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Once upon a time ... not so long ago (from 1997 up
to ~2018), there was, amongst cosmologists, a so-called
Concordance cosmological model upon which low redshift
and high redshift cosmological observations agreed ...
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The Cosmic Microwave Background (CMB)

provided an image of our universe at its childhood that
was consistent with a flat LCDM scenario, and which was
also consistent with cosmological observations at recent

epochs ...
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The Cosmic Microwave Background (CMB)
provided an image of our universe at its childhood that
was consistent with a flat LCDM scenario, and which was
also consistent with cosmological observations at recent
epochs ...

K. Mack




Ultimate “End-to-end” test for ?\CDI_VI, Predict and Measure H

Standard Model: (Vanilla) ACDM, 6 parameéters + ansatz (w, Nggr, Q, etc)
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| Planck Predicted, Hy=67.4+/-0.5 km/s/Mpc |

Silde from A. Riess (July 2019)
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However, when observations at either side of the
~ history of the universe increased their precision,
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However, when observations at either side of the

history of the universe increased their precision, tensions
(and maybe more than tensions) have arosen:
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t for ?\CDM, Predict and Measure H,

6 parameters + ansatz (W, Ngsr, Q, etc)
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The most significant sources of tension
are:
- H,measurements at low and high redshifts:
(3 -5 g, tension — problem, crisis?)

* The amplitude of CMB lensing
 The amplitude of density perturbations at low redshifts (g, )

(3 o tension)

« The non-flat curvature of the universe (Q, = -0.04)

(3 o tension)
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Measuring the universe expansion rate H,

flat — ACDM

* Indirectly, using the angle _
projected by the sound ~ [Early]*Zo-
horizon at recombination at _67.4
z~1100 via CMB
observations, and at z~0.5 =
via clustering measurements 69.8"19
of the Large Scale Structure | .
(LSS) s

* Directly, by (1) using 733908 g
standard candles (SNIa), —
and calibrating their distance -
with Cepheids in LMC, e
Detached Eclipsing Binaries 4l
(DEB) in LMC, galactic 66 68 70 72 74 76 78 80
parallaxes, the tip of the Red Hy [kms ! Mpc ]
Giant Branch (TRGB), or (2)

gravitational lensing at V. Bonvin, for Verde, Tommaso, & Riess 2019
intermediate redshifts (z~0.5) 12
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Measuring the universe expansion rate H,

* Indirectly, using the angle Pros:
projected by the sound
horizon at recombination at « Weak dependence of sound horizon
z~1100 via CMB on (well known) cosmological
observations, and at z~0.5 parameters,
via clustering measurements « Measurements based upon a model
of the Large Scale Structure that is relatively simple (linear order
(LSS) ) in perturbation theory) for CMB,
- r die. = | i ——2 mildly-non linear for LSS
0 0 <31 + R) measurements

- Different probes (CMB and LSS)
R =@, + p)p, + P,) ¥ 3Ps/4P,-  nhaving very different (potential)

* Directly, by (1) using systematics yield H, estimates in
standard candles (SNIa), excellent agreement

and calibrating their distance
with Cepheids in LMC,
Detached Eclipsing Binaries
(DEB) in LMC, galactic
parallaxes, the tip of the Red
Giant Branch (TRGB), or (2)
gravitational lensing at
intermediate redshifts (z~0.5)

Cons:

* They are all indirect measurements
of the expansion rate that are model
dependent
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Measuring the universe expansion rate H,

* Indirectly, using the angle
projected by the sound
horizon at recombination at
z~1100 via CMB
observations, and at z~0.5
via clustering measurements
of the Large Scale Structure
(LSS)

Directly, by (1) using
standard candles (SNIa),
and calibrating their distance
with Cepheids in LMC,
Detached Eclipsing Binaries
(DEB) in LMC, galactic
parallaxes, the tip of the Red
Giant Branch (TRGB), or (2)
gravitational lensing at
intermediate redshifts (z~0.5)

Pros:

* These are, for SNla and Surface

Brightness Fluctuation-based
estimates, direct measurements of
H,that are model independent

Lensing measurements, maser-based
H, measurements,, and SNla-based

estimates, are all un-correlated,
independent measurements of H_ .

