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Pérez-Couto, X.1,2, Pallas-Quintela, L.1,2, Manteiga, M.3,2, Villaver, E.4,5, . . . and
Dafonte, C.1,2

1 Universidade da Coruña (UDC), Department of Computer Science and Information
Technologies, Campus de Elviña s/n, 15071, A Coruña, Galiza, Spain
2 CIGUS CITIC, Centre for Information and Communications Technologies Research,
Universidade da Coruña, Campus de Elviña s/n, 15071 A Coruña, Galiza, Spain
3 Universidade da Coruña (UDC), Department of Nautical Sciences and Marine
Engineering, Paseo de Ronda 51, 15011, A Coruña, Galiza, Spain
4 Instituto de Astrof́ısica de Canarias, 38200 La Laguna, Tenerife, Spain
5 Universidad de La Laguna (ULL), Astrophysics Department, 38206 La Laguna, Tenerife,
Spain

Abstract

Identifying new white dwarfs (WDs) heavy elements is crucial, as they serve as valuable
tools for deducing the chemical characteristics of potential planetary systems accreting
material onto their surfaces. To detect metallic WDs, we propose a methodology based on
an unsupervised learning technique known as Self-Organizing Maps (SOM). This approach
projects a high-dimensional dataset onto a two-dimensional grid, where similar elements are
grouped into the same neuron.

Using this method, we uncovered 143 bona fide WD candidates in the Gaia space mission

with several metallic lines in their spectra, including Ca, Mg, Na, Li, and K. The precision

metrics achieved with our method are comparable to those of recent supervised techniques.

1 Introduction

White dwarfs (WD) are the degenerate stellar remnants of low-to-intermediate-mass stars
(≤ 8 solar masses) (Iben et al., 1997). Due to their high density (∼ 103kg/m3), WDs have
fully stratified interiors, containing a degenerate core composed of C and O. This core is
encased in a thin He mantle, which constitutes at most about 1% of the white dwarf’s mass.
Surrounding this He layer is an even thinner H envelope, which makes up no more than
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approximately 0.01% of the mass.

More exciting are those WDs that show heavy metal lines in their atmospheres (mainly, Ca
and Mg). In cool WDs (below approximately 25,000 K), those heavy elements tend to diffuse
downward in the atmospheres due to gravitational settling in the presence of strong gravita-
tional fields (Koester, 2009). Since the diffusion timescales due to gravitational settling are
much shorter than the evolutionary time scales of WDs, those metals cannot be primordial;
they must have been accreted, with the accretion of rocky material from planetesimals being
the most widely accepted explanation (Farihi et al., 2010). For this reason, the detection of
those polluted WDs is nowadays an effervescent field and a valuable tool to infer the presence
and physical properties of exoplanets.

The Gaia space mission has provided us an unprecedented amount of positions, distances,
and proper motions for 2000 million stars. Moreover, Gaia low resolution mean spectra
(hereafter, XP spectra) is also provided for ∼ 220 million sources by using spectrophotometry
(Carrasco et al., 2021). Since classifying such a large number of spectra by human visual
inspection is not feasible, we aim in this work to use unsupervised machine learning to classify
the Gaia catalog of 100,000 white dwarfs [5]. Instead of being in flux units per wavelength
units, this spectra is expressed as a linear combination of 110 Hermite polynomials, so that
each spectrum is defined as a vector of 110 coefficients.

2 Methods

In this work, we use a neural network-based dimensionality reduction algorithm called Self-
Organizing Maps (SOM) (Kohonen, 1982) where, given a nonlinear high-dimensional dataset,
the input data is projected on a 2D grid map where similar elements fall into the same neuron.
Here, the similarity is defined by a metric (e.g. Euclidean distance) so the unsupervised learn-
ing process aims to maximize the similarity between objects belonging to the same neuron at
the same time it minimizes the similarity between objects within different neurons. There-
fore, topology is naturally preserved: similar neurons are also grouped next to each other.
Consequently, SOMs combine the two major utilities of unsupervised learning: dimensional-
ity reduction and clustering, unlike other algorithms that either perform only clustering (e.g.
K-means) or only dimensionality reduction (e.g. t-SNE, UMAP).

