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Why DL in astronomy?

Searc

¢ r v '\_. . '-.'. :
o e . .! S :‘

y ' . Es ) -
»»JH - p e
3 > J. . VR . . s
oy T ws - =

R o e .. Large Synoptic Survey Telescope

i . § h g
L .. W -
. . ‘ Ll ) . »
~ : .
L) 9 . '

DARK ENERGY
SURVEY
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We don’t have the capacity to “look at” future
astronomical datasets (BIG DATA)!



DL and astronomy

B refereed non refereed

DL has been successfully applied

to myriad of astronomical task. 500

* DL has matured a lot since first
papers (~2015).

400

-DL is starting to be normalisedasa =

methodology tool.




Applications in astronomy

v Object detection and segmentation
-Deblending (e.g, Bocaud+19, Arcelin+2020)
-Source extraction (e.g., Hausen+19)

v Classification

*Morphology (e.g., Dieleman+15, Huertas-Company+15, Dominguez Sanchez+18, Cheng+2020)

-Tidal streams (e.g., Walmsley+18), mergers (e.g., Bottrell+19, Snyder+19, Pearson+19), gravitational
lenses (e.q., Petrillo+19, Metcalf+19, Jacobs+19, Cheng+20)

vRegression

-Photo-z (e.g., Pasquet+18, Campagne+2020)

*Cluster Masses (e.g., Ho+20, Yan+20, Su+20 )

-Galaxy morphometry (e.g., Tuccillo+18)



Galaxy Morphologies

Morpheus: A Deep Learning Framework For Pixel-Level Analysis of Astronomical Image Data

RYAN HAUSEN' AND BRANT E. ROBERTSON>?
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Object detection + segmentation
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Morphological classification of galaxies (Cheng+2020)
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BUT...

One of the main challenges to apply supervised DL is to have on hand a large
enough set of pre-labelled images to be used as a training sample coming
from the same domain (e.g., instrument, resolution, magnitude, etc.).

How can we overcome this issue?

A. Transfer learning
B. Simulations

C. Generative Networks



Transfer Learning

- Instrument characteristics (PSF, spatial resolution, depth) affect the result
of DL models trained with images from different surveys.

- How much of the knowledge acquired from an existing survey can be
exported to a new dataset?

« Can Convolutional Neural Networks transfer knowledge between surveys?



TPR

Transfer learning:
SDSS to DES

Q1: Smooth/Disk

0.2 = = SDSS, Ntrain=5000
mem  DES, Ntrain=0
m== DES, Ntrain=500, SDSS weights
0.0 1 , - '
0.0 0.2 0.4 0.6 08 10
FPR

Dominguez sSanchez et al. (2019)



TPR

Transfer learning:
SDSS to DES

« Can Convolutional Neural Networks transfer
knowledge between surveys?

Q1: Smooth/Disk

o
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“Recycling” features/weights

0.2 y A .
7T SDSS: Nifuin=5000 § learned from a different sample
— DES, Niko=500, SDF5 weights helps reducing the training

"0 02 04 P08 10 sample by one order of

FPR

magnitude.
Dominguez sSanchez et al. (2019)



BUT...

Current morphological catalogues are limited to very bright observed
magnitudes (mr < 18; e.g. Nair& Abraham+10, GZOO, DS+18).

Use galaxies with known morphological classifications and simulate
them at higher redshifts.



Simulations:
Redshifting DES galaxies

« Can machines recover features hidden to human eye?

z=0.06
my=18.0

z=0.26
my=18.0

Vvega-Ferrero, Dominguez Sanchez, Huertas-Company et al. (L prep.)
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Comparison with VIPERS spectral classification (Siudek+2018):
Y97 % LTGs have Class > 4 and 89 % ETGs have Class < 4

Can machines recover features hidden to human eye?
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What about errors?

- Reliability and confidence estimates of CNN are important for astronomy.

- Bayesian Neural Networks directly model the uncertainty of the
estimated network weights (e.g., Perreault Levasseur+17, Lin+20, Ho+20).
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What about errors?

