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2 Departamento de Astrof́ısica, Universidad de La Laguna, E-38206 La Laguna, Spain

Abstract

We suggest a method to calculate the probability for the maximum amplitude of Solar

Cycle 25 using Bayesian inference. We illustrate this approach with the predictions made

by one particular phenomenological model that relates the time interval between termi-

nation events of preceding cycles with the amplitude of the next cycle. Our results show

well-constrained posterior-predictive distributions for the maximum sunspot-number. The

impact of uncertainty on sunspot-number and time interval between terminators is quanti-

fied. A comparison between past maximum sunspot-number values and posterior-predictive

distributions computed using the method enables us to quantify the quality of the inference

and of the prediction.

1 Introduction

Solar cycle prediction has been a matter of interest for decades and has led to a vast literature,
see for example the recent reviews by [3, 6, 5]. Among the different techniques employed,
precursor methods aim at predicting the amplitude of a given cycle based on a measure of
solar activity/magnetism in a preceding cycle at a given moment of time.

One example is the empirical relationship between the time interval between termination
events and the amplitude of the upcoming solar cycle, recently suggested by [4]. Termination
events delimit epochs of toroidal-magnetic-activity-band interaction and mark the limit be-
tween 11-year sunspot cycles and the end of 22-year magnetic activity cycles. According to
the proposed relationship, widely separated terminators would correspond to low-amplitude
sunspot cycles. Conversely, more narrowly separated terminators would lead to large ampli-
tude sunspot-cycles.

A drawback of the statistical method employed by [4] and similar studies is that they do
not permit one to make probability statements, nor do they offer straightforward ways to
propagate the uncertainty from the observations to the quantities of interest. We propose a
method for computing the probability distribution of the maximum amplitude of Solar Cycle
25 using Bayesian inference and illustrate the method using the phenomenological model and
data by [4].
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2 Method

Given a model M, with parameter vector θ, proposed to explain observed data D, the
posterior distribution of the parameters is given by the product of the likelihood function
p(D|θ,M) and the prior distribution p(θ|M)

p(θ|D,M) =
p(D|θ,M) p(θ|M)

p(D|M)
. (1)

The quantity in the denominator is the evidence, or prior predictive distribution

p(D|M) =

∫
θ
p(D|θ,M) p(θ|M) dθ. (2)

The evidence is a measure of the quality of the model. It quantifies how well the data D are
predicted by the model M.

Once the inference of the model parameters is performed, a distribution over possible
unobserved future data D̃, conditional on the observed data and the inferred model, is given
by the posterior-predictive distribution

p(D̃|D,M) =

∫
θ
p(D̃|θ,M) p(θ|D,M) dθ. (3)

The first factor in the integrand is the likelihood of the new unobserved data as a function of
the parameter vector. The second factor is the posterior inferred from the old observed data.

3 Analysis and results

Following [4], we assume a linear relationship between the maximum sunspot number SSN
and the time interval between termination events ∆T , SSN = M(∆T |α, β) = α∆T + β, and
infer the posterior density for the slope α and the intercept β of the model, p(α, β|D,M),
with D = di = {SSNi,∆Ti−1}24i=2 the (past) observed data in Table 1 by [4].

A particular choice of likelihood function for the special case of a straight-field model,
when there are independent errors in both data coordinates, is the following (see e.g., [2])

p(D|M, α, β) = (2π)−N/2

(
N∏
i=1

(σ2
SSNi

+ α2σ2
∆Ti−1

)−1/2

)

× exp

{ N∑
i=1

−[di −M(∆Ti−1|α, β)]2

2(σ2
SSNi

+ α2σ2
∆Ti−1

)

}
, (4)

with each σSSN and σ∆T expressing the uncertainty on sunspot number and time interval
between termination events, respectively.

The combination of likelihood function and uniform priors over certain ranges leads to
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the posterior distribution. Figure 1 shows an example solution for given fixed values for the
uncertainty on the sunspot number and the time-interval between termination events. Well-
constrained distributions are obtained for the marginal posteriors of the model parameters α
and β (top and middle panels on the left).

Following the definition in Equation 3, the posterior predictive distribution for the future
unobserved amplitude of Solar Cycle 25, D̃ = SSN25, based on the time interval for the
preceding termination event, ∆T24, can then be computed from the inferred posterior and by
considering a Gaussian likelihood for the new data as a function of the parameter vector

p(SSN25|M, α, β) =
1√
2π

(
(σ2

SSN25
+ α2σ2

∆T24
)−1/2

)
× exp

{−[SSN25 −M(∆T24|α, β)]2

2(σ2
SSN25

+ α2σ2
∆T24

)

}
, (5)

with σSSN25 and σ∆T24 expressing the uncertainty we are willing to consider for the future
sunspot number and the last time interval between termination events, respectively.

