Highlights of Spanish Astrophysics XII, Proceedings of the XVI Scientific Meeting of the Spanish Astronomical Society held on July 15 - 19, 2024, in Granada, Spain. M. Manteiga, F. González Galindo, A. Labiano Ortega, M. Martínez González, N. Rea, M. Romero Gómez, A. Ulla Miguel, G. Yepes, C. Rodríguez López, A. Gómez García and C. Dafonte (eds.), 2025

Unveiling gas kinematics and stellar populations in HII regions inside the low-metallicity dwarf nearby galaxy SDSSJ0859+3923 with MEGARA at the GTC

García-Vargas, M.L.¹, Carrasco, E.², Mollá, M.³, et al.

¹ FRACTAL S.L.N.E. Calle Tulipán 2, portal 13, 1A, E-28231 Las Rozas de Madrid, Spain

² Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Calle Luis Enrique Erro 1, C.P. 72840 Santa María Tonantzintla, Puebla, México

³ Dpto. de Investigación Básica, CIEMAT, Avda. Complutense 40, E-28040 Madrid, Spain

Abstract

In this study, we present Integral Field Unit observations of the galaxy SDSSJ0859+3923, utilizing the MEGARA instrument on the GTC 10.4m telescope. These observations were conducted in two distinct spectral ranges: 4332 - 5222 Å and 6097 - 7345 Å, with a high resolving power (R_{FWHM} ~ 6000), and spatial resolution of 25 pc, considering the galaxy's distance of 8.5 Mpc. Our observations have identified five HII regions, whose precise positions were determined using data from the FWFC3-UVIS/HST archive images, where we also detected the associated blue underlying continuum linked to the ionized knots. A detailed kinematic analysis of these regions revealed low velocity dispersion values (around 10 km s⁻¹) in four HII regions, indicating a lack of significant turbulent events. In the fifth region we observed a peak in velocity dispersion reaching 40 km s⁻¹, which we interpret as the result of hot star winds and/or a recent type-II supernova explosion. We have conducted a comprehensive spectral analysis of the HII regions, obtaining emission-line fluxes that enabled us to confirm the oxygen abundance $(12 + \log(O/H) = 7.41 \pm 0.15)$ and, using POPSTAR models, to constrain the age and mass of the ionizing young clusters.

https://zenodo.org/records/14021475