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Abstract

We present a new code for fitting radial velocities of stellar binaries and exoplanets using
an Adaptive Simulated Annealing (ASA) global minimisation method. ASA belongs to the
family of Monte Carlo methods and its main advantages are that it only needs evaluations
of the objective function, it does not rely on derivatives, and the parameters space can
be periodically redefined and rescaled for individual parameters. ASA is easily scalable
since the physics is concentrated in only one function and can be modified to account for
more complex models. Our ASA code minimises the y? function in the multidimensional
parameters space to obtain the full set of parameters (P, Tp, e, w, v, K1, K5) of the
keplerian radial velocity curves which best represent the observations. As a comparison we
checked our results with the published solutions for several binary stars and exoplanets with
available radial velocities data. We achieve good agreement within the limits imposed by
the uncertainties.

1 Introduction

Precise, absolute masses of stars and planets can be only measured if they are part of binary
(star-star or star-planet) systems. The masses can be derived by fitting the radial velocity
(RV) curves of those systems to the keplerian orbital equations. Those equations need to
be solved numerically using multi-parameter minimisation techniques but this process gets
complicated by the need to explore a wide parameter space and by the existence of many
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potential local minima. To deal with this problem the most frecuently used software packages
include methods for local and global minimisation.

Simulated Annealing (SA) is a multi-parameter minimisation technique that draws on
metallurgic optimum cooling processing methods [12, [14, @, [I] and has been implemented
and tested in some of the most popular exoplanet and binary star modeling codes, but this
technique has been somewhat demoted on claims of being notoriously slow and less efficient
than other methods (e.g. [16} 8, [19]).

A variation of the original SA algorithm, called Adaptive Simulated Annealing (ASA)
[5, 6 [7], overcomes the speed problem of standard SA methods and ensures fast conver-
ging to a global minimum solution for stellar binaries and exoplanet RV curves. ASA was
applied by [I5] to the computation of orbits for binary systems with RV and visual measure-
ments. But the cases where the only observations available are the RV are many more, for
instance, exoplanets or single/double line eclipsing binaries. In this proceedings we present
our implementation of an ASA algorithm to fit those observations.

2 The Adaptive Simulated Annealing algorithm

An excellent and precise description of how the ASA algorithm can be implemented is the
work of [2] which is based in the original ASA papers. Our implemented ASA algorithm
follows closely his work. Another very good description of the ASA algorithm and SA in
general is [10].

The ASA algorithm minimises an objective function in a way that resembles the be-
haviour of the internal energy of a body heated and then slowly cooled (anneal): an inde-
pendent parameter called temperature is reduced following an annealing law; for each tem-
perature, a number N, of possible test states are generated from a previous state, and the
objective function is computed for each one; a test state is accepted or rejected based in the
acceptance rules, which depends on the temperature; if a test state is accepted, it becomes
the actual state and, if it is the one with the minimum absolute energy, it is saved; the
temperature is reduced to begin the process from the last accepted state.

The key feature in all the SA algorithms, what prevent them from getting stuck in a
local minimum, is that any state with worst energy configuration, i.e. an ‘uphill movement’,
can be accepted with a certain probability. Thus, to work properly, any SA method consists
on the next three functions: a probability density function for a N-parameter space, where N
are the parameters to minimise, which generates new test states; a probability of acceptance
function, which determines whether a given step solution is accepted or discarded, and the
annealing schedule, which defines how the parameters change with each iteration step. The
functional form of these functions for the ASA algorithm with their convergence properties
can be found in [5 (6, [7, 2]. We refer the reader to these references to obtain more information.

