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Abstract

In recent years, several surveys have supplied vital data for studies on star clusters. These

surveys, completed or in progress, offer photometric, astrometric, and spectroscopic details

for numerous stars in the Milky Way and nearby galaxies. The Gaia mission is of special

importance because it aids in determining cluster membership, discovering new clusters, and

providing a large set of stellar atmospheric parameters. As open clusters can be found in a

wide range of Galactocentric distances, they are valuable tracers of the chemical enrichment

history of the disk of the Milky Way. This work presents preliminary findings from our

ongoing investigation into the chemical abundances within the Galactic disk. This analysis

is part of the development of a new spectral analysis pipeline called CHESS (CHEmical

Survey analysis System). CHESS aims to automate the analysis of large stellar spectral

datasets and provide high-quality chemical abundances for as many elements as possible,

which is key to the study of Galactic archaeology. One of the first steps of CHESS is to use

unsupervised machine learning algorithms directly on the spectra to perform what we call

a similarity analysis. This analysis aims to identify stars with similar stellar parameters

without the need to conduct a preliminary radiative transfer analysis. At the same time,

this similarity analysis can be used as a consistency check for the quality of atmospheric

parameters in large catalogues. In this work, we discuss the similarity analysis applied to

open cluster stars to investigate and validate the radial metallicity gradient of the Galaxy

given by external catalogues, in comparison with previous results available in the literature.

1 Introduction

The study of open clusters (OCs) is essential to understand the formation and evolution
of stars in the Galactic disk [6, 13]. Spread throughout the Galactic disk, the stars within
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each OC were formed from single molecular clouds [12], making OCs useful tracers of the
chemical composition of their parent molecular cloud at the time of their formation [23].
Open clusters also cover a wide range of ages, and their ages can be calculated with greater
precision compared to field stars. However, most OCs are relatively young as they tend to
be disrupted over time and mix with the field.

One of the areas where precise abundances for OC stars are valuable is the study of the
Galactic radial metallicity gradient and its evolution over time. The shape and evolution in
the radial distribution of chemical abundances are useful to test models of Galactic formation
and evolution [4]. Various objects can be used to study the radial gradient, but OCs are
particularly important due to their precisely determined ages, broad age range [3], and high
precision with which their abundances can be measured.

In this context, our team is developing a pipeline called CHEmical Survey Analysis Sys-
tem (CHESS) to analyse Ultraviolet and Visual Echelle Spectrograph (UVES) [5] archival
spectra using the differential analysis technique [14]. The goal is to determine both stellar
parameters and elemental abundances of a target with respect to a well-studied reference star.
This approach minimises systematic errors, while achieving high precision (< 0.05 dex) and
accuracy at the same time. However, this technique is only applicable to groups of stars with
similar parameters (effective temperature, surface gravity, and metallicity). To identify the
groups in which we can apply this technique, we developed a method that clusters stars based
solely on the similarity of their spectra. Additionally, in the course of testing the method, we
applied this initial stage of the pipeline to investigate potential biases in large catalogues of
parameters with respect to the stellar parameters of a set of reference stars. This correction
helps refine the original metallicity gradient obtained from such catalogues.

2 Data sample

The spectroscopic data used in this work are publicly accessible through the Science Archive
Facility of the European Southern Observatory (ESO) [20]. The spectra we used were ob-
tained with the UVES instrument at the Unit Telescope 2 of the Very Large Telescope (VLT),
Paranal Observatory, Chile. UVES is a high-resolution spectrograph that covers the ultravi-
olet and visual range from 300 to 1100 nm. The analysis we discuss in this work focuses on
the spectra of F,G, and K-type stars in the field of OCs, but the ultimate goal is to re-analyse
the entire UVES archive.

The complete sample we used in this work consists of two parts: the reference stars and
the OC stars. For the OC stars, we conducted a cone search with a 20 arcmin diameter
centred on the coordinates of each OC [11]. For our initial purposes, cluster membership
was not required. The only additional criteria applied were to select spectra with resolution
R ≥ 30 000 and to exclude spectra with a signal-to-noise ratio (S/N) lower than 10. This
selection provided 8323 spectra from stars in the field of 371 open clusters. The UVES spectra
of the reference stars were also downloaded from the ESO Archive. In total, following the
same criteria as before, we obtained 1018 spectra of 267 reference stars with different signal-
to-noise ratios and wavelength coverages.
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The reference star lists used come from the following catalogs: Titans I. Metal-poor
dwarfs and subgiants [9]; Titans II. Metal-poor giant stars [10]; Gaia “Golden sample”
[7]; Gaia FGK benchmark Stars [22]; Gaia-ESO survey K2 stars [25]; Gaia-ESO survey
hot benchmarks (O to B-type stars) [17].

