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navidez, A. de Lorenzo-Cáceres, M. A. Fuente, M. J. Mart́ınez, M. Vázquez- Acosta, C. Dafonte

(eds.), 2023

Astrometric Centering of WFPC2/HST images

with Deep Learning.
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Abstract

Archival WFPC2/HST exposures hold great potential for proper motion studies. Up to now,

the astrometric precision of WFPC2 images is limited to ∼ 20 mpix as these are the most

undersampled images from the various HST optical imagers. We explore deep-learning tech-

niques, specifically, Convolutional Neural Network (CNN) algorithms, to implicitly model

the PSF and determine stars centers. The method is tested on HST images and the re-

sulting astrometric precision is compared to that obtained with traditional, state-of-the-art

centering algorithms. This approach is data-driven as the behaviour of CNNs is not based

on a predefined PSF, rather it is based on estimating the stars’ center positions directly from

pixel intensity values in the images. We present the description of the CNN architecture,

data preprocessing, and learning strategy together with preliminary results from simulated

WFPC2 data.

1 Introduction

The study of stars’ proper-motions allows us to go deeper into our understanding of how
the local universe is evolving. In this respect, the long temporal baseline provided by the
Wide Field Planetary Camera 2 (WFPC2), at Hubble Space Telescope (HST), is of high
importance ([4], [5], [8]). For example, the Mikulski Archive for Space Telescope includes a
rich WFPC2 database of around one hundred globular clusters in the Milky Way and other
regions near the Magellanic Clouds. However, performing precision astrometry is essential for
this task, taking into account that the average proper motion of regular stars is of the order
of milli-arcsec and the pixel resolution of the WF chip is 0.1 arcsec/pixel (0.045 arcsec/pixel
for PC).

Traditionally, the problem of estimating stars’ proper-motions has been faced by fitting a
predefined PSF shape to every star, and using some centering algorithm to estimate its intra-
pixel position [6]. Here, we share first results of a new approach based on Deep Learning
(DL) methodology that does not make any assumption of the PSF morphology. Specifically,
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we train a Convolution Neural Network (CNN) model, in a supervised manner over a set
of point-like simulated stars, to measure correlations between pixels. Thus, the way the
star light is distributed across the field of view (FOV) provides a measurement of the star’s
position within the pixel.

2 Classical Centering Algorithms

All classic methods used to date basically differ in the PSF and the centering algorithm to
provide star positions at milli-pixel precision. Among those tested in [6] are as follows:

1. 2D elliptical Gaussian and centering routines developed by [11]. This method is fast
and works relatively well on bright stars.

2. Effective PSFs (ePSF) built from real observations, which are the ones used in the
hst1pass code developed by [1]. This method is especially good at low SNR but it has
the tendency to discard sources close to the saturation level.

3. PSFs created with ray tracer Tiny Tim [10] and Dolphot v2.0 package developed by [7].
This algorithm is optimized for point-like sources but is computationally expensive.

4. PSFs computed empirically from real images to take into account the variability accross
the field of view (FOV) by means of SExtractor software (PSFex). It uses a set of 636
exposures (160s. at filter F555W) from globular cluster 47 Tucanae. SExtractor is also
used to compute centering measurements [3]

5. The image is deconvolved in the Fourier domain prior to the computation of star’s
centers. An ideal PSF at the instrument diffraction limit is used, as well as a LP
Butterworth filter to avoid noise amplification. The resulting image is processed with
the method from [11]. Sources with low SNR are usually lost.

In general, it can be stated that the method using a library of ePSFs within the code
hst1pass [1] yields the best results, at the cost of discarding sources near the saturation
regime. We refer the reader to [6] for further details.

3 Deep Learning Model for Centering

To our knowledge, Deep Learning (DL) has never been used for astrometric estimations in
stars’ proper-motion studies with HST data. Our approach does not make any assumption
of the PSF shape, but it estimates the (x,y) coordinates of the star center by measuring
correlations in the pixel intensity values within an aperture around the star.

Our particular CNN model is a VGG [12] with six trainable layers, four of them convo-
lutional layers plus two fully-connected which end in two neurons outputs, each of them to
provide an estimate in x- and y-axis, respectively. One max-pool layer is inserted every two
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convolutional ones, and all hidden layers are equipped with ReLu non-linearity except the
last one which is linear, in keeping with the regression nature of this problem. We found that
inserting a batch-normalization layer after the fourth convolutional one yields better results
and helps stabilize the convergence process in our particular problem. The final architecture
is plotted in Fig. 1, subplot a.

Figure 1: Top: final VGG model. Bottom: loss curves for training and validation dataset.

Due to the finite dimensions of each cutout image of 6× 6 pixels around a star, the model
is limited in depth. Thus, we cannot add up as many layers as we want, a feature that is
generally assumed to increase the level of detail that can be analysed or the number of features
that can be extracted from the data. Hence, we opted to modify the number of trainable
parameters by increasing the number of kernels at each layer. This allows us to check how
the model behaves with respect to the number of parameters in terms of overfitting. This
is critical at this stage since our simulations are based on shift-invariant PSFs and isolated
sources with no light contamination from nearby sources. Hence, two different VGG models
are trained, the first one with 34K parameters, and the second one with 214K. We found
that the second one exhibits better results but with some overfitting effect during training.
Images are also framed with a zero padding to guarantee a minimum number of layers as the
model increases in depth. A typical training process is plotted in Fig. 1, subplot b.

