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Moving Groups

as imprints

of the non-axisymmetric components

of the Milky Way
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amics de llicenciatura i doctorat amb els que tant camı́ he compartit. Moltes gràcies
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Resum en català

Antecedents

Fa 400 anys que Galileo Galilei va realitzar la primera observació amb telescopi que mostrà
que la banda lluminosa que travessa el cel està formada per moltes estrelles. Just acabem de
commemorar aquest aconteixement i altres de les seves observacions en l’Any Internacional de
l’Astronomia 2009. Des d’aquella primera observació de la Via Làctia (en anglès Milky Way,
MW), la comprensió de la Galàxia ha millorat tant pel que fa a la seva estructura a gran
escala com, en més detall, al nostre entorn dins el disc Galàctic. D’altra banda, els avenços
en astronomia extragalàctica i cosmologia estan cada vegada més connectats a l’astronomia
Galàctica, col·locant la MW en un context plenament cosmològic. Tot just comencem a entendre
alguns aspectes del seu procés de formació (e.g. Freeman & Bland-Hawthorn 2002).

Durant les dues últimes dècades, l’estudi de la MW ha experimentat aquest progrés extraor-
dinari gràcies a l’arribada d’observacions de gran qualitat, millors models i mètodes, i a l’ús de
potent maquinari de càlcul (e.g. Turon et al. 2008). Entre les noves troballes, s’ha demostrat
que la nostra galàxia té diversos components estructurals no-axisimètrics. Els més rellevants són
la barra Galàctica i els braços espirals. En particular, l’entorn solar (una esfera d’uns 200 pc
de radi al voltant del Sol) ha pogut ser estudiat en detall entre altres gràcies a les posicions i
velocitats estel·lars determinades per la missió Hipparcos. Tot i que és una regió molt petita
comparada amb l’extensió total de la Galàxia, l’entorn solar ha esdevingut de gran valor pel que
fa a la informació d’alguns processos que tenen lloc a la MW, especialment per la precissió de
les dades disponibles en aquesta regió. En particular, la riquesa de la cinemàtica o la complexa
distribució de composicions qúımiques estel·lars de l’entorn solar poden constituir un conjunt
d’empremtes i fòssils de diversos processos Galàctics.

L’enfoc clàssic de l’estudi de la cinemàtica en l’entorn solar ha estat normalment lligat a la
determinació de la funció de distribució de velocitats utilitzant models simples com l’el·lipsoide
de Schwarzschild i la seva caracterització mitjançant la desviació del vèrtex o, en general, els mo-
ments d’ordre n. No obstant, les observacions han mostrat que el camp de velocitats en l’entorn
solar mostra una gran complexitat. Una de les caracteŕıstiques més intrigants és l’existència
dels grups mòbils. Aquests són corrents estel·lars que creuen la regió al voltant del Sol i que es



veuen com a sobredensitats en l’espai de velocitats. La distribució de velocitats de les estrelles
vëınes no és suau i presenta diversos d’aquests grups mòbils.

L’estudi dels grups mòbils estel·lars de l’entorn solar té una llarga tradició en el camp
de l’astronomia Galàctica (vegeu el Caṕıtol 2 per a un resum històric), des del descobriment
dels grups mòbils de les Pleiades, Hyades i Ursa Major (Mädler 1846, Proctor 1869). Després
d’aquests treballs pioners, Eggen va continuar l’estudi dels grups mòbils intentant caracteritzar
exhaustivament per primer cop les seves propietats (Eggen 1996b i les referències a l’interior).
Com que aquestes estructures comparteixen la seva cinemàtica amb certs cúmuls estel·lars, a-
quests primers estudis es centraven en la hipòtesi que els grups mòbils eren el resultat de la
dispersió de cúmuls.

L’arribada de les dades astromètriques de la missió Hipparcos va comportar la confirmació
definitiva de l’existència dels grups mòbils. No obstant, quan van ser possibles els primers
intents d’evaluar l’estat evolutiu i composició qúımica dels membres dels grups mòbils, es va
veure que les estrelles en un cert grup semblaven tenir un rang molt ampli d’edats, metal·licitats
i distribucions semblants a les observades per a la mostra sencera. Des de llavors, s’ha realitzat
una quantitat de treball considerable per intentar explicar l’origen dels grups mòbils a resultes
d’aquests nous indicis.

En aquests moments, l’origen d’aquestes estructures cinemàtiques no està ni molt menys
comprès, tot i que fa més de 140 anys que van ser descobertes (vegeu el Caṕıtol 2 per una visió
més àmplia de les teories sobre el seu origen). Actualment es consideren vàries possibilitats.
Com es va proposar primerament, els grups mòbils poden ser el resultat de processors interns
en el disc com ara dispersió de cúmuls. Alternativament, podrien ser deguts als efectes dinàmics
indüıts pels components no-axisimètric de la MW (braços espirals i barra). També s’ha proposat
que alguns d’ells siguin remanents d’acrecions passades, mentre que d’altres podrien ser deguts
a efectes dinàmics externs sobre el disc causats per fenòmens d’interacció. Tot i que inicialment
es van considerar mútuament excloents, tots aquests mecanismes són naturals en els models
actuals de formació de galàxies. La combinació d’algunes d’aquestes propostes es converteix
en un escenari complex però fascinant. A més, podent ser fòssils d’aquests processos dinàmics,
sigui el que sigui, els grups mòbils poden proporcionar claus sobre caracteŕıstiques importants
de la Galàxia i sobre els mecanismes dinàmics que hi tenen lloc.

Recentment, la hipòtesi que els grups mòbils són deguts a efectes cinemàtics dels components
no-axisimètrics de la Galàxia ha guanyat popularitat. Això ha estat en part perquè s’ha trobat
consistència entre un dels grups mòbils i els efectes de les ressonàncies de la barra. Segons
aquesta hipòtesi, les ressonàncies i l’estructura orbital indüıdes per la barra o els braços espirals
poden causar sobredensitats en la distribució de velocitats. En altres paraules, un grup mòbil
seria un grup d’estrelles que creua l’entorn solar seguint un cert tipus d’òrbites sota la influència



de la barra o dels braços espirals. En aquest cas, una motivaćıo addicional s’afegeix al repte
de desxifrar l’enigma sobre l’origen dels grups mòbils: si es prova que aquestes estructures
cinemàtiques depenen de les caracteŕıstiques de la barra i dels braços espirals de la MW, es
podrien convertir en una eina molt útil per entendre l’estructura a gran escala i la dinàmica de
la MW en el seu present i també en el seu passat. En efecte, alguns estudis s’han aventurat a
utilitzar alguns grups mòbils observats per restringir paràmetres com la velocitat de rotació de la
barra o algunes caracteŕıstiques dels braços espirals. Degut a la poca informació que hi ha sobre
algunes de les caracteŕıstiques dels components no-axisimètrics, la possibilitat de restringir-les
utilitzant els grups mòbils és molt prometedora i ens ajudaria a complementar altres mètodes.

Objectius de la tesi i metodologia

S’ha demostrat ja els efectes dels components no-axisimètrics poden crear grups cinemàtics en la
distribució local de velocitats. L’evidència més rellevant és la demostració que els efectes de les
ressonàncies de la barra Galàctica poden produir grups cinemàtics semblants al grup observat
d’Hercules. Però malgrat l’esforç d’aquests estudis recents, l’origen ressonant o dinàmic dels
grups mòbils no ha estat provat de manera definitiva per a cap estructura cinemàtica observada
en particular. De fet, diferents origens plausibles coexisteixen per certs grups. A més, hi ha una
llarga llista de qüestions obertes que són intens tema de debat o que encara no s’han abordat.
Aquests són alguns exemples de aspectes no resolts:

- Quina és la contribució dels braços espirals a l’estructura cinemàtica en l’entorn solar?

- Quin es el poder de la barra per induir grups de baix moment angular com Artcurus?

- És possible recuperar empremtes particulars de la barra i els braços espirals quan els dos
components no-axisimètric actuen a la vegada? O la combinació d’aquests components crea
grups cinemàtics addicionals?

- Com podem assegurar que un grup en particular és degut a l’efecte de la barra o dels braços
espirals?

- Són tots els grups mòbils de l’entorn solar deguts als efectes dels braços espirals i la barra?

- Quines són les capacitats d’aquestes empremtes per restringir les propietats de la barra i els
braços espirals? Quines propietats poden ser restringides i quines no?

- Quin és exactament el mecanisme dinàmic que crea els grups mòbils? Són grups d’òrbites
caòtiques o sobredensitats al voltat d’òrbites periòdiques?

- Com alterarà l’evolució Galàctica aquesta interpretació de l’origen dels grups mòbils i la seva
capacitat de restringir les propietats de la MW?

Totes aquestes preguntes sense resposta demostren que es requereix més investigació. En aquesta
tesi pretenem donar resposta a alguna d’elles.



La tesi estudia l’origen dels grups mòbils amb particular èmfasi a la possibilitat que els grups
mòbils siguin empremtes dels components no-axisimètrics de la MW. Aix́ı, les podrem utilitzar
per restringir l’estructura a gran escala de la nostra Galàxia. Els objectius particulars d’aquesta
investigació són:

1. Analitzar i caracteritzar els grups mòbils observats, establint una perspectiva observacional
al seu origen.

2. Explorar fins a quin punt podem utilitzar les empremtes cinemàtiques per restringir
l’estructura a gran escala de la MW i la seva evolució recent.

Per conduir la recerca en aquesta tesi, hem escollit dos enfocs diferents: una metodologia
observacional i una de teòrica. Per una banda, portem a terme un anàlisi d’una mostra obser-
vacional, compilada de diferents catàlegs, utilitzant tècniques estad́ıstiques multiescala per tal
de controlar el soroll de Poisson. Per altra banda, realitzem simulacions de part́ıcules test en un
potencial flexible de la MW, consistent amb diverses restriccions observacionals recents, per tal
d’explorar l’espai de fases disponible per la distribució local d’estrelles.

En ambdós enfocs volem analitzar i caracteritzar les estructures cinemàtiques, és a dir es-
tablir la seva forma, mida, significància estad́ıstica, i en alguns casos, la seva edat i composició
qúımica. Això requereix la utilització de tècniques estad́ıstiques robustes espećıfiques. A més, la
comparació entre les distribucions observades i les simulades requereix la utilització del mateix
mètode estad́ıstic robust. Nosaltres utilitzem la tècnica anomenada Wavelet Denoising (WD),
que ens permet obtenir funcions de distribució via un tractament de suavitzat/filtratge a diferents
escales que elimina el soroll de Poisson. El WD s’ha utilitzat en altres branques de l’astrof́ısica,
però no s’havia utilitzat en aquest tema en particular.

L’enfoc observacional ha estat motivat per dos contribucions importants que han propor-
cionat nou material per complementar les dades astromètriques de Hipparcos i Tycho: i) les
dades de velocitats radials de CORAVEL per un nombre significant d’estrelles de tipus espectral
tardà pertanyents al catàleg d’Hipparcos (Nordström et al. 2004 per les estrelles nanes i Famaey
et al. 2005 per les estrelles gegants) i ii) el cens uvby–β d’estrelles FGK nanes, que ha permès la
derivació d’edats i metal·licitats (Nordström et al. 2004). A més, dades d’estrelles OBA (Asiain
et al. 1999a, Torra et al. 2000) i nanes M (Reid et al. 2002, Bochanski et al. 2005) completen
aquesta mostra extensa. La mostra compilada constitueix un compendi de més de 24000 es-
trelles amb les millors dades astromètriques i fotomètriques disponibles per l’entorn solar. Hem
aplicat la tècnica multiescala de WD a aquesta mostra per caracteritzar i analitzar els grups
mòbils en l’espai U–V –edat–[Fe/H]. Aquest anàlisi observacional estableix les restriccions per
un subsegüent estudi de l’origen dels grups mòbils. Aquest treball també ha requerit un rigurós
tractament dels errors i restriccions observacionals i els biaixos de la mostra.



L’enfoc teòric d’aquesta tesi es realitza mitjançant integracions numèriques d’òrbites de
part́ıcules test distribüıdes en un disc, sota la influència d’un potencial de la MW. Hem aprofitat
el model de potencial PM04–MW (Pichardo et al. 2003b, 2004), que és un model espećıfic per
la MW, consistent amb diverses restriccions observacionals recents. Aquest model consisteix en
una part axisimètrica, i una barra i dos braços espirals com a part no-axisimètrica. Aquest nou
model és molt flexible per ser adaptat a les observacions i està constrüıt directament d’una dis-
tribució realista de massa 3D, a partir de la qual es deriven el potencial gravitacional i les forces.
Al nostre coneixement, l’estudi de l’efecte d’un model de distribució de massa, i en particular
d’aquest nou model, en la distribució de velocitats local que s’aborda en aquest treball no s’ha
realitzat mai anteriorment. Un altre aspecte important d’aquesta tesi és que utilitzem una gran
varietat de condicions inicials, temps i procediments d’integració. Aquests pretenen representar
estrelles que han nascut en diferents moments i amb diferents condicions cinemàtiques, com les
que hi ha en l’entorn solar, i han estat dissenyats per ser consistents amb alguns aspectes de
l’evolució Galàctica. Per realitzar aquesta tesi, s’ha requerit un estudi exhaustiu del model i de
les condicions inicials de les part́ıcules test. Amb aquestes simulacions obtenim la distribució
cinemàtica indüıda, no només a l’entorn solar, sinó en altres posicions del disc. Les distribucions
obtingudes també són tractades mitjançant la tècnica multiescala del WD, com en la mostra
observacional. Aquesta metodologia ens permet evaluar el paper de components no-axisimètrics
realistes de la MW, la barra i els braços espirals, en la formació dels grups mòbils del disc.
Explorem l’espai de paràmetres del model PM04–MW utilitzant diferents simulacions per tal
d’evaluar els efectes de cada caracteŕıstica particular dels braços espirals o la barra en les dis-
tribucions de velocitat. Finalment, també utilitzem un mètode per establir la regularitat de les
òrbites en les estructures cinemàtiques que són creades en les simulacions de part́ıcules test.

Resultats i conclusions

Com a resultats del treball observacional d’aquesta tesi hem trobat els següents. Les estructures
cinemàtiques més dominants en el pla U–V són les branques de Sirius, Coma Berenices, Hyades-
Pleiades i Hercules. Del gran rang d’edats i metal·licitats dins d’aquestes branques, refusem
els models que expliquen els grups mòbils com a remanents de cúmuls estel·lars. La branca
d’Hercules és més rellevant a la regió de radis galactocèntrics interiors. També en la regió
propera al Sol en comparació a la zona que s’allunya en direcció a la rotació Galàctica. Per
Hyades-Pleiades, Coma Berenices i Sirius, com més negativa és la component V de la branca,
més gran és la seva metal·licitat mitja. La branca d’Hercules no segueix aquest comportament
i té una dispersió de metal·licitat més gran que la resta.

El nostre treball amb simulacions ha mostrat els següents resultats. La barra Galàctica i



els braços espirals creen fortes empremtes cinemàtiques. El braccos poblen la regió cinemàtica
d’Hercules i no únicament la barra tal i com tradicionalment es creu. Els braços també indueixen
branques cinemàtiques lleugerament inclinades que s’assemblen a les branques observades. Els
grups a baix moment angular com Arcturus poden tenir un origen relacionat amb la barra
quan actua sobre un disc relativament calent, la qual cosa introdueix una nova perspectiva
en la interpretació d’aquests grups diferent de la del seu origen extragalàctic. En les nostres
simulacions on els braços espirals i la barra actuen a la vegada, empremtes individuals de cada
component poden ser encara identificades en les distribucions de velocitat finals.

L’anàlisi de la mostra observacional i de les simulacions indica que és factible que alguns dels
grups mòbils observats en l’entorn solar tinguin un origen dinàmic relacionat amb els efectes
provocats pels braços espirals i la barra. L’enfoc que hem realitzat amb les simulacions de
part́ıcules test demostra que els components no-axisimètrics de la Galàxia que són consistents
amb vàries restriccions observacionals provoquen unes empremtes fortes en la cinemàtica estel·lar
local. Aquestes empremtes bàsicament són sensibles a l’orientació i velocitat dels braços espirals
i de la barra. Aquest fet l’hem confirmat amb l’estudi de la regularitat de les òrbites en el pla
U–V . Per altra banda, la força dels components no-axisimètrics, el temps d’exposició a aquests
components, o les caracteŕıstiques dels discs utilitzats per traçar la funció de distribució a l’espai
de fases, com la dispersió de la velocitat, influencien en la manera que els grups cinemàtics són
poblats. La dependència dels grups cinemàtics estel·lars en l’estructura i dinàmica del model i
en les condicions inicials dels nostres experiments proven que els grups cinemàtics poden aportar
importants restriccions als components no-axisimètrics de la MW.

En el cas dels braços espirals, existeix molta ambigüitat observacional, per exemple, en la
seva velocitat de rotació, la força, la orientació, el número de braços o el seu temps de vida.
Les fortes empremtes dels braços auto-gravitants en les distribucions de velocitat al radi solar i
la sensibilitat dels nostres resultats a les propietats dels braços indiquen que es pot utilitzar la
cinemàtica per a restringir aquesta incertesa actual. Trobem empremtes fortes, però diferents
quan els braços espirals són de llarga o de curta durada. Al nostre coneixement, els efectes
dels braços auto-gravitants en la distribució de velocitats no s’havia estudiat fins ara. Per altra
banda, trobem diferències significants entre els efectes prodüıts per braços auto-gravitants o
per un model de braços derivat de l’aproximació de braços altament enrollats (en anglès Tight-
winding Approximation, TWA). Això és degut a les diferències importants que hi ha entre la
forma del camp de forces d’un model TWA i d’un derivat d’una distribució de masses. També
hem vist que els braços auto-gravitants creen estructures més fortes comparades amb les creades
pels braços TWA. Aquest fet pot ajudar a investigar si els braços de la MW són febles i àltament
enrotllats com els TWA o són forts i auto-gravitants.