Cons:
* Measurements based on complex,

highly non-linear systems (Cepheids,
SNIla, clusters of galaxies) whose
calibration are obtained empirically
(more room for systematics)

Results from the CCHP collaboration
on the TRGB significantly off from
those of SHOES: evidence for
hidden systematics? 14



Measuring the universe expansion rate H,

flat — ACDM
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V. Bonvin, for
Verde, Tommaso, & Riess 2019

Possible solutions to this puzzle:

Systematics in CMB observations:
unlikely, provided different CMB
experiments beyond Planck (like SPT,
ACT) are providing very similar
measurements of H,

New physics! : Emerging Dark Energy
(EDE), Interacting Dark Energy,
Ubergravity, decaying Dark Matter, Rock
'n Roll models (RnR), Vacuum Dynamics,
what not! — yet to be seen whether they
can satisfy, some of them (EDE, RnR)
already discarded ...

Systematics in the direct H,

measurements ...
15



Measuring the universe expansion rate H,

flat — ACDM
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16



Measuring

the universe expansion rate H,

flat — ACDM
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Measuring the universe expansion rate H,

flat — ACDM
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Measuring the universe expansion rate H,

Ho measurements in flat ACDM - performed blindly

|Wong et al. 2020 | P
—
6 time-delay lenses HOLICOV verage of PL and NFW + stars/conskant M/L)

[Millon et al. 2020

7 time-delay lenses (6 HOLICOW + 1 STRIDES) TDCOSMO (NFW + stars/constant M/L)

TDCOSMQ (power-law)

kinematics-only constraints on mass profile

7 time-delay lenses (+ 33 SLACS lenses in different comt

+5.6
74.5%2%
TDCOSMO-only

73.%i§j§

(anisotropy constraints from 9 SLACS lenses)

TDCOSMO+SLACS

TDCOSMO+SLACSspss (profile constraints from 33 SLACS lenses)
674433
PS .

i#u (@nisotropy and profile constraints from SLACS)

TDCOSMO+SLACSspss 4

60 65 70 75
Ho [km s~ Mpc~!]

Birrer+ 2020, 2007.02941: TDCOSMO collaboration re-analyses cluster lenses
accounting for uncertainties in mass distribution in clusters

80
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Measuring the universe expansion rate H,

Ho measurements in flat ACDM - performed blindly

Wong et al. 2020

S We gratefully acknowledge support from
Cornell Uan@lsltY the Simons Foundation and member institutions.
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Measuring the universe expansion rate H,

But even if we flat — ACDM

drop cluster Early | /7.4
lensing ... ey
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Measuring the universe expansion rate H,

But even if we
drop cluster
lensing ...

flat — ACDM
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Other (weaker) sources of tension ...
(at 2 — 3 o)
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CMB gravitational lensing

CMB photons are deflected in their journey to the observer. This effect can be
accessed in two ways:

(Approach 1) Looking at non-Gaussianities induced by lensing on the smallest
scales, using a 4-point function <T(n,)T(n,)T(n,)T(n,)>

(Approach 2) Looking at the 2-point function (<T(n,)T(n,)> or angular power
spectra C = <a, . (a ) >): the impact of lensing-induced ray deflection
Smears/softens the acousting peaks

24



CMB 2-point function <a, _a, "> = C (angular
power spectrum)

" Credit: Duncan Hanson
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A, =1 is what our theory predicts ...
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CMB gravitational lensing

Problem: The amplitude of lensing inferred from
Approach 2 is about 15% higher than for Approach 1, at
~30 level) — It's like if lensing was more efficient at
smearing CMB acoustic peaks than predicted

CMB photons are deflected in their journey to the observer. This effect can be
accessed in two ways:

(Approach 1) Looking at non-Gaussianities induced by lensing on the smallest
scales, using a 4-point function <T(n,)T(n,)T(n,)T(n,)>

