Highlights of Spanish Astrophysics XII, Proceedings of the XVI Scientific Meeting of the Spanish Astronomical Society held on July 15 - 19, 2024, in Granada, Spain. M. Manteiga, F. González Galindo, A. Labiano Ortega, M. Martínez González, N. Rea, M. Romero Gómez, A. Ulla Miguel, G. Yepes, C. Rodríguez López, A. Gómez García and C. Dafonte (eds.), 2025

Automated Redshift estimation from X-ray AGN spectra

V.P. Koushika^{*}¹, A. Corral¹, and F.J. Carrera¹

 1 Instituto de Física de Cantabria (CSIC-Uni.
de Cantabria)

* koushika@ifca.unican.es

Abstract

Redshift is one of the crucial physical parameters for understanding AGN physics. Photometric redshifts are easy to obtain, but they have a high uncertainty. However, spectroscopic redshifts are more reliable and accurate, but obtaining them is an expensive process. We have developed a novel automated algorithm to extract redshift information solely from Xray AGN spectra. This technique was developed taking advantage of the prominent $FeK\alpha$ line at a rest-frame energy of E ~ 6.4 keV. We employ wavelet techniques for denoising the spectra before the redshift determination process. To test the efficiency of our automated algorithm, we use simple power-law spectra with a Gaussian line. Using the representative shapes of the local AGN spectra from our previous work (Koushika et al., 2025), we calculated the different rest-frame equivalent widths. Simulations were performed using these different rest-frame equivalent widths in the redshift range of z = 1-4, log L_X 2-10 keV = 43.5, 44.5, and 45.5 log (erg/s), and a 200 ks exposure time. This allowed us to control the signal-to-noise ratio (SNR). These simulated spectra were then fed into the automated redshift-estimating algorithm to recover the redshifts. In this preliminary work, we found that we were able to recover the redshift with less than 5% error for 71% of our simulated sample and less than 1% error for 59% of the simulated sample. We also learned that we have to optimize our algorithm for lower SNR values and low rest-frame equivalent widths. The ultimate aim is to use our algorithm on the representative spectral shapes from our previous work, which we will simulate using NewAthena/WFI matrices emulating the serendipitous survey data.