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Abstract

The Gaia Data Release 3 (DR3), published in June 2022, delivers a diverse set of astromet-

ric, photometric, and spectroscopic measurements for more than a billion stars. The wealth

and complexity of the data makes traditional approaches for estimating stellar parameters

for the full Gaia dataset almost prohibitive. We have explored different supervised learning

methods for extracting basic stellar parameters as well as distances and line-of-sight extinc-

tions, given spectro-photo-astrometric data (including also the new Gaia XP spectra). For

training we use an enhanced high-quality dataset compiled from Gaia DR3 and ground-

based spectroscopic survey data covering the whole sky and all Galactic components. We

show that even with a simple neural-network architecture or tree-based algorithm (and in

the absence of Gaia XP spectra), we succeed in predicting competitive results (compared

to Bayesian isochrone fitting) down to faint magnitudes. We will present a new Gaia DR3

stellar-parameter catalogue obtained using the currently best-performing machine-learning

algorithm for tabular data, XGBoost, in the near future.

1 Introduction

The Gaia mission [14] has triggered an enormous increase in astronomical data that is revo-
lutionising not only stellar and Galactic science but also has implications for cosmology and
fundamental physics. The latest Gaia data release, DR3 [17], for the first time contains also
low-resolution spectra, taken with Gaia’s blue and red photometer (BP/RP), for 219 million
sources. These so-called XP spectra [10] represent the biggest homogeneous spectroscopic
dataset (albeit at very low resolution; R ∼ 25) available to date. Efficient methods to extract
information from this dataset are starting to appear (e.g. [28, 3]).
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2 Bayesian inference of stellar parameters with StarHorse

In the past years, our group has been developing an efficient Bayesian isochrone-fitting code,
StarHorse [27, 24, 25], to infer stellar parameters, distances, and extinctions, to be able to
analyse the ever-growing stellar spectroscopic survey datasets.

In [1], we applied the code for the first time to theGaia data without spectroscopic informa-
tion. The first experiments proved to be so promising that a big-data analysis run (285 million
Gaia DR2 stars with G < 18, cross-matched with the Pan-STARRS1, 2MASS, and WISE
photometric catalogues) was carried out using the computing cluster of the Leibniz-Institut
für Astrophysik Potsdam (AIP). Our results doubled the number of Gaia DR2 sources with
astrophysical parameters, improved the accuracy of the geometric distances, and revealed the
presence of the Galactic bar in the Gaia data in a direct and completely unexpected manner
(see Fig. 1).

Figure 1: Comparison of the 5-year mission expectation for the Galactic coverage of the
Gaia data before launch (left; [23]) with the results from StarHorse for Gaia DR2 (G < 18,
22 months of observation, right; [1]).

After the release of Gaia’s Early Data Release 3 in 2021 [16], and building on the success
of the previous StarHorse catalogue, we ran our code on Gaia EDR3 data coupled with
other large-area photometric surveys (now also including SkyMapper data). This resulted
in an improved catalogue of 362 million stars, down to magnitude G < 18.5 (published in
[2]). Thanks to the more precise EDR3 parallaxes and drastically reduced systematics [22],
the Galactic density maps derived from it now probe a much greater volume than in [1],
extending to regions beyond the Galactic bar and to Local Group galaxies, with a larger
total number density.

The code was also sped up by using a less dense stellar model grid and a new computing
cluster, which improved the CO2 footprint of the project by factor ∼ 6, but still consumed
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around 1 month of computing time on a 1000-core cluster. At latest with the upcoming LSST
surveys, this type of endeavour will therefore become unfeasible. In addition, StarHorse is
unable to process spectroscopic measurements (such as the XP spectra) directly, which is an
obvious drawback given that these data contain valuable information on the stellar parameters
[13].

3 Predicting stellar parameters with a simple neural network

Figure 2: Results of the neural-network approach to stellar parameter estimation. Compar-
ison between the colour-magnitude and Kiel Diagrams produced by the ANN model (right)
with the spectroscopic test dataset [25]. Plot from the MSc thesis of Rany Assaad (University
of Surrey, 2021).

