Highlights of Spanish Astrophysics XII, Proceedings of the XVI Scientific Meeting of the Spanish Astronomical Society held on July 15 - 19, 2024, in Granada, Spain. M. Manteiga, F. González Galindo, A. Labiano Ortega, M. Martínez González, N. Rea, M. Romero Gómez, A. Ulla Miguel, G. Yepes, C. Rodríguez López, A. Gómez García and C. Dafonte (eds.), 2025

Accretion disk and wind emission in 3C 47, a jetted quasar with double-peaked broad emission lines

Shimeles Terefe Mengistue¹, Ascensión del Olmo², Paola Marziani³, Mirjana Pović^{1,2,4}, Jaime Perea² and Alice Deconto-Machado²

¹Space Science and Geospatial Institute (SSGI), Ethiopia

²Instituto de Astrofísica de Andalucía (IAA-CSIC), Spain

³Instituto Nazionale de Astrofísica (INAF), Italy

⁴Physics Department, Faculty of Science, Mbarara University of Science and Technology, Uganda

Abstract

This work presents new simultaneous optical and near-UV spectroscopic observations of the radio-loud jetted quasar 3C 47, at redshift 0.4248. The spectra show strong blue and red peaks, typical indicators of double-peaked emitters, and a strong redward asymmetry in the broad Balmer lines (H β and H α) as well as the near-UV MgII λ 2800Å line. Our study provides, for the first time in this object, direct observational evidence for a relativistic Keplerian accretion disk (AD) model as successfully explanation of the double-peaked profiles observed in low-ionization broad Balmer lines and in the MgII λ 2800Å line. The AD model fit was carried out by using Bayesian methods for each of the three spectral regions, MgII λ 2800Å, H β and H α . In addition, we also present and interpret the profile of the UV lines of the λ 1900Å blend, dominated by CIII] λ 1909Å, and the high ionization line CIV λ 1549Å, from the HST-FOS archive. The UV broad lines are also well modeled by the contribution of the AD, but required fairly symmetric additional components interpreted as due to a failed wind between the outer radius of the AD and the innermost part of the narrow line region. Our analysis favors the AD model over alternatives involving a double broad-line region associated with a binary black hole.

My poster in zenodo.org can be found here