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Abstract

On December 2015, Hubble Space Telescope (HST) observations detected the expected fifth

counter image of SN Refsdal at z = 1.49. In [33], we compare the time delay predictions

from numerous models with the measured value derived by [16] from very early data in the

light curve of the SN Refsdal, and find a best value for H0 = 64+9
−11 km s−1 Mpc−1 (68%

CL), in excellent agreement with predictions from CMB and recent weak lensing data +

BAO + BBN (from the DES Collaboration). This is the first constraint on H0 derived from

time delays between multiple lensed SN images, and the first with a galaxy cluster lens, so

subject to systematic effects different from other time delay H0 estimates. Additional time

delay measurements from new multiply-imaged SNe will allow derivation of competitive

constraints on H0.

1 Introduction

Galaxy clusters bend the path of photons emitted by distant objects, creating multiple images
of the same background source, each with different magnification and arrival times. Time
delays between multiple images of the same source depend on the cosmological model, and
most notably on the Hubble constant, H0. The potential to constrain H0 with multiple
supernova (SN) images was first suggested by [26] more than half a century ago. However,
no multiply imaged (and resolved) SN has ever been observed until just recently. In 2014
four counter-images of the same supernova, SN Refsdal [15, 28, 16, 17], located at redshift
z = 1.49, were found around a member galaxy in the cluster MACSJ1149.5+2223 (hereafter
MACS1149, [7]) at redshift z = 0.544. The predicted time delay between these four images
is relatively small (a few days) making them impractical to derive useful constraints on
H0. Approximately a year after the initial detection of the four supernova images, a fifth
counter-image appeared, this one having a considerably longer time delay (see Figure 1). The
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Figure 1: Left-hand panel extracted from [15]: Color-composite image of the galaxy cluster
MACSJ1149. The white contours correspond to the critical curves for sources at the z = 1.49
(i.e., the redshift of the SN Refsdal’s host galaxy). Three images of the host galaxy formed
by the cluster are marked with white labels (1.1, 1.2, and 1.3) in the left panel and enlarged
in the right panel. The four current images of SN Refsdal that we detected (labeled S1 to
S4 in red) appear as red point sources in image 1.1. Right-hand panel extracted from [16]:
images of the MACS J1149 galaxy cluster field taken with HST WFC3-IR. The top panel
shows images acquired in 2011 before the SN appeared in S1–S4 or SX. The middle panel
displays images taken on 2015 April 20 when the four images forming the Einstein cross are
close to maximum brightness, but no flux is evident at the position of SX. The bottom panel
shows images taken on 2015 December 11 which reveal the new image SX of SN Refsdal.

position and the time of reappearance were predicted by different lens models with remarkable
precision [24, 30, 6, 32, 12]. This accuracy is possible since MACS1149 has been observed
with unprecedented detail as part of the Hubble Frontier Fields program (hereafter, HFF,
[21]).

The predictions for the SN time delay were based on a set of assumptions, including the
value H0 = 70 km s−1 Mpc−1, which was adopted by all teams in their model predictions.
Since time delays are inversely proportional to H0, it is possible to constrain the value of H0

directly, as originally suggested by Refsdal in 1964.

In [33], we derived an estimate ofH0 based on the observed time delay for the SN Refsdal
system and an ensemble of lens models derived by different teams that use independent
reconstruction methods. Our results provide a separate geometrical inference for H0 at
intermediate redshift [18, 29, 34, 3]. Hereafter, we adopt a fiducial cosmological model with
Ωm = 0.3 and ΩΛ = 0.7, which is the cosmology used to infer the lens models. When re-
scaling the value of the predicted time delay, the only cosmological parameter being changed
is H0 (see section 2 for details).
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2 Hubble constant estimate from SN Refsdal time delays

The time delay ∆t with respect to an unperturbed null geodesic depends on the angular
separation between the image and the source, on the lensing potential at the position of the
image, and on the cosmological model through the angular diameter distances. Distances, in
turn, depends on the cosmic expansion history of the universe, which is proportional to the
Hubble rate,

∆t(θ̄) =
1 + zd
c

DdDs

Dds

[
1

2
(θ̄ − β̄)2 − ψ(θ̄)