In view of the computational drawbacks of traditional isochrone-based methods, in 2020
we started testing artificial neural networks (ANN) to predict stellar parameters for Gaia
DR2 stars together with R. Assaad, an Erasmus+ MSc student visiting from the University
of Surrey. As a training and test dataset, we used the StarHorse labels for various large-scale
spectroscopic stellar surveys available at the time [25] (see Fig. 2).

This experiment was also surprisingly successful: with respect to [1] the ANN technique
(even a very basic multi-layer perceptron architecture) doubled the number of stars (now
more tha 300 million) considered to be of good quality. The full pipeline (including training
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and prediction) could now be run on a 48-core machine within only 3 days, and it produced
competitive posterior uncertainties (using a Monte-Carlo drop-out technique). The median
uncertainties amounted to 16% in distance, 0.15 mag in V -band extinction AV , 155 K in
effective temperature Teff .

After cleaning the results of our Gaia DR2 run for poor input and output data, a sam-
ple of 373 million converged stars remained, for which we achieve a median uncertainty of
16% in distance, 0.15 mag in V-band extinction, and 155 K in effective temperature. Our
experiment showed that even with a simple neural-network structure, one can succeed in
predicting competitive results based on Gaia DR2 down to fainter magnitudes compared to
classical isochrone or spectral-energy distribution fitting methods. Independent recent work
[12] reached similar concluisons.

4 Improved results with tree-based algorithms

Figure 3: First results (June 2022) of the XGBoost approach to stellar parameter estimation
for the case of stars with available Gaia DR3 XP spectra. One-to-one comparisons between
the predicted stellar parameters and the spectroscopic test dataset [26] (labelled ”true val-
ues”).

The Gaia DR3 XP spectra are not delivered in the form of classical spectra, but come in
the form of internally-calibrated spectral coefficients [6]. They can therefore be treated as
tabular data and easily fed to a supervised learning technique. [5] benchmark-tested several
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regression algorithms (including several neural network architectures) for tabular data and
found that the most efficient and accurate technique was the tree-based algorithm Extreme
Gradient-Boosted Trees (XGBoost, [7]). This technique is implemented in the python package
xgboost that is widely used for classification tasks in astronomy (e.g. [4, 29, 20, 9]). Examples
for the use of XGBoost for regression tasks in astronomy are sparser, but also start to appear,
e.g. for photometric redshifts [8, 21], predicting the number of sunspots [11], or determining
spectroscopic stellar ages [19].

For our first tests, we assembled a training set of 4 million Gaia DR3 stars with XP
spectra that have also been observed by spectroscopic stellar surveys and have StarHorse

stellar parameters [26]. As training columns we used the normalised XP coefficients, as well
as Gaia astrometry and broad-band optical and infra-red photometry. The training set was
complemented with spectroscopically observed white dwarfs from [18]. The predicted labels
include distance, AV , Teff , surface gravity log g, metallicity [M/H], and stellar mass.

The first tests yielded the following precisions and accuracies for unseen test data: ∆ log d =
–0.002± 0.075,∆AV = +0.001± 0.145,∆ log Teff = 0.000+−0.011 (see Fig. 3). The compu-
tational cost is even lower than in the case of the simple neural network (Sect. 3), and robust
to both the choice of hyperparameters and the scaling of the input data. For the first time,
our group is also able to deliver acceptable stellar parameters for white dwarfs.

5 Conclusions

While traditional (and genuinely astrophysical) methods continue to be both useful and nec-
essary to understand the new astronomical data, machine-learning techniques are needed to
handle the sheer amounts of present and future data, and to lower the total CO2 budget of
astronomical research. Here we showed that both neural-network and tree-based algorithms,
once sufficiently well trained, can be successfully employed to infer stellar parameters, dis-
tances, and extinctions in the absence of high-resolution spectroscopic data. In the near
future, we will present a new StarHorse-like catalogue for Gaia DR3 stars based on XGBoost

trained on high-resolution spectroscopic data.
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