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Brief Summary

In this work we develop a method based on Fully Convolutional Networks to detect point sources in realistic

simulations and compare its performance against one of the most used point source detection method in

this context, the Mexican Hat wavelet 2 (MHW2). The frequencies for our analysis are the 143, 217 and 353

GHz Planck channels.

https://arxiv.org/pdf/1911.11826.pdf
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Ø Point Sources are one of the main contaminants
to the recovery of Cosmic Microwave Background
signal at small scales and can be relevant even for
Polarization

Ø Their careful detection will be important for the
next generation of Cosmic Microwave Background
experiments like LiteBird.

Ø For this reason, it is quite important to develop
highly performing methods for Point Source
detection.
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Table 2. From left to right: frequency, Cl contribution to
the CMB power spectrum of our sample of dusty and of
radio sources estimated from the CORE predictions (De Zotti
et al. 2016).

Frequency Dusty sources Radio
(GHz) (µK2) (µK2)

217 5.57e-08 4.38e-09
353 2.22e-06 8.61e-09
600 2.06e-03 5.66e-07
800 5.10e-01 6.62e-05

Figure 7. Power spectrum contribution from the dusty (red solid line) and
radio (blue dashed line) sources to the power spectrum, compared with the
primordial B-mode for r = 0.1, 0.01, from top to bottom (black solid line)
and the lensing-induced B-mode (black dotted line).

where g is the conversion factor from flux density to temperature
units (Tegmark & Efstathiou 1996) and Pc = 0.5 mJy has been cho-
sen to be similar to the CORE detection limit (De Zotti et al. 2016).
The values we obtain for 217, 353, 600 and 800 GHz are listed
in Table 2. In Fig. 7, we plot the l(l + 1)Cl/2π estimate for the
dusty sources (red solid line) and for the radio sources in (De Zotti
et al. 2016, blue dashed line) for the 217 (top panel) and 353 (bot-
tom panel) GHz channels. In these two frequencies the contribution
is comparable to the primordial B-mode for r = 0.1 and r = 0.01
(black solid lines) and the lensing-induced B-mode (black dotted
line). At 217 the contribution from these kind of sources is negli-
gible for the lensing-induced B-modes, but it becomes important
for the primordial B-mode at l ∼ 350 (right after the second peak)
or l ∼ 150 (just after the first peak) for r = 0.1 and r = 0.01,
respectively.

At 353 GHz the level of this contamination is the same as the one
of lensing-induced B-modes. This means that it is even worse for the
detection of the primordial B-mode, since the source contribution
becomes important right after the first peak (l ∼ 100) already for
the r = 0.1 case. We omit to show results from 600 and 800 GHz, as
at these frequencies the contribution to the power spectrum is much
higher than the one from the B-mode, as expected.

4 C O N C L U S I O N S

The analysed sample of extragalactic dusty sources (selected from
the 857 GHz of the PCCS2 catalogue) shows polarization properties
similar to those characterizing radio sources (Massardi et al. 2013;
Galluzzi et al. 2017, B17). We measure polarization values of

〈!〉= (3.10 ± 0.75) per cent and 〈!〉= (3.65 ± 0.66) per cent at 217
and 353 GHz respectively, and of

√
〈!2〉 = (7.38 ± 1.32) per cent

and (6.87 ± 1.35) per cent at 217 and 353 GHz, respectively. More-
over, as for the radio sources, the fractional polarization of ex-
tragalactic dusty sources follows a log-normal distribution. We find
values for µ of 0.26 ± 0.52 and 0.66 ± 0.41 and for σ of 1.32 ± 0.23
and 1.12 ± 0.24 at 217 and 353 GHz, respectively. However, radio
and dusty sources are dominated by different components at these
frequencies, i.e. by jet synchrotron and dust emission, respectively
(see discussion in Section 3.1). Therefore we conclude that the
inferred similarities of polarization properties are fortuitous.

We update with our new measurements the source number counts
in polarization at 217 and 353 GHz and compare them with the
predictions for the CORE proposal (De Zotti et al. 2016). Moreover
we make prediction for the level of the expected contamination
to the B-mode angular power spectrum. We also extrapolate the
results at higher frequencies (600 and 800 GHz). We find that at
217 GHz the extragalactic dusty sources might be an important
contaminant for the primordial B-mode, especially in the case of
r = 0.01 or lower. At 353 GHz their contribution is at the level of the
lensing-induced B-mode. As expected, their importance increases
with frequency and at 600 and 800 GHz their contribution to the
angular power spectrum is much higher than the ones of the B-mode,
both primordial and lensing-induced.
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Methodology
Bonavera L. et al.: PoSeIDoN in Realistic Simulations

Fig. 1. From left to right, sample patch comparison among the total and PS input validation maps and the MHW2 and PoSeIDoN PS outputs, for
143, 217 and 353 GHz (top, middle and bottom panel respectively) at b > 30� galactic latitudes. The number, position and flux density of the PS
are di↵erent at each frequency.

