

Super Hot Cores in NGC 253:

Witnessing the formation and early evolution of super star clusters

F. Rico-Villas¹, J. Martín-Pintado, E. González-Alfonso, S. Martín, V. M. Rivilla

Centro de Astrobiología (CSIC-INTA)

Using 0.2" ALMA images of HC₃N vibrational emission (HC₃N*) we reveal the presence of 8 unresolved Super Hot Cores (SHCs) in the inner 160 pc of NGC 253. Our LTE and non-LTE modelling indicate that SHCs have high dust temperatures of 230-350 K and high IR luminosities of (0.2 − 2)×10⁸ L_☉, all associated with young super star clusters. We use the ratio of luminsoties derived from HC₃N* (proto-star phase) and from free-free emission (ZAMS phase) to establish the evolutionary stage of the forming SSCs. The estimated evolutionary stages are also supported by the observed HNCO/CS ratio. We find that the most evolved SSCs are located, in projection, closer to the center of the Galaxy than the younger proto-SSCs, indicating an inside-out SSC formation scenario.

Rico-Villas F., Martín-Pintado J., González-Alfonso E., Martín S., Rivilla V. M., 2020, MNRAS, 491, 4573 DOI: 10.1093/mnras/stz3347

Context of the research

Super Star Clusters

- A large fraction of the star formation in starburst galaxies ٠ is believed to be concentrated in relatively small regions in their nuclei, known as Super Star Clusters (SSCs)
- Unfortunately the earliest phases of SSC are poorly known • since they are still deeply embedded in the parental cloud.

Hot Cores

- The earliest phase (few 10⁴ yr) of massive star formation • (SF) in clusters is commonly recognized by very compact (0.02-0.1pc), hot (200-300 K) and dense condensation (nH2~10⁶-10⁷ cm⁻³) known as Hot Cores (HCs).
- With luminosities 10^{5-7} L_{\odot}, HCs are heated by massive • protostars deeply embedded in molecular clouds (de Vicente et al. 2000, 2002).

V₆=1 mm V,=1 mIR V = 0HC₃N

- Emission from its rotational transitions inside the vibrationally excited states (HC3N*) lay in the mm.
- Used to probe the high density and hot material • surrounding the protostars since HC_3Nv_7 , v_6 , v_5 ... vibrational levels are excited by mIR radiation (Martín-Pintado et al. 2005).

Description of the work

SEA

Continuum and HC₃N emission

- Using ALMA observations of NGC 253 we have studied the continuum and HC_3N emission inside 14 SSCs precursors (Leroy et al. 2018).
- 8 SSCs are detected in HC₃N*

Evolutionary trend of SSC formation

• Inside-out formation scenario

• Trend in their evolutionary stage as a function of their position. $t_{age} \sim \frac{M_*}{M_* + M_{p^*}} \times 10^5 \text{ yr}$

\circ Proto-dominated $t_{age} \lesssim 6 \times 10^4 yr$

- Younger
- HNCO/CS≳ 0.05 No radiation feedback
- High L_{p*}
- Mid. SFE Still forming stars, can grow higher
- SFR $(\sim 1 2 M_{\odot} yr^{-1})$
- $M_{VIR} < M_{SHC} \rightarrow No$ mechanical feedback

$_{\odot}$ ZAMS-dominated $t_{age}\gtrsim 8{\times}10^4 \text{yr}$

Older

6

SEA

- HNCO/CS $\lesssim 0.05\,$ Radiation feedback
- High L_{*} (low L_{p*})
- High SFE Converted most gas (gas expulsion?)
- SFR $(\sim 2 4 \text{ M}_{\odot} \text{ yr}^{-1})$
- $M_{VIR} \sim 1 5 \times M_{SHC} \rightarrow Low$ mechanical feedback

XIV.0 Reunión Científica

13-15 julio 2020

Evolutionary trend of SSC formation

- Inside-out formation scenario
 - Trend in their evolutionary stage as a function of their position. $t_{age} \sim \frac{M_*}{M_* + M_{n^*}} \times 10^5 \text{ yr}$
- \circ Proto-dominated $t_{age} \lesssim 6 \times 10^4 \text{yr}$
 - Younger
 - HNCO/CS≳ 0.05 No radiation feedback
 - High L_{p*}
 - Mid. SFE Still forming stars, can grow higher
 - SFR $(\sim 1 2 M_{\odot} yr^{-1})$
 - $M_{VIR} < M_{SHC} \rightarrow No$ mechanical feedback

\circ ZAMS-dominated $t_{age} \gtrsim 8 \times 10^4 yr$

- Older
- HNCO/CS $\lesssim 0.05\,$ Radiation feedback
- High L_* (low L_{p*})
- High SFE Converted most gas (gas expulsion?)
- SFR $(\sim 2 4 \text{ M}_{\odot} \text{ yr}^{-1})$
- $M_{VIR} \sim 1 5 \times M_{SHC} \rightarrow Low$ mechanical feedback

Conclusions

- From the 14 forming SSCs with strong free-free and dust emission, 8 of them show HC_3N^* emission (SHC phase).
- LTE and non-LTE analysis gives dust temperatures 200-375 K for sources with HC_3N^* .
- We have used the proto/ZAMS luminosity ratio (L_{p*}/L_{*}) to measure the evolutionary stage of the SSCs. The estimated ages are also supported by the radiative feedback as traced by HNCO/CS.
- We find a systematic trend between SSCs age and their projected location, with the older ZAMS-SSCs located in center and the younger proto-SSCs in the outer regions.
- This suggests an inside-out SSCs formation scenary likely triggered by external events.

Prospects for the future

 New observations with better resolution are needed to resolve the SSCs and constrain the temperatures and luminosities and discern between SSC formation mechanisms.

6

13-15 julio 2020