Model Posteriors
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Bayesian Neural Networks + MonteCarlo Dropout (Walsmley+2019)



P> “Pure” Reinforcement Learning (cherry)

P The machine predicts a scalar reward given once in a
while.

P A few bits for some samples

P> Supervised Learning (icing)

» The machine predicts a category or a few numbers
for each input

P Predicting human-supplied data
» 10—10,000 bits per sample

P Self-Supervised Learning (cake génoise)

P The machine predicts any part of its input for any
observed part.

P Predicts future frames in videos
P Millions of bits per sample




CLASSIFICATION

WITOUT LABELS:

Supervised Learning
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Chen+20220
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TWO MAIN CHALLENGES FOR
THE NEAR FUTURE...

1. CAN ML HELP IN MAKING DISCOVERIES IN THE BIG-DATA ERA?

2. CAN ML HELP IN LEARNING PHYSICS?



HOW DO WE MAKE
DISCOVERIES?




DATA VISUALIZATION IS KEY
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DETECTING OUTLIERS ...

probability distribution p

UNKNOWN UNKNOWNS IS WHERE INTERESTING (NEW) SCIENCE
WILL BE FOUND



GENERATIVE MODELS DO PRECISELY THAT:

DATA: PROBABILITY DENSITY FUNCTION:
X I
| GENERATIVE |__
—¥|  MODEL




Hyper Suprime Cam Survey (HS(C)
(Subaru telesocpe 1400 sq. deg,
r~26)
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Storey-Fisher, MH(, Leauthaud+ (in prep)



SOME EXAMPLES OF HSC “ANOMALIES”’

HSC

Sotrey-Fisher, MH(, Leauthaud+ (in prep)



SOME EXAMPLES OF HSC “ANOMALIES”’

HS(C HST

—>

https://public.nrao.edu/news/wandering-black-holes-dwarf-galaxies/

Followed-
up with
Keck

wandering black hole?

Sotrey-Fisher, MH(, Leauthaud+ (in prep)


https://public.nrao.edu/news/wandering-black-holes-dwarf-galaxies/

HOW DO WE LEARN PHYSICS?



Model with Extract to
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ADVANCED COSMOLOGICAL SIMULATIONS NOW CAPTURE THE TIME EVOLUTION OF
GALAKXIES

TNG SIMULATION
(https://www.tng-project.org/)



https://www.tng-project.org/

88 [llustris, EAGLE,
Horizon-AGN ...

PROJECT HYDRO
SIMS IN
THE
“OBSERVATIONAL
PLANE”

MACHINE (DEEP)
LEARNING

Al TO LINK THEORY AND
OBSERVATION
IN THE DATA SPACE
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Al TO CHECK IF THE PHYSICS IS
CORRECT....

BEEER [1)ustris, EAGLE,
Horizon-AGN ...

[FULL 3D EVOLUTION HISTORY]

FORWARD MODEL
HYDRO SIMS IN
THE
“OBSERVATIONAL
PLANE”

MACHINE (DEEP)
LEARNING




MATCHING OBSERVED AND SIMULATED PROBABILITY DISTRIBUTIONS

) ~ P@QSDSS)
|

OBSERVED GALAXY SIMULATED GALAXY
OBSERVATIONAL QESERVATIONAL
PROPERTIES -

SEE ALSO VERY NICE PAPER FROM TODAY:  https://arxiv.org/abs/2007.05535



https://arxiv.org/abs/2007.05535

SIMULATIONS IMPROVE OVER TIME BUT STILL HAVE LOWER LIKLEIHOODS

THAN THE DATA
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SUMMARY

 Deep supervised learning is still an infant but on his way to
maturity

|t will most probably be integrated at different levels in
many future pipelines for object classification,
segmentation and other regressive tasks.

 There is many more - and moving very fast! :

e blind search of interesting objects in large surveys

 comparing simulations with observations and eventually
constraining physics ...
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http://ml-club.net

