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1 Departamento de Matemáticas, Universidad Militar Nueva Granada, kilómetro 2 v́ıa
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e-mail: john.aguilar@unimilitar.edu.co
2 PhD Programme in Astrophysics, Doctoral School, Universidad Autónoma de Madrid,
Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
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Abstract

This work is focused on the estimate of stellar parameters (effective temperature, surface
gravity and metallicity) using photometric data. We used a machine learning method known
as the K-means to calculate stellar parameters from 2MASS and JPLUS DR3 photometry.
The calculation of these parameters was done with 105 colors constructed from the bands
under study. For that, we adopted as training data the synthetic photometry from MESA
Isochrones & Stellar Tracks (MIST), and F- to M-type stars with known stellar parameters
collected from Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)
that also have photometric information in the above-mentioned surveys However, when
obtaining these values of the stellar parameters under this routine, it was found that the
computational cost was considerable. We then used the principal component analysis (PCA)
to find the minimum set of colors that could reproduce the analysis, obtaining a set of 11
colors. The methodology was applied to over 5 million J-PLUS DR3 stars, those with
2MASS photometry available. We present comparisons of our results with LAMOST and
APOGEE, showing that the obtained parameters are in good agreement. Our results are
also compared with previous results based on J-PLUS DR1 photometry. We further discuss
the scope and limitations of estimating the parameters from diferentes quality photometry.

1 Introduction

In recent decades, the massive growth of astronomical data has generated a series of chal-
lenges in the management and analysis of such large databases. Among the large ground-
based photometric surveys, the Two-micron All Sky Survey (2MASS, [9]) and the Javalambre
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Photometric Local Universe Survey (J-PLUS, [3]) has been reporting millions of photometric
data in the optical and at near-infrared wavelengths that show high potential for estimating
stellar parameters.

In this research, we aim to derive stellar atmospheric parameters, such as effective tem-
perature (Teff), surface gravity (log g), and metallicity ([Fe/H]), using only the available
photometry from J-PLUS and 2MASS. The current work uses a modified version of the
algorithm adopted by [6] and [5], which is based on machine learning (ML) techniques.

2 Sample

We collected 6,246,452 stars with photometric data from both 2MASS and JPLUS surveys.
From these data, we defined as high photometric quality (HQP) objects those that fulfilled
the following criteria: a 2MASS FLAG of “AAA”, J-PLUS FLAG and MASKFLAG equal to 0,
r-band < 22 mag, and errors in all bands of less than or equal to 5%. Those objects that do
not meet all these criteria are named as non-HQP.

The comparison data, the sample used as comparison for the estimation of stellar param-
eters, is composed by both observational and synthetic data. In the case of observational
data, we performed a cross match between the sources collected from 2MASS and J-PLUS
surveys and the fifth data release from the Large Sky Area Multi-Object Fiber Spectro-
scopic Telescope (LAMOST DR5, [1]). We selected 56,131 objects whose spectra presented
a signal-to-noise ratio SNR > 10. In addition, we gathered 111,879 models with synthetic
photometry available in the mentioned bands from the MESA Isochrones and Stellar Tracks
(MIST) project1.

To validate the results obtained with the implementation of the proposed methodology, we
selected a separate sample, not included in the comparison sample, with stellar parameters
already derived from spectroscopy to compare the results from our method. The contrast
sample contains 432,319 objects with spectroscopic stellar parameter derived with an error
of less than 5%.

3 Machine learning algorithms

To distribute a data set into subgroups, one of the most relevant parameters is the definition
of the number of clusters. This number is often taken according to the nature of the data,
taking into account the previous knowledge in the related area. However, this number is
not always known and a method that suggests the optimal number of groups into which the
sample should be divided is necessary ([2]; [4]).

The Hartigan test ([10]) is defined as the logarithm of the ratio between the sum of squares
between cluster (SSW) and the sum of squares within a cluster (SSB), where:

1https://waps.cfa.harvard.edu/MIST/.

https://waps.cfa.harvard.edu/MIST/
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with C being the number of test partitions in the index, m indicating the cluster number, ni

the number of elements in each cluster, xj representing an element of the dataset, and x̄ the
mean of these data. The use of this algorithm allows to find the minimum difference in the
determination of an optimal number of clusters, in which H ≤ 10.

K-means is a clustering method that allows grouping the data set X = {x1, x2, ..., xn}
within k groups. To achieve this, the algorithm performs three main steps:

1. Randomly assign k centroids, V = {v1, v2, ..., vk} ([7]).

2. Once these initial centroids have been assigned, each sample point is assigned to a
cluster using the closest k centroid as the criterion.

