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OUR MODELS ARE OFTEN COMPLEX

▸ 2000 x 2000 pixels 

▸ 10 wavelength points 

▸ One observation per minute 

▸ Observe during 3 hours

720 million spectral lines per day

22.8 years to invert assuming 1 s per inversion 

8.3 days to invert assuming 1 ms per inversion



SCALING WITH CPUS

3 hours @ 1 min cadence for FOV of 2000x2000 

Magic number : 100 µs per inversion



MODERN MACHINE LEARNING IN SOLAR+STELLAR

▸ Real-time data management 

▸ online image correction 

▸ online inversion 

▸ Classification of events 

▸ Extraction of hidden information 

▸ Robust and fast Bayesian inference



real-time data management: 

image correction



NOISE FILTERING : SST DATA

Díaz Baso et al. (2019)

Díaz Baso et al.: Solar image denoising with convolutional neural networks

Fig. 6. Results for di↵erent wavelengths and Stokes parameters after apply the neural network to real observations. For Stokes Q at �0.17 Å (top
panel) and an example of Stokes V (lower panel) at �0.765 Å.

van Noort et al. 2005). The MOMFBD code applies a Fourier fil-
ter to the reconstructed images that suppresses frequencies above
the di↵raction limit of the telescope and which is slightly mod-
ified according to each patch of the image. This processing will
generate an additional correlation between the signal and the
noise of each region.

We use these images as the input and output of our training
set. A total of N = 10000 patches of 52⇥52 pixels are randomly
extracted from the temporal series. They are also randomly ex-
tracted from the spectral positions and from di↵erent Stokes pa-
rameter (Q, U and V). We also randomly extracted a smaller sub-
set of 1000 patches which will act as a validation set to check that
the CNN generalizes well. Again, the network is trained during
20 epochs.

A crucial ingredient for the success of this process is the gen-
eration of a suitable training set of high quality. Physical data
augmentation has been important in reducing the possible e↵ects
of the quick evolution of signals between two time-steps. For
that, we apply rotations, sign changes, etc. In this way, we can,
not only generate a dataset with much more variety but generate
opposite states (for example a region where the signal increases
can be used in reverse order). With that, we achieve that the aver-
age behavior remains constant and the noise is the only di↵erent
factor between two frames. In the case of a quick evolution of
the signals between two frames, we might take into account the
motion (e.g. calculating the optical flow) and wrap one frame to
the other (Ehret et al. 2018), however it does not seem to be re-
ally necessary because the training data have been chosen stable
over time.

3.2.1. Monochromatic maps

Once the network was trained it was used on observations of
a region of flux emergence taken on 2016-09-21 from 12:38 to
12:58 UT6. Figure 6 displays the map estimated by the network
for di↵erent wavelengths and Stokes parameters. For Stokes Q
(top panel) we have chosen the wavelength at the core of the
spectral line due to its weak signal. In the case of Stokes V (lower
panel), we have chosen a wavelength closer to the wing where
the noise e↵ect is more evident as Stokes V has usually higher
signals.

Like in the synthetic case, we have examined that we do
not lose signals during reconstruction (see the right column of
Fig. 6). Although the amplitudes of the noise pattern correlates
with the strength of the signals, the local spatial average is zero.
This result has not been imposed on the training but is success-
fully obtained at the end of the training.

In this unsupervised training, the network is also not only
able to infer the noise from the image but to also eliminate arti-
facts generated for example by the post-processing. In the case
of Stokes Q, vertical features appear in the pixels with x=580
and are visible in the original image but not in the reconstruc-
tion of the neural network. The neural network is able to solve
this task because although some artifacts are located in the same
location as the sensor, the images used for training have been
slightly rotated to compensate for the solar rotation.

Another interesting point to study is the range of spatial
scales at which the neural network is performing. Figure 7 dis-
6 An example of the neural network applied to the same observations
used for the training is shown in the Appendix C.1
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GENERALIZATION TO UNSEEN DATA

100 images/s
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real-time data management: 

inversion



AR10933 : INFERENCE

𝛕 surfaces Bz

A. Asensio Ramos and C. J. Díaz Baso: Stokes inversion based on convolutional neural networks

Fig. 6. Predicted physical properties of AR10933 using the encoder-decoder network.

from the synthesis in the models inferred from the neural net-
work goes up to 13.58%, very close to the contrast quoted for
high-resolution synthetic observations obtained from 3D MHD
simulations (e.g., Danilovic et al. 2008). As a test for consis-

tency, when the continuum synthetic image is convolved again
with the Hinode PSF, we obtain a contrast of 6.09%.
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180 ms for 512x512 

700 ns per pixel 

30 minutes for all Hinode observations



COMPARISON

Milic & Gafeira (2020, in prep)

A&A proofs: manuscript no. cnn_inv

Fig. 7. Same as Fig. 3 except we now compare inversion code and the
neural network on completely unseen synthetic data, from a di↵erent
MHD atmosphere.