ASA differs from classical SA in two aspects: each parameter to fit has their own
generating temperature T; gep,, and every Nyceept acceptances, these temperatures are rescaled
using the sensitivities, which depends on the local topology of the parameters space and must
be computed numerically.
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3 The cost function

Assuming gaussian uncertainties, the function to minimise is the y2, which, for a double line
binary system, is given by:
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where N; and N; are the number of RV for the primary and secondary components, v;
and v;, and o; and o; are the measured velocities and their associated errors. In addition,
Veale,i and veqiej corresponds to the expected RV of the components calculated using the
keplerian orbit equation:

Veale,i = ¥ + Ki[cos (0 + w) + e cosw], (2)

where « is the center of mass velocity of the system measured from the Sun, 6 is the
true anomaly, e is the eccentricity of the orbit, and K is the amplitude of the RV. A similar
equation is applied to vqle j using K and w’ = w+ 7 for the secondary component. The true
anomaly 6 is calculated from the eccentric anomaly E in the usual way, and this one from
the mean anomaly M using the Kepler equation:

E—esinE:M:%T(t—Tp) (3)
Resolving numerically this equation is a key step in the algorithm since the generating
function scans the parameters space thousands of times in an ergodic fashion, and every
possible combination of parameters can be generated. Thus, the numerical computation of
the Kepler equation must be robust and fast. To achieve this goals, we implemented a two
step algorithm: first, an initial value for the eccentric anomaly E is computed using a third
order Maclaurin series expansion; and second, a Newton classical iterative method was used
to refine the computed initial value to the desired accuracy.

4 Computation of the uncertainties

For a guess of the parameter uncertainties, the code computes the Fisher matrix [F] at
the global minimum. The covariance matrix is obtained by inversion [C] = [F]~! and the
parameter variances extracted from the main diagonal. Since the uncertainties obtained
in this way cannot represent non-linear correlations among parameters, we programed the
Markov Chain Monte Carlo (MCMC) method as a separate code.

Our MCMC code makes use of the Metropolis-Hastings (MH) algorithm to sample the
distribution P(x) of the cost function in the vicinity of the global optimum. This code works
in two basic steps: first, a new state 2’ is generated from a candidate distribution ¢(x);
second, the decision to accept or to reject the new state is made using the MH acceptance



646 The fitting of radial velocity curves using ASA

probability A which, for a symmetric candidate distribution ¢(z), is given by:
1
Aw.a') = min (1exp [ 503@) — 2) ) (4)

The code uses a gaussian ¢(z) distribution centered in the actual state x with a o,
which need to be optimized for a good mixing of the Markov chain: too small values of o
can lead to a slow scanning of the whole range of parameters and for too large values the
Markov chain gets stuck in particular values for long periods of time. We developed a simple
algorithm to dynamically adjust o before the MCMC was started. In this algorithm we
assume a desired acceptance probability of p ~ 0.25 to obtain a good mixing of the Markov
chain, since some studies claim that this is the best value for spaces with dimensions 5 to
100 (see [3, [11]). The typical chain length is 10° acceptances, enough to provide a reliable
measurement of the uncertainties through the marginalized histogram for each parameter. In
many cases the uncertainties can be calculated by fitting a gaussian to this histogram but,
whether it is asymmetric, a 68% shortest confidence interval can be computed.

5 Fitting test with synthetic datasets

To characterize the code’s performance we carry out intensive tests with synthetic datasets
with the following goals: to asses the stability of the code, to characterize the behaviour of
the code when fitting RV curves with different signal to noise ratios, and to measure the run
time for different number of RV observations. Because of its interest we show the results of
this last tests in Table In that Table the tgg, tgs5, and tg9 values are the times in which
the code fitted all the parameters for the 68%, 95%, and 99% of the runs, respectively, for
synthetic datasets with 15, 50, 100 and 1000 observations.

Table 1: Execution times measured over 1000 consecutive runs for several datasets. Each
time was measured computing the cumulative distribution function (CDF) and interpolating
the desired percentage. Note that doubling the tgg execution times is a good guess for tgg.

