
Highlights of Spanish Astrophysics XI, Proceedings of the XV Scientific Meeting of the Spanish Astro-

nomical Society held on September 4–9, 2022, in La Laguna, Spain. M. Manteiga, L. Bellot, P. Be-
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Abstract

At present, detecting new rocky planets within the habitable zone and the radial velocity

follow-up of transiting candidates are priority objectives of the exoplanetary field. Both,

require a great effort including high-precision instruments and state-of-the-art analysis tech-

niques. Additionally, a proper observing strategy is crucial to ensure the effectiveness of

the observations, avoiding unnecessary measurements that waste invaluable telescope time.

In this talk, we present the KOBEsim algorithm, a Bayesian-based strategy for the detection

of planets in radial velocity surveys. It is developed within the KOBE experiment, aspiring

at maximizing the detection of potential habitable exoplanets orbiting late K-dwarfs. The

algorithm uses the first data obtained for a given star to choose a target orbital period

(usually the highest power periodicity) and uses Bayesian inference to propose the opti-

mum next observing date, thus accelerating the detection/rejection of such period. This

new approach has demonstrated to improve the detection efficiency in comparison with a

conventional strategy of monotonic cadence, reaching a detection in ∼50% less observations

and timespan. KOBEsim has the potential to save expensive telescope time in current and

upcoming instruments, and to allow the detection of light planets further away from their

host star in reasonable timespans.

1 Introduction

Over the last decades, exoplanetary exploration has been focused on filling the census of
exoplanet properties. Currently, the number of confirmed planets according to the NASA
Exoplanet Archive overtakes the figure of 5200 [1]. The reason for this rush is that we need
statistics. Only if we have a representative sample of the planet diversity we could create
reliable models, for instance on planet formation, migrations, or dependencies with the host
star properties. But it is undeniable that the planets that most yearn to detect are potentially
habitable. Finding life beyond the Solar System is what guides the actions of the field.
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Figure 1: Exoplanet population within the HZ for different stellar types. Source [4].

2 The KOBE experiment

The majority of the efforts dedicated to searching for habitable planets have preferred two
spectral types as host stars: M and G-dwarfs. The M-dwarfs are an interesting target from
the detectability point of view. Since they are cold and less massive stars, their habitable zone
(HZ) is closer and thus inducing higher radial velocity (RV) semiamplitudes and requiring less
time to infer their presence. As an example, the high-resolution spectrograph CARMENES [2]
is optimized to find planets orbiting M-dwarf stars. In parallel, since the only planet that
we are certain to be habitable is the Earth, G-dwarfs (solar-type stars) seem the perfect
target from an astrobiological point of view. One of the most fruitful missions, Kepler, was
specifically designed for finding Earth-type worlds around solar-type stars [3].

Nonetheless, we are missing what might be the perfect target. Putting the focus on M
and G stars has resulted in an observational bias around K-dwarfs (see Fig. 1). This spectral
type is in the middle of the other two, thus finding a trade-off between habitability and
detectability. Moreover, theoretical studies have shown that the highest occurrence rate
of habitable planets is around the quiet late-K-dwarfs [15]. These reasons have inspired to
start the first RV survey devoted specifically to late-type K-dwarfs. The K-dwarfs Orbited By
habitable Exoplanets (KOBE) [4] experiment, a legacy program of the Calar Alto Observatory
(CAHA; Almeŕıa, Spain), making use of CARMENES at the 3.5m telescope. Its observations
began in January 2021 and will be monitoring 50 late K-dwarf stars over five consecutive
semesters.

The aim of KOBE is to detect a handful of habitable planets around K-type stars to ease
the paucity. Reaching such an ambitious goal requires an observational strategy designed
accordingly to the needs. KOBEsim [5] is an open-source algorithm written in Python language
that we have developed to make more efficient the detection of planets in blind-RV surveys.

https://kobe.caha.es/
https://github.com/olgabalsa/KOBEsim
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3 Observational strategy of KOBEsim

The proposed observational strategy consists of two steps. First, the star is monitored with
the usual survey strategy until the periodogram shows a predominant periodicity (Ppeak). For
example, a conventional strategy would be following a monotonic cadence that consists of
gathering data every N days. Second, Ppeak is targeted by the KOBEsim algorithm to speed up
the confirmation or rejection of a planetary origin. The algorithm uses the prior knowledge
(the observations gathered so far) to predict future measurements and makes a ranking of
the dates available to observe the target again. The criterion for the ranking is based on the
expected knowledge gain. In the following sections, we see in more detail the method.