]
, (1)

where β̄ is the unlensed source position and ψ(θ̄) is the lens potential at the position of the
observed counter-image θ̄. The quantities Dd, Ds and Dds are the angular diameter distance
to the lens, to the source and between the lens and the source, respectively. These three
distances are inversely proportional to H0, and therefore the time delay is also inversely
proportional to H0. The factor DdDs/Dds encodes the cosmological dependency that, as
shown by [3], is mostly sensitive to H0 and depends weakly on other cosmological parameters.
For instance, a change of 10% in the cosmological parameter Ωm translates into a change of
only ≈ 0.1% in ∆t. Because of this weak dependence on other cosmological parameters, we
consider the cosmological model fixed and vary only H0. The difference in the predicted time
delay between two positions in the lens plane depends on a delicate balance between the
lensing potential and the relative separations. Nevertheless, the uncertainties in the lensing
potential are the primary source of systematic errors in the prediction of the time delays,
followed by the unknown value of H0.

Luckily, lensing models for clusters like MACS1149 are constrained by tens of multiply-
imaged lensed background galaxies with a wide range of known redshifts [9, 10, 11, 19, 35,
4, 5, 6, 14, 20, 22], reducing the uncertainties in the lens models [13, 1]. Model predictions
for time delays are less prone to errors in regions where the number of lensing constraints are
more abundant. In the case of MACS1149, the highest density of lensing constraints is found
in the vicinity of the multiple supernova images. One should then expect systematics to be
relatively small in the case of the SN Refsdal.

2.1 The case of SN Refsdal

The SN Refsdal [15, 28, 16, 17] was the first example of a resolved multiply imaged lensed SN.
The first estimation of the relative time delay and magnification ratio of S1 (position of knot 1
in the original quadruplet image) and SX (the position at which SN Refsdal reappeared) based
on the early light curve of SX was presented by [16] . The lensing constraints from the HFF
program allowed for a variety of predictions of the time delay and relative magnification of
a fifth image. These predictions where made assuming a fiducial cosmological model, needed
for computing the distances in equation 1. If the fiducial model assumed the wrong H0 this
would translate into a predicted time delay that is biased with respect to the measured one.
Table 1 in [33] summarizes the predicted time delays ∆tX1 between SX and S1, and the
magnification ratios, µX1 ≡ µ(X)/µ(1), as derived by the different models presented in [32]
and by the model presented in [6]. The predictions ranged from ≈ 8 months [30] to ≈ 1 year
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[6]. Similar predictions extending from ≈ 7.2 months to ≈ 12.3 months were later published
in [32] by different teams. SN Refsdal reappeared promptly approximately one year after its
first appearance. Overall, the lens models predict reasonably well the time of reappearance
of SN Refsdal [16].

Although the uncertainties in the lens models are difficult to quantify, they are generally
small in regions on the lens plane where lensing constraints are abundant, as shown by [23].
In this work, as proposed by [31], we adopt a conservative level of 6% for systematic errors
in the time delay predictions (see also [8] for a similar discussion). We refer the reader to
section 2.1 in [33] for a detailed discussion on the model uncertainties.

The lens models assumed a fiducial Hubble constant of Hfid
0 = 70 km s−1 Mpc−1, and

using the lens geometry data G each modeler m derived a probability pm(∆tX1, µX1|Hfid
0 ,G).

Since the time delay is inversely proportional to H0 as given by equation 1, we can rescale
this to any alternative value of H0 via

pm(∆tX1, µX1|H0,G) = pm

(
Hfid

0

H0
∆tX1, µX1|Hfid

0 ,G

)
. (2)

3 Bayesian analysis

The time delays ∆tX1 and magnifications µX1 predicted by the different lens models can
be compared with those inferred by [16] from the observed light curve data (LC) of both
SN images. The probability pd(∆tX1, µX1|LC) derived by [16] shows substantial correlation
between ∆tX1 and µX1 as a consequence of the incompleteness in the light curve data they
analyze. By re-scaling the predictions as described in equation 2, we can infer the most likely
value of H0 that best matches the model predictions with the observations. For this purpose,
we adopt a standard Bayesian approach, but keeping in mind that our observational data D
are the union of lens geometry (G) and SN light curve data (LS), and both are interpreted
in terms of time delay and magnification ratio. The probability of H0 given the data D is
expressed as

P(H0|D) ∝ P(H0) P(D|H0)

= P(H0)

∫
d∆tX1 dµX1 P(∆tX1, µX1|D, H0)P(D)

∝ P(H0)