wavelength points at each pixel, takes around 10 seconds. For the
comparison, the fastest inversion code known to the authors, SIR
(Ruiz Cobo & del Toro Iniesta 1992), needs several seconds for
each spectrum. This is already a speed up by a factor of ⇡ 105.
A common question we encountered in the discussions was the
duration of training. A training on a single CPU from a training
set of size ⇡ 104 spectra, takes roughly an hour. It is possible
that for more general neural network (e.g. one involving lines
with various sensitivity regions and/or di↵erent solar features)
would take longer, both because of larger training set and pos-
sibly more complicated network. However, using GPUs would
reduce training time immensely, thus making it unlikely that we
will ever need more than a few hours to train the network. Once
trained, the network can be applied to an arbitrary amount data,
obtaining results much faster than any standard inversion code.
Actually the slowest part of our calculation is the synthesis of
the spectra from inferred models by a neural network (⇡ 0.1 s
per pixel). We want to emphasize the CPU time saving provided
by a neural networks approach. We strongly believe that detailed
analysis of the spectra of NLTE lines obtained with high spa-
tial and temporal resolution will be impossible with standard
approaches and that neural networks can provide the fastest, if
maybe approximate, diagnostics.

From these initial results we can propose a method for very
fast inversion using a convolutional neural network:

– Cluster the whole observed dataset, making sure that there
are enough clusters to cover all the di↵erent spectra shapes.
This takes some trial and error but can be important for the
selection of the appropriate training set.

– From each of the clusters randomly select a subset and merge
them in an aggregate training subset of size 104

� 105.
– Invert the aggregate subset using the inversion code of

choice.
– Train the network using best fit profiles as the input and the

best fit model parameters as the output. We the best fit pro-
files as the input, instead the observed ones, to avoid sys-
tematics caused by possible local minima, wrong fits and so.
However, using the observed data helps o↵set other system-
atic e↵ects such as fringes, telluric lines, etc. Choosing one
or the other might depend on the specific spectral region and
the instrument.

– Apply the trained network to the rest of data to infer the
model parameters of the full data set (or other data sets).

– If desired, synthesize the predicted spectra from inferred
model parameters, to check for pixels with conspicuously
bad fits and analyze them separately.

Note that this approach implicitly assumes that both the training
data and the data to be interpreted are observed at the same helio-
centric angle. This limitation is easy to generalize. One approach
is to train the network with the data observed at various heliocen-
tric angles and to then provide heliocentric angle together with
the data to be interpreted. The other is to have a referent library
of the models and to calculate the spectra at the heliocentric an-
gle equal to the one of the observations. The network is then
re-trained for that training set and applied to the observations.

In our preliminary tests we found that this approach works
well on spectral lines formed in di↵erent regimes (we tested on
Fe I 6300, Na I D, Ca II 8542, Mg I b etc.), real-life spectrograph
data as well as filtergraph data (in this case it is not necessary to
use convolutional layers). In the follow-up publication we will
apply this approach to the full Stokes observations, and the train-
ing set obtained with a di↵erent inversion code.

All the codes, plotting routines and the data
used to for this publication are publicly available at
https://github.com/ivanzmilic/deepinversion and XXXXXX.
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Classical CNN

T(log 𝛕=-0.8)

T(log 𝛕=0.0)

v(log 𝛕=-0.5)

BLOS(log 𝛕=-1.5)

BLOS(log 𝛕=0.3)

400x400 pixels in 10 seconds 

Speed ~ 62 µs / pixel 

Speedup wrt SIR ~105 

Can be improved with 2D CNNs



K-MEANS INVERSIONS
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Fig. 1.— Top: Left: slit-reconstructed intensity map of NOAA AR 12480 observed by IRIS at Mg II k2V . Center: location of the representative profiles (RPs).
Right: location on the solar disk of the IRIS Mg II h&k database observations and their (color-encoded) exposure time. Bottom: from left to right, T , vlos, and
electron density (log(ne)) evaluated at log(⌧) = �4.

Sainz Dalda et al. (2019)



classification of events



FAST SOLAR IMAGE CLASSIFICATION

Armstrong & Fletcher (2019)
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Figure 3 Validation on unseen images from Hinode/SOT imaged in Hα. This shows our network correctly identifying images with flare ribbons (left column), prominences
(middle columns) and sunspots (right columns) in images it has never seen before.



CLASSIFICATION OF LIGHT CURVES

Figure 1: Diagram of an RNN encoder/decoder architecture for irregularly sampled time series
data. This network uses two RNN layers (specifically, bidirectional gated recurrent units (GRU) [6, 25])
of size 64 for encoding and two for decoding, with a feature embedding size of 8. The encoder takes
as inputs the measurement values as well the sampling times (more specifically, the differences between
sampling times); the sequence is processed by a hidden recurrent layer to produce a new sequence,
which can then be used as the input to another hidden recurrent layer, etc. The fixed-length embedding is
constructed by passing the output of the last recurrent layer into a single fully-connected layer with linear
activation function and the desired output size. The decoder first repeats the fixed-length embedding
nT times, where nT is the length of the desired output sequence, and then appends the sampling time
differences to the corresponding elements of the resulting vector sequence. The sampling times are
passed to both the encoder and decoder; the feature vector characterizes the functional form of the signal,
but the sampling times are needed to determine the points at which that function should be evaluated.
The remainder of the decoder network is another series of recurrent layers, with a final linear layer to
generate the output sequence. We also apply 25% dropout [14] between recurrent layers, which we omit
from the figure for simplicity. In our model we take the number and size of recurrent layers in the encoder
and decoder modules to be equal, but in general the two components are entirely distinct and need not
share any architectural similarities.

standard approaches. Any form of interpolation makes implicit assumptions about the spectral
structure of the data, which may be unjustified and can end up introducing biases and arti-
facts. These artifacts increase with sampling unevenness and are ultimately properties of the
algorithm, not the data.

