The impact of bars on disk breaks as probed by S^4G

J.C. Muñoz Mateos & the S^4G team

muoz@nrao.edu
http://www.cxc.nrao.edu/~kmunoz/S4G/

The traditional textbook description of spiral galaxies depicts them as composed of a bulge and an exponential disk. However, we now know that only 10% of nearby disks exhibit a single exponential profile [1,2]. Most disks, around 60%, present a broken or down-bending profile, with an inner exponential disk followed by a steeper outer one. The remaining 30% have an up-bending profile, where the outer exponential is flatter than the inner one. Multi-sloped profiles are also found up to z~1 [3,4,5].

The ubiquity of these features implies that they are key probes of disk assembly and evolution. Are breaks due to star formation thresholds? Do resonances with bars and spiral arms play a role? In brief, is the present-day distribution of old stars in disks determined by in-situ star formation or by radial stellar migration? To answer these questions, here we use deep Spitzer images to study, for the first time, the properties of breaks in the infrared, thus mapping the old stellar backbone of galaxies.

Three types of disks

Most disks present a break at $2R_{R_e}$. Assuming that rotation curves are flat, this is the expected locus of the Outer Lindblad Resonance (OLR) of the bar [2]. This means that this kind of breaks results most likely from a secular rearrangement of stars, through a dynamical interaction with the bar. It has been often argued that breaks found much further out must be unrelated to bars, being perhaps due to star formation thresholds. However, the OLR is at $2R_{R_e}$ only when the rotation curve is flat. But the rotational velocity in low-mass disks rises gently with radius, thus pushing the OLR outwards [8]. The red curves result from a model that incorporates realistic rotation curves as a function of the galaxy’s stellar mass. This model can account for the observed distribution of R_b/R_{R_e} relying on dynamical considerations alone, without appealing to star formation thresholds.

The link between breaks and bars

The plot to the right shows the break radius, relative to the bar radius, for a subsample of barred face-on S^4G galaxies. Low-mass disks have breaks lying between 2 and 10 times R_{R_e}, but the range of R_b/R_{R_e} values becomes considerably narrower in more massive disks.

The Spitzer Survey of Stellar Structure in Galaxies (S^4G)

S^4G is an Exploration Science Legacy Program carried out during Spitzer’s warm mission [6]. It comprises very deep 3.6 and 4.5µm images of more than 2300 nearby galaxies of all Hubble types. These bands trace old stellar populations and are insensitive to internal dust extinction. Therefore, S^4G provides an unprecedented inventory of the stellar structure in nearby galaxies.

Survey details:
- Observing time: 637.2 hours
- 4 min/pixel
- $\mu = 27$ AB mag/arcsec2 at 3.6µm
- $D < 40$ Mpc
- $lbr > 30^\circ$
- $m_{3.6} < 15.5$
- $D_D > 1$ arcmin

There is another well-defined family of disks having breaks at 3.5xR_{R_e}, and this had been overlooked in previous studies of disk breaks.

We propose that these breaks may happen when certain resonances of the bar and the spiral arms overlap; that is, when stars at certain radii are simultaneously in resonance with both the bar and the spiral pattern [8]. In particular, the blue curves mark the expected break-to-bar ratio when the corotation radius of the bar overlaps with the inner 4:1 resonance of the spiral arms (also called the Ultra Harmonic Resonance).

Such a coupling has been found in numerical simulations [10], and analysis of the pattern speed in some real galaxies are also suggestive of coupling [11]. Moreover, it has been shown that when the bar and the spiral arms are dynamically coupled in this way, radial stellar migration is much more efficient, taking only a few Gyr to achieve a complete mixing of stars within the disk [12]. Therefore, identifying the relative position of breaks and bars is a powerful way to study the processes governing the secular evolution of disks.

The scaling laws of broken disks

Scaling laws are empirical trends between different global properties of galaxies (mass, luminosity, circular velocity, size...), that any successful model of galaxy formation must be able to reproduce.

The plots to the right show that, on average and for the same total stellar mass, the inner disk of a down-bending profile is flatter than the slope of a disk with a genuine single exponential profile, and the outer disk is steeper. In theory, there is an infinite number of down-bending profiles with the same total stellar mass as a single exponential one, so the fact that Nature has chosen a particular shape for broken profiles strongly constrains models of break formation.

References