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Abstract

The fast stellar winds can blow bubbles in the circumstellar material ejected from previous

phases of stellar evolution. These are found at different scales, from planetary nebulae

(PNe) around stars evolving to the white dwarf stage, to Wolf-Rayet (WR) bubbles and

up to large-scale bubbles around massive star clusters. In all cases, the fast stellar wind is

shock-heated and a hot bubble is produced. At the mixing layer between the hot bubble

and optical nebula, processes of mass evaporation and mixing of nebular material and heat

conduction are key to determine the thermal structure of these bubbles and their evolution.

In this contribution we review our current understanding of the X-ray observations of hot

bubbles in PNe and present the first spatially-resolved study of a mixing layer in a PN.

1 Introduction

Planetary nebulae (PNe) are the progeny of low- and intermediate-mass stars with initial
masses ≤810 M�. As these stars ascend the asymptotic giant branch (AGB), they experience
episodes of heavy mass loss through a slow (v∞ ∼10 km s1) wind. Once the stellar envelope
is lost and the stellar core is exposed, the stellar wind increases its terminal velocity up to
1000-4000 km s1 [3, 11]. This fast wind sweeps up the slow AGB wind, which is further
photoionized by the central star (CSPN) to form a PN [17, 6].

The interaction between these two stellar winds produces hot gas that fills a hot bubble
in the inner region of the PN. Extended X-ray emission has now been detected inside the inner
cavities of nearly 30 PNe with plasma temperatures of (13)×106 K and electron densities
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Figure 1: HST optical (red, purple) and Chandra X-ray (blue) color-
composite image of NGC 6543. Image adopted from the Chandra X-ray Center
(http://chandra.harvard.edu/photo/2008/catseye/). The positions of the HST STIS 52′′ ×
0.2′′ long slit are marked with white lines.

of 110 cm3 (e.g. [9, 12, 10, 15, 16, 13, 14, 4, 7]). The “low” temperature and “high”
density of the X-ray-emitting plasma in PNe, as compared to those predicted in simple
models of adiabatically shocked stellar winds, suggests that some mechanism is reducing
the temperature of the hot bubble and raising its density. Thermal conduction ([20, 21]
and references therein) and/or hydrodynamical instabilities (e.g. [22, 23]) in the windwind
interaction zone can inject material into the hot bubble, creating a mixing layer of gas with
intermediate temperatures (∼105 K) between the hot bubble and the optical nebular shell.

X-ray observations of NGC 6543 (a.k.a. the Cat’s Eye Nebula) reveal a physical struc-
ture qualitatively consistent with the ISW models (Chu et al. 2001). The Chandra image of
NGC 6543 (Fig. 1) shows simple limb-brightened diffuse X-ray emission confined within the
bright inner shell and two blisters at the tips of its major axis, in sharp contrast to its com-
plex optical morphology [1]. The observed X-ray temperature (1.7×106 K; [4]) is much lower
than that expected for a stellar wind of v∞ ∼1400 km s1 [18]. The morphology and physical
conditions of the hot plasma are suggestive of the presence of a mixing layer in NGC 6543.
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Figure 2: Spatial emission profiles of the Hα, [O iii] λ5007, and [N ii] λ6583 emission lines
from the optical nebular shell (top panel), and the N v λ1239 UV resonance line from the
interface layer and the Chandra X-ray emission from the hot bubble (bottom panel) along
the minor axis of NGC 6543 at PA 122◦ (Fig. 1). The offset is relative to the CSPN. Gray
shaded areas mark the positions of the interface layer, as indicated by the N v line.

2 Observations and Data Analysis

HST STIS UV and optical spectroscopic observations of NGC 6543 (PI: M.A. Guerrero, GO
prop. ID 12509, Cycle 19) were carried out on 2012 July 3 and October 21. The observations
aimed to detect and trace the spatial extent of the interface layer and compare it with the
layers of the nebular shell and hot bubble. The 52′′ × 0.2′′ long slit was placed at position
angles (PAs) of 16◦ and 122◦ along the major and minor axes of the inner nebular shell
(Fig. 1), respectively. The G140M grating and STIS/FUV-MAMA detector were used to
acquire spectra of the N v λλ1239,1243 and C iv λλ1548,1551 emission lines. The G430L
and G750M gratings and STIS/CCD detector were used to obtain information on the [O iii],
Hα, and [N ii] lines from the optical nebular shell.