3. New centroids are defined from the mean value of the coordinates of all the points that
are part of each cluster, using the expression:
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with xi representing the points in the ith cluster.

Once the new centroids are defined, the procedure described in steps 2 and 3 is repeated
until the centroids converge (which means that the distance between the step centroid m and
m − 1 tends to zero). These iterations are a good indicator of the efficiency of the method,
since, if the convergence occurs with a low number of iterations, it is a good indicator of the
reliability of the suggested groupings.

To implement this algorithm it is important to define aspects such as the metric used and
the number of clusters (K-means is a non-hierarchical method cluster analysis). Regarding
the first aspect, the metric to be used is the Euclidean distance, which is defined as:
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with (a1, a2, . . . , an) and (b1, b2, . . . , bn) as coordinates of A and B in the space Rn.
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4 Methodology

To estimate the stellar parameters, we have built an algorithm that uses the information
of 105 colors constructed from the combination of all 12 J-PLUS filters (u, J0378, J0395,
J0410, J0430, g, J0515, r, J0660, i, J0861, and z) plus 3 2MASS bands (J , H, and Ks).

In the algorithm, to define clusters of objects with similar stellar parameters, we use the
Hartigan test to construct an optimal number of groups in terms of the data distribution.
Once this number is obtained, we use the K-means algorithm to determine the stars that will
be part of each of these groups. With these groups formed, an analysis of the distances of
these objects to the cluster’s pseudo-center is performed. These distances are called radius,
although they are not spherical and are measured in the R105 space.

From the minimum, 5th, 25th, 75th, 95th and 99th percentiles, mean, median, mode,
and maximum statistics, 10 different neighborhood radii are estimated, with 1 being the
smallest radius and 10 the largest radius, that is, the one farthest from the cluster pseudo-
center. As a last step, each of the studied objects is taken and the closest comparison data
are checked, testing the smallest comparison neighborhood. From them, we estimated each
stellar parameter as the average of the stellar parameters of the comparison objects contained
in the neighborhood and the error of this parameter as their standard deviation.

5 Results

By implementing this method, stellar parameters for 5,689,987 stars were obtained. The
analyzed sample is composed by F, G, and K-type stars with Teff between 3,184 and 8,390
K, log g between 0.29 and 4.77 and [Fe/H] between -2.62 and 0.60 dex. These objects were
represented in a Kiel diagram (Fig. 1), showing the HQP and non-HQP samples separately, in
order to validate whether the results obtained showed a behavior with similar characteristics
to those of the comparison data (both observational and synthetic data).

Figure 1, constructed with TOPCAT2 ([8, 11]), shows a greater dispersion in the parameter
values obtained for larger neighborhoods (greater than 3). These parameters estimated from
larger cluster radii, although they make a first estimate of what the stellar parameter value
could be, they carry larger errors compared to those obtained within smaller neighborhoods.

We compared the stellar parameters obtained with our method and those reported by the
LAMOST survey for those stars composing the contrast sample. Table 1 shows the median
absolute deviation (MAD) of these differences. There, the data are reported separated into
two groups, data with high quality photometry (HQP) and those with non-high quality (non-
HQP).

Stellar parameters calculated with our method showed a high level of coincidence with
those obtained by spectroscopic measurements. On the other hand, the generation of different
quality samples provided an important opportunity to calculate stellar parameters for most
of the data under study. We propose as advances in our research the implementation of this

2Tool for OPerations on Catalogues And Tables, [8, 11], available at http://www.star.bris.ac.uk/mbt/
topcat/.

http://www.star.bris.ac.uk/∼mbt/topcat/
http://www.star.bris.ac.uk/∼mbt/topcat/
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Figure 1: Kiel diagram. Each row represents the estimated stellar parameter for the analyzed
sample present in each one of the 10 proposed neighborhoods. The left column presents the
HQP objects and the right column presents the non-HQP ones.
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method with a subset of the colors used and other possible modifications to the algorithm
generated in this work.

Median Absolute Deviation (MAD)
∆ Teff ∆ log g ∆ [Fe/H]

Best
estimates

Other
estimates

Best
estimates

Other
estimates

Best
estimates

Other
estimates

HQP 95 370 0.131 0.262 0.164 0.435

Non-HQP 89 284 0.143 0.392 0.148 0.261

Table 1: Median absolute deviation between the stellar parameters calculated with our
method and the values obtained from LAMOST for the stars in the contrast sample. The best
estimates correspond to objects for which stellar parameters were calculated within neighbor-
hood radius smaller than 4. The other estimates column corresponds to larger neighborhoods.
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