(2002) method with a random distribution on the sky (see De-
labrouille et al. 2013, for more specific details).

Finally, we add the instrumental noise to the simulations. The
noise maps are produced by simulating white noise accordingly
to the Planck values: 0.55, 0.78 and 2.56 µKCMB deg, respec-
tively (Noise rms computed after smoothing to 1�; Planck Col-
laboration et al. 2018b).

In this work, we study the performance of two detection
methods, PoSeIDoN and the MHW2, especially focusing on
their dependence with increasing intensity of Galactic emission
by applying two di↵erent homogeneous galactic cuts (at 10� and
30� galactic latitudes). Moreover, such intensity increase also
arises with higher frequencies due to Galactic emission spec-
tral behaviour (Planck Collaboration et al. 2011c, 2014a, 2016a,
2018c).

Examples of random simulated patches are shown in the first
two columns of Fig. 1 for 143, 217 and 353 GHz (top, middle and
bottom panels, respectively) at b > 30� galactic latitudes. The
first column is the total input simulated map, including CMB,
Galactic emission, CIB, PS and instrumental noise, whereas the
second column is the input PS only map.

3. Methodology

3.1. PoSeIDoN

Neurons, sorted in layers, are the basic computing elements of
an artificial network model. Their responses are modelled by
weights that represents the influence of the neuron response on

the neurons of the subsequent layer. In particular, for some mod-
els (such as CNNs) the weights correspond with kernel values
(LeCun et al. 2015). The kernels are tensor-shaped arrays that
model the connections between neurons. Such connections are
then applied as discrete convolutions to all the inputs. Then, the
feature maps obtained for each kernel become the inputs of the
subsequent layers. The response is finally given after the process
is completed along each computation units.

In supervised learning, the implementation of the training
procedure is performed via estimation of a loss function, usually
a Mean Square Error (MSE) function, computed over the data
from a training set (i.e. the network responses to certain inputs
compared with their corresponding labels). Back-propagation al-
gorithms are then employed to correct weights and kernel values
and thus minimise the loss function with methods as the Stochas-
tic Gradient Descent (SGD) (Rumelhart et al. 1988; Chauvin &
Rumelhart 2013).

FCNs allow us to perform dense predictions over the data
used as input (Long et al. 2015; Dai et al. 2016). In this case, the
most relevant characteristics are first extracted using a convolu-
tional block where each convolutional layer allows the extraction
of several feature maps from the image obtained using kernels,
frequently modulated by an activation function and processed
by a down-sampling in terms of pooling. In addition to the typ-
ical convolutional process, an FCN has a second block where
deconvolutions are performed, allowing the recovery of a dense
response, also by means of layers with the correspondent ker-
nels. Moreover, during the deconvolution process, information
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Fig. 2. Details of the FCN used for PS detection in PoSeIDoN. The network has a block of 8 convolutional layers, where the main characteristics
are extracted, resulting in 512 feature maps, connected with a deconvolutional block of 8 deconvolutional layers. Fine-grained features are added
from each convolution to the corresponding deconvolution.

on the convolutional segment is included through the addition of
fine-grained features in specific steps.

In this work, the FCN parameters and hyperparameters are
selected through a grid search. The selected topology is detailed
as follows (see Figure 2):

– Convolutional block: the network has six convolutional lay-
ers, with 8, 2, 4, 2, 2 and 2 kernels respectively. Their corre-
spondent kernel sizes are of 9, 9, 7, 7, 5 and 3 values of side.
The activation function is leaky ReLU (Nair & Hinton 2010)
in all the layers. Strides are of pixels both horizontally and
vertically and padding has been added.

– Deconvolutional block: the feature maps obtained after the
convolutions are connected to a block of six deconvolutional
layers. These layers have 2, 2, 2, 4, 2 and 8 kernels respec-
tively. Their correspondent kernel sizes are of 3, 5, 7, 7, 9 and
9 values of side. The activation function is leaky ReLU in all
the layers. Strides are of pixels both horizontally and verti-
cally and padding has been added. Moreover, feature maps
resulted from the five last convolutions are added, as fine-
grained features, to the results of the five first deconvolutions.

The training procedure is performed using an MSE loss func-
tion, with a training set of 50000 samples and a validation set of
5000 samples. The test sets for performance assessment consists
of 5000 samples too.

We produce 50000 simulations at 217 GHz to train the net-
work. For each simulation we randomly chose a position of the
available sky with the selected cut in latitude (10� or 30�) for
both the CMB and the galactic emission. Moreover, the posi-
tions and fluxes for the input PS are also di↵erent in each real-
isation. At this stage, for each patch, two images are provided
to PoSeIDoN: the total image (the simulated patch including all
the components, the "Input Total" column in Fig. 1) and the PS
image (the image containing only the input PS that should be
detected, i.e. all the radio and IR simulated PS; the "Input PS"
column in Fig. 1). Mind that just for the training purpose, the
sources flux density in the simulated catalogue are amplified by
a “training factor” of 10, before being added to the other com-
ponents. The reason is simply to increase the density of possible
bright PS inside the patch without modifying the source number
count shape, i.e. without altering the statistical properties of the
PS sample, just their normalisation. This step is not necessary or

important but helps to reduce the training time as many of the
sky patches do not have bright enough PS to be detected due to
their number density.