7

(a) ASAS (b) LINEAR

(c) MACHO

Figure 3: Confusion matrices for autoencoder-feature random forest classifiers for labeled
variable star light curves from a) ASAS, b) LINEAR, and c) MACHO surveys. Values
along the diagonals are counts of correctly-classified light curves, and off-diagonal values cor-
respond to incorrect classifications (darker squares correspond to higher counts).

light curve.

Neural network parameters
The autoencoders used for the ASAS and LINEAR survey classification tasks were constructed
using a network architecture like that of Fig. 1, consisting of two encoding and two decoding
GRU layers of size 96, and an embedding size of 64. The network is trained using the Adam op-
timizer with learning rate � = 5⇥ 10�4 to minimize the weighted mean squared reconstruction
error defined in Eq. (1).

Random forest classifier parameters
In the classification experiments, a random forest classifier is trained to predict the class of each
labeled light curve from either the unsupervised autoencoder features from our method, or the

9

Naul et al. (2017)

Classify unevenly sampled light curves

https://arxiv.org/abs/1711.10609


ASTEROSEISMOLOGY

Asteroseismic Classification with ConvNets 5

Table 1. Metrics over the mean of 10-fold cross-validation (CV) and over
the test set.

Dataset CV (±1 std.) Test
Accuracy 0.982 ± 0.005 0.990
Precision 0.982 ± 0.005 0.990
Recall 0.982 ± 0.005 0.991
F1 Score 0.982 ± 0.005 0.991
ROC AUC 0.998 ±0.002 0.996
Log Loss 0.055 ±0.020 0.044

Figure 6. (a) ✏��⌫ diagram and (b) �P��⌫ diagram of test set predictions.
The colour corresponds to the score values of predictions, with deeper col-
ors corresponding to a greater confidence towards a particular class (0 for
RGB and 1 for HeB). Our classifications are available online <link>.

the performance of class score outputs, with confident predictions
rewarded low error when correct while penalised heavily otherwise.
As observed in Table 1, the accuracy of the classifier on the cross-

validation sets is generally above 98%. On the test set where the
classifier benefits from training on the entire training set, the clas-
sifier is capable of classifying with a 99% accuracy and su↵ers a
lower log loss. Having high values of precision, recall, and F1 score
also indicates that the classifier is not heavily biased in predicting a
particular population class that would not reflect the true population
ratio.

Figure 6 shows the test set results in ✏ ��⌫ (Huber et al. 2010;
White et al. 2011) and �P � �⌫ (Bedding et al. 2011) diagrams.
We derived the ✏ values using the method described in Stello et al.
(2016a,b). One can see that ‘disputed’ predictions, namely predic-
tions that are not in agreement with the "truth" labels from Vrard
or Mosser, are more concentrated towards the low-�⌫ regions. The
classifier appears to be confident in most of its predictions (deep red
and deep blue symbols), while most of the uncertain predictions are
disputed. Upon inspection of the spectra of the 10 disputed stars, we
visually verify that four of them, all with 2.9µHz < �⌫ < 5.2µHz,
had incorrect ground truth labels. Another four are confirmed to be
due to the classifier’s inaccuracy. These stars have �⌫ > 7.0µHz in
the diagrams. The final two stars are "high" luminosity red giants
with �⌫ < 2.9µHz. Visual inspection was inconclusive as the spec-
trum of one had suppressed dipole modes with a moderate level

Figure 7. ✏��⌫ diagram of the unclassified set for stars with �⌫ ? 2.8µHz.
The colour scheme is similar to that of Figure 6. The region of the secondary
clump stars is also indicated. The classifications for this plot are available
online <link>.

of noise, while the other appeared much like an RGB star but was
previously given a late HeB classification as its ground truth. From
theory, we do not expect to see a clear di↵erence between RGB
and late HeB stars because of the lack of coupling between core
and envelope in such stars (Stello et al. 2013, their Fig. 4b).

3.2 Classifying the Unclassified Set

We now use our trained classifier to predict the evolutionary state
of the unclassified set (Figure 7). It can be seen that the predictions
reflect the �⌫ � ✏ relation of RGB stars (Kallinger et al. 2012) well
for the entire �⌫ range spanned by the training set (2.8µHz > �⌫ >
18µHz). The secondary clump of HeB stars is seen in the diagram
with �⌫ ' 6�9µHz below the RGB �⌫� ✏ relation. In addition, the
predictions also clearly show the HeB population at �⌫ ' 3�4µHz,
with ✏ values mostly ranging about 0.7 to 1.0. In Figures 6a and
7, stars with �⌫ ' 4µHz and ✏ ? 1.2 are low ✏ stars that have
‘wrapped around’ vertically in the diagram.