Pel que fa a la barra de la MW, la seva orientació respecte el Sol està actualment força ben



restringida. Contràriament, la seva velocitat de rotació ha estat determinada utilitzant mètodes
independents que han obtingut resultats similars, però encara tenen molta incertesa. Els grups
cinemàtics poden ajudar definitivament tant en la seva determinació com en la restricció de
propietats de la recentment descoberta barra llarga de la MW. Només s’han observat diferències
menors quan utilitzem el model de quadrupol o el de la barra prolata quan tenen amplituds de
força similars i els discs no són molt calents. Per tant, podem concloure que contràriament al cas
dels braços espirals, on hi ha importants diferències entre els models, sembla més dif́ıcil poder
discriminar entre els dos models de barra. No obstant, hem observat que els perfils de les forces
són, en efecte, molt diferents en les regions interiors al disc i en la mateixa barra. Com que
quan utilitzem condicionals inicials més calentes apareixen òrbites que tenen unes excursions
radials més grans, que fins i tot poden entrar dins la barra, esperem resultats més acurats quan
utilitzem la barra prolata, que és un model més realista en aquestes regions. El model de barra
quadrupol és probablement només una bona aproximació a radis grans.

Hi ha alguns exemples de resultats força reveladors en el nostre estudi mitjançant simulacions.
Primer, els braços espirals i la barra poden influir en regions del pla U–V inesperades pel que
fa a especulacions d’altres estudis. Per exemple els braços espirals, i no la barra exclusivament,
poden poblar la regió del grup mòbil d’Hercules. És important que aquest grup mòbil pugui
ajudar a restringir tant els braços espirals com la barra. També observem que les branques
observades i els grups mòbils en la part central del pla U–V poden ser resultat dels braços
espirals, però també influenciades per la barra. Segon, la bimodalitat provocada per la barra
podria explicar l’existència del grup Hyades-Pleiades. Això podria canviar les restriccions en la
velocitat de rotació de la barra, obtinguda sovint de l’ajust al grup mòbil d’Hercules.

Finalment, la possibiltat que els grups cinemàtics de baix moment angular puguin ser in-
fluenciats i, en efecte, causats per les resonàncies de la barra introdueix una nova perspectiva
en la recent interpretació del seu origen extragalàctic. Tot i que la nostra mostra observacional
no inclou grups de baix moment angular, altres estudis observacionals han suggerit a patir amb
les abundàncies qúımiques estel·lars que Arcturus té un origen dinàmic en el disc. Les nostres
simulacions han demostrat aquest fet, relacionant-lo amb la influència de la barra. És molt
prometedor que grups cinemàtics com el d’Arcturus puguin restringir les propietats de la barra,
com la seva velocitat de rotació o la seva orientació. A més, com que les estrelles d’aquestes
estructures cinemàtiques poden venir de radis molt interns, poden aportar informació sobre els
processos que tenen lloc a les regions centrals de la Galàxia o prop de la mateixa barra. Si
finalment es prova que són grups cinemàtics transitoris, també podrien aportar infomació sobre
l’evolució temporal de la MW. A més, el grup mòbil d’Hercules també podria ser consistent amb
algun d’aquest grups transitoris.

En les simulacions on s’hi inclouen tant la barra com els braços espirals, empremtes indivi-



duals de la barra i dels braços es poden encara identificar en les distribucions finals de velocitats
al llarg del radi solar. El detall de les empremtes depèn dels paràmetres particulars del model i
de la posició estudiada sobre el disc. Això demostra que els nostres estudis amb només braços
espirals o només barra són vàlids per estudiar els efectes de cada component i poden ser utilitzats
per restringir les caracteŕıstiques de la barra i dels braços espirals. A més, com que en el cas
on hi tenim els dos components les estructures poden distorsionar-se amb el temps, podŕıem
obtenir ĺımits temporals en l’acció conjunta dels components. El manteniment d’almenys algunes
propietats orbitals de la barra o dels braços espirals donen suport a la viabilitat de la hipòtesi
que els grups mòbils són deguts a l’estructura orbital i les ressonàncies dels components no-
axisimètrics de la MW.

Concloent, aquesta tesi ha comportat anàlisi estad́ıstica de dades (tècniques multiescala),
explotació cient́ıfica de catàlegs astronòmics (cinemàtica, edats fotomètriques, metal·licitats),
tractament rigurós d’errors observacionals i biaixos, dinàmica Galàctica, models anaĺıtics del
potencial de la MW, simulacions amb part́ıcules test, programació i execució de simulacions en
sistemes multiprocessadors, i coneixement dels errors esperats i simuladors de la missió Gaia.
Tot aquest sistema de tècniques i metodologies ens col·loquen en un bon punt de partida per
assumir el repte de Gaia en la propera dècada.



Abstract

It has been shown that the effects of the bar and the spiral arms of the MW can
induce kinematic groups in the local stellar velocity distribution. The aims of this
thesis are: i) to characterise the observed moving groups, establishing observational
insights into their origin, and ii) to explore to what extent we can use the kinematic
imprints to constrain the large-scale structure of the MW and its recent evolution.
To undertake the observational study we have applied the wavelet denoising tech-
nique to a compendium of kinematic, age and [Fe/H] data for more than 24000
stars of the solar neighbourhood. We find that the dominant kinematic structures
in the U–V plane are the branches of Sirius, Coma Berenices, Hyades-Pleiades and
Hercules. From the large spread of ages and metallicities inside them, we refuse the
models that relate their origin to cluster disruption. The Hercules branch is more
conspicuous in the region of inner galactocentric radius, and for a region near the
Sun in comparison to a region that is located further in the direction of rotation. For
Hyades-Pleiades, Coma Berenices and Sirius the more negative the V component,
the higher the mean metallicity. The Hercules branch does not follow this correla-
tion and has a higher metallicity dispersion. On the other hand, we have performed
test particle simulations in a flexible MW potential that is consistent with several
observational constraints in order to explore the phase space available to the local
stellar distribution. Our results show that the bar and the spiral arms create strong
kinematic imprints on the velocity distributions. When the spiral arms and the bar
act together, individual imprints of each component can be still identified in the
final velocity distributions. The spiral arms crowd the kinematic region of Hercules
and not only the bar, as traditionally believed. The arms also induce slightly tilted
kinematic branches that resemble some of the observed ones. The low angular mo-
mentum moving groups such as Arcturus can have an origin related to the bar acting
on a relatively hot stellar disc, which introduces a new perspective on the interpre-
tation of its extragalactic origin. We find that the induced stellar kinematics groups
depend on the structure and dynamics of the model and on the initial conditions of
our experiments. We discuss if it is currently possible to use the stellar phase space
groups as constraints to the large-scale structure and evolution of the MW.
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Chapter 1

General introduction

1.1 Background

It is 400 years since Galileo Galilei performed the first telescope observation which showed that
the luminous band that crosses our sky is made of numerous stars. We have just commemorated
this and his other early telescope observations through celebrating the International Year of
Astronomy 2009. Since that first observation of the Milky Way (MW), our understanding of the
Galaxy has improved considerably regarding both its large-scale structure and, in more detail,
our neighbourhood within the disc. Additionally, the advances in extragalactic astronomy and
cosmology are becoming ever more connected to Galactic astronomy, setting the MW in a full
cosmological scenario. We are now beginning to understand some aspects of its process of
formation (e.g. Freeman & Bland-Hawthorn 2002).

In the last two decades the study of the MW has experienced outstanding progress owing
to the advent of high-quality observations, better models and methods, and the use of powerful
computation facilities (e.g. Turon et al. 2008). Among the new findings, it has been shown
that the Galaxy has several non-axisymmetric structural components. The most relevant are
the Galactic bar and the spiral arms. In particular, the solar neighbourhood (a sphere of
about 200 pc around the Sun) has been studied in depth thanks to the stellar positions and
velocities that were determined by the Hipparcos mission. Despite being an extremely tiny
region compared to the whole extension of the Galaxy, the solar neighbourhood has proved
to be of great value. Due to the high precision of the data in this region, this region has
provided us with important information regarding some processes that take place in the MW.
The rich kinematics or the complex stellar chemical distribution in the solar neighbourhood may
constitute a set of imprints and fossils left after several Galactic processes.
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1. GENERAL INTRODUCTION

The classic approach to studying the kinematics of the solar neighbourhood has been linked
to the determination of the velocity distribution function using simple models such as the
Schwarzschild ellipsoid and its characterisation through the vertex deviation or, in general,
the moments of order n. However, the observations have revealed that the velocity field of the
solar neighbourhood exhibits a high degree of complexity. One of the most intriguing features
of the velocity distribution is the existence of moving groups. These are stellar streams crossing
the region around the Sun which are seen as overdensities in the velocity space. The distribution
of neighbouring stars in the velocity space is far from being smooth and includes several of these
moving groups.

The study of stellar moving groups in the solar neighbourhood has a long tradition in Galac-
tic astronomy (see Chapter 2 for a historical overview), going back to the discovery of the
Pleiades, Hyades and Ursa Major groups (Mädler 1846, Proctor 1869). After this pioneering
work, the study of moving groups continued with Eggen, who first tried to provide a thorough
characterisation of their properties (Eggen 1996b and references therein). Since these structures
shared their kinematics with certain stellar clusters, these first studies worked exhaustively on
the hypothesis that moving groups were a result of the dispersion of clusters.

The advent of Hipparcos astrometric data led to the definitive confirmation of the existence
of moving groups. However, once the first attempts to evaluate the evolutionary state and the
chemical composition of the members of moving groups were made, the stars in a given group
seemed to show a very wide range of ages and metallicities, and distributions similar to those
observed for the whole sample under study. Since then, a considerable amount of work has been
performed in an attempt to explain the origin of the moving groups in keeping with these new
findings.

At present, the origin of these kinematic structures is far from completely understood al-
though it is more than 140 years since they were discovered (see Chapter 2 for a comprehensive
review of the theories of their origin). Nowadays, several possibilities are considered. As first pro-
posed, moving groups could be the result of internal disc processes such as stellar cluster disrup-
tion. Alternatively, they could be due to the induced dynamical effects of the non-axisymmetric
components of the MW (i.e. spiral arms and bar). It has been proposed that some moving groups
are remnants of past accretion events, whereas others could be due to external dynamical effects
on the disc resulting from interaction events. Although they were initially considered mutually
exclusive, all such mechanisms are present in current galaxy formation models. A combination
of some of these ideas is a complex but fascinating scenario. Moreover, since they may be fossils
of these dynamical processes, whatever they are, the moving groups could provide clues about
important characteristics of the Galaxy and about some dynamical mechanisms that occur in
it.
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1.2 Thesis aims and methodology

Recently, the hypothesis that moving groups are due to the induced kinematic effects of the
non-axisymmetric components of the Galaxy has gained popularity. This is partially because
of the consistency of one of the observed moving groups in the solar neighbourhood with the
effects of the Galactic bar resonances. According to this hypothesis, the orbital structure that
is induced by the bar or the spiral arms and their resonances could cause overdensities in the
velocity distribution. In other words, a moving group would be a group of stars that crosses
the solar neighbourhood following a certain type of orbit under the influence of the bar and/or
the spiral arms. Here, there is additional motivation apart from the challenge of unravelling the
enigma of the origin of moving groups. If this kind of kinematic structure is shown to depend
on the characteristics of the bar and the spiral arms of the MW, it may prove very useful for
our understanding of the large-scale structure and dynamics of the MW in its present and also
its past form. Indeed, some studies have already ventured as far as using some observed moving
groups to constrain parameters such as the bar pattern speed or certain characteristics of the
spiral arms. The possibility of constraining the properties of the bar and the spiral arms of the
MW using moving groups is very promising as a complement to other methods because of the
lack of information about some characteristics of these non-axisymmetric components.

1.2 Thesis aims and methodology

It has already been shown that the effects of the non-axisymmetric components can induce
kinematic groups in the local stellar velocity distribution. The most compelling evidence is the
demonstration that the effects of the Galactic bar resonances can trigger a kinematic group
similar to the observed Hercules group. But despite the efforts made in these recent studies,
the resonant or dynamical origin of the moving groups has not been proved for any particu-
lar observed kinematic structure. In fact different plausible origins coexist for certain groups.
Moreover, there is a long list of unresolved questions that are still a matter of debate or that
have not yet been addressed. These are some examples:

- What is the spiral arm contribution to the kinematic structure in the solar neighbourhood?

- Which is the power of the bar to induce moving groups of low angular momentum such as the
observed Arcturus?

- Is it possible to recover particular imprints of the bar and the spiral arms when the two non-
axisymmetric components act together? Or does the combination of these two components
create additional kinematic groups?

- How can we assure that one particular group is due to a given effect of the bar or the spiral
arms?
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1. GENERAL INTRODUCTION

- Are all the observed moving groups at the solar neighbourhood induced by effects of the spiral
arms and the Galactic bar?

- What are the capabilities of these imprints to constrain the properties of the bar and the spiral
arms? What properties can be constrained and what can not?

- Which is exactly the dynamical mechanism that trigger the moving groups? Are they groups
of chaotic orbits or overdensities around resonant periodic orbits?

- How does the Galactic evolution alter this interpretation for the origin of the moving groups
and their capability to constrain the large-scale structure of the MW?

All these unresolved questions in the field show that further research is required. In this thesis
we attempt to answer some of them.

This thesis deals with the origin of the moving groups with particular reference to the
possibility that moving groups are imprints of the non-axisymmetric components of the MW
(bar and spiral arms) which would mean that they could be used to constrain the large-scale
structure of our Galaxy. The specific aims of this research are:

1. To analyse and characterise the observed moving groups, establishing observational insights
into their origin.

2. To explore the extent to which we can use the kinematic imprints to constrain the large-
scale structure of the MW and its recent evolution

To conduct the research entailed in this thesis, we have chosen two different approaches: an
observational and a theoretical methodology. On the one hand, we analyse an observational
sample, compiled from several catalogues, using multiscale statistical techniques in order to
control the Poisson noise. On the other hand, we perform test particle simulations in a flexible
MW potential that is consistent with several observational constraints in order to explore the
phase space available to the local stellar distribution.

Both for the observational and simulation approaches we aim to analyse and characterise
the kinematic structures, i.e. establish their shape, size or statistical significance, and in some
cases their age and chemical composition. This requires the use of robust statistical techniques.
Moreover, the comparison between the observed and simulated distributions requires the use of
exactly the same robust statistical methods. We use the Wavelet Denoising (WD) technique
which allows us to obtain distribution functions via a smoothing/filtering treatment at different
scales that eliminates Poisson noise. The WD has been used in other astrophysical topics, but
has never been applied to this particular subject.

The observational approach has been motivated by two important observational contribu-
tions that have provided new material that complements the Hipparcos and Tycho astrometric
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data: i) the CORAVEL radial velocity data for a significant number of late-type stars belonging
to the Hipparcos catalogue (Nordström et al. 2004 for dwarf stars and Famaey et al. 2005 for
giant stars); and ii) the uvby–β survey of FGK dwarf stars, which has allowed the derivation of
ages and metallicities (Nordström et al. 2004). Also, data on OBA-type stars (Asiain et al. 1999a,
Torra et al. 2000) and M dwarfs (Reid et al. 2002, Bochanski et al. 2005) complete an extensive
sample which is ready to be used for the analysis of the kinematic structures. Therefore, the
whole compiled sample constitutes an extensive compendium of the best available astrometric,
photometric and spectroscopic data for more than 24000 stars in the solar neighbourhood. We
have applied the WD multiscale technique to this sample to characterise and analyse the mov-
ing groups in the U–V –age–[Fe/H] space. This observational analysis establishes constraints
for the subsequent study of the origin of moving groups. This work has also required rigorous
treatment of the observational errors, constraints and sample biases.

The simulation approach is performed using numerical integrations of test particle orbits
which are distributed in a disc under a MW potential model. We have taken advantage of the
PM04–MW potential model (Pichardo et al. 2003b, 2004) which is a specific model for the MW
potential that is consistent with several recent observational constraints. This model consists of
an axisymmetric part together with a bar and two spiral arms as non-axisymmetric components.
This new model is very flexible to be adapted to observations. It is built directly with a realistic
3D mass distribution from which the gravitational potential and the forces are derived. To our
knowledge, the study of the effects of a mass distribution model (and in particular of this new
model) on the local velocity distribution which is addressed here has not been considered before.
Another important aspect of our study is the use of a great variety of initial conditions and
integration times and procedures. These attempt to represent stars that are born at different
times and with different kinematic conditions, like those in the solar neighbourhood, and have
been designed to be as consistent as possible with some aspects of the Galactic evolution. An
exhaustive study of both the model and the test particle initial conditions has been required for
this thesis. With these simulations we obtain the induced kinematic distribution not only of the
solar neighbourhood but in other positions of the disc. The distributions are also treated with
the WD multiscale technique, as the observational sample is. This methodology allows us to
evaluate the role of realistic non-axisymmetric components of the MW, namely the spiral arms
and the bar, on the formation of moving groups in the disc. We explore the parameter space
of the PM04–MW potential model using different simulations in order to evaluate the effects of
each particular characteristic of the spiral arms or the bar on the velocity distributions. We also
use a method to ascertain the regularity of the particle orbits in the kinematic structures that
are created in the test particle simulations.
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1.3 Thesis outline

This thesis is structured as follows. After this introductory chapter of Part I, Chapter 2 reviews
the observations that led to the discovery of the moving groups, the past and current studies
which have attempted to establish their properties and the theories of their origin proposed
to date. A brief description of the observational data, statistical methods for data analysis,
dynamical models and simulations that have contributed to this field is also offered.

Part II is concerned with the statistical methods that are applied in this thesis to observa-
tional and simulation data. In Chapter 3, descriptions of the wavelet transform and the wavelet
denoising methods are provided. The particular algorithms and filters used are described. Chap-
ter 4 contains a detailed description and some examples of how these methods work. We also
explain what their capabilities and advantages are when compared to other techniques that have
been used in this discipline. The chapter ends with a description of the software packages used,
the implementation process and the CPU costs of the method.

