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Abstract

We describe and check a novel formulation of Smoothed Particle Hydrodynamics (SPH)

based on an Integral Approach to the Derivatives, called IAD0, that can be applied to

simulate astrophysical systems. The method relies in a tensor approach to calculating

gradients, which is more accurate than the standard procedure (STD), due to its better

renormalization properties. The proposed scheme fully conserves momentum and energy in

isentropic flows, and is less susceptible to the pairing instability. The resulting algorithm is

verified using two tests: a two-dimensional simulation of the Kelvin-Helmholtz instability

and the three-dimensional simulation of the merging of two polytropes. The analysis of

these test cases suggests that the method is able to improve the results of the standard

technique with only a moderate computational overload.

1 Introduction

Nowadays, multidimensional numerical hydrodynamics is one of the most powerful tools
to approach astrophysical problems. Among them, the Smoothed Particle Hydrodynamics
(SPH) is one of the preferred techniques because of its ability to describe the evolution of
fluids with complicated geometries and diversity of length scales. Formulated more than
thirty years ago, by [4] and [5], it has largely evolved during the last decade, making it
an interesting alternative to grid based methods of Eulerian type. Details of the modern
mathematical formulation can be found in the recent review by [6].

It has been recently suggested by [3] and [1] that the use of matrix methods [2] in
Astrophysics could improve the simulations with the SPH technique, and with an affordable
computational cost. The good behavior of IAD0 to describe hydrodynamic instabilities is
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first highlighted in connection to the growth of the Kelvin-Helmholtz instability (KHI) in a
parallel shear flow subjected to a small perturbation in the transverse velocity field. We also
check the ability of IAD0 to describe a very dynamical situation by simulating the coalescence
of two polytropes. In this case, a catastrophic merging of the stars ensues after a few orbital
periods. For this test, the tensor method gives results of comparable quality as those obtained
using the standard SPH scheme, but displaying a more homogeneous mixing of the material
of both stars.

2 Mathematical foundations of the IAD0 approach

As stated in [3] ans [1], the new scheme relies in the integral,

I(r) =

∫
V

[
f(r′)− f(r)

]
(r′ − r)W (|r′ − r|, h)dr′3 , (1)

where W (|r′ − r|, h) is a spherically symmetric interpolating function and h is called the
smoothing length. The IAD0 interpretation of SPH is the consequence of approaching Eq. (1)
with summations along with two reasonable simplifications,

f(rb)− f(ra) ' ∇fa · (rb − ra) , (2)

where a and b refer to neighbor particles with masses ma and mb respectively, and

I(ra) '
∑
b

mb

ρb
f(rb)(rb − ra)W (|rb − ra|, ha) , (3)

is the corresponding discrete expression for Eq. (1). Direct application of Eqs. (1), (2) and
(3) to calculating the gradient of density, leads to a matrix equation,

 ∂ρ/∂x1

∂ρ/∂x2

∂ρ/∂x3


a

=

 τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33


−1  I1

I2

I3

 , (4)

where

τij,a =
∑
b

mb

ρb
(xi,b − xi,a)(xj,b − xj,a)Wab(ha) ; i, j = 1, 3 , (5)

and

Ik,a =
∑
b

mb (xk,b − xk,a)Wab(ha) ; k = 1, 3 . (6)

It was shown in [3] that Eq. (4) leads to a formulation of the SPH Euler equations
compatible with the variational principle,

ρa =
nb∑
b=1

mbWab(|rb − ra|, ha) , (7)
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ẍi,a = −
nb∑
b=1

mb

(
Pa

Ωaρ2
a

Ai,ab(ha) +
Pb

Ωbρ
2
b

A′i,ab(hb) + Πab Ãi,ab

)
, (8)

(
du

dt

)
a

=
nb∑
b=1

d∑
i=1

mb(vi,a − vi,b)
(

Pa

Ωa ρ2
a

Ai,ab(ha) +
Πab

2
Ãi,ab

)
, (9)

where Ai,ab is

Ai,ab(ha) =
d∑

j=1

cij,a(ha)(xj,b − xj,a)Wab(ha) , (10)

being cij the coefficients of the inverse matrix defined in Eq. (4), d the dimension of the space
and Ã is the arithmetic mean of A and A′. As usual, Πab gives the viscous pressure due to
the artificial viscosity (AV) and Ω accounts for the gradient of the the smoothing length [6].
Therefore, Eqs. (7), (8) and (9) summarize the basis of the IAD0 formalism. Any expression
of standard SPH can be made compatible with IAD0 just taking the kernel derivative as,

∂Wab(ha)

∂xi,a
= Ai,ab(ha) ; i = 1, 3 . (11)

If the matrix coefficients in Eq. (4) are calculated analytically, the matrix T becomes
diagonal. In that case, it can be shown that for Gaussian kernels the standard and IAD
descriptions are equivalent.

3 Simulating the Kelvin-Helmhotz instability

The ability of any hydrocode to simulate the growth of the KHI has become one of the
most popular test in computational fluid dynamics. This instability appears when there is
a sufficient velocity shear in the interface layer between two fluids with different densities.
Small perturbations of the velocity field in the orthogonal direction to the interface grow up,
leading to a mixing of both fluids. This is usually simulated in a box with periodic boundary
conditions, where two fluid regions are defined with densities ρ1 and ρ2 respectively. Both
layers have opposite parallel velocities leading to a shear discontinuity in the contact interface.
In order to develop the instability a small perturbation is seeded in the interface as a sinusoidal
mode of length scale λ.