Number of points Execution times (s)

tes tos tgg

15 4.1 6.8 8.9
50 7.6 12.7 16.1
100 20.2 304 38.5
1000 81.1 132.7 175.1

6 Fitting tests on real systems

To compare the results with other published solutions we selected a small group of objects
with published RV and orbital solution and with a variety of physical configurations. In
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Table 2: Results for the fits to RV data for the selected systems. For short, only a subset of the
fitted parameters are displayed. The uncertainties were computed using a MCMC chain (see
text). The symmetric uncertainties were calculated by fitting a gaussian to the marginalized
histogram. The asymmetric uncertainties were computed using the 68.3% shortest confidence
interval over the histogram. The uncertainties are expressed as the two last digits of the
parameter, with the decimal point present where necessary for guidance. f means fixed and
adopted from the original paper.

Object Name P e w K Ko Remarks Reference
(d) - (deg) (km/s) (km/s)

LV Her 18.43595357 0.61273(73)  352.20(.24) 67.24(.19) 68.59(.27) — K]
18.43600(14) 0.6137(19)  352.22(.27) 67.31(.24) 68.67(.33) all free [this work]
18.43595357 0.6138(20)  352.23(.28) 67.32(.26) 68.68(.35) P fixed [this work]
Kepler 78b 0.3550(4) 0.0 — 0.00196(32) — — 13l 7 4]
0.34951(15) 0.0f 907 0.00173(*2%) - Tp, e, w fixed  [this work]
0.35500744(6)7 0.07 907/ 0.00186(28) — P, e, w fixed  [this work]

Table [2| we show the results of our fitting tests for two of the selected systems.

LV Heris a double-line eclipsing binary star with a highly eccentric orbit, a high quality
RV curve and a long observing time interval relative to its period [18]. Two fits were done:
the first one leaving all the parameters free and the second one fixing P to the value from
the light curve to mimic the fit of the reference [I8]. In both cases all the parameters are
recovered (see Fig. [1)).

Kepler 78b is the first Earth-like transiting exoplanet discovered in the Kepler mission
data ([I3} 17, [4]). It has a nearly circular orbit and the RV data set has a very low signal to
noise ratio (see Fig. . Two fits were done: one in which 7}, e, and w were fixed to reproduce
the analysis of [13], resulting in lower values of P and K7, and a second one fixing P, e, and
w with the values obtained from the Kepler light curve. In this second fit the value for K;
has a better agreement with the value published in [I3].
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Figure 1: Fits obtained with our ASA implementation for the eccentric double-lined eclipsing
binary LV Her (left panel) and the exoplanet system Kepler 78b (right panel). In this case
the fit was done fixing P, e, and w.

4] Howard, A., et al. 2013, Nature, 503, 381
5] Ingber, L. 1989, Mathl. Comput. Modelling, 12, 967
6] Ingber, L. 1993, Mathl. Comput. Modelling, 18, N11, 29
7] Ingber, L. 1996, Control and Cybernetics, 25, N1, 33
| Kallrath, J., Milone, E. F. 2006, Eclipsing Binary Stars. Modelling and Analysis (Springer)
9] Kirkpatrick S., Gelatt, C. D., & Vecchi M. P. 1983, Sci, 220, 671

10] Locatelli, M. 2000, Simulated annealing algorithms for continuous global optimization, in the
Handbook of Global Optimization II, Kluwer Academic Publishers, p179

[11] MacKay, D. J. C. 2006, Information Theory, Inference, and Learning Algorithms (Cambridge
University Press)

[12] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. 1953, J. Chem. Phys.
21(6), 1087

13] Pepe, F., et al. 2013, Nature, 503, 377
] Pincus, M. 1970, Operations Research, 18, 1225
] Pourbaix, D. 1998, A&AS, 131, 377
6] Prsa, A., & Zwitter, T. 2005, ApJ, 628, 426

]

]

|

o)

[
[
[
[
[
[
[

Sanchis-Ojeda, R., et al. 2013, ApJ, 774, 54
Torres, G., Sandberg Lacy, C. H., & Claret, A. 2009, AJ, 138, 1622
Wichmann, R. 1999, Nightfall Users Manual



	Introduction 
	The Adaptive Simulated Annealing algorithm
	The cost function
	Computation of the uncertainties
	Fitting test with synthetic datasets
	Fitting tests on real systems