Part III presents the observational study used in this thesis and deals with the characteri-
sation of the observed moving groups. Chapter 5 presents the observational data that we use,
together with their precisions and possible biases. Chapter 6 characterises the structures in
the velocity plane in depth, and also gives comparisons between the moving groups for differ-
ent spectral types and luminosity classes, and different positions on the Galactic disc near the
Sun. Then, Chapter 7 and Chapter 8 constitute a first attempt to analyse the age and metal-
licity distributions of the kinematic groups, respectively. Finally, the main consequences of the
observational work are summarised and discussed in Chapter 9.

Part IV is concerned with our test particle simulations. First, Chapter 10 provides a de-
scription of the simulation method and the initial conditions. We also present the method for
quantifying the regularity of the orbits. This chapter examines the advantages and drawbacks
of our simulation methodology as it is compared with other theoretical approaches used in this
area. Chapter 11 describes the essential characteristics of the PM04–MW potential model and
is also concerned with contrasting this with other widely-used models, with special emphasis on
their force fields.

Part V reports the results and conclusions of the test particle simulations. First, Chapter 12
deals with some preliminaries regarding the presentation of the results, by giving more specific
details about the simulations and methodology. Chapter 13 examines the kinematic effects
induced by the spiral arms while Chapter 14 does the same with the bar. The effects produced
on a disc with hotter kinematics are shown separately in Chapter 15 as they deserve special
considerations. Finally, Chapter 16 presents the results of the spiral-bar PM04–MW potential
model; a model that includes both bar and spiral arms. For all these chapters, we explore
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the parameter space of the PM04–MW potential model using different simulations in order to
evaluate the effects of each particular characteristic of the spiral arms or the bar on the velocity
distributions. We also explore the effects on the disc with different initial conditions. At the
end of the main chapters of this part, we summarise and discuss the results.

Finally Part VI summarises the main outcomes of the whole thesis. It brings out the general
conclusions and examines the perspectives for future studies of moving groups. At the end of
the thesis, we present the bibliography and three appendixes. Appendix A is where we discuss
some considerations about the initial conditions. Appendix B contains additional results of
our simulations. In Appendix C we speculate about the possible resonance influence on the
dark matter particles in the dark disc predicted in recent cosmological simulations of galaxy
formation.

1.4 Introductory definitions

The (U, V,W ) velocity reference system will be used throughout this thesis. It is centred on
a given position on the Galactic plane and moves following the Regional Standard of Rest
(RSR). The RSR is defined as the point located at a galactocentric radius R that describes a
circular orbit around the centre of the Galaxy with a constant circular speed Vc(R). For the
solar neighbourhood this is called the Local Standard of Rest (LSR). U is the radial velocity
component, which is positive towards the GC; V is the azimuthal component, positive in the
direction of Galactic rotation; and W is the component perpendicular to the plane, positive
towards the North Galactic Pole. The velocities with respect this reference system are sometimes
called peculiar velocities. A sketch of this velocity reference system in the solar neighbourhood
and in other regions of the Galactic plane is shown in Figure 1.1.

The Sun moves with a certain peculiar velocity with respect to the LSR, which is referred
to as (U, V,W )� . The velocities of the stars around the Sun are often given with respect to the
Sun and then they are called heliocentric velocities and despite being confusing, are often also
designed as (U, V,W ). In the observational part of this thesis (Part III), we use heliocentric
velocities as we only work with the velocity distribution near the Sun. In Parts IV and V, as
we deal with simulated velocity distributions over the whole Galactic plane, we use peculiar
velocities.

Regarding the spatial coordinate systems, we use galactocentric cylindrical coordinates
(R,φ,z) with the azimuth φ > 0 in the direction of rotation as indicated in Figure 1.1. The
origin of φ is on the line between the Sun and the GC. In our observational study, the Sun is as-
sumed to be at φ = 0◦, R = R� ≡ 8.5 kpc and z = 0. For the simulations, given the uncertainty
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Figure 1.1: Spatial and kinematic reference systems. Sketch of the reference systems for the spatial
positions and velocities used in this thesis superimposed on a rough sketch of the MW disc.

in the exact orientation of the bar and especially the spiral arms, the position of the simulated
Sun with respect to these non-axisymmetric components is variable. Initially, as default, the
Sun will also be located as assumed above. The Cartesian galactocentric XY coordinate system
is oriented as in Figure 1.1 with the Sun at X = 0 and Y = 8.5 kpc. Occasionally, we use the
coordinate η which is centred on the Sun and positive in the direction of Galactic rotation taken
e.g. from Asiain et al. (1999a) and that is in fact equivalent to X.

10



Chapter 2

Historical evolution of the moving

groups study and interpretation

In this chapter we review the observations that led to the discovery of the moving groups, the
past and current studies devoted to establish their properties and the theories proposed up to
now for their origin. A brief description of the observational data, statistical methods for data
analysis, dynamical models and simulations that have contributed in this field is also offered.
It will be shown how this field is an example of elegant applications of statistical techniques to
large samples of data. Also, theoretical works on this subject have involved numerous and varied
procedures and modelling which were developed in a parallel manner: analytical approximations,
tests particle simulations or N-body simulations. Moreover, the study of the moving groups has
progressively been linked to the study of the MW large-scale structure and, more recently, to its
formation and evolution. Actually, as it will be seen in this chapter, these kinematic structures,
which up to now have been detected only in the solar neighbourhood, have turned out to be a
tool to constrain some of the structural characteristics of the MW in its present and past form.
However, at the moment the origin of these kinematic structures is far from being completely
understood.

The review is done approximately in chronological order and divided in sections which try
to group the different stages of the study of the moving groups according to the methods and
data used and the theories suggested to explain the origin of moving groups. The chapter tries
to describe the more relevant studies for this thesis.
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2. HISTORICAL EVOLUTION OF THE MOVING GROUPS STUDY
AND INTERPRETATION

2.1 Discovery of the moving groups

The serendipitous discovery of the first moving group was a consequence of the attempt to
determine the solar motion in the 18-19th century. The effect of the Sun’s motion would be an
apparent divergence of the proper motions of the neighbouring stars which the Sun was moving
towards, and convergence of those in the region it was leaving. The German astronomer J.H.
von Mädler was one of those who were trying to measure the proper motions of the stars around
the Sun in order to deal with this issue. By examining some of these measures, Mädler (1846)
determined the region towards which the Sun was moving and, assuming that the orbit of the
Sun was circular, he concluded that the central point of the Sun’s orbit was located near the
Perseus constellation. As the Pleiades open cluster was the brightest one near that region of
the sky, he announced that the Pleiades -and with strong probability Alcyone– were the central
group of the entire system which the Sun and the other stars were moving around (the “central
Sun” theory):

German: Entbehren die Schlüsse, welche ich in Vorstehenden, freilich in gedrängtester
Kürze, mitgetheilt habe, nicht alles Grundes, so ist hier der Angelpunkt gefunden, um
den das gesammte Heer der übrigen Fixsterne seine ungeheuren Bahnen beschreibt.
(English: If the conclusions, which I have only described above in the uttermost
brevity, are not unfounded, then the central point which the entire crowd of all other
fixed stars move around in their immense orbits has been found.)

Moreover, not only did he notice the uniformity of the proper motions of 11 stars of this
cluster but also, more important, he discovered that, among the stars within several degrees in
the sky of this group, a large percentage exhibited the same motion. This fact was a confirmation
of his theory, as these central stars, expected to be fixed, were just reflecting the Sun’s motion1.
Although his interpretation was wrong –this conception of the Galaxy was quickly refuted by
other astronomers–, he had in fact discovered the Pleiades moving group.

It was Proctor (1869) who identified several preferential directions of movement in the solar
neighbourhood. He reported the existence of two more prominent star-drifts apart from the
one of the Pleiades: one in the constellation of Gemini and Cancer (later called Hyades moving
group) and another in Leo (later called Sirius moving group)2. He wrote in the Proceedings of
the Royal Society of London:

1 Additional bibliography: Loomis, E., The recent progress of astronomy: especially in the United States, Arno

Press, USA, 1980
2Although they were first named as the constellations where they were observed, finally the streams took

other names from open clusters or stars that shared the same kinematics: Pleiades (stream 0), Hyades (stream I

or Taurus group) and Sirius (stream II or Ursa Major group).
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A careful examination of the proper motions of all the fixed stars in the catalogues published
by Messrs. Main and Stone (Memoirs of the Royal Astronomical Society, vols. xxviii. and
xxxiii) has led me to a somewhat interesting result. I find that in parts of the heavens the
stars exhibit a well-marked tendency to drift in a definite direction. In the catalogues of
proper motions, owing to the way in which the stars are arranged, this tendency is masked:
but when the proper motions are indicated in maps, by affixing to each star a small arrow
whose length and direction indicate the magnitude and direction of the star’s proper motion,
the star-drift (as the phenomenon may be termed) becomes very evident.

Proctor (1869)

After Proctor’s discovery, Kapteyn (1905) announced his theory of stellar motions, offering
for the first time an explanation for the existence of the two streams found by Proctor (1869).
When he examined a catalogue with the proper motions of 3200 stars, he noticed also that they
were incompatible with the commonly accepted contemporary assumption that the motions of
the stars were randomly distributed. Actually, the observed proper motion distribution could be
explained by his theory of star-streaming by which all the stars, without exception, move in the
two preferential and opposite directions. This was a consequence of two once distinct but now
intermingled populations of stars moving relative to one another, with different mean motions
relative to the Sun.

At that time, Kapteyn was devoted to study the sidereal problem, that is understanding
the architecture of the MW system through statistical techniques (star distributions through
space as a function of absolute magnitude, spectral type and distance). Proper motions were
supposed to be very useful in this study. Among others, they were used to derive the velocity
law (distribution of velocities). Also, they could be employed as distance indicators, since it was
then commonly accepted that larger proper motion was a guide to nearness of the star on the
assumption of random stars’ motions. The discovery of the invalidity of this premise led him
to accept the inadequacy to use stellar motions to solve the sidereal problem. However, as it
will be seen in later chapters, nowadays the relevance of the stellar streams in the study of the
architecture of the MW –the “modern” sidereal problem– is almost unquestionable.

Like Kapteyn, Eddington (1906) interpreted the streams as two swarms in relative motion
and with the movement of the stars in each stream being separately random and following
independent Maxwellian velocity distributions. Schwarzschild (1907) gave an alternative inter-
pretation when he found that the observed distribution of velocities could be also explained by
a unique ellipsoidal distribution with the proper reference frame and three unequal axes, that
is a different velocity dispersion for each direction. However, no dynamical explanation for the
later so used “Scwarzschild distribution” was offered at that moment3.

3For a deeper discussion about these studies see (next page):
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In his ‘Stars, Motions in space and the two-drift theory, A tentative explanation of the “two
star streams” in terms of gravitation’, Turner (1912) gave possibly the first explanation for the
streams related to the orbits of stars moving in a one single global system. According to this
study, one stream would comprise stars moving with elliptical orbits that approach the centre
of the whole system, and the other one, elliptical orbits leaving the centre. Also Jeans (1922a)
discussed the possibility that the streams were due to circular motion in both directions around
the centre of the local system, as an integral part of the Galactic system in steady motion.
Modern explanations for the moving groups concerning orbits have been proposed recently as
well (see Section 2.4), which are not so different to these pioneering studies. Besides, Lindblad
(1923, 1925a) studied the idea that the Kapteyn streams were due to encounters of stars with
vast local accumulations of matter which produce great deviations from the stars’ original paths
toward the solar neighbourhood, which perhaps would cause the suggested final streams of
opposite rotation.

The preferential or ellipsoidal motion and also the asymmetry of the velocity distribution4

were in the end explained dynamically thanks to the theory of Galactic rotation of Lindblad
(1925b). B. Lindblad showed that the ellipsoidal distribution was a simple consequence of the
orbits of stars travelling around the centre of the Galaxy and being not circular but elliptical
orbits with different inclinations to the Galactic plane. This can be considered as a pilot usage
of the local velocity distribution to explain general features of the Galaxy, namely its rotation.
However, the presence of marked streams moving in the direction of the groups of Taurus
(Hyades) and Ursa Major (Sirius) still complicated the interpretation of the velocity distribution.

2.2 Disruption of clusters

The coincidence between the two favoured directions of motion and the motion of the well-known
clusters, suggested that the clusters were the centre of bigger groups with members scattered all

• Chandrasekhar, S., Eddington, the most distinguished astrophysicist of his time, Cambridge University

Press, Great Britain, 1983

• Trumpler, J., Weaver, H.F., Statistical Astronomy, Dover Publications, USA, 1953

• van der Kruit, P.C., van Berkel K., The Legacy of J.C. Kapteyn, Kluwer Academic Publishers, The Nether-

lands, 2000

• Voigt, H.H., Karl Schwarzschild: Gesammelte Werke / Collected Works, Volume 1, Springer, Germany,

1992

4 The asymmetric drift was deeply studied by Stromberg (1925) using the available radial velocities at that

time. He determined that the group motion of several classes of stars was continuously larger along a given axis for

higher velocity dispersions of the group, causing an asymmetry in the general velocity distribution. Consequently,

the Sun’s velocity depended on the class of objects to which it was referred.
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Table 2.1: Velocities of the moving groups. Mean heliocentric velocities of some moving groups
studied by Eggen (1958, 1971, 1996a,b) and references therein.

STREAM U( km s−1) V ( km s−1) W ( km s−1)
Pleiades(Stream 0) -12 -21 -10
Hyades (Stream I) -40 -16 -2
Sirius(Stream II) 15 1 -11
NGC 1901 -26 -10 -1
HR1614 -5 -60 -6
IC 2391 -21 -16 -8
61 Cygni -80 -53 -6
ζ Herculis -54 -45 -26
Arcturus 9 -110 -9
Kapteyn’s star group -13 -228 -16

over the sky. For example, Wilson (1932) committed himself to establish the cluster and group
members of Taurus (Hyades) finding that stars sharing this motion were spread through the
whole sky. Afterwards the dynamics of the moving clusters, which were the originators of the
streams in the solar vicinity, was explored by many authors. For instance, Jeans (1922b) studied
the shapes and rates of expansion of the clusters. Later Bok (1934), motivated by the different
picture of the Galaxy at that time, repeated the previous analysis by studying the stability of
the clusters subject to tidal forces of the MW as a whole and to the random encounters. This
reinforced the disruption of clusters as a plausible origin for the moving groups.

Subsequent to the discovery of the first moving groups (Mädler 1846, Proctor 1869), others
were discovered in other regions of the sky. After the mentioned pioneering studies, Olin J.
Eggen worked intensively on the establishment of the spatial and kinematic properties of many
of these stellar streams in the solar neighbourhood (see Eggen 1996b and references therein).
The main moving groups studied by Eggen and their heliocentric velocities are shown in Table
2.1.

Following the previous ideas, Eggen worked on the hypothesis that moving groups are a
result of the dispersion of stellar clusters or “cluster evaporation”, being the open clusters with
similar kinematics the remnants of bigger previous structures. In later studies (e.g. Eggen
1996b), he developed more the argument as follows. The individual stars, after their birth in
a cluster, followed isoperiodic orbits and the internal and external forces on the cluster caused
small perturbations on the components U , V and W of the velocity, forming a halo of stars
around the clusters. He called these expanded clusters superclusters. When the perturbations
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became stronger, a tube of orbits was generated in the velocity space intersecting the solar
neighbourhood. Similarly, Weidemann et al. (1992) suggested the possibility that the Hyades
supercluster was formed by the superposition of several similar needles (escaped stars from a
cluster) generated in the process of cluster evaporation which had been made successively by a
common parent giant molecular cloud in a prolonged star formation process.

2.3 The Hipparcos Era and the ages of the moving groups

The advent of Hipparcos astrometric data evidenced the need of using and developing more
sophisticated statistical methods to study the moving groups (see also Section 4.3). Such amount
of data led to the definitive establishment of the existence of moving groups and to the recognition
of substructures within them (Chereul et al. 1998, Asiain et al. 1999a). In addition, together
with Dehnen (1998), all these authors attempted for the first time to evaluate the evolutionary
state of the members of some moving groups. This was necessary in order to establish their
origin and evolution and, in particular, to prove if they were disrupted clusters. Dehnen (1998)
used the astrometric data from Hipparcos to derive the velocity distribution only from positions
and proper motions using a maximum likelihood algorithm. As this method did not require
radial velocities, his sample was very extensive (14369 stars) and had less observational biases.
He considered the U–V plane as a superposition of a smooth background distribution with
several prominent maxima corresponding to the moving groups. He used subsamples composed
of stars with different spectral types using the (B-V) index to study the velocity distribution
of old and young stars and found that the red main sequence stars, which were on average
older, also presented the maxima, which seemed in contradiction with the hypothesis of the
cluster disruption. He also pointed out that the component W of the sample was not rich in
kinematic substructure. Besides, according to this author the streams are responsible for the
vertex deviation5 and follow the asymmetric drift relation as a whole.

Once again without radial velocities and as no photometric data were available, Chereul et
al. (1998) could only use what they called palliative ages which were estimated from absolute
magnitudes and colours. Using a procedure based on the wavelet analysis to establish the
overdensities in the velocity space and their significance, they showed that the age distribution
of the stars in moving groups (with dispersion about σ ∼ 6.3 km s−1) seems to be similar
to that observed for their whole sample. By contrast, at smaller scales (σ ∼ 3.8 km s−1 and
σ ∼ 2.4 km s−1) they found that moving groups are structured in 2 or 3 substructures with ages
coherent with the scenario proposed by Weidemann et al. (1992). He therefore suggested that

5 Angle in the velocity space between the direction pointing from the Sun to the GC and the direction of the

major principal axes of the velocity ellipsoid.
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the superclusters could have formed due to the random superposition of minor groups.

Using an adaptive kernel and wavelet transform analysis, Skuljan et al. (1999) studied the
distribution function in the U–V plane of a sample of 4000 Hipparcos stars with available
radial velocities. These authors observed that the distribution function was characterised by a
few branches at larger scales than the moving groups that are diagonal, parallel and roughly
equidistant. The branches were called Sirius, middle branch, Pleiades branch, which included
the Hyades moving group, and Hercules branch. They were seen in both early-type and late-type
stars in an attempt to separate young and old stars.

