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ABSTRACT

In this work we present the preliminary results obtained for the dust and molecular gas derived
for NGC3110, ESO264-G036 and ESO267-G030 which belong to a representative sample of 23
local LIRGs observed with ALMA at ~80 pc spatial resolution. We aim at combining the emission
from the spatially resolved cold molecular gas CO(2-1), the dust (at 230 GHz or 1.3 mm), and the
SF regions (HST Pa-alpha imaging) to estimate the range of gas-to-dust ratios and dust
temperatures compatible with the observations. The comparison between the radial extension
obtained for the dust and the molecular emissions with those derived for the stellar and ionized
gas (Ha) emissions as a function of the L;, activity and morphology will be analyzed.

We also plan to test how reliable are previous dust-to-molecular gas mass conversion methods
(e.g., Scoville+14) when using one single continuum observation in the millimeter band.
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The cold molecular gas phase in local LIRGs

The cold phase of the interstellar medium (ISM) has a central role in galaxy growth and evolution, consisting of clouds of neutral
and molecular gas dominated in mass by atomic and molecular hydrogen (HI and H,). Molecular gas is the ISM phase that is most
directly linked to the star formation process (Leroy et al. 2008). Carbon monoxide (}?CO), the second most abundant molecule
after H,, is the most convenient tracer of the bulk of molecular gas in large galaxy samples, thanks to its bright low-J transitions at
millimeter wavelengths that are easily excited down to gas temperatures of T~10 K (Carilli & Walter 2013).

The strong correlation between the star formation rate (SFR) and the cold molecular gas content in galaxies is usually referred to
as the star formation (SF) law (or Kennicutt-Schmidt relation). Many studies of the resolved sub-kpc SF laws in nearby galaxies
have appeared (Leroy et al. 2008; Casasola et al. 2015) finding a bimodal SF law when main sequence (MS) and starbursts (SB,
with higher specific SFR than MS galaxies for a given z) are considered (Daddi et al.2010; Garcia-Burillo et al. 2012). Most of these
sub-kpc studies are focused on very nearby (d < 20 Mpc) spiral galaxies and active galactic nuclei (AGN).

Low-z (U)LIRGs cover a similar star formation rate (SFR) range than high-z
normal star-forming galaxies (SFGs). Therefore, local (U)LIRGs offer a unique
opportunity to study, at high linear resolution and signal-to-noise ratio (S/N),
extreme SF events and compare them with those observed at high-z.

The characterization at sub-kpc scales of their molecular gas content using ALMA
observations will allow us to explore in more detail the consequences for the
relation between gas and dust masses with the IR luminosities and SFRs when

considering different galaxy populations (SFGs at low- and high-z).
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Molecular gas mass and dust temperature at sub-kpc scales

From the CO(2-1) flux map:

* We first select the emission >50 over which we identify several circular regions (see to

-> for the analysis we use the best spatial resolution achieved for each galaxy;

* For each clump we get the CO flux which is transformed to molecular gas mass according to
fundamental relations (Solomon 1997: a, = 4.3 [Mg (K km/s pc?) ]; Bolatto+2013: <r,,> = 0.8);

* Assuming a GDR = M, /M= 100 we obtain the > dust mass M,

From the continuum 1.3 mm map:

Once obtained the M ., we can derive the T, in each clump from the relations:

*T= k(V)/(Qsourcex DLZ) X Mdust
* k(v) = 0.04 x (v/vy)? ; vy =250 GHz (see Weiss08)
* B =1.9 from SED fitting using SPIRE and PACS data (e.g., fluxes from Pereira et al. 2015)

Tyust = ST3MM o X €2/2hv? x D 2/k(V) X Mt
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First results:
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- Small scale offset between the
CO(2-1) and 1.3 mm continuum peak
emissions: gas and dust are maybe
heated by different mechanisms (e.g.,
see Cao et al. 2018);

- More massive clumps are found in the
center and towards the north: their
corresponding Ty, is low (5-13 K);

- Higher T, (18-25 K) value are found
around the nucleus (0.5-1.5 kpc)
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More results:
ESO267-G030 ESO264-G036
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- Hotter dust with large T range (20-80 K) placed at <1 kpc - Dust emission mainly found around the center (<1 kpc)
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Future work: finding scaling relations in our sample (23 local LIRGS)

1) Characterization of the effective radius of the different gas components (molecular, ionized, star and dust):
NGC 3110: Reo = 1.1kpc  versus Ryyass ) = 3-2 kpc (Bellocchi et al. 2013)

Rismm=0.9kpc versus Ry, >2.7kpc (Arribas et al. 2012) 251 NGC 3110
’ ESO 264-G036
ESO 267-G030

2) Looking for relation with respect to the ionization type and dynamical phases
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3) Relation between the dust and molecular gas: T, -- M., :>
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4) Compare our results with those obtained for local ULIRGs and nearby spirals
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5) Comparison with high-z galaxies - Dusty SFGs at z~4 (Reuter et al. 2020)
characterized by Lz~10%3 L, , a factor of 100 higher than local LIRGs (Lz~10! Lg)
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