Dust-to-gas ratio in a complete sample of type-1 AGN.

I. Ordovás-Pascual1, S. Mateos1, F. J. Carrera1, A. Caccianiga2, R. Della Ceca2, P. Severgnini2, A. Moretti2, L. Ballo3 and A. Corral1

1 Instituto de Física de Cantabria (CSIC-UC), E-39005, Santander, Spain
2 INAF-Osservatorio Astronomico di Brera, Via Brera 28, I-20121, Milan, Italy
3 XMM-Newton Science Operations Centre, ESAC/ESA, PO Box 78, E-28692 Villanueva de la Cañada, Madrid, Spain

Abstract

According to the Unified Model of Active Galactic Nuclei (AGN), unobscured AGN based on its optical spectrum (detection of rest-frame UV-optical broad emission lines, type-1 AGN) should appear as X-ray unabsorbed AGN. However, there is an important fraction (10-30\%) of AGN whose optical and X-ray classifications do not match, and the origin of the discrepancy is not clear. To provide insight into this topic, we have conducted a statistical analysis of the optical obscuration and X-ray absorption properties of the optically type-1 AGN from the Bright Ultra-hard XMM-Newton Survey (BUXS) with $L_{2-10\text{keV}}>10^{42}$ erg s-1 and $z=0.05$-1. We have high-quality spectra from XMM-Newton and either SDSS spectra or proprietary observations for the selected sample. In order to provide the most complete sample as possible, we have conducted a detailed analysis of the emission lines to provide a reliable classification of the AGNs. We derive the X-ray absorption by fitting their XMM-Newton spectra and the optical extinction using UV/optical spectral continuum fits. As BUXS is a flux limited X-ray selected sample at hard energies ($f_{4.5\text{keV}}\leq6\times10^{-14}$ erg s-1 cm-2), it is complete for N_H column densities up to the Compton-thick limit ($\sim10^{24}$ cm-2). Our preliminary results show that most type-1 AGN in our sample show consistent optical and X-ray classification, but there is a large fraction (20\%) of objects with large N_H column densities ($N_H>4\times10^{21}$ cm-2). [See poster]