More precise ages, derived using Strömgren photometry, were used by Asiain et al. (1999b)
to study young moving groups in the U–V –age space with kernel functions. They observed that
the velocity dispersion of several substructures within the Pleiades moving group was compatible
with that expected for the evolution of a stellar complex as described by Efremov (1988). This
conclusion was restricted to groups of stars with ages up to about 1 Gyr as both differential
Galactic rotation and disc heating would have dispersed older groups among the field stars.

The previous studies show that the following advances in the characterisation of the moving
groups required the availability of two key parameters: radial velocities and precise ages. The
first survey of Coravel for dwarfs stars FGK with Strömgren photometry (ages) was published
in 2004 (Nordström et al. 2004) (14139 stars). In a preliminary study of the U -V plane of
this sample, these authors corroborated the existence of the branches of Skuljan et al. (1999).
Famaey et al. (2005) used radial velocity data of Coravel for 6000 Hipparcos KM giant stars.
These authors identified the superclusters of Hyades-Pleiades, Sirius and the Hercules stream
through a maximum-likelihood method based on a Bayesian approach and imposing a Gaussian
distribution for the velocities. More important, they showed that isochrones in the H-R diagram
indicated that the stars belonging to the moving groups had a wide range of ages. Furthermore,
Famaey et al. (2007, 2008) showed that the distributions of mass, metallicity and age of the stars
in some of the streams were incompatible with their being a product of a cluster disruption.

All these observational studies and specially the characterisation of the evolutionary state
of the moving groups demanded a different explanation for their origin. Guided by old and
contemporary theoretical studies (see Section 2.4), Dehnen (1998) speculated that orbital reso-
nances, probably of the Galactic bar, could be the cause of the existence of most moving groups
observed in the solar neighbourhood. However, he was still relating the moving groups to the
clusters as he specified that the process may consist of an evolving resonance that traps a cluster
as a whole, originally born in a near-circular orbit, and shifted it to its current position in the
U–V plane. Besides, Skuljan et al. (1999) suggested that the streams were due to effects of the
spiral structure combined with the initial velocities of the stars. Other authors began to use the
term dynamical or resonant stream (e.g. Famaey et al. 2005).
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2.4 Dynamical effects of the MW bar and spiral arms

The first new theoretical arguments in favour of a dynamic origin of the moving groups were put
forward by Mayor (1970). He interpreted the deviation of the vertex of the velocity distribution
and the streams in terms of the perturbation by the spiral density wave of Lin (1971). However,
he could still not abandon the idea that the existence of the streams was a consequence of the
initial conditions affected later by the perturbation.

On the other hand, Kalnajs (1991) proposed, for the first time after the establishment of a
modern vision of the general structure of the MW, a dynamical model to explain the existence of
moving groups absolutely not related to the formation and evolution of clusters. He pointed out
that they are a consequence of the Sun being near the outer parts of the OLR of the Galactic
bar and due to a mechanism similar to the one that forms rings in external galaxies (Buta
1986). He identified the groups of Hyades and Sirius with the stellar orbits that cross near
the solar neighbourhood which are closed orbits in the bar’s reference system. In particular,
the moving group of Hyades was associated to the inner orbits (orientation perpendicular to
the bar) while Sirius was related to the external orbits (parallel to the bar). From this link,
this author estimated the orientation, intensity and pattern speed of the bar. For instance,
assuming a circular velocity of 225 km s−1 in the solar circle (8.5 kpc), the bar’s pattern speed
was 46 km s−1kpc−1 (placing the OLR at 8.3 kpc) and it was inclined 56◦ in the direction of
rotation, being the first time that the streams are used to estimate characteristics of the large-
scale structure of the MW. Also, according to his model the radial extent of the region where
these orbits cross is proportional to the square root of the bar force field.

After the model by Kalnajs (1991), other studies focused on the effects of the bar or the
non-axisymmetric components of the MW on the velocities of the solar neighbourhood. For
instance, Weinberg (1994) showed that the bar can cause distinctive stellar kinematic signatures
with the OLR being near the solar position. Although the location of the OLR in this study
(R ∼ 5 kpc) is slightly different from the range of locations which are considered nowadays,
he mentioned the interesting point that the kinematic signatures depend on the evolutionary
history of the bar and therefore velocity data may be used to probe the evolutionary history as
well as the present state of the Galaxy.

Furthermore, the studies of Raboud et. al (1998) and Fux (2000, 2001) focused on the origin
of the Hercules structure and its connection to Galactic bar resonances. The Hercules moving
group, also called the U anomaly, was identified in the 70s using samples of late spectral type
(see Table 2.1) and is a group of stars that move in the direction of the Galactic anti-centre and
lags with respect of the LSR6. Using the self-consistent numerical models by Fux (1997), they

6 The existence of a group around the LSR and the Hercules structure is also often called bimodality.
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showed that the stars of Hercules follow the so called hot orbits. These are stars with Jacobi
energies7 larger than the effective potential in its saddle points that can move away of the inner
parts of the bar and travel, in an erratic manner, until crossing the corotation circle and finally
escape. Afterwards, in Fux (2001), where he used test particle and also N-body simulations, he
specified that this stream is due to an overdensity of chaotic orbits near the external regions of
the OLR, that at certain bar inclination angles, get a radial movement towards the outer MW.

By contrast, Dehnen (1999, 2000) proposed, through test particle simulations, that the
Hercules structure consists of stars that have been scattered by the OLR. In particular, for
several pattern speeds and orientations of the bar, a group of unstable chaotic orbits called
x1 ∗ (2) causes the separation of the velocity distribution in two groups, being the one with
slower rotation and mean outward radial motion associated to the Hercules moving group. In
that study, the low probability of this bimodality being caused by the resonant spiral structure
of the MW was also remarked. He argued that the spiral arm perturbation affects mainly stars
with epicycles smaller than the inter-arm separation, being the Hercules epicycles substantially
larger (of the order of 3 kpc).

The hypothesis of the dynamical origin of these structures have gained popularity partially
because of the consistency of the observed Hercules structure with the effects of the Galactic
bar resonances. Consequently, steady and transient spiral arms were also proposed to explain
the existence of some of these stellar groups similarly as it has been done with the bar. By
numerically integrating test particle orbits, De Simone et al. (2004) showed that stochastic spiral
density waves can produce kinematic structures. Few but intense transient spirals reproduced
structures which are arranged in branches similar to those found by Skuljan et al. (1999). The
backward integration of Dehnen (2000) was used also in De Simone et al. (2004) and it allowed
him to study particles with different ages in the simulations, which led him to conclude that
particles in each simulated branch had a wide range of ages as the observed ones.

Also Quillen & Minchev (2005) developed a method to quantify through orbital numerical
integration the velocity distribution function that would result from the existence of families
of periodic orbits around the solar neighbourhood due to the spiral structure. They found, for
models with the Sun in the outer limits of the ILR 4:1 and for a certain spiral arms orientation,
the existence of two periodic orbits in the positions of Coma Berenices and Hyades-Pleiades
(considered here as a unique group).

The studies by Chakrabarty (2007) were the first attempt to analyse the kinematic response

7 In the non-inertial reference frame (moving with the pattern speed of the bar) the potential is independent

of time, which gives an integral of motion, the Jacobi integral, defined as EJ = 1
2
v′

2
+ Φ0 + Φb − 1

2
|Ωp × r′|2 =

1
2
v′

2
+ Φeff , with v′ the velocity of the system. The primes show coordinate with respect to the non-inertial

reference system.
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of the outer parts of Galactic discs to the bar and to the spiral structure acting separately and
also simultaneously. Using test particle simulations she showed that the combined effect of a bar
and 4 weak spiral arms is necessary to reproduce accurately the five significant moving groups
(Hercules, Hyades, Pleiades, Coma Berenices and Sirius) of the solar neighbourhood. However, in
that study the spiral arms seem to contribute only in the fine kinematic structure, thus weakening
constraints on the MW spiral structure based on the solar neighbourhood kinematics. In her
simulations, the Hercules stream was created by scattering off the OLR of the bar and the other
moving groups were a consequence of irregular orbits and resonant families. In Chakrabarty &
Sideris (2008) they found that their models caused strong chaoticity in the outer parts of the
disc, specially when the major resonances of the bar and the spiral overlap.

2.5 Extragalactic imprints

While the dynamic or resonant mechanism was shown to be a plausible explanation for the
main moving groups, new completely different mechanisms were proposed. The discovery of the
Sagittarius dwarf galaxy still experiencing disruption by the MW (Ibata et al. 1994) and also of
the associated tidal debris of this and other dwarfs (Yanny et al. 2000, Martinez-Delgado et al.
2001) provided evidence for the galaxy formation processes in the Λ-CDM cosmogony. But also
all these new findings, together with other observations which seem to indicate the presence of
kinematic substructure in the halo of the MW (for example the Kapteyn’s star group of Table
2.1 that was assigned to the halo by Eggen 1996b), raised the question of whether some of these
streams could be found in the solar neighbourhood as debris of disrupted accreted dwarf galaxies
and perhaps seen as clumps in the velocity space similar to the moving groups.

In this sense, the study by Helmi & White (1999) was the first to analyse the kinematic
signatures of disrupted satellites in a relatively local volume. Using N-body simulations in fixed
halo and disc potentials, they characterised the variation of the structures with time and in
different points of the orbits in the U–V –W velocity space and in the action-angle space. In
the U–V plane, the stars of the same stream showed similarities but also a large velocity range.
A distribution with the characteristic shape of a banana in this plane was obtained for some
cases and certain positions of the orbit (specially near the apocentre). As the stars with the
same progenitors should have similar integrals of motions, the distributions of stars in other
spaces began to be explored in order to identify better the streams. With a combination of
analytic work and cosmological simulations, it was studied how this debris would appear in the
angular momentum space Lz–L⊥, the E − Lz and E − L planes and debris from one satellite
were identified when they applied these methods to a group of metal-poor stars selected from
several samples (Helmi et al. 1999b, Helmi & de Zeeuw 2000).
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More important, hydrodynamical numerical simulations, which had improved considerably
at that time, suggested that the debris of satellites whose orbital plane was similar to the one
of the disc might have a significant contribution to old stars of the disc of the MW (Abadi et al.
2003). This increased the motivation for searching satellite debris right in the disc, and perhaps
nearer the solar neighbourhood.

Additionally, the identification of such debris required a characterisation of the observed
kinematic structures in terms of their evolutionary state and their chemical composition (the
so-called chemical tagging). In particular, Navarro et al. (2004) reanalysed a sample of stars
belonging to the Arcturus group (Table 2.1) and concluded that their similar apocentric radius,
common angular momentum, and metal abundance pattern that was compatible with a common
brief star formation history, were consistent with having arisen from a past accretion event. As
the simulations had shown that the bar’s typical induced perturbations were in the range of the
20-50 km s−1, they rejected this dynamical origin for Arcturus which has a lag of ∼ 110 km s−1.

Later, from the theoretical point of view, several studies have focused again on the identifi-
cation of this kind of accreted streams from their orbital characteristics. For instance, (Helmi
et al. 2006) found that the stars in such streams clustered in the 2D planes of the space of or-
bital apocentre, pericentre and Lz. Examining the catalogue by Nordström et al. (2004) in this
space, they found several new distinctive stellar groups in the solar vicinity with peculiar ages,
metallicities and kinematics coherent with being remnants of accreted satellites. The N-body
simulations by Villalobos & Helmi (2009) demonstrated again that the stars of a debris of an
accreted satellite exhibit a banana shape in the U–V plane, low angular momentum and high
eccentricity, whereas the stars of the original disc were concentrated in the centre of this plane.
Also using N-body simulations, Gomez & Helmi (2009) have shown that the space of orbital
frequencies is suitable for the identification of satellite debris and also for the determination of
the accretion time.

In the observational domain, using several observational catalogues, Arifyanto & Fuchs (2006)
searched for streams in the e and Lz space, which using the epicycle theory can be approximated
by
√
U2 + 2V 2 and V respectively. With this method, they identified the known moving groups

and a new one with possible extragalactic origin. The RAVE data releases were analysed in e.g.
Seabroke et al. (2008) and Klement et al. (2008) with a little contradictory results. While the
former did not find any evidence for vertical streaming in the solar neighbourhood, the latter
identified a previously known stream and a new one of apparently extragalactic origin. Besides,
some old and new stellar streams have been identified in the SDSS data from their kinematics
(“effective” integrals of motion, angular momentum, eccentricity, and orbital polar angle) and
their single peak [Fe/H] distributions which are coherent with progenitors with a well defined
star-forming epoch (e.g. Klement et al. 2009).
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2.6 New scenarios

New chemical tagging, that is new determinations of detailed chemical abundances from high
resolution spectroscopy, has been a key point in trying to disentangle the mechanism originating
a certain stream. For instance, Bensby et al. (2007b) found a wide spread in the distributions of
age and chemical abundances of the stars in the Hercules stream and concluded that this group
was compatible with being a dynamical feature formed by stars from the inner regions of the
MW which have been scattered probably by the Galactic bar. Other studies have opened the
debate about the origin of some groups with apparently well-known origin. This is the case of
the study by Williams et al. (2009) who observed that the stars in the Arcturus moving group
have chemical abundances similar to the stars in the disc. From this evidence, they discussed
a possible disc-dynamical origin of Arcturus and speculated about the bar 6:1 OLR as the
triggering mechanism.

Moreover, the old idea that moving groups are disrupted clusters is still a possible explanation
for some groups as other authors have shown recently. First, other minor kinematic structures
in the solar neighbourhood such as HR1614 have low chemical and age scattering, and hence
do seem to be remnants of a dispersed star-forming event (Feltzing & Holmberg 2000, De Silva
et al. 2007). Besides, using images from the Spitzer Space Telescope at intermediate spatial
frequencies, aging star complexes distorted by shear were found in other galaxies by Block et
al. (2009) and interpreted as azimuthal young star streams for the first time observed in spiral
galaxies other than the MW.

The Λ-CDM scenario also offered the possibility of explaining the moving groups as a per-
turbation in the disc due to events of galaxy satellite accretion. For instance, Quillen et al.
(2009) used test particles simulations to study the structures in the velocity distribution of the
solar neighbourhood due to the disc perturbation caused by a massive satellite (several times
109M�) in a tight eccentric orbit. They found that this phenomenon can cause strong structures
at low velocities (within 40 km s−1 of the LSR) and smaller streams of high velocity mainly with
V > 0. Second, Minchev et al. (2009) also with test particles simulations and a semi-analytical
approach showed that in an unrelaxed disc due to, for instance, a recent merger, the velocity
distribution exhibits waves that travel in the direction of V that can be associated to observed
moving groups of the low angular momentum. In particular, with their model they try to ex-
plain the origin of HR1614, Arcturus and other groups of low angular momentum which were
traditionally thought to be extragalactic debris (see Section 2.5). This model predicted more
moving groups in the solar neighbourhood and a strong perturbation of the disc ∼ 9 Gyr ago.

In addition, Minchev et al. (2010) showed with test particle simulations that the growth of
the bar in the disc can create two quasi periodic orbits precessing around the families x1(1) and
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x1(2) that produce streams of low velocity near the solar neighbourhood. Depending on the time
formation of the bar and its parameters, their model creates several kinematic structures similar
to some observed ones. In particular, to account for the strength of the Pleiades structure they
estimated the bar age to be between 1.75 and 2.25 Gyr.

Today moving groups contribute in an important fraction of MW studies. On one hand, the
moving groups seem to complicate the determination of the solar motion (Seabroke & Gilmore
2007) and the vertex deviation (Vorobyov & Theis 2008). But on the other hand, they have
turned out to be useful in the understanding of the large-scale structure of the MW and also, as
recently suggested, of its formation and evolution. To summarise, nowadays several possibilities
for the origin of the moving groups are considered:

• Cluster and star complex disruption

• Orbital and resonant effects of the non-axisymmetric structure of the MW (spiral arms
and bar): periodic orbits, chaos, precession of periodic orbits, transient spiral structure

• Tidal debris of past accretion events

• External dynamical effects on the disc resulting from interaction events

The origin of each structure is currently far from resolved. Different plausible explanations
for the moving groups of low angular momentum and for the ones with low epicyclic energies
seem to coexist. A combination of some of these ideas becomes a complex but fascinating
scenario.
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Part II

MULTISCALE STATISTICAL METHODS
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This part is concerned with the statistical methods that are applied in this thesis to obser-
vations and simulations. One of the goals of Parts III and V is to analyse the moving groups in
the kinematic space or, in general, the N-dimensional space of stellar parameters, using observa-
tional and simulated samples. Specifically we aim to characterise these structures establishing
their shape, size or statistical significance. This requires the use of robust statistical techniques.
Moreover, the comparison between the observed and simulated distributions demands the use
of exactly the same robust techniques. The statistical methods that we use for this purpose are
the following:

• Wavelet transform (WT): visualising and detecting structures according to their different
sizes or scales (Section 3.1).

• Wavelet denoising (WD): obtaining a smooth distribution function from a point distri-
bution via a smoothing/filtering treatment at different scales that deals with the Poisson
fluctuations (Section 3.3).

The WD has been used in other astrophysical topics, but has never been applied to this
particular subject. A detailed description of these methods can be found in Starck & Bijaoui
(1994), Lega et al. (1995), Murtagh et al. (1995), Starck et al. (1998), Starck & Murtagh (2002).
Although these methods can be applied to general N-dimensional spaces, the analysis and the
visualisation can become very complex. For this reason, in Parts III and V these methods
are applied in 2D to different combinations of any two of the variables considered: kinematic
parameters, age and metallicity.