3.1 Statistical framework

The mathematical tool we use is the Bayes factor. Basically, it compares two models to assess
from which one is more likely that our data come1. We compute this quantity by comparing
1) the null hypothesis in which we assume there is no planet in the system (H0), and 2) a
1-planet model orbiting with a periodicity near to Ppeak (H1). The Bayes factor is frequently
used in planetary searches to claim a detection when it is higher than a threshold [6], [7], [8].
In our case, we opt for a conservative criterion considering a detection at ln (B10) > 6 [9].

3.2 Code methodology

The algorithm is composed of three steps: estimation of the orbital parameters, simulation of
the next RV measurement at different orbital phases, and selection of the optimum observing
date according to the expected increase of the Bayes factor.

1. Parameter inference and evidence of the models: In order to infer the orbital
parameters from the observations, KOBEsim explores the parameter space and samples
the posterior distribution by using the Markov chain Monte Carlo (MCMC) affine
invariant ensemble sampler emcee [12]. The model used for the 1-planet hypothesis is a
single Keplerian from the python module RadVel [13], meanwhile for the null-hypothesis
the RV takes a constant value equal to the systemic velocity. Next, it calculates the
Bayes factor metric employing the bayev [14] code to quantify how much evidence we
have with the current observations on the existence of the planet at the selected period.

2. Simulation of the future dates: To find the candidate dates we divide the period
under study into a total of Nphases orbital sub-phases. We choose the next assigned
date from the schedule at the telescope that matches each sub-phase. Next, from
the posterior probability distributions inferred through the MCMC algorithm in the
previous step, KOBEsim predicts the RVs at each potential observing date. Running
again emcee and bayev over each of the datasets (our already gathered RV plus one
additional datapoint corresponding to each predicted RV at a proposed date), we end

1B10 is the notation for a Bayes factor comparing a hypothesis H1 over another H0.
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Figure 2: KOBEsim output figure. Predicted Bayes factor for each candidate date (orbital
phase). Source [5].

up with an estimation of the expected increase in the Bayes factor (∆ ln(B10)) for each
of the proposed future dates.

3. Ranking of the candidate observing dates: KOBEsim sorts the tested dates accord-
ing to the Bayes factor giving the maximum priority to the highest ∆ ln(B10). However,
the largest ln(B10) increase may occur at a very distant date, which is against the ef-
ficiency of the observations. To prevent this situation, we introduce a weight to the
increase of the Bayes factor with the shape of a density function of a beta distribution.
Hence, the ranking is done according to the Bayes factor weighted with this function to
find a trade-off between the number of observations and timespan. In Fig. 2 we show
an example of the output figure of KOBEsim. Additionally, it delivers a table with these
results sorted by the priority of the the candidate dates.

4 KOBEsim efficiency test

In this section, we show a test with simulated data to quantify the efficiency improvement
when using this strategy. We use ten mock RVs for a 5M⊕ planet orbiting within the HZ of
a late-K-dwarf with a 59-days period, corresponding to an RV semiamplitude of 1.2m s−1.
We estimate how long it would take to detect this planet following different strategies: with
a monotonic cadence (MC), following the recommendations of KOBEsim (K) every new obser-
vation, and KOBEsim using the beta function (Kβ, see step 3 of Sect. 3.2).

In Fig. 3 we show the evolution of the Bayes factor (y-axis) as a function of the number
of observations (x -axis) for each strategy (color-code). From a quick visual inspection, it is
easy to perceive that the number of observations is greatly reduced when using the algorithm
in comparison with the MC strategy. It is also highlighting the timespan (see legend at
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Figure 3: Prediction in the evolution of the logarithm of the Bayes factor for a 5M⊕ simulated
planet. Source [5].

the right bottom of Fig. 3) is only improved when using the Kβ strategy, thus finding the
optimum trade-off in sake of efficiency. The improvement is, therefore, a 33% in the number
of observations and a 47% in timespan.

5 Conclusions

The biggest conclusion is that there is room for improving the efficiency of observations.
Reducing the observational time required to achieve our scientific goals means being capable
of including additional targets or even achieving goals that otherwise would be inaccessible.
In particular, our approach demonstrates speeding up detections up to a 50% in both number
of observations and timespan. The more challenging the target is, the higher the efficiency
gain when using KOBEsim. Therefore, its use could be decisive to detect rocky planets within
the HZ in reasonable timespans.

GTO programs can be highly benefited from the use of this algorithm since they enjoy
wider freedom in their schedule. An opportunity for saving time and favor the detection of
the most elusive planets for the upcoming generation of instruments such as HARPS3 [16]
or NIRPS [17]. We want to note that, even designed for blind-search surveys, it also can
be highly useful in the RV follow-up of transiting candidates since the orbital period is clear
since the very beginning of the observations. Furthermore, by customizing the code, one could
optimize other problems such as discerning between competing periodicities, or the number
of planets in the system. Indeed, the strategy could be used to schedule the observation of
time series in any other field than exoplanets just by modifying the models.
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