3 Results

A SOM of 8x8 neurons was employed to classify the spectra of 66,337 WDs. To give labels
to each neuron, the primary classes of WDs candidates that are also present in the Montreal
White Dwarf Database (MWDD) (Dufour et al., 2016) are painted and used as trackers. The
SOM is shown in Figure 1.

Once we have assigned a label to each neuron (and therefore to each WD falling in that
neuron), we can compare the predicted class with the true class given by the MWDD by
using a confusion matrix C such the one shown in Figure 2. The number in each cell Ci,j

shows the number of WDs with a true label i and a predicted class j. Immediately below is
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Figure 1: SOM map with our sample of 66,
337 clean sources. WDs with known spectral
type in MWDD catalog appear in different
colors, and candidates are invisible to enhance
visualization.

Figure 2: Confusion matrix of the SOM clas-
sification for WD primary spectral types with
respect to MWDD classification.

shown the same quantity, but normalized over the predicted labels (columns) so the precision
of the classification for each class appears in the diagonal. Thus, the confusion matrix would
be diagonal for an ideal classification. Our confusion matrix shows excellent precision for
DA and DZ classes (≥ 85%), very good precision for DB and DQ classes (≥ 80%), and poor
metrics for DC class that is mainly confused with DAs and Outliers. In addition, Outlier
neurons are mainly populated with a mixture of all classes but mainly with DCs and DBs.
Recall is excellent for DAs but poor for the rest of the classes. This metrics are equal or
better than those shown by recent supervised machine learning techniques such as Random
Forest (Garćıa-Zamora et al., 2023) and Neural Networks (Vincent et al., 2024).

Regarding the polluted WDs, that are the main goal of this work, if we look at the two
neurons in black, we can confirm, by drawing their median combined spectrum, the expected
Ca II H&K absorption line at 393-396 nm. This is true either for the 68 confirmed WDs
and for the 399 new polluted WD candidates we report here. Furthermore, more metals such
as Mg, Na, Li, and K are also observed, as it is shown in Figure 2, where we plotted the
normalized median spectra of the neuron (3, 2) (hereafter, DZA neuron, in the left side) and
neuron (7,2) (hereafter, DZ neuron, in the right side). While the DZA neuron shows spectra
with H Balmer lines, thus indicating a hydrogen-rich atmosphere, in the second one those H
lines are hidden, arguably due to low temperatures. In addition to this, more metallic species
are identified. Indeed, the mean temperature in these neurons are 9200 K (DAZ neuron) and
7200 K (DZ neuron). As a consequence, those metals had to be accreted.

As a result, we report the identification of 143 metal polluted WD candidates that have
not been previously classified in the literature. Follow-up high resolution spectroscopy from
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Figure 3: The normalized median spectra of the two neurons populated with polluted WDs:
DZA neuron (left) and DZ neuron (right) are shown with the several metallic features iden-
tified with vertical lines.

Earth will be performed to study them.

4 Conclusions

We have demonstrated in this work the power of unsupervised learning in white dwarf spec-
tral classification. Self-Organizing Maps have shown a similar performance that in recent
supervised learning works, with high precision for DA, DB, DQ, and DZ white dwarfs. This
strongly justifies the use of Self-Organizing Maps as they provide a natural and useful way
to group similar spectra and, at the same time, to label new data, by performing statistics
within each neuron.

This method allowed us to identify, with high confidence, 143 new polluted WD candidates
that show spectral features of several metals (namely, Ca, Mg, Na, Li, and K), and even to
distinguish between DZ and DZA subtypes. In order to confirm those candidates and to
delve into other interesting neurons (such as DQ and DXZ subtypes) follow-up spectroscopy
of the best candidates will be performed in the near future.
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