In Chapter 3 a description of the method in 2D case is provided. The

particular used algorithms and filters are described. In Chapter 4 we de-

tail how these methods work and give some examples. We also explain

which are their capabilities and advantages in front other techniques. The

chapter finishes by describing the WT and WD software packages used,

the implementation process and the CPU costs of the method. For sim-

plicity, sometimes the method will be mathematically formulated for the

1D case.
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Chapter 3

Method description

3.1 The wavelet transform

The WT decomposes a function f(x, y) on the basis obtained by translation and dilation of the
so-called mother wavelet Ψ, which is localised in both physical and frequency space. The method
consists of applying the correlation product between the function and the wavelet function:

wa(x, y) = f(x, y)⊗Ψ
(x
a
,
y

a

)
(3.1)

where a is the scale parameter and wa(x, y) the wavelet coefficient. By varying a, a set of 2D data
or images corresponding to the wavelet coefficients of the data at given scales are obtained. The
integral of the wavelet function is equal to zero and therefore, the WT analyses the overdensities
and underdensities of the function, assigning them positive and negative coefficients respectively.
A constant function would produce null coefficients. The key point is that the WT is able to
discriminate structures as a function of scale, and thus it is well suited for detecting structures
at one scale that are embedded within features at a different, larger scale.

The continuous form of the WT calculated in the point (bi, bj) is defined as:

wa(bi, bj) =
1√
a

∫ ∞
−∞

∫ ∞
−∞

f(x, y)Ψ∗
(x− bi

a
,
y − bj
a

)
dxdy . (3.2)

For a = 1 y bi = bj = 0, Ψ
(
x−bi
a ,

y−bj
a

)
is the mother wavelet and Ψ∗ its complex conjugate.

In practise, if the function f(x, y) is only known in Np points, the wavelet coefficients are
calculated using the wavelet series:

wa(bi, bj) =
1√
a

Np∑
n=1

fn(x, y)Ψ∗
(x− bi

a
,
y − bj
a

)
. (3.3)
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Figure 3.1: Mexican hat function.

When the function f(x, y) consists of a distribution of Np points (xn, yn) in a plane, as in
the case of this thesis, the coefficients are simply:

wa(bi, bj) =
1√
a

Np∑
n=1

Ψ∗
(xn − bi

a
,
yn − bj
a

)
. (3.4)

There are many families of wavelets depending on the mother wavelet used, which in turn
depends on the purpose of the analysis and the function to be analysed. Probably the most
common mother wavelet is the Mexican Hat or Hermitan Wavelet (see Figure 3.1 for the 1D
example) which is the second derivative or Laplacian of the Gaussian function:

Ψ(x, y) = (2− x2 − y2)e
x2+y2

2 . (3.5)

The characteristics of the WT detailed here and the use of this mother wavelet, make this
transformation suitable for one of the main aims of this study: the statistical analysis of the
structures present in a given distribution. Unfortunately, the computation time of the WT
described here (e.g. Equations 3.3 or 3.4) is very large, specially if large amounts of data are
analysed. This is due to the fact that the wavelet coefficients must be computed for a set of
points in a 2D region for every scale and every point. Actually, the complexity of the process
is O(NNpJ), where N is the total number of points (bi, bj) where the WT is carried out, Np is
the total number of points where the original function is known (or the total number of points
of a distribution) and J is the desired total number of scales. To solve this, a more optimum
WT implementation has been used in this thesis and it is described in Section 3.2.
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3.2 The à trous algorithm

3.2 The à trous algorithm

As seen in Section 3.1, the WT can involve high computation times. To solve this, a discrete
WT can be used which evaluates the coefficients in a given scale using the results for previous
scales. Specifically, it is possible to define a discrete WT which allows us to compute a discrete
set of wavelet coefficients or a scale-related set of “views” of the 2-D function. An example is
the à trous (“with holes”) WT algorithm, that will be used in this study. In this case, the WT
performs on a function c0(x, y) consisting of a grid of pixels with a bin size of ∆. In the case of
a set of discrete points, the function c0(x, y) is first approximated for instance by smoothing the
set of points on a grid with a bin size of ∆1. With this algorithm, the following decomposition
is obtained:

c0(x, y) =
J∑
j=1

wj(x, y) + cJ(x, y) (3.6)

where j indicates the scale of the WT, the set (w1, ..., wJ) are the wavelet coefficients and cJ(x, y)
is a smooth version of the original signal c0(x, y).

The algorithm (for simplicity in the 1D case) consists of the following process:

1. The value j is set to 0.

2. A set of band-pass filters h that allows structures to be recognised at each scale is con-
structed from the so-called scaling function φ(x):

1
2
φ
(x

2

)
=
∑
l

h(l)φ(x− l) (3.7)

and the mother wavelet in this case is:

1
2
ψ
(x

2

)
= φ(x)− 1

2
φ
(x

2

)
. (3.8)

3. The data cj(x) is convolved with the discrete filter h to get cj+1(x), involving the data
corresponding to certain close points (through l).

cj+1(x) =
∑
l

h(l)cj(x+ 2jl) . (3.9)

The distance between one involved point and the next adjacent one is 2j in units of the
bin size ∆. This is a process of data smoothing.

1This can be carried out for example by simple star counts in a grid (histogram in 2D). For more details see

Chapter 4.
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4. The WT coefficients are obtained from the difference:

wj+1(x) = cj(x)− cj+1(x) . (3.10)

5. If the scale j is smaller than the number of total scales or resolution desired J , this value
j is increased and step 2 and subsequents are repeated.

6. Finally, when j = J the decomposition of the original function c0(x) is obtained (Equation
3.6).

For the 2D case, the transformation is applied separately in each dimension:

cj+1(x, y) =
∑
l

∑
m

h(l)h(m)cj(x+ 2jl, y + 2jm) . (3.11)

The final values cJ(x, y) show the details of c0(x, y) at scale of size 2J , in units of the grid
bin ∆, as they are built with a smoothing filter of 2J ×∆ size. Equivalently, the intermediate
cj(x, y) are obtained with a smoothing filter of 2j ×∆ size. As wj+1 = cj − cj+1, the structures
detected at each scale j + 1 have a size that is approximately between 2j ×∆ and 2j+1 ×∆ or
equivalently, 3×∆× 2j−2 for wj . For more details of the à trous WT algorithm see e.g. Starck
& Murtagh (2002).

Usually the B3-Spline as scaling function is used (see Figure 3.2a). In the 1D example it is:

φ(x) = B3(x) =
1
12
(
|x− 2|3 − 4|x− 1|3 + 6|x|3 − 4|x+ 1|3 + |x+ 2|3

)
. (3.12)

From this scaling function and using 3.8, the mother wavelet of Figure 3.2b is obtained. It
can be seen that it is very similar to the Mexican hat of Figure 3.1 in its shape and properties.
As seen in Section 3.1, this type of mother wavelet are suitable for the statistical analysis of the
overdensities (and underdensities) present in a given distribution. Also due to the properties of
the B3-Spline, the transformation is isotropic and thus allows the detection of features with no
preferred direction2. For all these reasons, in this thesis the à trous algorithm for the WT with
the B3-Spline as scaling function is used.

According to 3.12, the left-hand side of Equation 3.7 is now expressed as:

1
2
φ
(x

2

)
=

1
6
φ(x+ 2) +

1
4
φ(x+ 1) +

3
8
φ(x) +

1
4
φ(x− 1) +

1
6
φ(x− 2), (3.13)

2Note that the isotropy is not defined in non-metric spaces, such as some of the ones used here.
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(a) (b)

Figure 3.2: (a): Scaling function B3-Spline. (b): Mother wavelet obtained from the B3-Spline.

Comparing the right-hand side of this equation with the right-hand side of Equation 3.7, it can
be seen that the discrete filter h correspond to the coefficients multiplying the function φ in
Equation 3.13. Applying these filter to c0(x) (Equation 3.9 with j = 0), we have:

c1(x) =
1
16
c0(x+ 2) +

1
4
c0(x+ 1) +

3
8
c0(x) +

1
4
c0(x− 1) +

1
16
c0(x− 2) (3.14)

and in general for any scale j + 1:

cj+1(x) =
1
16
cj(x+ 2j · 2) +

1
4
cj(x+ 2j · 1) +

3
8
cj(x) +

1
4
cj(x− 2j · 1) +

1
16
cj(x− 2j · 2) . (3.15)

In 2D this leads to a row-by-row convolution with the mask (1/16, 1/4, 3/8, 1/4, 1/16), followed
by column-by-column convolution with the same mask. Then, using Equation 3.10, the wavelet
coefficients are:

wj+1(x) = − 1
16
cj(x+ 2 · 2j)− 1

4
cj(x+ 2j) +

5
8
cj(x)− 1

4
cj(x− 2j)− 1

16
cj(x− 2 · 2j) . (3.16)

This algorithm has several advantages. First, the complexity of the computation of this WT
is O(NJ), where N is the total number of pixels in the grid3 and J is the total number of scales.

3Note that this N is different from Np which is the number of points where the function f(x, y) is known or

the number of points of the initial distribution.
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This results in a very low computational cost (see Chapter 4 for exact values of the present
application). Finally, this implementation enables us to restore the signal c0 from the set of
wavelet coefficients w easily and without losing any information (Equation 3.6), which is a very
useful characteristic of this implementation as it will be shown in Section 3.3.

3.3 The denoising method

The data c0(x, y) present statistical fluctuations related to the fact that the sample of points is
finite4. In the case of the function analysed here (number of stars or test particles), the noise
in each initial grid point obeys Poisson statistics. These fluctuations are detected as structures
(or voids), especially at the smaller scales of the WT. The aims of WD are first to ascertain the
significance of the wavelet coefficients wj(x, y) at each scale and second to filter these coefficients
in order to obtain a smooth distribution function through adaptative filtering.

If a model for the noise can be assumed, the probability that a wavelet coefficient wj(x, y)
is significant can be estimated. Then in simple thresholding methods, a detection threshold is
defined for each scale and coefficients with higher probability of being due to noise are rejected
or set to 0 (e.g. Multiresolution Hard, Soft and k-Sigma Thresholding, see Starck et al. 1998
and Starck & Murtagh 2002). Also iterative filterings are often used. But as an alternative,
a more sophisticated method is used here: the Wiener-like filtering in the wavelet space, or
multiresolution Wiener filtering (Starck & Bijaoui 1994). This allows the treatment of each
coefficient significance as a continuous function and therefore the denoising consists of weighting
each coefficient according to its significance. This filtering method is detailed in Sect. 3.4.

The WD method allows us to obtain a smooth distribution function by reconstructing the
transformed data after denoising or filtering at each scale, which is the key point of the method.
Thus, the denoised signal c̃(x, y) is obtained by adding the first J denoised scales w̃j (j = 1, J)
to the smooth version cJ(x, y):

c̃(x, y) =
J∑
j=1

w̃j(x, y) + cJ(x, y) . (3.17)

The number of scales J which should be used in the WD depends on the image or signal
size and will be deeply discussed in Section 4.2. In theory5, this could be J = log2(N), where
N is the number of pixels of the grid in its smallest direction, but it is also suggested that, in

4This is apart from the error in the data from which the function c0 is built, e.g. the errors in the velocity

components of each star. This observational error is somehow treated in the choice of ∆ (see Chapter 4)
5See for instance the documentation of the MR software used in our study (Section 4.4).
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practice, it is preferable to use a lower value such as J = log2(N)−1 or J = log2(N)−2. It seems
reasonable to adopt the option of increasing J until no change is observed in the reconstructed
denoised signal c̃(x, y), i.e. WD up to the scale J , hereafter called Jplateau, where all signal is
found to be significant (noise free).

The multiscale structures that are expected to appear could be very complex. In this sense,
the WD offers several advantages. First, the method is more straightforward than other methods
used in this field (see Section 4.3 for a comparison with other methods). It offers smoothing
with a unique recipe and it does not require additional simulations for the treatment of Poisson
fluctuations. Second, it allows an automatic local filtering as the denoising is carried out at
several scales. The analysis is not restricted to one specific scale or band-width because all scales
are visualised at the same time in the final distribution. Last but not least, this method is more
precise than other smoothing methods such as Gaussian smoothing which degrades resolution
and is shown to introduce Gaussian features into the distribution (Mart́ınez et al. 2005) and,
therefore, is not suitable for the detection of structures that may be far from Gaussian.

3.4 The multiresolution Wiener filtering

This filtering method is originally designed to be applied to Gaussian noise. However as we will
see below, it can be adapted to Poisson noise. Due to the properties of the WT, a Gaussian
noise in the original signal c0 is transmitted into Gaussian noise in the wavelet planes. The
multiresolution Wiener filtering (Starck & Bijaoui 1994) is used exactly when the measured
wavelet coefficients wj , at a given scale j and a given position, result from a noisy process, with
a Gaussian distribution with a mathematical expectation Wj , and a standard deviation σj :

P (wj/Wj) =
1√

2πσj
e
−

(wj−Wj)2

2σ2
j . (3.18)

If the noise in the data c0 is not Gaussian but Poisson noise, as in the present study, the
Anscombe transformation (Anscombe 1948)

A(c0) = 2
√
c0 + 3/8 (3.19)

can be applied to turn it into an approximately stationary Gaussian noise with unitary variance
under the assumption that the mean value of c0 is large (approximately > 10, Murtagh, private
communication). The counts associated with the structures in our study is expected to be large
enough for this condition to hold. Consequently, after the Anscombe transformation is per-
formed, the probability density of the coefficients wj becomes Gaussian and the multiresolution
Wiener filtering can be applied.
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The noise standard deviation at each scale σj resulting from a Gaussian noise in the original
signal with standard deviation equal to 1 are calculated using simulations and the values are
tabulated in Starck & Murtagh (2002) (see their Table 2). Then this method assumes that the
set of expected coefficients Wj for a given scale also follows a Gaussian distribution, with a null
mean, as the wavelet function has null integral, and a standard deviation Sj :

P (Wj) =
1√

2πSj
e
−
W2
j

2S2
j . (3.20)

Equivalently, the measured coefficients satisfy:

P (wj) =
1√

2πsj
e
−
w2
j

2s2
j . (3.21)

where s2
j is the variance of wj . In the algorithm, Sj is locally estimated as S2

j = s2
j − σ2

j . To
estimate Wj knowing wj , Bayes’ theorem gives:

P (Wj/wj) =
P (Wj)P (wj/Wj)

P (wj)
=

1√
2πβj

e
−

(Wj−αjwj)2

2β2
j (3.22)

where αj =
S2
j

S2
j+σ2

j
and β2

j =
S2
j σ

2
j

S2
j+σ2

j
. Thus, the probability P (Wj/wj) follows a Gaussian dis-

tribution with a mean αjwj and a variance β2
j . The mathematical expectation of Wj is αjwj

and consequently the denoised coefficients are computed through a linear filter with a simple
multiplication of the coefficients

w̃j = αjwj . (3.23)

The complexity of the WD using this filtering method is O(NJ), where N is the total number
of pixels of the grid and J is the number of scales.

This and other algorithms for filtering in the wavelet space were compared in Starck & Bijaoui
(1994). Using an image with artificially added noise, they conclude that Wiener-type filtering
provided the best results, generally leading to better SNR than the simple hard thresholding.
The evaluation of the quality of the restoration was carried out in terms of the correlation coef-
ficient and the mean-square error not only between the original image and the noised image but
also between each plane (scale) of the WT. Although it is out of the scope of the present study
to investigate exhaustively the different filtering methods, we compared the results obtained
using a thresholding and other methods of filtering in the wavelet space with the multiresolu-
tion Wiener filtering. We concluded that the latter produces smoother distributions, without
additional artifacts.
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Chapter 4

Application to the

kinematics-age-metallicity space

The aim of this chapter is to recapitulate the essential points of the meth-

ods of Chapter 3 and to show the process of their application step by step

by an example. This example of application is basically focused on the

case of the U–V plane and for this we use the observational sample ex-

tensively described in Chapter 5.

4.1 Application of the Wavelet Transform

First of all, the starting point is the set of (Ui,Vi) for each star of the sample (Figure 4.1 with
24190 stars). This first representation of the velocities as a 2D plot looks really confusing,
although some structures could be recognised in this plane. In order to study robustly this
structures the methods of Chapter 3 must be used. To this end, the function c0(x, y) (c0(U, V )
in this example) is needed. In the present study, the first smoothing of the data is obtained from
simple star counts in a grid (histogram in 2D). The choice of ∆ is carried out here depending on
the observational errors or the resolution of the data. A value too small would not be coherent
with the errors but a too large one would cause too much loss of resolution. The final results do
not depend significantly on this choice provided that it is between the mentioned limits. The
values 0.5 km s−1, 0.01 Gyr and 0.01 dex for velocity, age and metallicity, respectively have been
chosen (see Section 5.2).

The initial data for the WT, c0, is shown in Figure 4.2. This representation of the velocities,
despite being better than the one in Figure 4.1 (for example at high densities), is still not
defining clear groups neither structures undistinguishable from the noise. Also the effects of the
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Figure 4.1: Points in the U–V plane. Points in the U–V plane for the stars of the observational
sample.

Figure 4.2: First approximation to the density in the U–V plane. Initial density signal c0(U, V )
in the U–V plane for the observational sample.
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4.1 Application of the Wavelet Transform

Table 4.1: Bin & structure sizes. Value of ∆ and size of the structures detected at each smooth plane
(cj) and at each scale of the WT (wj) for velocities, age and metallicity.

U ,V age [Fe/H]
( km s−1) ( Gyr) ( dex)
∆ = 0.5 ∆ = 0.01 ∆ = 0.01

c0 0.5 c0 0.01 c0 0.01
c1 1 w1 0.75 c1 0.02 w1 0.015 c1 0.02 w1 0.015
c2 2 w2 1.5 c2 0.04 w2 0.030 c2 0.04 w2 0.030
c3 4 w3 3 c3 0.08 w3 0.060 c3 0.08 w3 0.060
c4 8 w4 6 c4 0.16 w4 0.120 c4 0.16 w4 0.120
c5 16 w5 12 c5 0.32 w5 0.240 c5 0.32 w5 0.240
c6 32 w6 24 c6 0.64 w6 0.480 c6 0.64 w6 0.480
c7 64 w7 48 c7 1.28 w7 0.960 c7 1.28 w7 0.960

discretization in bins is noticed. A continuous and denoised distribution function that would
allow the accurate analysis of the structures is required.

The next step before the WD is the application of the WT where the data c0 is decomposed
into the different scales. For 5 scales w1, w2, w3, w4 and w5, following Equation 3.10 the
decomposition of Figure 4.3 is obtained and the final smooth version c5 is also shown. Figure
4.4 shows the smooth planes ci involved in the obtention of each wavelet plane (Equation 3.9):
each wavelet plane wi of Figure 4.3 is obtained from the smooth planes ci− ci+1. Also according
to Equation 3.6, the addition of the six planes of this Figure makes Figure 4.2.

