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Abstract

The publication of the Gaia Data Release 2 (Gaia DR2) includes precise astrometric data
(positions, proper motions and parallaxes) for more than 1.3 bilion sources, mostly stars.
This such a vast amount of new data requires the use of machine-learning and data-mining
techniques to handle large scale analysis. In particular, the search for open clusters (OCs),
groups of stars that were born and move together, located in the disc, is a great example
for the application of these techniques.
We explore the performance of a density based clustering algorithm, DBSCAN, to find
clusters in the data together with a supervised learning method such as an Artificial Neural
Network (ANN) to automatically distinguish between real OCs and statistical clusters.

The development and implementation of this method in a five-dimensional space

(α, δ,$, µα∗ , µδ) of the Tycho-Gaia Astrometric Solution (TGAS) lead to the proposal of a

list of new nearby OCs candidates. This contribution shows the validation of the candidates

with Gaia DR2 data and a framework designed to be applied to the full Gaia DR2 archive.

1 Introduction

The analysis of astronomical catalogues is becoming more complex as the data volume of
these catalogues is increasing. For instance, the Gaia mission [1] in its first data release
(Gaia DR1 [2]) contains positions for more than one bilion sources. Even though this large
amount of sources, full five-parameter astrometric data is available only for a small subset:
the Tycho-Gaia Astrometric Solution (TGAS [3, 4]). The TGAS subset represents a perfect
scenario to develop and test scientific applications, based on data-mining techniques and
machine-learning algorithms, in preparation for larger releases. The use of these techniques
is mandatory from the second Gaia data release (Gaia DR2 [5]) onwards, which contains
precise five-parameter astrometric data for more than 1.3 bilion sources, together with three-
band photometry.
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Figure 1: Application of the method represented by a flow chart diagram. Figure taken
from Fig. 1 in [6].

We have developed a method [6] to automatically search for overdensities in the five-
dimensional astrometric data, i.e. positions, parallax and proper motions (α, δ,$, µα∗ , µδ),
and decide if they are open clusters (OCs) based on the photometry (G,GBP , GRP ). The
method is developed and tested on the TGAS subset, with the final goal of its application to
the full Gaia DR2 archive.

2 Method

Figure 1 shows a diagram of the methodology used to identify possible new OCs. Using TGAS
as our initial database, we apply an unsupervised learning algorithm such as DBSCAN [7]
to detect groups of stars showing an overdensity in the five-parameter space. Then, these
overdensities are classified into statistical clusters or physical OCs using an Artificial Neural
Network (ANN [8]), which identifies an isochrone on a Color Magnitude Diagram (CMD). In
this case, because the TGAS subset is purely astrometrical data, the CMD is built using the
photometric data from the Two Micron All Sky Survey catalogue (2MASS [9]).

2.1 Preprocessing

Before the application of the method, we select a region of the sky where we expect to find
most of the clusters. According to existing OCs catalogues such as the DAML [10] and MWSC
[11], most of the clusters are found at |b| < 20deg (96% and 94% respectively). In addition,
we reject stars with high or negative parallaxes (selecting only stars with 0mas≤ $ ≤ 7mas)
or with high proper motions (|µα∗ |, |µδ| > 30mas·yr−1); this facilitates the determination of
the DBSCAN parameters with no loss of generality since these conditions would make an OC
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easily detectable.

The region of study is further divided into smaller rectangles of size L deg. This second
division is done to reduce the volume of data in each region in order to reduce computational
time; and to define a more representative density of field stars, so the algorithm can search
for a significant overdensity in that region. As a last step, because the algorithm computes
the distance between pairs of stars in the five-dimensional parameter space, and decides if
they are clustered or not based on these distances, we standarise the star parameters (to have
mean zero and variance one) so their weights in the process are the same.

2.2 DBSCAN

DBSCAN is a density-based clustering algorithm that identifies overdensities in the parameter
space as clusters. The definition of what DBSCAN considers a cluster depends on two
parameters: ε and minPts. The parameter minPts refers to the minimum number of members
of a cluster, while ε refers to the radius of the hypersphere (in the parameter space) centred
in each star where this minPts members have to be located (see Fig. 2 of [6]).

The determination of the minPts parameter, together with L, is left to be optimised
using simulations (see Sect. 3 of [6] for details). The values for these parameters found to be
optimal in this case are: L = {12, 13, 14, 15, 16} and minPts= {5, 6, 7, 8, 9}.

For the determination of ε, we take advantage of the fact that the distance from a star
to its kth nearest neighbour from stars belonging to the cluster is smaller than from stars
belonging to the field. Figure 2 shows an example of the determination of ε in a region around
a known cluster, the red line (ε) separates the stars belonging to the cluster (green) from the
stars belonging to the field (orange).

2.3 Identification of OCs

DBSCAN finds clusters in an statistical sense, they can be real OCs or just statistical clusters.
To distinguish between these two posibilities, we use an ANN with a multilayer perceptron
arquitecture with one hidden layer. The ANN is able to recognise the isochrone pattern in
the CMD, and therefore identify real OCs among all the candidates. This is achieved by
training the ANN with examples of CMDs of real OCs. Since we work with TGAS data,
the OCs examples are those from the Gaia DR1 [12]. The test CMDs are classified with a
precision of a 97.05% to the right class, OC or statistical cluster.

Because the ANN is trained with clusters from [12], we expect to find clusters with the
same characteristics. The OCs used to train the ANN are nearby clusters with ages from 40
to 850 Myr and no significant differential extinction.

3 Results

The whole method is applied to the TGAS data, and after the removal of coincident clusters
with [11], we end with a list of 31 probable OC candidates (see Table 1 in [6], cluster candidates
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Figure 2: Histogram of 7th-NN distances of a region around NGC6633 (in blue), stars
belonging to NGC6633 (in green) and random realization of field stars in that region (in
orange). Figure taken from Fig. 3 in [6].

are sorted by number of detections through the explored parameters). Each of the OC
candidates is then analysed using Gaia DR2 data, which provides more precise astrometric
data, photometry more precise than that of 2MASS catalogue and the availability of those
parameters down to magnitude G ∼ 21.

In order to confirm or discard each OC candidate, the DBSCAN algorithm is executed
on a Gaia DR2 region around the expected centre of the candidate. With this last step,
we are able to confirm 23 OC candidates with members down to magnitude G ≤ 17. These
23 confirmed OCs represent a 70% of the proposed candidates; 100% of the initial OCs
candidates found with Nfound ≥ 5 among the explored parameters are confirmed, while for
Nfound < 5 we are able to confirm 59% of the initial candidates. Mean values for position,
parallax and proper motion, as well as for radial velocity when available, can be found in
Table 2 of [6]. General comments and comments on individual proposed new OCs can be
also found in [6].

4 Conclusions

We describe an automated data-mining method for the detection of OCs. The method is based
on the use of machine learning techniques such as a clustering algorithm, DBSCAN, to detect
overdensities in astrometric data; and a classification algorithm, an ANN, to distinguish
between statistical clusters and real OCs.

The application of the method to TGAS data allows the proposal of 31 new OCs
candidates, of which 23 (around 70%) are validated using Gaia DR2 data.
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Looking forward to the application of the method to the all-sky Gaia DR2, we have to
optimize the parameters L and minPts to account for the larger stellar densities. As well,
the better characterization of known OCs [13] with DR2, provides a wider training set for
the ANN step.
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