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Abstract

The “Transient High Energy Sky and Early Universe Surveyor” (THESEUS) is a medium-

sized space mission of the European Space Agency. Its scientific goal will be to improve the

understanding of high-energy transient phenomena across cosmic time, including gamma-ray

bursts, electromagnetic counterparts to gravitational wave or neutrino sources, magnetars,

novae, X-ray binaries, and more. This work aims at identifying and characterizing high-

energy transient objects, with particular emphasis on X-ray binary systems, employing

Machine Learning techniques as part of the preparatory work for the scientific analysis of

the THESEUS mission data.

1 Introduction

High-energy transients, such as gamma-ray bursts, X-ray binaries (XRBs), and supernovae,
offer a window into some of the most energetic processes in the universe. The ”Transient
High-Energy Sky and Early Universe Surveyor” (THESEUS) mission [1], part of the European
Space Agency’s Cosmic Vision program, was selected for phase A study in November 2023,
which will last until 2026, with a possible launch in 2037, pending approval. The mission will
offer unprecedented observational capabilities in the X-ray and gamma-ray regimes, providing
data that will improve our knowledge and understanding of these astrophysical objects.

XRBs exhibit variable X-ray emission over various timescales, ranging from milliseconds
to years, depending on the mass transfer rate, accretion processes, and the nature of the
compact object. The features observed in the light curves of these systems, along with their
frequency-domain characteristics, contain valuable information about the XRB and the mass
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exchange process, enabling classification of these systems based on their timing properties.

Given the high volume of data expected from THESEUS, manual classification of XRBs
and other transient phenomena will not be feasible. Machine Learning (ML) approaches are
therefore essential for automating the detection, classification, and characterization of XRBs
and other transients in real time. The application of ML techniques, a relatively recent
analytical tool in astrophysics, has shown significant effectiveness in classifying X-ray sources
[3, 2, 11]. However, previous studies reveal a notable gap in the systematic analysis of source
variability, highlighting a promising area for further research and methodological advances.

The automatic classification of XRBs is ideal for ML techniques for several reasons. The
extensive data sets collected over many years of XRB observations are ideally suited for
training ML algorithms, enabling better identification of subtle patterns and improving clas-
sification of these complex systems. XRBs exhibit complex physical processes like accretion,
flaring, periodic outbursts leading to variable and noisy data. ML, especially deep learning,
can automatically learn from such data, identifying hidden patterns in noisy observations.
Relationships between observed features (e.g., flux, spectral states and light curves) and their
underlying physical properties are in many cases non-linear. ML models like neural networks
or random forest can effectively learn these non-linear dependencies. Additionally, ML mod-
els can adapt to diverse types of observational data, dealing with variations in observation
conditions, sampling frequency or instruments sensitivity, remaining robust across a wide
range of conditions, which supports a more generalizable understanding of X-ray sources.

As a first approach, in the work presented here we limited the study to a sub-class of XRBs,
namely high-mass X-ray binaries (HMXBs), in which a compact object, either a neutron star
(NS) or black hole (BH), accretes material from a massive stellar companion [4, 8]. These
systems are characterized by intense X-ray emission from accretion, primarily driven by the
massive companion’s stellar wind, by the Be star’s circumstellar disk or Roche-lobe overflow.

2 Data sets and methodology

2.1 Dataset description

Using long-term archival data from XMM-Newton [7] and MAXI [10], we tested a range of
ML algorithms to evaluate the effectiveness of different feature extraction techniques. This
work is a preparatory step for THESEUS and seeks to optimize ML methods that can handle
the mission’s large, complex datasets. Both XMM-Newton and MAXI operate at a similar
energy range (0.5 - 12 keV), but their data have different sampling frequency, below 1s in
the first case and of the order of 90 minutes in the second case. The different time resolution
will eventually enable us to study short-term variability and medium-term variability and
extract useful classification features from both modes, although this objective will be part of
a subsequent, more complete work. Both science archives contain a wealth of observations
of HMXBs and other high-energy astrophysical objects. We selected a subset of well-known
HMXBs from the archives, ensuring diversity in the types of binaries included (BH-binaries
and NS-binaries with either a Be or a supergiant companion). For those systems, we retrieved
light curves from the archives and obtained Lomb-Scargle periodograms from them. By using
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the frequency distribution given by these periodograms, Power Spectral Density (PSD) were
then computed. Light curves, on one side, and PSDs on the other, were employed as input
to ML techniques, with a total of 237 samples, divided into three different classes: 15 light
curves and PSDs from Roche-lobe overflow accreting system, 93 from stellar wind accreting
systems, and 129 from systems accreting from a Be star companion. We split the data into
train/test sets, 66% and 33%, respectively.