The dataset consists of∼ 4,600 images of individual stars which are divided in 70−10−20%
for training, validation and final test. All images are normalized to sum one, independently
of the noise level or if the star is saturated. All stars are located over the same image
pixel, hence, output positions are also normalized between 0 and 1 so the model is estimating
relative shifts within the same pixel. Batch sizes are between 250 and 325 images. We noticed
the minimization of the cost function (Mean Absolute Error) benefits of low learning rates
(10−5), while epochs had to be increased (between 1,000 and 2,000). The model was designed
in Keras/TF and optimized with ADAM using default values.
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4 Dataset description and Results

The Deep Learning (DL) model is tested over images of point-like sources which simulate typ-
ical observations with the PC and WF chips of the WFPC2 camera. Two different simulation
codes were used to generate the data set. The first one, SkyMaker [2], makes use of a user
defined PSF model, a list of sky positions, and CCD specifications, which vary depending
on the pixel size and the noise level. From a whole image simulation, for instance, a cluster,
a set of individual stars can be extracted with known positions. The second one, currently
under development and from now on named Simu WFPC2, is being created specifically for
the PC/WF3 chips. The code includes, among other specifications, the variability of the PSF
across the chip, vignetting, charge transfer inefficiency effects, CCD columns illuminations
due to electron excess, A/D saturation, background, cosmic rays, bias, darks, shot noise,
etc... Hence, its simulated images can be considered as more realistic than the ones provided
by SkyMaker. At the current stage of this project, we are not making use of the variability of
the PSF over the chip. Both simulations were fed with two different PSF models, the ePSFs
used by the library in the hst1pass code and the PSFex computed by SExtractor from a real
dataset, namely exposures in the field of NGC 104. The former can be considered somehow
more realistic than the latter. In all cases, we have a “ground truth” of star positions and
magnitudes which allows us to train the model in a supervised way.

Table 1: MEAN RESIDUALS IN (x,y) FOR PC (top) AND WF (bottom)

Simulation + PSF [11] [1] VGG 34K VGG 214K

Simu WFPC2 + ePSF (31.9 , 27.9) (9.5 , 8.6) (7.8 , 6.9) (6.8 , 6.8)
Simu WFPC2 + PSFex (15.0 , 12.0) (47.7 , 43.7) (6.4 , 6.4) (5.4 , 5.4)

SkyMaker + ePSF (36.3 , 32.1) (8.7 , 8.5) (9.3 , 8.1) (7.5 , 6.4)
SkyMaker + PSFex (17.3 , 13.6) (48.5 , 41.7) (8.5 , 7.5) (6.8 , 6.3)

Simulation + PSF [11] [1] VGG 34K VGG 214K

Simu WFPC2 + ePSF (34.1 , 35.1) (8.3 , 8.0) (7.8 , 7.4) (6.8 , 6.5)
Simu WFPC2 + PSFex (12.3 , 13.7) (13.6 , 14.3) (6.7 , 6.0) (5.0 , 5.0)

SkyMaker + ePSF (41.1 , 44.3) (9.1 , 9.0) (8.7 , 8.8) (7.4 , 7.2)
SkyMaker + PSFex (13.4 , 15.8) (20.8 , 16.2) (8.3 , 7.4) (5.9 , 5.9)

Table 1 shows mean residuals in both x- and y-axis for PC and WF3 chip achieved by
two classic methods [11] and [1], as well as for the DL model with two different numbers of
trainable parameters. Outliers above 3σ have been removed. All four methods were applied
on the same set of stars and known positions, simulated by SkyMaker and Simu WFPC2 and
making use of ePSF and PSFex. It is shown that the VGG with 214K parameters exhibit
slightly better results w.r.t. hst1pass, in particular when ePSF was used to generate the data
set. Additionally, DL models are more stable in their results independently of the simulation
code and the PSF used to generate the dataset.

Figure 2 plots for all four methods the distribution of x, y-residuals (left panels) and their
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dependence with magnitude (middle and right panels). Residuals shown are for the PC chip
under the configuration Simu WFPC2 + ePSF. Similar results are obtained for the WF chip.
The hst1pass code has a built-in quality that can be used to reject outlier star images thus
producing tighter plots. On the other hand, hst1pass cannot provide results for magnitudes
< 15, in contrast with the DL model, which extends this range up to magnitudes < 14.

Figure 2: From top to bottom: 2D elliptical Gaussian and centering routine by [11]; ePSFs
and hst1pass by [1]; VGG with 34K parameters; VGG with 214K parameters. Leftmost
column: residuals distribution w.r.t. (x,y) position. Middle and right columns: residuals in
x,y as a function of magnitude. Simulations are with Simu WFPC2 and using ePSFs. Results
are for the PC chip. Similar results are obtained for WF.

5 Conclusions and Future Work

The VGG model introduced in this paper has performed well on simulated HST data, over-
coming some challenges of traditional centering methods and performing comparably or
slightly better that the state-of-the-art classic algorithm in hst1pass. Our current simula-
tions can still be improved to introduce non-isolated stars and the variation of the PSF
across the FOV. This can limit the final performance of the current model, taking into ac-
count that we are constrained in the number of convolutional layer, due to the input image
size, and the number of trainable parameters, due to the overfitting effect. We have recently
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begun testing this methodology on real WFPC2 data. Preliminary results are encouraging.

Finally, we are planning to test a new model on this problem, in particular, ResNets archi-
tectures [9]. These architectures involve skipping connections which connects activations of a
layer to further layers by skipping some of them in between, thus forming a so-called residual
block. ResNets are built by stacking these residual blocks together. Therefore, the final
network will fit the residual mapping instead of the features mapping, resulting in training
deeper networks avoiding vanishing gradients. Additionally, we will explore the use of larger
image sizes by upsampling as well as an automatic choice of the training hyperparameter.
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