Didymos

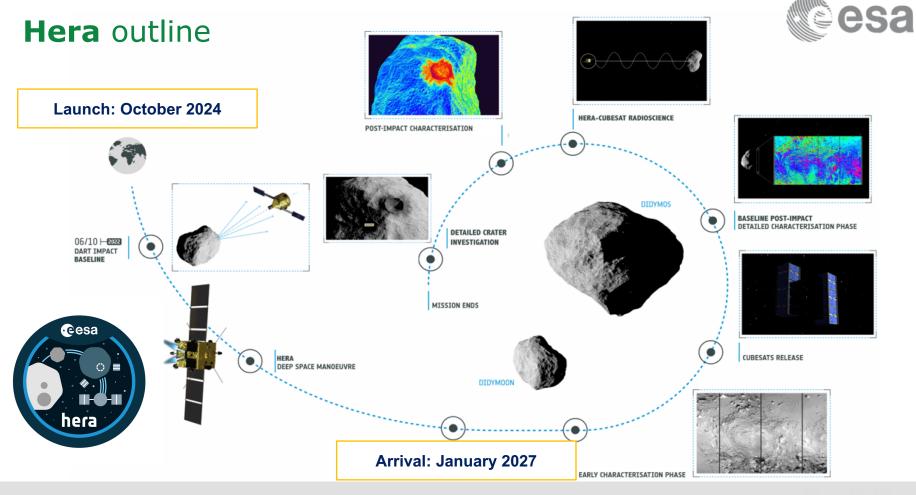
780 m, S-type 2.26-h spin period

Earth-Based Observaciones


0.07 AU distance to Earth at impact. ~10-min (~1%) change in Dimorphos orb. Period.

What will **DART** provide?

- 1. First **demonstration of KI technique** to deflect an asteroid.
- Test autonomous GNC for hypervelocity impact on 150 m target.
- Measure Didymoon's orbital period change due to the DART collision (only from ground observations: e.g. Arecibo).
- 4. **LICIA Cubesat (ASI)** to perform ~5-6 min Didymoon fly-by + confirm impact and image ejecta plume.



What will **Hera** provide?

- Validate DART impact (crater properties/dust environment)
- Full characterization of the system (mass of components/orbital parameters)
- > Laser ranging to fine shape and size measurement
- Deployment od 2 cubesats and radio networking
- Radio science/gravimeter/accelerometer to constrain gravity field and internal properties
- > Hyperspectral imaging of the surface of Dimorphos
- > Bonus science:

Cratering physics
Internal structure
Binary asteroid formation

A mission of 'Firsts'

- First investigation of a binary asteroid
- Smallest asteroid ever visited
- First full scale cratering physics experiment
- First radar tomography of an asteroid
- First inter-satellite (cubesats) communication in deep space