2.2 Methodology

2.2.1 Machine Learning models

To classify the available light curves and PSDs, we used a set of five statistical models: three
parametric and two non-parametric. All five methods are supervised learning techniques,
utilising class label information during training. The three selected parametric models are
based on linear decision rules. In particular, we choose the Linear Support Vector Machines
(LinSVM) [13], which seeks the hyperplane that provides the largest margin between the
nearest data points (called support vectors) of each class. The model minimises classification
errors while maximising the margin. Also, we considered the Principal Component Regres-
sion (PCR)[9], a regression technique combining Principal Component Analysis (PCA) with
linear regression. PCA reduces dataset dimensionality by transforming original variables into
a smaller set of uncorrelated principal components that capture most of the data’s variance,
reducing models’ complexity by focusing on the most significant components. Additionally,
we employed Partial Least Squares (PLS) [14], which, like PCR, reduces the dimensionality of
the data. In contrast to PCR, PLS finds components that maximize the covariance between
the inputs and the target. PLS is especially useful when there are more dimensions than ob-
servations, which is the case in our data. We adapted the regression models to classification
using one-hot encoding. The two non-parametric models consist of the k-nearest neighbors
algorithm (KNN) [5] and the kernelised version of Support Vector Machines (KerSVM) [12].
KNN makes predictions by storing the entire training dataset and classifying new data points
based on the majority class of the k-nearest neighbors, using distance metrics like Euclidean
distance. In contrast, KerSVM is a model-based algorithm that finds an optimal hyperplane
to separate data points of different classes with the largest possible margin. KernSVM in con-
trast to LinSVM uses a kernel function to transform the input data into a higher-dimensional
space by means of the “kernel trick” [12], where it may become linearly separable. We em-
ployed the Radial Basis Function (RBF) kernel, which measures the similarity between two
input vectors in the transformed feature space.

2.2.2 Light curves preprocessing

Data pre-processing is critical in time-series analysis, especially when dealing with long-term
light curves from different high-energy missions, which are often sparse, noisy, and irregularly
sampled. These challenges make feature extraction and dimensionality reduction essential
components of the workflow. A solution to different length in time series is to warp them
to a common length l. We compare three different ways to choose the length parameter l
of the time series. The first approach, referred to as Short Raw, sets the target length l
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to the length of the shortest time series in the dataset. Here, all time series are truncated
to this length, without applying any interpolation. The second approach, termed Short
Interpolation, truncates each time series to the shortest length in the dataset, followed by
linear interpolation to align the time points across all series with consistent time bins. Finally,
we used the linear time warping (LTW) methodology [6]. In this approach, the target length
l is set to the maximum length among all time series. To match this length, each time series
is extended by repeating specific time points, ensuring that every xi is warped to the specified
target length l.

3 Results

Figure 1 presents a comparative analysis of the classification rates achieved by five different
ML models on light curves (first row) and PSDs (second row), averaged over 25 independent
train/test splits. Light curves have been processed with three different methodologies as
explained in Section 2.2.2. PSDs are directly classified by means of the five ML models
as all of them have the same length. In terms of methodology performance of light curves
classification, LTW consistently performs well across various light curve types with both
mission datasets, demonstrating its effectiveness in classifying HMXBs.
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Figure 1: Averaged classification rate of light curves (1st row) and PSDs (2nd row).
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The top-performing models for both light curves and PSDs are KNN and KerSVM, achiev-
ing around 0.7 in classification rate for all the used data. It is worth noting that the standard
deviations are relatively small across all models (except PLS).

Figure 2 illustrates confusion matrices which measure the performance of KNN (first row)
and KerSVM (second row), the two models which reported best results in classification rate.
Each cell in a confusion matrix represents the number of instances that were actually of a
certain class (true class) but were predicted as another class (predicted class). Both models
exhibit similar behaviour, except for XMM light curves, where KNN shows more variability
in prediction errors, and KerSVM mislabelled all Roche-lobe overflow cases, possibly because
they are under-represented. Conducting an in-depth analysis of misclassification errors could
provide insights into the causes of model failures.
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Figure 2: Averaged confusion matrices for light curves and PSDs classification. First row for
KNN, second row for KerSVM. Classes refer to the type of mass-transfer during accretion,
where (1) corresponds to Roche-lobe overflow, (2) to stellar-wind accretion, and (3) to accre-
tion from a Be-star companion.

4 Conclusions and future work

Within the science goals of the THESEUS mission, which will be dedicated to improving the
knowledge of high-energy transient phenomena across time, the study of XRBs is a key topic.

The application of ML techniques offers significant advantages in the identification and
classification of Galactic XRBs, especially in contexts requiring the analysis of large datasets.
This preliminary work has focused specifically on HMXBs to explore the potential of these
approaches.

In this study, five ML techniques were applied to light curves and PSDs obtained from
the XMM-Newton and MAXI mission archives. Initial results are encouraging: light curves
appear to yield more accurate classifications than PSDs, with the KNN algorithm showing
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the best performance. The selected models perform effectively with sparse-sampling. These
results however will require further validation with additional datasets and analysis to confirm
their robustness and effectiveness. It will be beneficial to explore methods designed to handle
unbalanced classes, as the current dataset imbalance impacts the behaviour and performance
of the ML models. Another possibility to palliate this effect is by increasing the number of
samples in the minority classes. This can be achieved by utilising other mission archives or
employing data augmentation techniques, such as adding noise to the observations.

Future efforts will focus on expanding the data and refining the models used in this study
to enhance accuracy and broaden the scope of XRB analysis. Data will be extended to
include Lomb-Scargle periodograms and additional datasets from missions such as SWIFT,
RXTE/ASM, INTEGRAL/JEM-X, GINGA, and GRO. The aim is to ultimately apply this
approach to all XRBs, including simulated THESEUS data to better anticipate future ob-
servations. On the modelling side, we will work to improve the existing models to maximise
classification accuracy and apply neural network models to leverage their potential in complex
data interpretation. Additionally, we will explore the feasibility of real-time identification of
targets as soon as they are observed by THESEUS.
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