3 Methodology

The spectra downloaded from the ESO Archive vary in properties as a result of different
observational setups of the UVES instrument. To be able to apply the method to find similar
stars based on the spectra, these spectra had to be corrected and standardised before this
part of the analysis. This involves homogenising them to have the same spectral resolution
and spectral binning, with the resolution set to the minimum in our sample, which is 30 000.
We determined and applied the radial velocity correction using a grid of template spectra
that covers our parameter space. Additionally, for the continuum normalisation, we used a
software called “SUPPNet”[21] to perform this step automatically, due to the impossibility
of manually performing this task in this amount of data.

The homogenised data are then prepared for the first analysis of the CHESS pipeline.
This stage, which we call similarity analysis, involves identifying groups of similar spectra
that match our selected sample of reference stars. This grouping enables us to find similar
stars before conducting the full spectroscopic analysis. The method employs the unsupervised
machine learning algorithm known as t-SNE (t-distributed Stochastic Neighbor Embedding
[24]) for dimensional reduction. Here, the high-dimensional data consist of the homogenised
spectra that we aim to analyse. We apply t-SNE directly to these spectra, treating each
wavelength value as a coordinate in a high-dimensional space. The algorithm then generates a
lower-dimensional 2D “projection map”, where each point represents an individual spectrum.
Spectra that appear in clusters on this map are those with similar characteristics.

However, the wavelength coverage of the spectra varies drastically in our sample, depend-
ing on the configuration used for the observation. For the initial development of CHESS, we
decided to limit our analysis to wavelengths between 400 and 700 nm. Within this range, we
defined specific subregions in which we applied the similarity analysis algorithm. These sub-
regions are carefully chosen to maximise the number of spectra they cover while minimising
their number and ensuring that they contain features sensitive to various stellar parameters.
In this work, we show results based on what we refer to as region number 2: R2: 484.81 -
490.44 nm, with 970 pixel dimensions.

The primary feature of the t-SNE projection map is its ability to cluster spectra with sim-
ilar characteristics. To validate these projection maps, we colour-coded them based on stellar
parameter values from various external catalogues. Across all selected regions, regardless of
the catalogue used, we observe a clear separation between giant and dwarf stars, as shown
in Fig. 1. We developed a method for defining regions of similar stars in the projection map
(explained in Mart́ınez Fernández, J. E. in preparation). This method identifies stars near
each reference object and was calibrated using both parameters from external catalogues and
the differences in the spectra. Independently of the external catalogue we used, the spectra
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identified as similar to the reference object remain consistently similar. The catalogues we
use to validate our results are the following:

• Parameters for 175 million stars from Gaia DR3 using the XGBoost algorithm [2];

• StarHorse 2 catalogue with stellar parameters, distances, and extinction for 362 million
stars [1];

• The Gaia-ESO spectroscopic survey sample of almost 7 000 stars observed with UVES
[8, 19];

• Parameters for 220 million sources from a data-driven analysis of the Gaia XP spectra
[26].

4 Results and discussion
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Figure 1: Left : t-SNE projection map of the region R2 colour-coded with the surface
gravity values from the Gaia-ESO catalogue. Right : Restricted group selection for the bias
correction.

In the projection map, two primary groups are distinctly separated, which correspond to
dwarf and giant stars, along with a few other smaller but well-defined groups. In Fig. 1, left
panel, they are labelled as: Section A: Dwarfs are found in this group and they display a
temperature gradient increasing from the bottom to the top of the section, where the hottest
O- and B-type stars are found; Section B: Giants of higher metallicity with a very flat
gradient in the stellar parameters; Section C: Giants of low metallicity are grouped in this
region; Section D: These are solar-type stars; however, they are separated due to reduction
problems creating artefacts in the spectra; Section E: This region has not yet been fully
understood, but seems to contain mostly very bright giants; Section F: This region groups
variable stars, in particular Cepheids.
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Figure 2: Bias corrections in the different catalogues. Top-Left : GES catalogue [8, 19]. Top-
Right : XGBoost catalogue [2]. Bottom-Left : Zhang catalogue [26]. Bottom-Right : StarHorse
2 catalogue [1].

Using the projection map, we can select groups of stars that exhibit spectra very similar
to the ones of the reference stars. This is seen in the right plot of Fig. 1, where the selected
similar stars assigned to each reference object are highlighted. We can then compare the
median values of the stellar parameters in each group, using the values from the catalogues
mentioned in Section 3, with the values of their reference object. Assuming the values of
the reference object to be accurate, with this comparison, we can estimate the typical biases
affecting the parameters of the surrounding stars. We can then use the bias-corrected metal-
licities, to estimate the metallicities of the open clusters, based on a scale defined by our set
of reference stars. For this step, we crossmatched our sample with the catalogue of [11], that
provides membership probabilities and distances for OCs.

As a result, we can generate Fig. 2, which illustrates the main changes in the metallicity
gradient across all catalogues of stellar parameters after the bias correction. The dispersion
decreases with, in some cases, a significant improvement observed in the metallicities, result-
ing in a clearer gradient emerging after correction. Furthermore, we find that the metallicity
gradients before and after correction appear to be slightly more metal-poor compared to the
gradient obtained in another study [23]. This difference is currently being investigated.
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