Let us assume the termination event for Solar Cycle 24 occurred in October 2021. This
leads to ∆T24 = 10.72. The obtained posterior-predictive distribution for the maximum
amplitude of Cycle 25 is displayed in the bottom-left panel of Fig. 1 and shows a well-
constrained posterior density. The rounded summary of the posterior predictive distribution
is SSN25 = 191+11

−11, with the estimate corresponding to the median and the uncertainties
given at the 68% credible interval. The main advantage of having the posterior-predictive
distribution is that it is now perfectly possible and straightforward to make probability state-
ments. For instance, according to the result displayed in Fig. 1, the probability that the
maximum amplitude of Solar Cycle 25 will fall between ∼ 180 and 201 is 68%, the area under
the green curve covering that percentage of the full probability mass.

Another advantage of the method is that it propagates uncertainty from the observations
to the inferred quantities of interest. The right panels in Fig. 1 show how varying the
uncertainty about sunspot number and time interval between termination events influences
the resulting posterior-predictive distribution. Uncertainty in the sunspot number affects
the dispersion of the probability distribution (top-right panel). Uncertainty on the time
interval between termination events affects dispersion and the location parameter of the
probability distribution (middle-right panel). Adopting an approximate formula by [1] for
the sunspot number error, produces a probability distribution (bottom-right panel) with a
larger uncertainty and with a median, SSN25 = 184+25

−22, that is also displaced with respect to
the calculation with fixed sunspot number error.

Because the method provides us with a distribution of probability among different possible
sunspot-number values, it becomes possible to quantify the predictive capabilities of the
precursor and/or the model. While Solar Cycle 25 is underway, we can do this exercise with
past solar cycles and use the method to compute posterior-predictive distributions using
the data in Table 1 by [4]. Figure 2 shows that the 95% credible intervals of the computed
probability distributions cover the actually observed sunspot number in all except three cases
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Figure 1: Left: top and middle panels show marginal posterior densities for the slope α
and the intercept β of the linear model M that account for the past sunspot-number data
D. The calculations assume σSSNi = 10 and σ∆Ti−1 = 0.1 ∀i. The bottom panel displays
the posterior-predictive distribution for the sunspot-number during Solar Cycle 25, based on
the posterior from past data and the likelihood of new data. The shaded green area covers
68% of the mass centred around the median: SSN25 = 190.6+10.6

−10.8. The calculation assumes
∆T24 = 10.72. Right: top panel shows the influence of uncertainty on sunspot-number [σSSN]
on the posterior-predictive distribution for SSN25 for the case with no uncertainty on the
time interval between termination events: σ∆T = 0. The middle panel shows the influence
of uncertainty about the time interval between termination events [σ∆T ] on the posterior-
predictive distribution for SSN25 for the case with σSSN = 10. The bottom panel shows a
comparison between posterior-predictive distributions for SSN25 computed with a fixed error
on sunspot-number and with the approximate formula by [1].

(SC16, SC19, and SC21). The observed values are within the 68% credible interval of the
prediction in 12 cases. The median of the prediction is fairly accurate in six cases. The NOAA
Space Weather Prediction Center prediction interval is also shown in the figure and falls below
the prediction interval for this precursor and model. On the other hand, our estimate is in
good agreement with the climatological forecast by Pesnell (2018) which considers that the
maximum amplitude of Solar Cycle 25 will be the average of all observed maxima.

4 Summary

In this work we suggest a method for computing predictions for the maximum amplitude of
Solar Cycle 25, based on Bayesian inference, and adopting a particular precursor as example
application. The relevant quantity is the posterior-predictive distribution of the maximum
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Figure 2: Comparison between observed sunspot-number values for past Solar Cycles 2 to
24 from Table 1 of [4] and posterior-predictive distributions computed using Equation (5)
with data on Table 1 of [4]. In all calculations, σ∆T = 0.1 and the approximate formula
by [1], σSSN = 1.7

√
SSN + 1, are employed . For Solar Cycle 25, ∆T = 10.72 is employed.

Also shown is the interval between the minimum and maximum peak sunspot-number values
currently predicted by the SWPC/NOAA. Colours indicate different credible intervals of the
obtained posterior distributions.

sunspot number. It is a probability distribution and results from the combination of a poste-
rior probability distribution, inferred from past data, and a likelihood function for unobserved
future data. The useful qualities of the method are the following: it enables to make probabil-
ity statements about the quantity of interest, the SSN; the inference considers the propagation
of uncertainty from observables to inferred quantities; and it is applicable to other predictive
methods and alternative models, hence can be used to assess the quality of the predictor
and/or the adopted model.
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