(Approach 2) Looking at the 2-point function (<T(n,)T(n,)> or angular power
spectra C = <a _ (a,) >): the impact of lensing-induced ray deflection
Smears/softens the acousting peaks
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CMB gravitational lensing

Problem: The amplitude of lensing inferred from
Approach 2 is about 15% higher than for Approach 1, at
~30 level) — It's like if lensing was more efficient at
smearing CMB acoustic peaks than predicted
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CMB gravitational lensing
+ lensing shear from KiDs & CFHTLenS

Problem: The amplitude of lensing inferred from
Approach 2 is about 15% higher than for Approach 1, at
~30 level) — It's like if lensing was more efficient at
smearing CMB acoustic peaks than predicted

0

0
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0. 72
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Bl CFHTLenS
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Planck (Zm,)
B Planck (ACDM)
B Planck (Alens)

N

0.24 0.30 0.36 0.42 0.48
Qm

Di Valentino & Bridle 19

If CMB lensing were more efficient
than what we predict, the 3o tension
with galaxy lensing shear would be
alleviated
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And finally, if we look at Planck 2018 only ...
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The universe does not seem flat, but has
strong preference (~20) for being closed
instead of flat !

Planck 2018
0.7 4 i I 65
| — PL18 plik i
1.0 —— PL18 CamSpec 0.6 — 60
—— PL18 simulated
J — PLI5 £
0.8 G 0.5 - - 55
5
CLE 0.6 1
~ 04 4 - TT,TE,EE+lowE
. 0.4 - —— +lensing
0.3 - Bl BAO
- I I 1
0.2 —0.10 —0.05 0.00
Qg

1
—0.12 —0.08 —0.04 0.00

Q2
A Di Valentino+20 30



The universe does not seem flat, but has
strong preference (~20) for being closed
instead of flat !

I Planckl8

125 =

— 1.00 A

0.75 -
Di Valentino+ 20
0.50 -

-0.3 -0.2 -0.1 0.0 0.1

This would solve the problem with the lensing amplitude/efficiency
and other internal anomalies in Planck data (low quadrupole,
alignment of low / multipoles, etc)
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The universe does not seem flat, but has
strong preference (~20) for being closed
instead of flat !

Di Valentino+20
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w

But it falls apart with all other cosmological
observations at lower redshifts! 32



The universe does not seem flat, but has
strong preference (~20) for being closed

instead of flat !

— PL18 plik
1.0 —— PL18 CamSpec
—— PL18 simulated

08 - =™ PL15

—0.12 —0.08 —0.04 0.00
7%

Can this be a fluke/result of chance??

Di Valentino+20
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Cosmic Discordance: Planck and luminosity distan¢e data exclude LCDM.

2,
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We show that a combined analysis of CMB anisotropy power spectra obtained by the Planck
satellite and luminosity distance data simultaneously excludes a flat universe and a cosmological
constant at 99% C.L.. These results hold separately when combining Planck with three different
datasets: the two determinations of the Hubble constant from Riess et al. 2019 and Freedman et
al. 2020, and the Pantheon catalog of high redshift supernovae type-Ia. We conclude that either
LCDM needs to be replaced by a drastically different model, or else there are significant but still
undetected systematics. Qur result calls for new observations and stimulates the investigation of
alternative theoretical models and solutions.
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The most significant sources of tension
are:
- H,measurements at low and high redshifts:
(3 —5 g, tension — problem, crisis ?)

* The amplitude of CMB lensing
 The amplitude of density perturbations at low redshifts (g, )

(3 o tension)

« The non-flat curvature of the universe (Q, = -0.04)

(3 o tension)
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CMB:

ACTPol
SPTPol
LiteBird
Future ESA space CMB mission (?)

LSS:

Euclid
DESI

Vera Rubin
J-PAS
SphereX
SKA
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J-PAS

¥ Javalambre Physics of the Accelelatlng
Uniyerse Astr ophysmal Survey
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CMB:

ACTPol
SPTPol
LiteBird
Future ESA space CMB mission (?)

LSS:
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