The classifier has mostly very confident predictions, shown by
the vast majority of predictions in Figure 7 having deep shades of
red and blue for RGB and HeB predictions, respectively. The ex-
ception to this is at the region of intersection between RGB and
HeB populations at 2.8µHz  �⌫ > 4.0µHz and 0.9 > ✏ >1.0.
The paleness of the symbol colours in this region indicate a predic-
tion uncertainty, which we attribute to the scarcity of stars in our
training set with �⌫ and ✏ values within this range.

Despite the predictions capturing the general distribution of
red giant populations within the �⌫�✏ diagram , the classifier has its
limitations from classifying based on image representation alone.
For instance, it does not explicitly discriminate between frequency
spacings, such that it can erronously predict HeB stars at high �⌫
(�⌫ ? 9µHz), where no HeB stars exist. However, only a very
small fraction of predictions are subject to this inaccuracy. Another
important limitation of these predictions is imposed by the parame-
ter range of the training data. Our training data only includes RGB
stars down to �⌫ ' 2.8µHz, hence we infer that the reliability of
the classifier predictions also holds to a similar �⌫ threshold. Due
to this, we do not provide classifications for 1139 red giants with
�⌫ < 2.8µHz in our unclassified set, leaving behind 7655 red gi-

MNRAS 000, 1–6 (2017)

2 Hon et al.

Figure 1. Comparisons between an RGB star KIC 11293804 (top), with a
HeB star KIC 5810333 (bottom), both having large frequency spacing �⌫ '
3.92µHz. (a) and (b) are the original power spectra, while (c) and (d) are
folded spectrum image representations. The oscillation modes are labelled
by their degree l, while the frequency of maximum oscillation power, ⌫max,
is indicated by the dashed vertical line.

Figure 2. (a) Appended and normalized folded spectrum of KIC 10790301
with mode identification. s is the shape parameter or order (=2 for standard
Gaussian), while � is the standard deviation of the super-Gaussian weight.
The solid vertical line separates the original image from its appended copy.
(b) Resulting image from application of the super-Gaussian weight to the
spectrum in (a).

1008 stars as test data, with the remaining 5000 stars for training.
Additionally, we have an unclassified set comprising 8794 Kepler

red giants that are known to oscillate but have not been given clas-
sifications by Vrard or Mosser. We want to predict the population
labels of all stars in our unclassified set using our trained neural
network.

2.2 Image Representation

As our image representation, we define the folded spectrum as the
4�⌫-wide power spectrum segment centred at ⌫max, folded by a
length of �⌫ (see Figures 1a, c). The spectra and values for �⌫ and
⌫max were derived from end-of-mission Kepler data using the SYD
pipeline (Huber et al. 2009, Yu et al., in prep.). Because the neu-
ral network requires a fixed input array length, we bin each folded
spectrum into 1000 bins.

A comparison of spectral image representations between RGB
and HeB stars are shown in Figures 1c, d. RGB stars clearly ex-
hibit acoustic modes that are highly localized (Figures 1a, c) while

HeB stars show broader mode distributions particularly for non-
radial modes because of the stronger coupling between core and
envelope (Figures 1b,d) (Dupret et al. 2009; Grosjean et al. 2014).
With acoustic resonances less localized, HeB spectral representa-
tions notably have greater visual complexity as compared to RGB
spectra. Besides the structure of modes, the location of the l = 0
mode, represented by ✏, can be a strong indicator in distinguishing
population classes (Kallinger et al. 2012). However, ✏ is not the sole
feature that is used to recognize population classes from an image.
The lack of a clear boundary separating the two evolutionary states
shown by the observed spread in ✏ (Kallinger et al. 2012) and from
theoretical studies (Christensen-Dalsgaard et al. 2014) makes ✏ un-
suitable as a sole selection criterion. However, information about ✏
complements features extracted from mixed modes in the image.

As image pre-processing, we normalize each spectrum by its
max power value. Then, to avoid edge e↵ects, we append the im-
age with a copy of itself and apply a super-Gaussian (higher-order
Gaussian) weight function as shown in Figure 2.

2.3 Convolutional Neural Networks

An artificial neural network is a mathematical representation of a
biological neuron network (Figure 3a). Mathematical neurons con-
tain real numbers and connect to other neurons in subsequent lev-
els (network layers) by mathematical operations in order to form a
network capable of computing solutions to complex problems. The
total input from one layer to a neuron in the next network layer
is given by w · x, where x= (x0, x1, x2, x3, ..., xn) is an input vector
with n number of features from the input layer (represented by the
number of neurons in the input layer in Figure 3a), with x0 = 1. In
our study, x is the power in each frequency bin of the image at the
very first input layer. In subsequent layers, x will become manipu-
lated representations of the original input image. The weight vector,
w= (w0,w1,w2, ...,wn), links each input to a neuron in the subse-
quent layer, with w0 known as the input bias, b, which is analagous
to the intercept in a linear regression.