The two-dimensional (2D) STIS spectra were used to extract spatial profiles of emission
along the minor axis of the photoionized innermost nebular shell for the Hα, [O iii] λ5007,
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and [N ii] λ6583 lines (Fig. 2, top panel) and the collisionally excited N v λ1239 UV line
(Fig. 2, bottom panel). The spatial profile of the X-ray emission, as derived from the Chandra
observations, is added into the bottom panel of Fig. 2.

3 Results and Discussion

The spatial profiles along the minor axis of NGC 6543 (Fig. 2) reveal the location of mixing
layer gas originating from very different processes. The brightest emission peaks in Hα and
[O iii] at ∼ 4′′ from the CSPN mark the location of the ∼104 K swept-up inner nebular
shell. On the other hand, the profile of the X-ray emission from the ≥106 K hot gas shows
an eastern peak at ∼2′′ and a shoulder of declining emission toward the west. This irregular
profile suggests that the X-ray-emitting gas is confined within a region with radius ≤3′′.
Therefore, the X-ray-emitting gas is confined within the cool nebular shell.

Interestingly, the spatial profile of the N v emission peaks at intermediate positions
(gray shades in Fig. 2), between the optical lines from the optical nebular shell and the
X-ray emission from the hot bubble. We remind that the N v ion cannot be produced by
photoionization because the effective temperature of the CSPN of NGC 6543 is 50,000 K;
thus it must be produced by thermal collisions at temperatures of ∼105 K, as expected in
the mixing layer.

The spatial profile of the N v λ1239 emission line has been used to estimate an outer
radius and thickness of the mixing layer of ∼3.7′′ and 1.0′′, respectively. At a distance of
1.0±0.3 kpc [19], this implies a thickness of 1.5×1016 cm.

The density of the mixing layer can also be estimated to be ∼180 cm−3, assuming a
simple geometry for the N v λ1239-emitting region and a N4+/H+ ionic abundance ratio
close to the nebular nitrogen abundance (N/H) of 2.3×104 [2]. This density and the adopted
temperature of 2×105 K imply a thermal pressure of 2×108 dyn cm2 in the mixing layer,
which agrees with the pressure of the hot bubble and the ionized swept-up shell [8].

To sum up, we have presented high-spatial resolution HST STIS UV and optical spec-
troscopy of the Cat’s Eye Nebula (NGC 6543). These STIS observations have enabled the
first view of the spatial distribution of the mixing layer gas, as probed by the collisionally
ionized N v UV emission line. The mixing layer is located exactly between the optical nebular
rim and the X-ray-emitting hot bubble as previously detected by Chandra. The hot gas in
the mixing layer is in hydrodynamical equilibrium with the hot bubble and ionized nebular
rim. More extended details of this work are reported by [5].

Acknowledgments

Support for the Hubble Space Telescope Cycle 20 General Observer Program 12509 was provided
by NASA through grant HST-GO-12509.01-A from the Space Telescope Science Institute, which is
operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract
NAS 5-26555. X.F., M.A.G., and J.A.T. are partially funded by grants AYA 2011-29754-C03-02 and
AYA 2014-57280-P of the Spanish MEC (Ministerio de Economı́a y Competitividad), cofunded with



Guerrero et al. 393

FEDER funds.

References

[1] Balick B. 2004, AJ, 127, 2262

[2] Bernard-Salas J., Pottasch S.R., Wesselius P.R., Feibelman W.A. 2003, A&A, 406, 165

[3] Cerruti-Sola M., Perinotto M. 1985, ApJ, 291, 237

[4] Chu Y.-H., Guerrero M.A., Gruendl R.A. et al. 2001, ApJL, 553, L69
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