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Comparison between two histograms

Anderson-Darling vs. Histogram Distance based on different histogram-distance definitions
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that many people quote that it follows a § only estimation that one typically can derive is | On the contrary, the simulations reveal
Poisson distribution, which is only o _|* i 0 the probability distribution plotted in red, which that the frequencies follow the
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ya Resampling the binned data within each interval .
/ Even though the information about the exact location of the data within a given interval of a This work has explored this approach by using 5 different resampling strategies: \
- histogram was lost once the histogram was built, one can try to recover part of that information - RST1: the data in each interval is assumed to be exactly in the center of the interval |
by using the frequencies of the neighbour intervals. If the adjacent intervals are not too noisy - RST2: the data is resampled uniformly
(I.e., their frequencies are not excessively small), one should expect that if the original data - RST3: a straight line is fitted passing through the center of 3 intervals and the data redistributed
followed a continuous and not too complex distribution, the location of the data within a particular using the fit as a proxy to the probability density
Interval should be more clustered towards the border of the interval which is closer to the - RST4: similar to RST3, but using a second order polynomial
neighbour interval with higher frequency. Applying this idea, one can resample the data within - RST4: similar to RST5, but forcing the individual fits of the different intervals to connect at the
each interval, and then perform the comparison between histograms by applying a traditional borders of the intervals.
two-sample test, such as the Anderson-Darling (for those fans of the Kolmogorov-Smirnov test,
see Beware the Kolmogorov-Smirnov test!, by E. Feigelson & J. Babu, at the ASAIP web site). Note that all these methods do preserve the number of elements within each interval.
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Results
Comparison of resampled data from one histogram Comparison of resampled data from one histogram Comparison of resampled data from one histogram
By performlng numerlcal Slmulatlons Of hlstograms Correspondlng to random with theoretical distribution function with original data from another sample with resampled data from another histogram
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In all the cases RST3, RST4 and RST5 are in general better choices, specially S o rat 2 o rai 2 o riis
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~not unexpected since In this situation the histogram intervals are too noisy.
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