The total input is linear, however it is passed through a non-
linear activation function (Rosenblatt 1962), f , such that the net-
work becomes capable of approximating complex non-linear rep-
resentations. In this study, we use the rectified linear unit activa-
tion function f (x) = max(0, x) for every neural network layer ex-
cept the output layer. This function is suited for feature learning
in neural networks (Nair & Hinton 2010). A common design in
neural networks is to stack multiple layers and have the input pass
through consecutive intermediate or hidden layers to reach the out-
put layer (Figure 3b). Such a design is known as a feedforward neu-
ral network, because inputs are computed and fed forward through
the network to the output layer. A simple feedforward neural net-
work has fully-connected layers, such that each neuron in a layer is
fully connected to the neurons in the following layer. Each neuron
connection for a fully-connected layer is permitted to have distinct
weights.

Convolutional neural networks (LeCun & Bengio 1998) are
a variant of feedforward neural networks in which the layer con-
nections are constrained. This constraint comes in the form of
weight sharing, where weights across neurons within a layer are
constrained to only a fixed set of values, known as a filter. The con-
tent of the neurons in a convolutional layer is computed by sliding
this filter across neurons in that layer (Figure 3c). Hence, the filter
is analagous to a kernel convolution. By using a fixed-length fil-
ter as weights instead of allowing each neuron connection to have
their own distinct weights, features across a local ‘patch’ of data,

MNRAS 000, 1–6 (2017)

Hon et al. (2017)

Classify Red Giant Branch (RGB) vs Helium Burning (HeB)

https://arxiv.org/abs/1705.06405


extraction of hidden information
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Asensio Ramos, Requerey & Vitas (2017)

https://github.com/aasensio/deepvel



SMALL SCALE VORTEX FLOWS



OUR PREDICTIONS

Figure 2: Detection of the farside active region NN-2019-003 (FS-2019-001). Left column: far-

side phase-shift maps obtained from 5 days of HMI Doppler velocity data. Bottom left of the

panel shows the seismic strength of the strongest feature. Middle column: STEREO 171 Å data.

Colour contours indicate the active regions detected by the neural network (red) and by traditional

approach (blue). Right column Probability map, obtained as the output of the neural network.

Bottom left of the panel shows the integrated probability of the strongest feature. Each row corre-

sponds to a different time, indicated at the top part of the right panel.
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LEARN FROM MILLIONS OF SPECTRA

4 N. Sedaghat et al.

(a)

(b)

Figure 2: Brief architecture of the deterministic autoencoder on top, with the schematic variational counterpart of it at the bottom. In the
VAE version, the code is not directly connected to the encoder, but is drawn from the learnable parameters of the normal distribution:
reparametrization trick (Kingma & Welling 2014).

We convert our classic autoencoder to a VAE, as seen in fig. 2,
where the deterministic code is replaced by a probabilistic one and
each element of it is drawn from a normal distribution defined by a
pair of learnable parameters: mean (µ) and standard deviation (�).

In the most basic form of a VAE, the objective is of the form:

LV AE (✓, �) = Lreconst (✓, �) + Edata[DKL(q�(z |x)| |p✓ (z))] (4)

where z is the latent variable, p✓ (z) is the prior distribution on the
latent space. q�(z |x) is the approximation of the posterior, learned
by the encoder and DKL represents the Kullback-Liebler divergence
(Kullback & Leibler 1951).

Higgins et al. (2016) introduce �-VAE in which more disentangle-
ment is enforced by increasing the weight (�) of the second term:

L(✓, �) = Lreconst (✓, �) + �Edata[DKL(q�(z |x)| |p✓ (z))] (5)

which from another perspective, pushes for maximizing the mutual
information between z and x – e.g. see Burgess et al. 2018. We
follow the same formulation for enforcing disentanglement in our
implementation. However, we find that pushing for too much dis-
entanglement by setting � to too high a value, even values close to
1 as suggested by Kingma & Welling (2014); Higgins et al. (2016),
results in too much loss of reconstruction quality, rendering it against
the main goal of this work. We assess this trade-o� between disen-
tanglement and reconstruction quality in the upcoming sections and
find � = 0.3 a reasonable choice for the current task.

4 DATASET

The dataset is built from observations using the HARPS instrument,
a fibre-fed high-resolution echelle spectrograph dedicated to the dis-
covery of exoplanets (Mayor et al. 2003). The spectrograph has a re-
solving power of 115,000 and covers the spectral range 378–691nm.

We use the ⇠270000 HARPS fully reduced spectra available in the
ESO Science Archive5 in our investigations.

The datatset consists primarily of stellar spectra, although has an
extended diversity due to the presence of solar system objects such as
Jupiter and its Galilean moons, and asteroids. Although these objects
are potential contaminants, we decide to leave them in the dataset, to
keep the degree of supervision close to zero. We only had to remove
unusable spectra: the ones containing undefined or unrealistic flux
values, reflecting instrumental errors.

The spectra are homogenized by trimming down to the same min-
imum (3785 Å) and maximum (6910 Å) wavelengths, and then zero-
padded either side to the reach the same number of pixels. We chose
this length to be 327680 = 218 + 216 – reasonably close to a power
of 2 for computational purposes. With the same resolution (0.01 Å),
the wavelengths in the spectra are therefore represented by the index
of the flux vector. The result is a 1-dimensional input for the network
to train on.