As explained in Section 3.2, the sizes of the structures present in each of the planes of the
transform can be calculated for a given ∆ as 2j×∆ for the smooth planes cj and as 3×∆×2j−2

for wj . Table 4.1 shows the size of the structures detected on each smooth plane and on each
plane of the WT for the velocities and for the rest of the variables (age and metallicity).
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(a) wavelet plane w1 (b) wavelet plane w2

(c) wavelet plane w3 (d) wavelet plane w4

(e) wavelet plane w5 (f) final smooth version c5

Figure 4.3: Wavelet planes. WT in the U–V plane: wavelet planes wi together with the final smooth
version c5.
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4.1 Application of the Wavelet Transform

(a) initial grid c0 (b) smooth version c1

(c) smooth version c2 (d) smooth version c3

(e) smooth version c4 (f) final smooth version c5

Figure 4.4: Subsequent smoothed wavelet planes. Initial grid c0 (as in Figure 4.2) and subsequent
smooth planes ci.
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4.2 Application of the Wavelet Denoising

The fundamental part of the whole statistical method of this thesis is to ascertain the significance
of the wavelet coefficients so as to built a denoised distribution function from the respective
denoised planes of the WT. The Poisson noise is concentrated basically in the first scales but
the WD must be carried out in a stipulated number of scale as it has been seen in Section 3.3.
Figure 4.5 show the denoised scales, where the wavelet coefficients have been weighted according
to their significance through the multiresolution Wiener filtering. Comparing this Figure to 4.3
it can be seen that many of the structures, specially the ones at smaller scales, have disappeared
as a consequence of the WD.

The final and essential step of the WD is the reconstruction of the denoised data adding
the denoised planes at different scales w̃i to the final smooth version. The result can be seen in
Figure 4.6 which will be extensively analysed in Chapter 6 as well as the equivalents in other
planes with age and metallicity.

As Figure 4.5 shows, the Poisson noise is concentrated basically in the first scales but the
WD must be carried out in a stipulated number of scales (Section 3.3). However, in most of the
analyses of this study, it is also reasonable to use Jplateau which is the minimum number of J
for which no change is observed in the reconstructed denoised signal. For instance, Figure 4.7
shows the case with J = 1, J = 2, J = 3 and J = 4. Whereas there are evident differences
between Figure 4.7a, 4.7b, 4.7c, and 4.7d, there are no clear changes between Figure 4.7d with
J = 4 and 4.6 with J = 5. This means that a J = 4 is enough for the example of this
chapter and therefore Jplateau = 4. Actually, in most cases Jplateau is equal to or even lower
than log2(N) − 1 or log2(N) − 2 (the recommended by the authors of the implementation, see
Section 3.3). Nevertheless, for some specific cases, especially when dealing with a signal with
fewer counts per pixel, we find that Jplateau is higher than the practical values proposed. Most
probably, in these cases, WD up to Jplateau could imply very few data values in the final scales
and consequently, too much loss of signal. These cases will be clearly flagged, as the conclusions
derived from them would demand the use of larger samples for definitive confirmation. In these
situations the J up to which the WD has been carried out will be specified, whereas in all other
cases WD has been done up to Jplateau.
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4.2 Application of the Wavelet Denoising

(a) denoised wavelet plane fw1 (b) denoised wavelet plane fw2

(c) denoised wavelet plane fw3 (d) denoised wavelet plane fw4

(e) denoised wavelet plane fw5 (f) final smooth version c5

Figure 4.5: Denoised wavelet planes. WD of the wavelet planes w̃i together with the final smooth
version c5 which does not change.
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Figure 4.6: Final denoised plane. Final result of the WD process c̃ with J = 5.

4.3 Comparison with other statistical methods

Several general advantages of the WD method are described in Section 3.3 but a direct compari-
son between this and other methods used in this field is particularly interesting. Many statistical
techniques have been used up to now to study the velocity distribution in the solar neighbour-
hood and in particular the structures present in this distribution. This section is focused on
the comparison between the WD and the main methods used nowadays: maximum likelihood
methods, parametric and non-parametric methods.

Methods such as the convergent point still used in relatively recent studies (Chereul et al.
1998) are not considered in detail in this section as they are just specific methods to recover the
three velocity components U , V and W for samples with only proper motions, which is not the
case of the present thesis. Also the Maximum Penalized Likelihood estimate by Dehnen (1998)
was used to reconstruct the 3D velocity field from the positions and tangential motions of stars
in the Hipparcos catalogue. Poisson noise dominated in such a way that only 2D projections of
the whole 3D velocity space could be used. Also the Spaghetti Method presented in Aguilar &
Hoogerwerf (2001) and references therein has the aim to search for moving groups using only
astrometric data.

The method designed by Luri et al. (1996) was used in Famaey et al. (2005) to recover the 3D
velocity field from angular positions, proper motions and radial velocities but with low accuracy
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4.3 Comparison with other statistical methods

(a) denoised data ec with J = 1 (b) denoised data ec with J = 2

(c) denoised data ec with J = 3 (d) denoised data ec with J = 4

Figure 4.7: Final result of the WD process with several J .
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data on parallaxes in some cases. It consists of a maximum likelihood technique, based on
Bayesian inference, that constructs a velocity distribution function composed by several groups.
Although this procedures takes into account the individual uncertainties of the data, too many
assumptions on the characteristics of these groups are assumed such as a Schwarzschild ellipsoid
with respect to LSR for the velocities or a Gaussian distribution for the absolute magnitude for
each group. The recovered U , V and W are used in the present study (Chapter 5) without taking
into account the member assignation. In this sense, this is a very parametric method. Also a
new technique has been developed in Bovy et al. (2009) to reconstruct the velocity distribution
with the lack of radial velocities through a maximum likelihood estimation. In this method the
function is modelled with a mixture of a certain number (left as a free parameter) of Gaussian
distributions and taking care of the individual uncertainties. This last advantage contrast with
the extreme complexity of the method to find that the number of final groups is not so large
(10) and again assumed to have a Gaussian shape. Also the same authors recognised that the
amount of information provided by radial velocities is significant and should be used in such
studies. In the WD the individual errors on the data are not treated so sophisticatedly but only
in the election of the bin size. However, a robust treatment of the Poisson fluctuations is carried
out and no assumptions at all on the velocity distribution and the moving groups are assumed.

Among the methods used when the 3D velocities are available or have been obtained through
the previous methods, non-parametric methods have the advantage that they do not assume
any predefined hypothesis about the velocity distribution or the moving groups themselves. The
kernel estimator of the density (Chen et al. 1997) or the wavelet analysis restricted to specific
scales are examples of these kind of methods. In both cases, the data in convolved with a function
with certain amplitude to obtain a smooth distribution function. The main weakness of these
methods is that the amplitude of the functions or the smoothing parameter limit the size of
the detected structures. Refinements of these methods which consist of choosing a more proper
scale for the wavelet in terms of the observational errors (Figueras et al. 1997) or calculating the
optimum value for the amplitude such as in Asiain et al. (1999a) do not improve the previous
problem. Neither does the application of the WT at many but fixed scales (Chereul et al.
1998, Skuljan et al. 1999). In this sense, the WD offers an analysis which is not restricted to
one specific scale or band-width because all scales are visualised at the same time in the final
distribution. On the other hand, the Gaussian smoothing degrades resolution and is shown
to introduce Gaussian features into the distribution (Mart́ınez et al. 2005) so the WD is more
precise than these other smoothing methods and is more suitable for the detection of structures
that may be far from Gaussian.

Non-parametric methods such as the adaptive kernels where the smoothing scale varies
locally according to the density are used in other studies Skuljan et al. (1999), Bobylev &
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Bajkova (2007). But additional treatment for the noise is required in these methods. The noise
treatment is often combined with multiscale techniques, which means that the noise is dealt
in the wavelet space. For example Skuljan et al. (1999) used this adaptive kernel to estimate
first the probability density function in the U–V plane and afterwards the WT was applied to
characterise the structures in several fixed scales and their significance. In order to do this,
simulations to create Poisson random copies of the original distribution were carried out and
the significance of the wavelet coefficients was assigned according to the number of random
realisations where they were positive. Only the coefficients that had 90% of probability of being
real were considered. A very similar procedure is used by Zhao et al. (2009). Also local thresholds
for the wavelet space were calculated with the support of a set of Poisson noise simulations in
(Chereul et al. 1998, 1999). The WD method used in this thesis is more straightforward than
these other methods used in this field. It offers smoothing with a unique recipe and it does not
require additional simulations for the treatment of Poisson fluctuations. Furthermore, it allows
an automatic local filtering as the denoising is carried out at several scales.

4.4 Implementation

To perform the calculations of the WT and WD the MR software1 developed by CEA (Saclay,
France) and the Nice Observatory has been used. It was originally built for astronomical use
but they have been employed in other subjects. It consists of a set of C++ executable programs
for Linux platform, among others, that implements multiresolution (multiscale) methods for
processing and data analysis of 1D signals, 2D images, and 3D data volumes2. The package
includes also a series of IDL routines to interface the executables to the processing packages,
making the use of the executables easier.

Particularly, the MR/1 package (Multiresolution Analysis Software Environment) has been
used with the following programs:

mr transform: This program computes several multiresolution transforms of an image. In
this case the bspline wavelet transform with the à trous algorithm has been applied specifying the
desired number of scales. It returns a cube corresponding to the decomposition of the original
image into the wavelet planes and the smooth plane.

mr filter: This filters an image using several methods for noise modelling. In this case, the
multiresolution Wiener filtering is used assuming Poisson noise. The multiresolution transform

1http://thames.cs.rhul.ac.uk/∼multires/
2As discussed in Page 27, the 3D implementation is not applied in this thesis.
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and the number of scales must be chose. Again the bspline wavelet transform is used here with
the selected number of scales. It returns the final filtered image.

Additionally we have implemented the computation of the initial grid c0(x, y), which is
previous to the application of the WT and the WD. Also to obtain and visualise the final images
of the WT and WD, we have developed specifically for this study several IDL programs based
on the routines contour and ColorBar.

Finally, the CPU time is rather low for the whole process. The complexity of the computation
of the initial grid c0(x, y) is proportional to the number of points (stars) in the sample, which
gives a computing time of 4 s for the grid construction process for the example of this chapter
(the whole observational sample with 24190 stars). As seen in Sections 3.1 and 3.3, the WT
and WD have complexities of O(NJ) (where N is the total number of pixels in the grid and J

is the number of scales3). This gives computing times are 1 s and 4 s respectively in a typical
grid of 400 × 400 pixels and J = 5 with an Intel(R) Xeon(TM) processor at 3.0GHz, which as
explained in Section 3.2, are very affordable computation times.

3Note that in the MR software a different notation is used: the parameter n there is here n = J + 1.

48



Part III

MOVING GROUPS IN THE

KINEMATICS–AGE–

METALLICITY

SPACE

49





Nowadays, two important observational contributions provide new material to complement
the Hipparcos and Tycho astrometric data: i) the CORAVEL radial velocity data for a significant
number of late-type stars belonging to the Hipparcos catalogue (Nordström et al. 2004 for dwarf
stars and Famaey et al. 2005 for giant stars) and ii) the uvby–β survey of FGK dwarf stars,
which have allowed the derivation of ages and metallicities (Nordström et al. 2004). Lastly,
data on OBA-type stars (Asiain et al. 1999a, Torra et al. 2000) and M dwarfs (Reid et al. 2002,
Bochanski et al. 2005) complete an extensive sample of more than 24000 stars ready to be used
for the characterisation of moving groups. It is necessary to complement these new data with
more powerful statistical tools (Part II) to interpret the data in the space of U–V –age–[Fe/H].

This Part III is the observational part of this thesis and deals with the

characterisation of the observed moving groups. In particular, we char-

acterise the observed kinematic structures in the U–V –age-[Fe/H] space

by applying new statistical techniques with the aim of establishing ob-

servational constraints that will help to reveal their origin. Chapter 5

of this thesis presents the observational data that we use together with

their precisions and possible biases. Chapter 6 characterises in detail the

structures in the velocity plane. Then, Chapters 7 and 8 analyse the age

and metallicity distributions of these structures, respectively. Finally, the

main outcomes of this part are summarised in Chapter 9.
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Chapter 5

Observational sample

5.1 Compilation of data

The observational data is compiled from several recent catalogues and is restricted to samples
with precise radial velocities and astrometric data, as these are necessary to compute the U , V
and W heliocentric velocity components. Also, in order to study the evolutionary state of the
kinematic structures, stellar ages and metallicities are required. For this reason, we aim to cover
a wide range of ages as well as spectral types and luminosity classes. Therefore, catalogues where
ages are estimated using photometric calibrations as well as catalogues containing parameters
closely related to age (Hα equivalent width1) are considered. Table 5.1 shows the data available
in each catalogue. Altogether our sample contains 24190 stars and the age of over 16000 stars
can be used. Table 5.2 shows a summary of the source of each parameter (positions and proper
motions, distances, radial velocities, ages and metallicities). The following list shows a detailed
description of the sample.

• OBA-type Stars: Sample of 4283 main sequence or relatively evolved stars compiled by
Asiain et al. (1999a) (2025 A-type stars) and Torra et al. (2000) (2258 O- and B-type stars)
with astrometric data from Hipparcos and stellar physical parameters and ages computed
from Strömgren photometry. Most of the radial velocities came from the radial velocity
survey of Hipparcos early-type stars (Fehrenbach et al. 1987, Grenier et al. 1999) planned
to complement the kinematically unbiased CORAVEL database for late-type stars. For
the OB stars, when both trigonometric and photometric distances were available, the one
with smaller relative error was used. Relative error on photometric distance ranges from

1Equivalent width of the Hα emission line can be used in this case as an indicator of the chromospheric activity

and, consequently, as age information.
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14% to 25%, depending on spectral type and luminosity class. In the compilation of A
stars, the Hipparcos distance was adopted when the relative error in the parallax was
σπ/π < 20% and the photometric distance otherwise.

• FGK-type Dwarfs: Sample of 13257 dwarf stars2 selected from the 16682 stars in the cata-
logue of the Geneva-Copenhagen survey (Nordström et al. 2004) with kinematic data, ages
and metallicities. Proper motions come from Tycho-2 and most of their radial velocities
were obtained from CORAVEL. As detailed in Nordström et al. (2004), the Hipparcos par-
allax was used when σπ/π < 13% and otherwise the photometric distance was employed.
Ages and [Fe/H] were calculated from uvby-β photometry. The Bayesian estimation
method in Jørgensen & Lindegren (2005) was used for age computation3.

• M-type Dwarfs: A set of 863 dwarf stars selected from the spectroscopic surveys in Bochan-
ski et al. (2005) (428 stars) and Reid et al. (2002) (435 stars). The former catalogue
gives spectroscopic distances obtained from the TiO5 band, radial velocities from cross-
correlation in the 6000-7400 Å range and USNO-B proper motions (Monet 2003). Reid
et al. (2002) use mainly proper motions and trigonometric distances from the Hipparcos
catalogue and radial velocity data from Gizis et al (2002) and Delfosse et al. (1999). Both
surveys give the equivalent width of the Hα line, which is indicative of the magnetic ac-
tivity in the chromosphere and is directly related to stellar age. Following the criteria in
Bochanski et al. (2005), this sample can be split into two subsamples: active stars (182
young stars) and non-active stars (681 older stars) depending on whether the width of the
Hα line is > 1Å or ≤ 1Å, respectively.

• KM-type Giants: A group of 5787 giant stars from the catalogue by Famaey et al. (2005).
They belong to the Hipparcos catalogue and have radial velocities given in the CORAVEL
database and proper motions taken from Tycho-2. Their distances were computed using
the maximum likelihood method developed by Luri et al. (1996) as explained in Section 4.3,
which is based on a Bayesian and parametric approach. The assumptions of this method
to derive the velocity components should be taken into account in subsequent chapters.

5.2 Analysis of the sample, errors and biases

First of all, Figure 5.1 shows the distance distribution of the stars from the different catalogues
that make up our sample. As expected, the volume of sampled space is highly dependent on

2This is the number of stars with available U , V and W .
3In the original catalogue, ages are rounded up to the nearest 0.1 Gyr but in this study, ages (and upper and

lower 1σ confidence limits) rounded up to 0.01 Gyr are used (Jørgensen, private communication).
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Table 5.1: Composition of the sample. Number of stars with kinematic data, age and metallicity
from each catalogue and for the total sample.

OBA (1, 2) FGK (3) M (4, 5) KM giants (6) total
U V W 4283 13257 863 5787 24190
U V W age 3977 11215 8632 0 16055
U V W [Fe/H] 0 13109 0 0 13109
U V W age [Fe/H] 0 11215 0 0 11215

References. (1) Asiain et al. (1999a); (2) Torra et al. (2000); (3)Nordström et al. (2004); (4) Reid et al. (2002);

(5) Bochanski et al. (2005); (6) Famaey et al. (2005).

Table 5.2: Sources of the sample data. Source of the astrometric, photometric and spectroscopic
measures for each catalogue. References from Table 5.1

OBA FGK M (4/5) KM giants
astrometry Hipparcos Hipparcos (Tyc-2) Hipparcos/ USNO-B Hipparcos (Tyc-2)

rad vel Hipparcos survey Coravel PMSU survey Coravel

distances Hipparcos + uvby-β Hipparcos + uvby-β Hipparcos/ spectr (TiO5) Max. Likelihood

ages uvby-β uvby-β Hα ...
[Fe/H] ... uvby-β ... ...
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the spectral type, which will be taken into account in our subsequent analysis. For the M-type
stars, the peak at short distances corresponds to the stars by Reid et al. (2002), whereas the
extended distribution is that of stars by Bochanski et al. (2005). Distance error distributions
and possible biases in the adopted distance are discussed in the publications associated with
each catalogue. As mentioned by Skuljan et al. (1999), large distance errors could lead to
features in the kinematic U–V plane being artificially radially elongated (relative to the point
(U, V ) = (0, 0)). We have checked that in our sample, distance errors are smaller than 25%,
except for 4% of stars, all of them KM giants, which in any case exceed 40%.