∫
d∆tX1 dµX1 pm(∆tX1, µX1|H0,G)× pd(∆tX1, µX1|LC),

(3)

where the prior, P(H0), is the credibility of the H0 values without the data D, and the like-
lihood, P(D|H0), is the probability that the data could be generated by the models with
parameter value H0. Equation 3 is basically the product of the observed probability distri-
bution of the observed time delay and magnification (pd) times the probability distribution
from the individual models (pm). For a particular model, the maximum of the probability is
obtained for a value of H0 that maximizes the overlap of the SN light curve data and model
probabilities.
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For each individual lens model, we assume a bivariate but separable normal distribution
for pm,i(µX1,∆tX1|H0). The mean values of µX1 and ∆tX1 for each model are given in table
1 in [33] along with their statistical uncertainties. In the computation of pm,i(µX1,∆tX1|H0),
we also take into account that the statistical uncertainties are non-symmetric for three of the
listed lens models. For the observational data, we associate a bivariate normal distribution
to pd(µX1,∆tX1) based on the best-fit ellipse to the 68% CL in Figure 3 of [16] (for brevity,
we drop the dependences on G and LC from our notation). Both pm,i(µX1,∆tX1|H0) and
pd(µX1,∆tX1) are normalized to unity. Note that pm(µX1,∆tX1|H0) depends on H0 as
defined in equation 2. On the contrary, the probability distribution of the observational
data, pd(µX1,∆tX1), does not depend on H0.

We adopt two strategies for combining the probabilities pm derived by different lens
models, which we can label by i = 1 . . .M . A very optimistic view is that each model has
errors that are independent and are drawn from an ensemble with zero mean. In this case,
we can set

pm(∆tX1, µX1|H0) ∝
M∏
i=1

pi(∆tX1, µX1|H0), (4)

and we will label the resultant posterior derived from equation 3 as P×(H0|D). A more
conservative (and more realistic) assumption is that only one of the models is correct, with
prior probability qi that model i is the one. In this case, we have

pm(∆tX1, µX1|H0) =
M∑
i=1

qipi(∆tX1, µX1|H0). (5)

We will assign equal priors qi = 1/M to each model, such that we effectively average the
probabilities of the models, and denote the resultant posterior distribution as P+(H0|D).
Note that the models do not contribute equally to the posterior: those whose predictions of
µX1 disagree with the measurements of [16] will be downweighted in the integral of equation 3.

4 Results and conclusions

In the left-hand panel in figure 2, we show the contribution from each model to the total
posterior P+(H0|D) using a flat prior for H0 between H0 = 30 and 100 km s−1 Mpc−1. The
right-hand panel in figure 2 summarizes our main result for the posterior P×(H0|D) and
P+(H0|D). We have assumed that all model predictions are equal prior validity (but see
[23] for a comparison of the performance of the different lensing reconstruction techniques).
The median value and 68% CL for H0 are: H0 = 62+4

−4 km s−1 Mpc−1 for the P×(H0|D)

posterior; and H0 = 64+9
−11 km s−1 Mpc−1 for the P+(H0|D) posterior. These values of H0

already include a systematic uncertainty at the 6% level which has been added at the end in
quadrature to the statistical uncertainty.

We constrain, for the first time, the Hubble constant following Refsdal’s original idea to
use a multiple-lensed SN with measured time delays and precise lens model predictions. By
combining the results of multiple lens models, we account for statistical and some systematic
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Figure 2: Left-hand panel extracted from [33]: Contribution of each lens model prediction
(in different colors) to the posterior P+(H0|D) obtained by equation 3. Right-hand panel
extracted from [33]: Total posterior P×(H0|D) (dashed line) and P+(H0|D) (solid line). Both
curves include a systematic uncertainty at the 6% level added at the end in quadrature to the
statistical uncertainty. We explicitly show the median, 68% CL (black error bars) and 95%
CL (grey error bars) on the top of the figure for both posteriors. The vertical line corresponds
to the fiducial Hfid

0 = 70 km s−1 Mpc−1 assumed in all the lens models.

errors due to assumptions made during the lens reconstruction. These results are in good
agreement with recent constraints from CMB, LSS, and local distance ladders [25, 27, 2]. We
use a very weak prior to better show the sensitivity of the Refsdal data to the parameter H0.
Future improved constraints on the observed time delay and magnification will reduce the
uncertainty in the Hubble parameter using this technique, and additional estimates derived
from different clusters will provide a competitive test for H0.
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