4.1 Imbalanced Observations

Any dataset can potentially have di�erent numbers of observations
(instances) for di�erent objects. An extreme example in the case of
HARPS is HD128621 (aCen B) for which there are⇠20000 instances
in the dataset, whereas many other objects have been observed only
once.

Just like in any other data-driven method, ignoring this e�ect,
which is quite similar to a selection function, would allow dominant
objects to inject bias and prevent the learned features from being
representative of the whole dataset. But in order to stay fully unsu-
pervised we take two parallel approaches and compare the results:

5 The retrieval form to access these spectra is at http://archive.eso.
org/wdb/wdb/adp/phase3_main/form
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Figure 7: Correlation indicators based on Mutual Information at di�erent scales. The depicted matrix at each row shows di�erent scales
(binning configurations) along the vertical axis and di�erent nodes are sitting horizontally. Each row of each indicator, representing a single
scale, is normalized by max. For Radial Velocity, E�ective Temperature and Surface Gravity, individual nodes stand out, while for Metallicity,
Airmass and SNR, that is not the case.

dimension stands out for [M/H] airmass and signal-to-noise ratio
(SNR).

The two detected "physical dimensions" have already been identi-
fied by the purely statistical indicator of the previous section, which
increases the reliability of the finding. Visualization of the direct re-
lationship between latent features and their corresponding validation
labels in Figures 8 and 9, shows that the network has clearly grasped
a direct notion of these physical concepts.

6.2.1 Analysis

Node {85} shows correlation with both e�ective temperature and
surface gravity. Its correlation with the e�ective temperature is clear,
monotonic and tight, providing close to a one-to-one mapping from
node values to temperatures – Figure 8, top row.

The reason surface gravity is captured with the same dimension,
becomes clearer after plotting the scatter of the two physical parame-
ters (not the node values) against each other – bottom row of Figure 8.
It turns out that the input dataset presents a biased view when it comes
to temperature and gravity, in that it does not sample uniformly the
general underlying stellar population. Concretely speaking, in the ob-
jects the network has seen, temperature and surface gravity are more
or less strongly correlated. From an information theoretic point of
view, surface gravity does not provide much exclusive information,
and a big fraction of the information in it is shared with e�ective
temperature. In other words, the network does not need to dedicate
an independent node to store information about this physical param-
eter, when it can obtain most of what it needs from another node –
especially under disentanglement pressure. Of course, the network
needs to store the exclusive part of the information about this param-
eter, which is reflected in the scattered points in the plot, somewhere.
That place is most likely in one of the discarded nodes.

Node {124} has captured information on the stars’ radial velocity.
The correlation is shown visually in fig. 9. The plot shows that the
network has automatically learned a model for hypothetical, refer-
ence, zero-velocity spectra, since it has formed a symmetric mapping
around it. The mapping is of course not a bijective function. It is also
worth noting that for colder stars the correlation is quite tight and
progressively loosens for hotter stars, until it essentially vanishes at

the highest temperature available in our dataset. We speculate that
the increasing sparseness of absorption features with increasing tem-
perature is responsible for the observed behaviour.

The spectral absorption from the Earth atmosphere as
parametrized by the airmass a�ects the large-scale shape of the spec-
tra, a prominent feature that could be expected to be picked out by the
network. The same could be expected for metallicity. A posteriori,
however, this does not seem to be the case since neither of these
parameters are significantly correlated with any of the dimensions,
as gauged by the MI results, which may look puzzling at first glance.
This may be, however, related to the fact that HARPS has a relatively
narrow wavelength range, mostly bluewards of most telluric features.
HARPS is mostly an exoplanet hunter, and those are mostly looked
at around solar-like or cooler stars, and our sample is strongly biased
against containing early-type stars. This can be seen in Fig. 8, where
it is also clear that our dataset is mostly comprising main-sequence
stars. It also covers a limited range in metallicity, while the opti-
mised New Short Term Scheduler used by most HARPS visitors
implies that most targets are observed at the best (i.e. lowest) airmass
possible. It is therefore not surprising that the algorithm could not
find a correlation with metallicity and airmass.

One may also expect SNR to be captured by the network as an
independent feature, since it plays a role in forming the appearance
of an spectrum. This is, however, not the case and comes as little
surprise; the noise is uncorrelated with any other type of information
in the dataset and by definition does not contain any pattern across
di�erent spectra to be learned. Thus, for a model to capture and re-
construct pixel-accurate noise, it would need to assign one parameter
per pixel per spectrum – i.e. memorize the noise. This advantageous
limitation is a well-known feature of even the simplest classical au-
toencoders, such that denoising autoencoders have been among the
first ones to be used (Vincent et al. 2010). Such behaviour is of course
seen in many other methods used for dimensionality reduction, such
as PCA – e.g. see Bailer-Jones et al. (1998).