On the other hand, no systematic bias in the photometric distances is expected (see e.g.
Nordström et al. 2004). For trigonometric distances (1/π), Brown et al. (1997) showed that a
symmetric error law for parallaxes such as a Gaussian results in a non-symmetric or systematic
error in distances, which leads to a biased overestimated distance distribution. This relative bias
is shown to be ≈ (σπ/π)2 (Arenou & Luri 1999). This expression gives a maximum bias of 2%
for stars with trigonometric distances of the FGK subsample –all of them with σπ/π ≤ 0.13–,
which accounts for about ∼75% of all the trigonometric parallaxes in our sample. Moreover,
the bias for the whole sample is estimated to be always less than 6%. The maximum likelihood
method used to derive distances for the KM giants corrects this and other systematic trends
(see Figure 8 in Famaey et al. 2005). However, as discussed in Section 6.3, other kinds of biases
caused by the a priori parametrisation of the kinematic distribution function cannot be ruled
out.

With these distances, radial velocities and astrometric data, the heliocentric velocities and
their errors have been recalculated following Meillon et al. (1997), with the exception of the
M dwarfs for which the necessary data were not available. For the OBA-type stars and KM-
type giant stars, most of which have distances > 100 pc, the velocities have been corrected for
Galactic differential rotation with values for Oort’s constants of: A = 14.82 km s−1kpc−1 and
B = −12.37 km s−1kpc−1 (Feast & Whitelock 1997). The error distribution for each subsample
is shown in Figure 5.2 and the mean errors in the velocity components and more information
on the accuracy of the parameters are shown in Table 5.3. The larger errors in the OBA-type
stars (mainly due to the OB stars) and KM-giants is due to their larger distances. In the case
of the M-type stars no errors in the velocity could have been recalculated. But for these stars,
their errors are mainly due to errors in radial velocity and this are 1 km s−1 for echelle data and
10 km s−1 for low-resolution data.

At this point it is of utmost importance to ascertain the possible kinematic biases of our
sample due to selection effects. As stated by Binney et al. (1997), high proper motion stars were
preferred in pre-Hipparcos radial velocity programmes, which leaded to kinematically severely
biased samples. During the last two decades, specific observational programmes for radial ve-
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Figure 5.1: Distances of the sample. Distance distributions of stars from the catalogues that make
up the sample.

(a) OBA (b) FGK (c) KM giants

Figure 5.2: Kinematic errors of the sample. Histogram of heliocentric velocity errors for the different
subsamples.
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Table 5.3: Sample accuracy. Error information for the kinematic data, age and metallicity for each
catalogue.

OBA FGK M KM giants
εU,V,W ≤ 2 km s−1 21% 54% ... 17%
ε̄U , ε̄V , ε̄W ( km s−1) 4.5, 4.4, 3.9 2.0, 1.9, 1.6 ... 4.0, 3.5, 2.8
εage ≤ 30% 32% 50% ... ...

locities were undertaken in parallel with the Hipparcos mission (CORAVEL and Fehrenbach et
al. 1987) to complete kinematic data for stars of the Hipparcos survey. Most of the stars in
the subsamples of FGK dwarfs and KM giants belong to this survey. Consequently, this bias is
expected to be suppressed for 79% of the stars of our whole sample. For the OB stars, Torra et
al. (2000) discussed in detail a small kinematic bias in their subsample (see Figure 3 therein).
Numerical simulations allowed these authors to demonstrate that it had negligible effects on
their kinematic analysis. Regarding the A-type stars, some of the photometric programmes on
which the Asiain et al. (1999a) compilation is based favoured stars with known pre-Hipparcos
radial velocity data. Although a slight bias is expected for this subsample, it only represents
about 8% of the whole sample. Finally, as was evaluated by Reid et al. (2002), their M dwarfs
catalogue –a volume limited sample– shows no evidence of any systematic bias (see Figure 4
therein). On the other hand, the early M-type stars from Bochanski et al. (2005) were pho-
tometrically selected by colour and magnitude and thus no kinematic bias from the selection
process is expected. Thus, all these considerations allow us to assume confidently that no sample
selection bias affects our kinematic study in the next chapters.

Regarding the evolutionary state of the stars in the sample, Figure 5.3 shows the age dis-
tribution for the OBA- and FGK-type dwarf stars. The precision of this parameter (Table 5.3)
deserves special attention. The vast majority of the OBA-type stars are main sequence or mod-
erately evolved stars and, therefore, a reliable estimate for their ages is available from uvby-β
photometry (see the error distribution in Figure 1b of Asiain et al. 1999a and Figure 7 of Torra
et al. 2000). As stated by Torra et al. (2000), an overestimation in age as large as 30-50%
is expected for highly rotating stars, that are a substantial fraction of the OB main-sequence
stars. This, however, implies an absolute bias of always less than 50 Myr whose effect in our
age-kinematic analysis undertaken in Chapter 7 is almost negligible.

Figure 15 in Nordström et al. (2004) shows the distribution of upper and lower 1σ relative
errors in age for the FGK subsample. Large relative errors in age lead to the evolutionary state
of late-type stars being largely undetermined, which require to evaluate carefully any result
derived from the use of this parameter. Furthermore, certain biases in the age estimation would
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5.2 Analysis of the sample, errors and biases

Figure 5.3: Ages of the sample. Age distribution for the OBA-type stars (dotted line) and for the
FGK-type stars (solid line). The dashed line shows the histogram for stars with relative errors in age of
less than 30%.
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have non-negligible consequences for our study: dependence on the evolutionary models used or
biases that arise in certain regions of the HR diagram4.

Using improved calibrations, Holmberg et al. (2007) recomputed ages and error estimates
for the Nordström et al. (2004) sample. They stated that the differences between old (used
here) and new values5 are insignificant and are much smaller than the estimated individual
uncertainties. Furthermore, they find an agreement between the new ages and the independent
age determination by Takeda (2007) (see Figure 19 of Holmberg et al. 2007). All these results
allow us to be slightly more confident of the age values and their uncertainties. However, a cut-
off by error for this parameter allows us to work with the more reliable ages. The distribution of
stars with relative errors in their ages6 of less than 30% is shown in Figure 5.3. This condition
is fulfilled by 32% and 50% of stars in the OBA and FGK samples, respectively. It has to
be kept in mind that employing this cut-off results in a change in the content of the working
sample (e.g. uncertainties in isochrone ages increase when less massive main sequence stars are
considered7). The most significant feature of this age histogram is the peak around 2 Gyr. This
peak results from a combination of selection effects in the sample in Nordström et al. (2004):
apparent magnitude, spectral type, etc. However, the lack of stars younger than ∼ 1 Gyr –a
direct result of the blue cut-off at b− y = 0.205– is partially corrected in our sample by adding
in the OBA sample.

Finally, as shown in Table 5.1, the [Fe/H] metallicity parameter is only available for the
FGK-type stars in Nordström et al. (2004) but no explicit errors for this parameter are given.
The metallicity calibration by Holmberg et al. (2007) provided new [Fe/H] estimates for this
sample. Differences between old and new estimates reach values up to ±0.2 dex. (see Figure 7
in Holmberg et al. 2007). However, Reid et al. (2007) compared the photometric estimate used
in Nordström et al. (2004) with values obtained using echelle (high resolution) spectroscopy
and found a dispersion of only ∼ 0.1 dex. In addition, as shown by Haywood (2006), explicit
biasing of the atmospheric parameters can lead to structures and spurious patterns in the age–
metallicity diagrams. Undoubtedly, these considerations should be taken into account in the
metallicity study of moving groups (Chapter 8).

4For instance, Pont & Eyer (2004) demonstrate that the isochrone dating method is subject to significant

biases that arise inevitably in regions of the HR diagram where the effects of age on the atmospheric parameters

become small. Haywood (2006) recently studied this in depth and showed how biases, similar to those expected

in real samples, greatly influence the physical interpretation of the Galactic age-metallicity distribution.
5They were not available when the present work was completed.
6Nordström et al. (2004) provides upper and lower limits for error estimates. Here we consider that a star

has εage ≤ 30% if this is true for both limits.
7For a discussion of the dependence of the degree of completeness of their sample on the cut-off by error in

ages see Nordström et al. (2004).

60



Chapter 6

Structures in the velocity space

In this chapter, the kinematic plane U–V is analysed with the method

described in Part II. In Section 6.1 we compare our results for the velocity

plane to the classic moving groups found in other studies. Next in Section

6.2 we deal with the kinematic branches that dominate the observed U–V

plane. Finally, Section 6.3 deals with the subsamples of different spectral

type and in Section 6.4 we look for possible variations of the kinematic

properties of the branches with Galactic position.

We deal only with these two components of the velocity because classic moving groups are
less visible in the W distribution due to the more thorough phase-mixing of the movement
perpendicular to the Galactic plane1 (Dehnen 1998, Seabroke & Gilmore 2007). Figure 6.1
shows the velocity distribution in the U–V plane for the whole sample of 24910 stars obtained
by means of the WD method. This Figure can be compared to Figure 6.2 where the velocities
of the individual stars are plotted as dots. Table 6.1 and Figure 6.3 show the positions of the
centres of the classic moving groups according to Dehnen (1998) and Eggen (1971, 1996b)2.
Connections and continuity can be seen between these classic kinematic structures. As was first
pointed out by Skuljan et al. (1999), these connections arrange classic moving groups in several
branches whose approximate positions can be shown also in Figure 6.3. These superstructures
(the branches), structures (moving groups) and their substructures are characterised in this
chapter.

1This assumption must be called into question, however, for the other moving groups such as the ones that

could be remnants of an accreted satellite in the disc (see Chapter 2).
2The list could be far more extensive; only the most significant groups have been chosen. Similar values for

their components have been reported by other authors (see e.g. Montes 2001, López-Santiago et al. 2006).
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6. STRUCTURES IN THE VELOCITY SPACE

Figure 6.1: Velocity distribution in the solar neighbourhood. Density field in the U–V plane for
the whole observational sample obtained by WD (Jplateau = 4).
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6.1 Classic moving groups

6.1 Classic moving groups

The established understanding of classic moving groups immediately leads to the following points
when analysing Figure 6.3:

• The Sirius, Coma Berenices, Hyades and Pleiades moving groups are clearly identified but
they have neither a clearly defined shape nor defined limits. Furthermore, they present
substructure.

• The centre of the Sirius moving group is not well-defined, which could explain the discrep-
ancies in its position on the U–V plane found in the literature. This moving group seems
to be better described by a branch-like shape with a clear extension.

• Similar arguments can be applied to the Hercules moving group, although it is less promi-
nent in Figure 6.3 due to its low density. The two peaks proposed by Dehnen (1998)
(groups 8 and 9 in Table 6.1) are faintly observed but this structure appears to be a
continuous elongated feature.

• The Hyades and Pleiades moving groups are clearly grouped together, forming just one
branch. The centres established by Eggen and Dehnen for NGC 1901 and IC 2391 (groups
5 and 12 in Table 6.1) seem to be placed slightly above the crest of the branch (less negative
V ), in a low density region within the distribution.

• Groups such as NGC 1901 (group 5), HR 1614 (group 6) or IC 2391 (group 12) are
not observed, possibly due to the small contribution they make compared to the main
structures.

• New structures such as that centred at (35,−20) km s−1, which is weak and does not have
a well-defined shape, may all be considered as part of the elongation of the Sirius or Coma
Berenices structures, rather than being necessarily linked to the nearest identified groups
(11 or 17 in this case).

6.2 Kinematic branches

Skuljan et al. (1999) detected the existence of at least three long, parallel and equidistant
branches in the U–V plane: the Sirius branch, the middle branch (here Coma Berenices branch)
and the Pleiades branch (here Hyades-Pleiades branch). The increased extent of our sample, in
terms of both luminosity and spectral type, allows us to characterise these three branches and
also the Hercules branch. In this section the properties of these branches in the whole sample
are studied.
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6. STRUCTURES IN THE VELOCITY SPACE

Table 6.1: Velocities of the moving groups by other studies. Heliocentric velocities of the main
moving groups according to (1) Dehnen (1998) and (2) Eggen (1971, 1996b, and references therein).

(1) (2)
Moving group U V U V

( km s−1) ( km s−1) ( km s−1) ( km s−1)

1 Pleiades (Stream 0) −12 −22 −11.6 −20.7
2 Hyades (Stream I) −40 −20 −40.4 −16.0
3 Sirius (Stream II) 9 3 14.9 1.4
4 Coma Berenices −10 −5
5 NGC 1901 −25 −10 −26.4 −10.4
6 HR1614 15 −60 5.8 −59.6
7 20 −20
8 −40 −50
9 −25 −50
10 50 0
11 50 −25
12 IC 2391 −20.8 −15.9
13 −70 −10
14 −70 −50
15 61 Cygni −80 −53
16 ζ Herculis −30 −50
17 Wolf 630 25 −33
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6.2 Kinematic branches

Figure 6.2: Stellar velocities in the solar neighbourhood. Stellar velocities in the U–V plane for
the whole observational sample.

Figure 6.3: Kinematic branches and moving groups. As Figure 6.1 but with the superposition of
the classic moving groups in Table 6.1, the approximate trace of the branches and the trace of the edge
line (see text in Section 6.2).
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6. STRUCTURES IN THE VELOCITY SPACE

The branches seem to have a similar and slight curvature. This curvature can be critical to
evaluating whether some old moving groups are part of the branches. For example, this is the
case of Wolf 630 (group 17 in Table 6.1) located at (25,−33) km s−1 and one of the oldest groups
proposed in Eggen (1971). In addition, this curvature could be a decisive parameter to bear
in mind when constraining the models proposed for the origin and evolution of the kinematic
branches.

To simplify the study of the branches, a clockwise rotation through an angle β is applied to
the original (U, V ) components. In the new coordinate system (Uβ, Vβ) the branches are better
aligned with the horizontal axis (except for their slight curvature). Although Skuljan et al.
(1999) proposed a turn of 25◦, a value of β ∼ 16◦ is more suitable for the data we present here,
especially for the three main branches. Their approximate positions are delineated as dotted
lines with this slope in Figure 6.3.

Figure 6.4 shows the density along the Vβ component for the whole sample. The WD is
carried out up to different J (3, 4, 5) in order to illustrate the discussion regarding the choice of
J in Sections 3.3 and 4.2. The four branches are clearly seen and their approximate positions
are marked with vertical lines. We notice that J has become rapidly Jplateau and results almost
do not change from J to J . Our data confirm the nearly equidistant character of the branches.
The first three branches are found to be separated in intervals of approximately 15 km s−1.
The possible dependence of this interval on spectral type or age is discussed in Section 6.3 and
Chapter 7. The separation between the Hyades-Pleiades and the Hercules branch is ∼ 30 km s−1.

Skuljan et al. (1999) noticed the existence of a fairly sharp “edge line” at 30◦ to the U axis
and connecting the extremes of the branches at low U and high V (see their Figure 5). This
feature can be evaluated by computing the density field in the direction perpendicular to this
hypothetical edge line (direction of U⊥ from now on). First, several directions were scanned to
look for the sharpest distribution: a lower inclination of about 20◦ was found here. This edge
line is plotted in Figure 6.3 and the perpendicular density distribution along U⊥ is presented in
Figure 6.5. Undoubtedly, the asymmetry and the long tail at positive U⊥ > 0 observed would
support the existence of a sharp edge line. However, we want to stress that:

• The upper part of the edge line is not empty: a considerable number of stars occupy this
region of the U–V plane (see Figure 6.2).
• Equivalent importance should be given to other similar edge lines such as the sharp dis-

tribution observed in Figures 6.2 and 6.1 near the Hyades-Pleiades branch towards low U

and low V , which is manifested in Figure 6.4 with the drop at the left of this branch.
• Each branch presents a different density distribution near the edge line (Figure 6.1). This

is also confirmed by examining the density characteristics along each branch, i.e. in the
direction of the component Uβ, plotted in Figure 6.6. These density distributions are
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6.2 Kinematic branches

Figure 6.4: Kinematic distribution perpendicular to the branches. Density field for the Vβ com-
ponent. The approximate positions of the four branches of Hercules, Hyades-Pleiades, Coma Berenices
and Sirius are marked with vertical lines according to the maximums.
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6. STRUCTURES IN THE VELOCITY SPACE

Figure 6.5: Kinematic edge line. Density field in the direction perpendicular to the edge line (U⊥) for
the whole observational sample (Jplateau = 4).

Figure 6.6: Kinematic distribution along the branches. Density field for the Uβ component for
each of the four branches (Jplateau = 4).
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obtained from the whole Uβ–Vβ distribution considering the central positions in Vβ of the
branches according to the maximums in Figure 6.4 (−55, −25, −10 and 5 km s−1 for the
Hercules, Hyades-Pleiades, Coma Berenices and Sirius branches, respectively) and a width
of ±4 km s−1. It can be seen that the slope of the density drop at negative Uβ is different
for each branch, being considerably steeper for the Hyades-Pleiades branch in part due
to the gathering of stars of the small substructures at the very beginning of the branch.
The drop becomes less abrupt from Coma Berenices to Sirius to the Hercules branch.
Moreover, the Hyades-Pleiades and Coma Berenices branches show a slightly asymmetric
distribution, with a longer tail of stars at positive Uβ.

The existence of all these abrupt features in the U–V plane definitely rules out the classic idea of
a smooth velocity field distribution and it even questions the scenario where several structures
are superimposed on this smooth field.

6.3 Spectral type analysis

Figure 6.7 shows the density field in the U–V plane (left column) and the density for the Vβ
component (right column) for the subsamples of OBA, FGK, M dwarfs and KM giants. Some
of these subsamples have been used for moving group studies by different authors and using
different techniques. This is the first time that the same statistical method is applied to all of
them. In this sense, a direct comparison among subsamples deserves special attention.