We have simulated a central band of high density fluid (ρ1) moving in a low-density
medium (ρ2) in a squared lattice of 1 cm side in the XY plane using N = 62 500 particles. The
mass of the particles was arranged in order to obtain the correct density profile following a
ramp function [3]. In this way we smoothed the interface density jump to make it comparable
to the SPH resolution using

f(y) =
1

A

1

1 + exp 2(y−0.25)
∆y

1

1 + exp 2(0.75−y)
∆y

, (12)
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Figure 1: Evolution of the KHI (see the text for the explanation of the meaning of each
row).

where A is a normalization constant and ∆y = 0.05 cm. The density profile is given by

ρ(y) = ρ2 + (ρ1 − ρ2) f(y) , (13)

where ρ1 = 2 g cm−3 and ρ2 = 1 g cm−3. The seed of the perturbation is obtained using a
sinusoidal function for the vy component of the velocity field,

vx(y) = v2 + (v1 − v2) f(y) , vy(x) = ∆vy sin (nπx) , (14)

where we took n = 2, ∆vy = 0.1 cm s−1, v1 = 0.5 cm s−1 and v2 = −0.5 cm s−1, which
corresponds to the high and low density bands respectively. Fig. 1 shows four snapshots of
the growth of the Kelvin-Helmholtz instability at different times (t = 0, 0.1, 1, 2 and 3 s) for
the calculation using IAD0 (first row) and the standard SPH implementation (second row).
As it can be seen the standard formulation does a poor job resolving the structure of the
instability. In the case of the tensor calculation the instability grows cleanly and at good
rate, and the definition of the extremes of the billows, where the finest structure appears,
is clearly enhanced. To achieve similar results to those obtained with the IAD0 technique,
different methods have been proposed to maintain the standard description, mainly based
on including an artificial thermal conductivity [6]. In order to test the tensor approach
in a harder scenario, we diminished the amplitude of the initial perturbation an order of
magnitude (i.e. ∆vy = 0.01 cm s−1). In third and fourth rows of Fig. 1 we show the results
of the simulations using the schemes IAD0 and STD, for times t = 0, 1, 3, 4 and 5 s. It is clear
that in the standard formulation the instability was unable to grow, while it does using IAD0.
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Figure 2: Density color map of the merging process of two stars as calculated with IAD0

(upper row) at times t = 0.31P , t = 2.8P and t = 4.3P (P = 29.3 s), and STD at t = 0.23P ,
t = 2.15P and t = 3.3P (lower row).

Changing the geometry of the initial particle setting from square to an hexagonal lattice or
reducing the size of h taking less neighbors, did not appreciably alter the results.

4 Merging of two polytropes

We have simulated the merging of two twin polytropes with index n = 3/2 and mass 0.6 M�
with both, the IAD0 and STD schemes. Both stars were put in a circular rigid rotation orbit
in the plane XY with radius r0

orb = 1.5 Rs (being Rs = 8000 km, the theoretical surface
radius of the polytrope) from the center of mass of the system. To enforce the coalescence,
a braking force proportional to the velocity was imposed during the first revolution period,
P = 29.3 s. In Fig. 2 it is shown the density color map of both stars in the orbital plane
as obtained with IAD0 and STD schemes respectively. On the whole, the behavior is rather
similar, although the coalescence evolves at slower pace for the matrix method.

An important challenge for the hydrocodes is to adequately represent the mix of the
advected material during the coalescence process. In our system the initial conditions are
fully symmetric. Therefore, one would expect that few minutes after the merging the core is
homogeneously composed with material of both stars. Fig. 3 (center and right) depicts the
approximate distribution of the gas belonging to each star one minute after the catastrophic
stage of the coalescence process. As we can see, material of both stars is much better mixed
in the IAD0 calculation than in the standard one. We want to stress that the recipe to handle
with the AV is exactly the same in both calculations. Therefore, the larger mixing in the IAD0

calculation is due to the enhanced treatment of the gradients. Fig. 3 (left) shows the angular
velocity profile of the particles in the orbital plane as a function of their mass coordinate.
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Figure 3: Angular velocity profiles at t ' 220 s (left). Mixing of material of both stars in
the core of the remnant for IAD0 (center), and standard SPH (right).

As we can see, the standard calculation predicts rigid rotation for Mr < 0.8 M�, followed by
a Keplerian velocity distribution beyond that point. At distances Mr > 1 M� the velocity
profile obtained with IAD0 is also Keplerian, but below that point rigid rotation is never
attained. In the standard calculation, the high amount of viscosity, which prevents the mix
of the core, is coupling the different layers of the fluid so that the system rapidly approaches
rigid rotation. However, the time delay for core synchronization in nature is a function of the
real physical viscosity. In the simulations the synchronization time is artificially shortened
by the much larger numerical viscosity of the codes.

5 Conclusions

A novel scheme to calculating gradients in SPH has been proposed and checked. The results
of the simulations suggest that the method provides a better description of hydrodynamic
instabilities and a better mixing of gas during the merging process of stellar objects.

Acknowledgments

This work has been funded by the Spanish MEC grants AYA2010-15685, AYA2011-23102 and the
Swiss Platform for High-Performance and High-Productivity Computing (HP2C) within the supernova
project. It was also supported by ESF EUROCORES Program Eurogenesis through the MICINN
grant EUI2009-04167 and by DURSI of the Generalitat de Catalunya.

References
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