6.3 Latent Space Traversal

Although we run out of available physical labels or/and automatically
detected correlations, we go further and pursue deeper investigation
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RADYNVERSION : FLARE RIBBON

Osborne, Armstrong & Fletcher (2019)

atmosphere to produce a best-fit line profile. Our INN first learns
the forward process from our training data, but due to the
bijective nature of the mapping, a perturbative solution approach
is not required, as all of the information lost in the forward
process can be restored through the latent space. The models that
take this “inversion engine” approach, such as STiC (de la Cruz
Rodriguez et al. 2019) and NICOLE (Socas-Navarro et al.
2015), are effectively performing a walk through the latent space
guided by their “inversion engines.” There is no guarantee of
solution uniqueness from those approaches, as the entire latent
space is not visited. With the INN approach, the useful extent of
the latent space is learned during training, and it is therefore
trivial to span the latent space with multiple draws of the unit
multivariate normal distribution.

As our INN was trained on RADYN data, it is important to
stress that it can only generate RADYN-like solutions, and this
should be taken into account when analyzing any atmospheric
inversions performed. The RADYN training atmospheres also
include the specific assumption of heating and nonthermal
excitations by an electron beam from the corona. As a
counterpoint to this, it is important to note that the INN does

not simply ingest the grid of RADYN simulations and return a
closely matched or interpolated template (an approach used, for
example, by Beck et al. 2015 in the fast inversion of Ca II
8542Å spectropolarimetric data). Instead, the INN has learned
a bijective mapping between the input space containing the
atmospheric parameters and the output space containing the
line profiles and the explicit latent space. In the inverse process,
the line profiles are complemented by the latent space to
remove ambiguities due to information lost in the forward
process. The model’s validation on the unseen testing set
should ensure that the atmospheres recovered are physically
reasonable, and that the model has learned to relate the
emergent line profiles with the properties of the atmosphere.
The INN method is fast, as it “front-loads” a large portion of

the computational work by requiring a large training set in the
form of RADYN simulations followed by approximately 1 day
of training on an NVIDIA GTX1050Ti GPU. The result of this
precomputation is that inference is then extremely rapid while
still drawing on a very complex physical model. The complex
model is needed for the flare problem, where assumptions of
hydrostatic and local thermodynamic equilibrium cannot hold,

Figure 8. Inversion of the pixel on the flare ribbon. The top panels show the atmospheric parameters obtained from the inversion. The top left panel shows the electron
density and temperature plotted on log scales, and the top right panel shows the net velocity flow in our plasma. The plots were made by sampling the latent space
20,000 times and plotting the results of the inversions as a two-dimensional histogram. The bins with the greatest density are the most likely values for the parameters
at a certain height. The black dotted lines show the median profiles for each quantity. The bottom panels show the lines that were inverted. The blue dotted lines are the
true line profiles. The black bins are the round-trip generation of the spectral lines produced by performing the forward process on the sets of atmospheric parameters
we obtain from the inversion.
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Figure 7. Predicted posterior distributions for three test examples (column-wise) as predicted by the cINN trained on ’Wd2 I’. The red
dotted line in each histogram indicates the known true value for the given test observation. The orange line represents the kernel density
estimate of the predicted distribution used to locate the MAP solution. The left column shows an example case where the cINN is able
to constrain the physical parameters of this observation extremely well. The remaining two columns show degenerate examples where the
predicted posterior distributions of some parameters (e.g. age and mass) show multi-modalities as a consequence. The middle column
test observation shows an example case where the MAP of the predicted bi-modal distribution coincides with the true value, while in
the right column case the true value falls onto the second peak of the distribution. Note the di↵erent scaling in each column.
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There are two reasons why we do not achieve a perfectly
even sampling. First, subsampling the overpopulated bins
would result in a significant information loss in the HRD
and CMD as several post-main-sequence evolutionary tracks
fall into these bins. Second, oversampling the isochrones and
then augmenting the original tables to a degree that all bins
reach the level of the originally most populated bin would
result in a data set so large that it becomes not manageable
for our remaining processing.

The last step in our training set construction procedure
is to augment the data taking extinction into account. We
do so for each star in the training set by including addi-
tional copies of it at di↵erent amounts of extinction AV and
altering their observable features, i.e. magnitudes in HST fil-
ters, accordingly. For Wd2 we consider an extinction range
from 0 to 12 in steps of 0.2 mag and for NGC6397 from 0

to 3 in steps of 0.05 mag in accordance with the Wd2 gas
extinction map from Zeidler et al. (2015) and the suggested
average extinction of NGC6397 by Brown et al. (2018). For
the extinction law we use the di↵use Milky Way extinction
curve by Cardelli et al. (1989), deriving the A�/AV values in
dependence of RV for the HST filters according to

A�

AV

= a� +
b�
RV

, (3)

where a� and b� denote wavelength dependent coe�cients
defined by Cardelli et al. (1989). Table A1 in the Appendix
provides the derived A�/AV values for all filters.

In conclusion, each training set contains the six phys-
ical parameters: age, initial mass Mini, current mass Mcurr,
luminosity L, e↵ective temperature Te� , surface gravity g,
extinction AV and magnitudes in filter combinations corre-
sponding to our real observations. These are F814WWFC3

and F160WWFC3 for Wd2, and F275WWFC3, F336WWFC3,
F438WWFC3, F606WACS, F814WACS for NGC6397. In total
our training sets contain 12,481,881, 20,903,602, 12,356,282
and 16,817,090 example stars for ’Wd2 I’, ’Wd2 II’,
’NGC6397 I’ and ’NGC6397 II’, respectively. Figure A1 in
the Appendix shows the corresponding prior distributions of
all physical parameters for these training sets.

