

Astro Machine Learning (galaxy evolution biased)

Helena Domínguez Sánchez Marc Huertas Company

SEA 2020 - REUNIÓN CIENTÍFICA VIRTUAL

What is Deep Learning?

What is Supervised Deep Learning?

Why DL in astronomy?

We don't have the capacity to "look at" future astronomical datasets (BIG DATA)!

DL and astronomy

- DL has been successfully applied to myriad of astronomical task.
- •DL has matured a lot since first papers (~2015).
- DL is starting to be normalised as a methodology tool.

Applications in astronomy

✓Object detection and segmentation

- •Deblending (e.g, Bocaud+19, Arcelin+2020)
- •Source extraction (e.g., Hausen+19)

✓Classification

- •Morphology (e.g., Dieleman+15, Huertas-Company+15, Domínguez Sánchez+18, Cheng+2020)
- •Tidal streams (e.g., Walmsley+18), mergers (e.g., Bottrell+19, Snyder+19, Pearson+19), gravitational lenses (e.g., Petrillo+19, Metcalf+19, Jacobs+19, Cheng+20)

√Regression

- •Photo-z (e.g., Pasquet+18, Campagne+2020)
- •Cluster Masses (e.g., Ho+20, Yan+20, Su+20)
- •Galaxy morphometry (e.g., Tuccillo+18)

Galaxy Morphologies

Morpheus: A Deep Learning Framework For Pixel-Level Analysis of Astronomical Image Data

RYAN HAUSEN¹ AND BRANT E. ROBERTSON^{2, 3}

¹Department of Computer Science and Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA ²Department of Astronomy and Astrophysics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA ³Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 USA

Object detection + segmentation

CNN are the most accurate

Morphological classification of galaxies (Cheng+2020)

CNN are the most accurate

Photometric Redshifts (Pasquet+18)

BUT...

- One of the main challenges to apply supervised DL is to have on hand a large enough set of pre-labelled images to be used as a training sample coming from the same domain (e.g., instrument, resolution, magnitude, etc.).
- How can we overcome this issue?
 - A. Transfer learning
 - B. Simulations
 - C. Generative Networks

Transfer Learning

- Instrument characteristics (PSF, spatial resolution, depth) affect the result of DL models trained with images from different surveys.
- How much of the knowledge acquired from an existing survey can be exported to a new dataset?
- Can Convolutional Neural Networks transfer knowledge between surveys?

Transfer learning: SDSS to DES

Domínguez Sánchez et al. (2019)

Transfer learning: SDSS to DES

Domínguez Sánchez et al. (2019)

 Can Convolutional Neural Networks transfer knowledge between surveys?

YES!

"Recycling" features/weights learned from a different sample helps reducing the training sample by one order of magnitude.

BUT...

- Current morphological catalogues are limited to very bright observed magnitudes (mr < 18; e.g. Nair& Abraham+10, GZOO, DS+18).
- Use galaxies with known morphological classifications and simulate them at higher redshifts.

Simulations: Redshifting DES galaxies

• Can machines recover features hidden to human eye?

Vega-Ferrero, Domínguez Sánchez, Huertas-Company et al. (in prep.)

TEST on real DES galaxies

Model	Pthr	ROC AUC	Prec	R	Acc
Ρ1	0.47	0.99	0.96	0.97	0.97
P2	0.46	0.99	0.95	0.90	0.96
P3	0.39	0.99	0.96	0.91	0.97
P4	0.41	0.99	0.96	0.96	0.96
P5	0.54	0.99	0.96	0.96	0.96
p	0.41	0.99	0.96	0.97	0.97
Pedge-on	0.25	1.00	0.81	0.99	0.97

Comparison with VIPERS spectral classification (Siudek+2018): \checkmark 97 % LTGs have Class > 4 and 89 % ETGs have Class < 4

• Can machines recover features hidden to human eye?

TEST on real DES galaxies

Largest morphological catalogue up to date!

✓ 27 million galaxies up to $m_r < 21.5$

Vega-Ferrero, Domínguez Sánchez, Huertas-Company et al. (in prep.)

What about errors?

- Reliability and confidence estimates of CNN are important for astronomy.
- **Bayesian Neural Networks** directly model the uncertainty of the estimated network weights (e.g., Perreault Levasseur+17, Lin+20, Ho+20).

What about errors?

Bayesian Neural Networks + MonteCarlo Dropout (Walsmley+2019)

"Pure" Reinforcement Learning (cherry)

The machine predicts a scalar reward given once in a while.

A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ► 10→10,000 bits per sample

Self-Supervised Learning (cake génoise)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample

@ Y. LECUN

CLASSIFICATION WITOUT LABELS: Self Supervised Learning

(g) Cutout

(h) Gaussian noise

(i) Gaussian blur

(j) Sobel filtering

Chen+2020

TWO MAIN CHALLENGES FOR THE NEAR FUTURE...

1. CAN ML HELP IN MAKING DISCOVERIES IN THE BIG-DATA ERA?

2. CAN ML HELP IN LEARNING PHYSICS?

HOW DO WE MAKE DISCOVERIES?

DATA VISUALIZATION IS KEY

Baron+20

DETECTING OUTLIERS ...

UNKNOWN UNKNOWNS IS WHERE INTERESTING (NEW) SCIENCE WILL BE FOUND

GENERATIVE MODELS DO PRECISELY THAT:

Storey-Fisher, MHC, Leauthaud+ (in prep)

SOME EXAMPLES OF HSC "ANOMALIES"

HSC

Sotrey-Fisher, MHC, Leauthaud+ (in prep)

SOME EXAMPLES OF HSC "ANOMALIES"

HSC

HST

Followedup with Keck

wandering black hole?

https://public.nrao.edu/news/wandering-black-holes-dwarf-galaxies/

Sotrey-Fisher, MHC, Leauthaud+ (in prep)

HOW DO WE LEARN PHYSICS?

Cranmer+20

ADVANCED COSMOLOGICAL SIMULATIONS NOW CAPTURE THE TIME EVOLUTION OF GALAXIES

TNG SIMULATION (https://www.tng-project.org/)

Ferreira+20

THEORY / SIMULATIONS

AI TO CHECK IF THE PHYSICS IS CORRECT....

Illustris, EAGLE, Horizon-AGN ...

[FULL 3D EVOLUTION HISTORY]

MATCHING OBSERVED AND SIMULATED PROBABILITY DISTRIBUTIONS

SEE ALSO VERY NICE PAPER FROM TODAY:

https://arxiv.org/abs/2007.05535

SIMULATIONS IMPROVE OVER TIME BUT STILL HAVE LOWER LIKLEIHOODS THAN THE DATA

Zanisi, MHC, Lanusse+20

SUMMARY

- Deep supervised learning is still an infant but on his way to maturity
 - It will most probably be integrated at different levels in many future pipelines for object classification, segmentation and other regressive tasks.
- There is many more and moving very fast! :
 - <u>blind search of interesting objects</u> in large surveys
 - comparing simulations with observations and eventually constraining physics ...

SUMMARY

- Deep supervised learning is still an infant but on his way to maturity
 - It will most probably be integrated at different levels in many future pipelines for object classification, segmentation and other regressive tasks.
- There is many more and moving very fast! :
 - <u>blind search of interesting objects</u> in large surveys
 - comparing simulations with observations and eventually constraining physics ...

JOIN OUR Bi-WEEKLY ML-PHYSICS DISCUSSIONS: miclub.net