

Mid-infrared spectroscopy of primitive asteroids in the outer edge of the main belt

Diego Moral Pombo¹, Javier Licandro Goldaracena² (1) Facultad de Ciencias, Universidad de La Laguna (diegomoral94@gmail.com) (2) Instituto de Astrofísica de Canarias.

Abstract

This work aims at the characterisation of a group of fourteen asteroids observed by the CanariCam instrument, mounted on the Gran Telescopio Canarias. These objects have been observed both photometrically and spectroscopically, in the wavelength range of mid-infrared, using specifically the 10 μ m atmospheric window.

There are two ultimate goals of this project. The first one, to obtain values for their size (diameter) and geometric visible albedo through the application of a simple thermal model (the NEATM); and the second one, to look for spectral features in their emissivity spectra that might suggest some surface structure in these objects.

1. Context of the research

Primitive asteroids:

Outer edge of the main belt (less density and heating)
 = more pristine objects → clues about formation and early stages of the Solar System.

Cybele and Hilda populations

- **Dynamical group:** asteroids with similar orbits due to resonances. Includes several families (same progenitor).
 - Cybele: 3.27-3.7 AUs, 4 families.
 - Hilda: 3.7-4.5 AUs, 2 families.

Objective:

To study **both asteroids populations** in the mid infrared (10 µm) through photometry and spectroscopy

Obtain their size, albedo and surface composition (regolith)

Their origin: to confirm if they are **primitive asteroids**

G SEA

XIV.0 Reunión Científica

inclination of their orbit and semi-major axis.

2. Methodology

Why mid infrared?

- Very **cold** objects (emission peak at λ >10 μ m)
- To observe the emissivity plateau (due to the vibrational absorption of Si-O → presence of surface fine dust).

CanariCam. Credit: IAC.

- **Chopping:** fast and small tilting of the M2 to sustract sky. F ~ 1 Hz.
- Nodding: new pointing to compensate temporal variability. F ~ 2/min.
- Radiometry: using the Near-Earth Asteroid Thermal Model (NEATM).
- **Emissivity spectrum:** deviation of the asteroid's actual emission from the hypothesis of **constant emissivity**. It is obtained by dividing the real spectrum by the model given by the NEATM and scaled.

6

SEA

3. Results (I)

Observed asteroids

 11 Cybeles: 65 Cybele, 107 Camilla (Sylvia family), 260 Huberta, 909 Ulla and others not associated to known collisional families (76, 168, 225, 536, 713, 721, 790).

 3 Hildas: 153, 334, 748. 	Asteroide	$D_{phot}(km)$	Pv_{phot}	1 phot	$D_{spec}(km)$	Puspec	ηspec
	65*	278.4 ± 40.0	0.051 ± 0.016	0.983 ± 0.180	281.4 ± 5.9	0.050 ± 0.002	1.052 ± 0.025
Extracted spectra	76	162.8 ± 58.5	0.046 ± 0.048	0.625 ± 0.328	169.0 ± 0.5	0.043 ± 0.000	0.7 (FIJO)
	107	247.1 ± 31.1	0.043 ± 0.014	1.089 ± 0.166	219.2 ± 0.5	0.054 ± 0.000	1.0 (FIJO)
• Low resolution: unable to	153	219.3 ± 28.6	0.037 ± 0.010	0.933 ± 0.152	250.6 ± 6.6	0.029 ± 0.002	1.101 ± 0.031
recognize individual features	168	153.8 ± 168.7	0.050 ± 0.043	0.870 ± 0.964	154.7 ± 0.5	0.049 ± 0.000	0.9 (FIJO)
 Flux recalibrated to the 	225	135.2 ± 6.5	0.031 ± 0.003	1.192 ± 0.077	107.0 ± 2.1	0.050 ± 0.002	0.887 ± 0.023
o Flux re-calibrated to the	260	164.0 ± 11.6	0.017 ± 0.002	1.396 ± 0.116	156.3 ± 2.9	0.019 ± 0.001	1.279 ± 0.027
photometric points.	334	212.1 ± 25.0	0.033 ± 0.007	0.997 ± 0.147	239.7 ± 4.4	0.026 ± 0.001	1.169 ± 0.021
 Useful to extract better 	536	178.01 ± 20.1	0.029 ± 0.006	0.868 ± 0.128	207.6 ± 4.1	0.022 ± 0.001	1.277 ± 0.027
emissivity spectra and	713	106.2 ± 4.8	0.040 ± 0.004	1.046 ± 0.058	99.3 ± 2.9	0.046 ± 0.003	1.014 ± 0.036
parameters by using NEATM.	721	86.1 ± 8.1	0.047 ± 0.008	0.920 ± 0.109	87.6 ± 1.9	0.046 ± 0.002	0.930 ± 0.023
	748	120.7 ± 11.8	0.030 ± 0.007	1.240 ± 0.151	123.8 ± 12.5	0.029 ± 0.006	1.280 ± 0.154
	790*	139.8 ± 15.4	0.057 ± 0.013	0.730 ± 0.121	139.0 ± 3.0	0.058 ± 0.003	0.714 ± 0.020
	909*	90.9 ± 10.4	0.056 ± 0.013	0.762 ± 0.114	93.04 ± 0.22	0.054 ± 0.000	1.0 (FIJO)

3. Results (II)

Parameters determination:

- Visible geometric albedo (p_v), diameter (D) and beaming parameter (η) determined by applying NEATM to the spectra.
- Great **agreement** between our results and the previous literature (WISE/IRAS)

Main feature:

Emissivity plateau (9-11.5 μ m), due to the presence of regolith covering its surface, found in the 10 asteroids with good SNR.

Polynomical fitting to calculate the **contrast** (height) of the plateau \rightarrow Average : **10.8 ± 3.5 %** $\rightarrow \lambda_{max}$: **9.5 ± 0.2 µm**

6

SE/

4. Impact and prospects for the future

Conclusions:

- Determination of parameters (D, pv, η)
- Existence of emissivity plateau

Surface infra-dense structure:

- "Fairy castle" structure: under dense regolith. Unknown mechanism: transparent matrix? Electrostatic forces? Solar radiation pressure?
- **High contrast (very fine dust)**. More similar to Trojans than to main belt families (Themis, Veritas)
- Possibly cometary-like dust mantle

Prospects for the future:

- To extend the size of the sample of asteroids (in process)
- To submit a refereed paper with the complete results (in process)

Fairy castle structure. Credit: Vernazza et al. (2012).

13-15 julio 2020

XIV.0 Reunión Científica

6