3 NEURAL NETWORK SETUP

3.1 INN and cINN

In this paper we solve the inverse problem of predicting phys-
ical parameters of stars from HST photometry employing
an invertible neural network (INN) as described in Ardiz-
zone et al. (2019a,b). This INN approach provides an inverse
solver that estimates the complete posterior distribution of
physical parameters conditioned on an observation. Figure 4
outlines the concept of the INN methodology. Given a well-
understood simulation that maps physical parameters x to
observations y, we assume that this forward process entails
an inherent information loss, such that y does not explain all
variance of x and degeneracies occur in the mapping. To re-
tain this information that would be otherwise lost additional
latent variables z are introduced to encode all the variance
of x that is not captured in y.

A benefit of a network with an invertible architecture
with regard to our current regression problem is that once it

Figure 4. Schematic overview of the invertible neural network
approach for solving an inverse problem. Adapted from (Ardiz-
zone et al. 2019a).

has been trained to approximate the known forward process
f , it provides a solution for the inverse process f �1 for free.
In the application outlined here the INN will thus learn how
to associate physical parameter values x to unique pairs [y, z]
of observations and latent variables, as it trains to optimise
the forward mapping f (x) = [y, z] and then implicitly finds
the inverse x = f �1(y, z) = g(y, z) (Ardizzone et al. 2019a).
For simplicity the prior distribution of the latent variables
p(z) is assumed (and enforced during training) to be Gaus-
sian. The desired posterior distribution p(x|y) is represented
by the function g(y, z) = x, which, given the condition y,
transforms the known distribution p(z) to x-space (Ardiz-
zone et al. 2019a). In practise this means that for a given
observation y the posterior distribution p(x|y) is determined
by sampling the latent variables.

In Ardizzone et al. (2019a) the invertibility of the net-
work is achieved by a series of reversible blocks based on the
architecture proposed by Dinh et al. (2016). These blocks
split their input vector u into two halves u1 and u2 and
then apply two complementary a�ne transformations with
element-wise multiplication � and addition +,

v1 = u1 � exp(s2(u2)) + t2(u2),
v2 = u2 � exp(s1(v1)) + t1(v1),

(4)

where si and ti are mappings that can be arbitrarily complex
functions of u2 and v1 that do not need to be invertible
themselves and can even be represented by neural networks.
These a�ne transformations are easily inverted given the
output v = [v1, v2],
u2 = (v2 � t1(v1)) � exp(�s1(v1)),
u1 = (v1 � t2(u2)) � exp(�s2(u2)).

(5)

Based on the Ardizzone et al. (2019a) method, Ardizzone
et al. (2019b) present an extension to their original INN
approach, the conditional invertible neural network (cINN).
Here they adapt the a�ne coupling block architecture to ac-
cept additional conditioning inputs c. Since the mappings si

and ti, also when represented by neural networks, are only
evaluated in the forward direction, even when inverting the
network, it is possible to concatenate these conditioning in-
puts with the regular inputs of the sub-networks without
compromising the INNs invertibility, e.g. by replacing s2(u2)
with s2(u2, c) etc. in Equations (4) and (5). Figure 5 shows
an illustration for the forward (top) and backward (bottom)
pass of this conditional a�ne coupling layer design in the
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Figure 5. PF-DNN method applied to HD129929, based on its three identified low-order modes. Upper 6 panels: by providing
both the three mode degrees l and the radial orders npg to the PF-DNN method; lower 6 panels: by only providing the three
mode degrees l.

occur. Moreover, we point out that the PF-DNN uses di↵usive convective overshooting with the radiative temperature
gradient in the overshoot zone rather than convective penetration with the adiabatic gradient. The relation between
↵ov and fov is about a factor 10 to 12 (Moravveji et al. 2015; Claret & Torres 2017) and must be taken into account
when evaluating the PF-DNN capacity. Keeping this in mind, we deduce from Fig. 5 and Table 3 that the PF-DNN
does a remarkably good job when considering the dense network (indicated as gray solution in Table 3), particularly
keeping in mind that the metalicity cannot be well constrained from forward modeling of high-mass stars and that
M and fov are correlated in the case of B-type pulsators (e.g., Walczak et al. 2013; Moravveji et al. 2015; Pedersen
et al. 2018). It can also be deduced from the six upper panels in Fig. 5 that the initial hydrogen content X and the
level of chemical mixing in the envelope Dmix are not well constrained. This is generally the case for the � Cep stars
treated here, and in particular for HD129929, given that there are only three detected oscillation modes to estimate
six parameters. The same limitation occurred from the manual forward modeling done 15 years ago.

A DNN predicts frequencies from physical properties 

Use it to infer parameters from asteroseismological observations
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CONCLUSIONS

▸ Solar & stellar physics are entering the big data era 

▸ Fast synthesis/inversions/classification 

▸ Bayesian inference 

▸ Advanced detection  

▸ Caveats 

▸ Sim2real 

▸ Lack of data