Please note that PoSeIDoN is trained just at 217 GHz and for
the 30� galactic cut. Such trained FCN is then applied to all the
cases studied in this work (i.e. 143, 217 and 353 GHz with a 30�
Galactic cut and 217 GHz with a 10� Galactic cut). Better results
are expected, although probably modest ones, if PoSeIDoN can
be trained at each case individually. On this respect, the detection
of PS in regions with intense Galactic emission, as the Galactic
plane, is probably the most interesting case and also the one that
can be improved the most by a dedicated FCN training. However,
this is beyond the main scope of the current work.

On the other hand, in the validation process, the simulated
sources flux densities are the realistic ones (no additional train-
ing factor is applied), that also allow us to compare our results
with the Planck catalogues. The validation simulation is built
using realistic PS flux densities and realistic contaminants simu-
lated in the same way as for the training ones (although the sky
positions are always randomly chosen). Each validation patch is
then provided to the trained network that returns an output map
of recovered PS. An example of the PoSeIDoN output patch at
the studied frequencies is shown in Fig. 1, last column. Such
output is then compared with the input PS only map for a perfor-
mance analysis: estimation of the completeness, reliability and
flux density accuracy.

3.2. Mexican Hat Wavelet 2

To assess PoSeIDoN performance, we also compare it against
the MHW2 filter. The Mexican Hat Wavelet Family in the plane
is derived by applying the Laplacian operator iteratively to the
2D Gaussian (González-Nuevo et al. 2006). Any member of the
family can be written in Fourier space as:

 n(k) =
k

2n
e
�k

2/2

2nn!
(1)

The first member of the family,  1, is the traditional MHW. It
is one of the first wavelets applied successfully to the detection
of PS in flat CMB maps (Cayón et al. 2000; Vielva et al. 2001).
The MHW2 is therefore the second member of the family,  2,
and it was demonstrated even more suited to the task than it pre-
decessor (González-Nuevo et al. 2006) or the theoretical optimal
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Fig. 3. Validation results at 143 (top panels), 217 (middle panels) and 353 GHz (bottom panels). Left column: Completeness (top panel) and
reliability (bottom panel) for 30� galactic cut. The red solid line refers to the results obtained with PoSeIDoN, the blue dashed one to the 3�
MHW2 and the dot-dashed cyan to the 4�MHW2. The dotted grey vertical line is the 90% completeness flux density limit for the PCCS2 (Planck
Collaboration et al. 2016b). Right column: Relative flux density comparison between MHW2 (3� blue hatched histogram and 4� cyan squared
histogram) and PoSeIDoN (red filled histogram) results for 30� galactic cut.
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Fig. 3. Validation results at 143 (top panels), 217 (middle panels) and 353 GHz (bottom panels). Left column: Completeness (top panel) and
reliability (bottom panel) for 30� galactic cut. The red solid line refers to the results obtained with PoSeIDoN, the blue dashed one to the 3�
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histogram) and PoSeIDoN (red filled histogram) results for 30� galactic cut.
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Results @217 GHz
(the training frequency)

PoSeIDoN: Flux underestimation
MHW2 3s: Severe Eddington Bias

Results for |b|>10 ○ :
• Similar completeness
• Better Reliability

Results for |b|>30○:
• Similar completeness
• Better Reliability

Interpretation: PoSeIDoN applies a kind of “Confidence factor” to the flux density depending on 

how hard is to detect each source. This allows the technique to control the number of spurious 

sources, but the consequence is that most of the recovered flux densities are under-estimated.
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Results @ frequencies different from training

Similar conclusions as for 217 GHz, slightly worse performance

143 GHz 353 GHz

Interpretation: Although only slightly, the performance of PoSeIDoN worsen when applied to 

images with different statistical properties from the ones used for training. 

(Where the MHW2 optimal scale was updated for each channel instead.)

Therefore, these results can be improved by training PoSeIDoN for each particular channel or 

scientific case.
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Impact & Future

Ø Neural Networks are a very promising
approach to detect point sources using
data from CMB experiments.

Ø They provide overall better results with
respect to the more usual filtering
approaches.

Ø The results are robust but can be
further improved with a tailored
training.

Ø An Additional Neural Network can be
trained to correct the flux density
estimation.

Ø Multifrequency improvement: A
natural extension is to train PoSeIDoN
to deal with multifrequency images.
Ø Different frequencies
Ø Intensity + Polarization

Ø This kind of Neural Networks are being
studied to detect extended objects
(shapes, orientations, ...; Euclid) or to
deal with blending (SKA)