In the right column plots, the WD has been carried out up to different J (3, 4, 5), as in
Figure 6.4 for the whole sample, in order to return to the considerations about the choice of
J in Section 3.3. The maximum value of J presented in these plots is always higher than or
equal to Jplateau, which is the one for which the result does not change when higher scales are
denoised. For the FGK and OBA subsamples, J becomes rapidly Jplateau and the signals almost
do not change from J to J . Therefore, the significance of the structures and branches present
in these distributions is strongly supported. However, for the subsamples of M dwarfs and KM
giants the peaks whose existence has been independently proved by the previous robust results
here are drastically diluted when denoising up to the Jplateau. For this and to avoid the loss of
signal (Section 3.3), we present and discuss the U–V distributions with J = 4 for all subsamples
despite this not being Jplateau for all of them.

Some of the well-known characteristics according to spectral type are observed in these
figures, for example the predominance of the Coma Berenices and Pleiades groups or the absence
of the Hyades moving group for the OBA stars. As some of these features depend on age, they
will be studied in Chapter 7. More importantly, the three branches of Hyades-Pleiades, Coma
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6. STRUCTURES IN THE VELOCITY SPACE

Figure 6.7: Velocity distributions for spectral types. Left column: Density field in the U–V plane
for the the subsamples of OBA, FGK, M dwarf stars and KM giant stars obtained by WD with J = 4.
Right column: Density field for the Vβ component with different values of J of the WD: 3, 4 and 5.
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6.3 Spectral type analysis

Berenices and Sirius are detected in all subsamples (Figure 6.7, right). Skuljan et al. (1999),
with a different rotation angle β, suggested a separation of 15 km s−1 for early-type stars but
20 km s−1 for late-type stars. Here, the value of 15 km s−1 is more suitable for all subsamples. In
all cases, the positions of these three overdensities differ by less than 3-4 km s−1 from the values
derived for the whole sample (vertical lines).

The comparison between the velocity distributions of the KM giants and the FGK dwarfs
deserves special attention since they have very different space volume coverage (see Figure 5.1)
and the number of stars in both subsamples is comparable. A similar examination was carried
out by Seabroke & Gilmore (2007). We agree with these authors that the kinematic structures
are well maintained in both distributions and thus, considering their different spatial extension,
moving groups cannot be simple remnants of star clusters. Our method allows us to go further
in this comparison. For instance, a clear overdensity appears at (U, V ) ∼ (−27,−22) km s−1 in
the middle of the Hyades-Pleiades branch for the KM giants sample which is not present for the
FGK dwarfs. Most specially, the Hercules branch presents significant differences both in shape
and in position of the density maximum. Whereas for the KM giants this branch is seen as a
clear elongated structure, for the FGK dwarfs there is a density maximum more localised in the
U–V plane. Moreover, Figure 6.7 (right) shows an evident discrepancy between the positions of
the Hercules branch located at Vβ ∼ −62 km s−1 for the KM giants but at Vβ ∼ −55 km s−1 for
the FGK dwarf stars. Two possible explanations for this discrepancy are: i) errors in distance
estimates or biases and ii) real differences due to the different volume coverage or Galactic
position. Previous discrepancies in the position of the Hercules group are seen by checking the
literature. Fux (2001) found Hercules centred at (U, V )=(−35,−45) km s−1 using a sample of
nearby stars (d < 100 pc), whereas a value of (−42,−51) km s−1 was obtained by Famaey et al.
(2005) for the KM giants. These values correspond to Vβ = −53 and −61 km s−1, respectively.
Also, as mentioned in Section 6.1, Dehnen (1998) detected two peaks in the region of this branch
(groups 8 and 9 in Table 6.1) at Vβ = −59 and −55 km s−1. Although density values in the
tail of the distribution where Hercules is placed are low, we will pay special attention to this
discrepancy.

As mention in Chapter 5, no significant bias is expected for the FGK stars with trigonometric
parallaxes (with small relative errors of less than 13%). We have checked that the position of
the Hercules branch does not change at all when separately considering the FGK stars with
trigonometric parallax or those with photometric distances. Consequently, this establishes the
existence of the peak at Vβ ∼ −55 km s−1 for stars nearer than 100-150 pc.

More importantly, we have selected stars from the subsample of KM giants with relative
errors in trigonometric parallaxes σπ/π < 10%. As mentioned, biases in trigonometric distances
are negligible for this truncation of the relative error. In Figure 6.8 we compare the density in
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6. STRUCTURES IN THE VELOCITY SPACE

Figure 6.8: Kinematic distribution of the KM giant stars with trigonometric and LM dis-
tances. Density field for the Vβ component for J = 4 of the WD for the KM giants with σπ/π < 10%
(756 stars) using the trigonometric distance (dashed line) and the LM distance (solid line).

the Vβ component obtained calculating the velocity using: i) the distance estimates from the
method in Luri et al. (1996) –LM distances from now on– (solid line) and ii) the distances from
trigonometric parallaxes (dashed line). As expected, both curves are practically identical using
LM and trigonometric distances since high-quality information on trigonometric parallaxes was
used in the derivation of the LM distances. Remarkably, we observe that the overdensity of
the Hercules branch appears at Vβ ∼ −55 km s−1, as for the FGK dwarfs. With this cut in
σπ/π, we are in fact selecting stars with distances < 150 pc, which proves again the existence
of a real kinematic structure at Vβ ∼ −55 km s−1 for the nearer stars. Note that, by contrast,
we find that the velocity distributions of the stars located in shells of LM distances further
than 100 pc centred in the Sun3 do present always the peak at ∼ −62 km s−1 using the LM
distances (Figure 6.9). Therefore, the situation is certainly complex. We conclude that we can
not conclusively disentangle the cause of the different position of the Hercules branch for the
sample of KM giant stars. It could be either its larger spatial extension or a consequence of the
distance determination method.

We want to evaluate whether the subsample of M dwarfs could contribute to solve this

3Note that due to its source of radial velocities, this subsample is restricted to the northern equatorial

hemisphere (see Famaey et al. 2005) and therefore, stars in these shells are not isotropically distributed around

the Sun.
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6.3 Spectral type analysis

(a) d ≤ 50 pc (b) 50 ≤ d ≤ 100 pc (c) 100 ≤ d ≤ 150 pc

(d) 150 ≤ d ≤ 200 pc (e) 200 ≤ d ≤ 250 pc (f) 250 ≤ d ≤ 300 pc

(g) 300 ≤ d ≤ 400 pc (h) 400 ≤ d ≤ 500 pc (i) d ≥ 500 pc

Figure 6.9: Kinematic distribution of the KM giants at different distances. Density field for the
Vβ component for J = 3, J = 4 and J = 5 for subsamples of stars located in shells of LM distances.
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(a) inner and outer subsamples (b) subsamples towards anti-rotation and rotation

Figure 6.10: Spatial distribution of the subsamples of KM giants. Partition of the KM giant
subsample in 4 subsamples according their radii and η coordinate.

issue, despite being aware that the low number of stars in this case prevents us from giving any
conclusive statement. The Vβ distribution for these stars (Figure 6.7) shows two peaks around
the Hercules branch at Vβ ∼ −50 km s−1 and −65 km s−1. As this subsample is composed of
stars from two different catalogues (see Chapter 5), we ascertain that the stars from Reid et al.
(2002) (very nearby stars with d < 25 pc) show a very broad Hercules branch but centred at
Vβ ∼ −55 km s−1, in agreement with the previous results for nearby stars (figures are omitted).
However, the stars from Bochanski et al. (2005) (stars from selected areas mostly at δ > 0
and with larger distances up to ∼ 150 pc) contribute to the split of this branch into two peaks.
Again, the importance of the mean distance and spatial distribution of the subsample considered
is revealed.

6.4 Kinematic structures in different Galactic positions

We look for possible variations of the kinematic properties of the branches with Galactic position.
At present, the KM giant subsample is the only one with enough stars and space volume coverage
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to undertake this study. We have selected 4 subsamples at different locations and approximately
with the same number of stars (1800-2000 stars). Note that the centre of KM giants spatial
distribution onto the Galactic plane is placed 100 pc away from the Sun in the direction of
Galactic rotation and 40 pc towards the Galactic anti-centre4. Stars in the central region are
not considered in order to emphasise the properties of the extremes. First, we divide the sample
into two subsamples according to their different galactocentric radii, R: R < R� − 20 pc (inner
subsample) and R ≥ R� + 100 pc (outer subsample). Secondly, we build two subsamples with
different η (heliocentric Cartesian coordinate towards the direction of the Galactic rotation):
with η < 40 pc (subsample towards anti-rotation with respect to the centre of the sample) and
η > 160 pc (subsample towards rotation). The region occupied by the 4 subsamples are shown
in Figure 6.10.

The results are shown in Figures 6.11 and 6.12. The same colour scale is used in all cases
for a clearer comparison. From these Figures we conclude that the four branches are present
in all regions. Second, the Hyades-Pleiades branch is the dominant structure, except for the
region towards Galactic rotation where Coma Berenices has the same density. Furthermore,
a significant change of contrast among substructures inside the branches is confirmed and the
density maximum along the branches (along the Uβ component) varies for each region. Note
for instance the substructures at (U, V ) ∼ (−27,−22) km s−1 and (U, V ) ∼ (−20,−10) km s−1 or
the Pleiades moving group. Also the shape of the Hercules branch changes between regions and
it is more significant for the inner region and through anti-rotation. All these considerations
suggest a real effect of Galactic position on the shape of kinematic structures, independently of
the possible bias in the LM distances.

Resuming the issue of the discrepancies in the Hercules branch position, we observe that
this branch appears at Vβ ∼ −62 km s−1 for all these four different galactocentric directions
of the KM giants subsample, in strong contrast with the peak at Vβ ∼ −55 km s−1 for the
central nearby stars of this same subsample. This makes the method for LM distance derivation
suggestive of a possible bias entangling kinematics and distances in a complex way. Although
the Bayesian parametric LM approach was developed to derive unbiased distances, the a priori
adoption of a Schwarzschild ellipsoid for the velocity distribution functions can directly affect
the distance estimate of a given kinematic group or branch. Further work along these lines
requires the revision of the LM distances and the application of the WD method to larger and
spatially more extended surveys (RAVE, Gaia).

4Note also that the observational spatial restriction affects the distribution of the subsamples in the direction

perpendicular to the Galactic plane.
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6. STRUCTURES IN THE VELOCITY SPACE

(a) inner subsample R < R� − 20 pc

(b) outer subsample R ≥ R� + 100 pc

Figure 6.11: Velocity distributions at different Galactic radius. Density field in the U–V plane
obtained by WD with J = 4 (left) and density field for the Vβ component with different values of J
(right) of two subsamples of KM giant stars situated at (a): inner galactocentric radii (1812 stars) and
(b): outer galactocentric radii (2057 stars).
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(a) subsample towards anti-rotation η < 40 pc

(b) subsample towards rotation η > 160 pc

Figure 6.12: Velocity distributions at different Galactic azimuths. Density field in the U–V plane
obtained by WD with J = 4 (left) and density field for the Vβ component with different values of J
(right) of two subsamples of KM giant stars situated at (a): azimuths towards anti-rotation η < 40 pc
(1903 stars) and (b): azimuths towards rotation η > 160 pc (1975 stars).
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Chapter 7

Age–kinematics characterisation

Two different approaches are adopted in this chapter. First, the whole

sample is divided by age range into statistically significant subsamples to

trace the kinematic structures in the U–V plane through age. Secondly,

only those stars with the most precise ages –relative errors of less than

30%– are used to study structures and periodicities in U–V –age space

and other connections between kinematic structures and the evolutionary

state of their members in the context of the branches proposed in Section

6.2. Note that in both analyses the sample of stars used only includes the

FGK and OBA dwarfs samples, since individual ages are not available

for the other subsamples (see Table 5.1).

7.1 U–V plane dependence on age

Figures 7.1 and 7.2 show the distribution in the U–V plane and the distribution for the Vβ

component obtained by WD for subsamples with different age ranges. The age bins have been
chosen in order to emphasise the changes in these distributions. Important observations derived
from these figures are:

• For the youngest stars, only the Pleiades and Coma Berenices kinematic groups appear
and the branches are not identified in the U–V plane. For ages between 0.1 and 0.5 Gyr,
the Hyades and Sirius structures have begun to appear. The Hyades structure is the most
prominent in all the subsamples with age > 0.5 Gyr.
• Certain structures appear and disappear (or at least their contrasts vary considerably in

relation to other structures) when subsamples with different age ranges are considered. See,
for instance, the Pleiades structure at (U, V ) ∼ (−12,−22) km s−1. From top to bottom,

79



7. AGE–KINEMATICS CHARACTERISATION

Figure 7.1: Velocity distributions for different ages (I). Left column: Density field in the U–V
plane obtained by WD with J = 4 for subsamples of different ages (in Gyr): 0-0.1 (1792 stars), 0.1-0.5
(1501), 0.5-2.0 (3368). Right column: Density field for the Vβ component with different values of J of
the WD: 3, 4 and 5.
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7.1 U–V plane dependence on age

Figure 7.2: Velocity distributions for different ages (II). Left column: Density field in the U–V
plane obtained by WD with J = 4 for subsamples of different ages (in Gyr): 2.0-4.0 (3917), 4.0-8.0
(2561) and >8.0 (2053). Right column: Density field for the Vβ component with different values of J of
the WD: 3, 4 and 5.
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we see how this structure is clearly evident for very young stars but is less significant in
the 0.5-2.0 Gyr range, only to reemerge at 4-8 Gyr1.
• The structure of branches is well traced up to the oldest samples. The minimum age of

the stars in each branch is discussed in Section 7.2.
• The separation between branches does not depend on age. The value of 15 km s−1 is found

to be appropriate except for the youngest stars (<100 Myr) where the Pleiades and Coma
Berenices moving groups are closer in Vβ.
• The drop of density at the left of the Hyades-Pleiades branch considered in Section 6.2 is

noticed in all age ranges. In addition, we observe that the relative density between this
branch and the Hercules branch clearly decreases with age.

In Chapter 5 we mention that the Hα equivalent width could be used as information on age
for the M dwarfs. We have checked, however, that the number of stars per sample when active
and non-active stars are analysed separately is too low to derive significant results from the
distributions: too smoothed distributions are obtained by WD with Jplateau (Figure 7.3). This
study has been postponed until the use of recent new data, i.e. Bochanski et al. (2007).

7.2 Age of the kinematic branches

Figure 7.4 shows the distribution in the Vβ–age plane for the stars with well-defined ages (εage ≤
30%, 7016 stars). The age distribution of each branch (Figure 7.5) is computed from the whole
distribution, selecting the region of the branches as detailed in Section 6.2 (centres at −55,
−25, −10 and 5 km s−1 for the Hercules, Hyades-Pleiades, Coma Berenices and Sirius branches
respectively with a width of ±4 km s−1). Important observations derived from this distributions
are:

• An extended age distribution is confirmed for all four branches.
• While the Hyades-Pleiades and Coma Berenices branches have an important fraction of

very young stars, Sirius has its first main peak for slightly older stars at ∼ 400 Myr.
Consequently, the velocity distribution becomes structured by the tree main branches for
stars of ∼ 400 Myr.
• Dehnen (2000) assigns an age of > 8 Gyr to the Hercules group and Bobylev & Bajkova

(2007) claim that it does not show any branch-like shape unless very old (> 8 Gyr) subsam-
ples are studied. Here the kinematic region of the Hercules branch is populated with stars

1Asiain et al. (1999b), working only with the sample of B and A main sequence stars, found a significant vari-

ation of the Pleiades moving group with age. However, as ages in their sample are < 0.5 Gyr, their interpretations

cannot be applied here.
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7.2 Age of the kinematic branches

(a) active M-type stars

(b) non-active M-type stars

Figure 7.3: Velocity distribution for different chromospheric activity. Density field in the U–V
plane obtained by WD with J = 4 (left) and density field for the Vβ component with different values of
J (right) for the subsamples of (a): active (182 stars) and (b): non-active (681 stars).
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7. AGE–KINEMATICS CHARACTERISATION

Figure 7.4: Kinematic-age relation. Density field in the Vβ–age plane of the stars with εage ≤ 30%
(7016 stars) obtained by WD.
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7.2 Age of the kinematic branches

Figure 7.5: Age distribution of the branches. Density of stars in each branch as a function of age for
stars with εage ≤ 30% (223, 1195, 1078 and 806 stars in the Hercules, Hyades-Pleiades, Coma Berenices
and Sirius branches respectively).

of ages of more than 1 Gyr and its extended branch-like shape is seen in all subsamples
with ages > 2 Gyr (Figure 7.2) where it reaches to a quite extended longitude.
• A clumpy distribution is observed inside the Hyades-Pleiades branch, with a periodicity

in age of about 500-600 Myr, maintained at least in the 0-2.5 Gyr range. However, this
periodicity is marginally significant2 as the absolute error in age of some stars exceeds the
period obtained. We point out that this periodicity should be contrasted in the future
with the star formation rate obtained in Hernandez et al. (2000), where an oscillatory
component of period ∼ 500 Myr is found. For the other branches only an outline of the
shape of the whole age distribution is observed.

2Notice that the periodicity is statistically significant in the sense of the discussion in Section 3.3 (J = Jplateau).
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Chapter 8

[Fe/H ] of the kinematic structures

The study of the [Fe/H] metallicity distribution of the stars along the branches and its relation
to kinematics and age is restricted to the FGK dwarfs, which is the only sample for which
metallicity data is available (see Table 5.1). In Table 8.1 we present the mean metallicity and
dispersion values for each branch with stars selected as discussed in Section 6.2. The values
obtained by Helmi et al. (2006), using the same sample but a different definition of the position
of the kinematic structures, are included in the table for comparison (Coma Berenices was not
included in that analysis). These authors found a common metallicity dispersion of 0.2 dex for
all three superclusters. However, we obtain slightly lower mean metallicities for all the branches
and a higher metallicity dispersion for the Hercules branch. Haywood (2006) pointed out that
systematic biases in the data from Nordström et al. (2004) provoke an artificial increase in the
[Fe/H] dispersion at least for ages < 3 Gyr. As the four branches present a wide range of ages
(Chapter 7), it will be assumed that this specific bias influences each of the branches similarly.

More importantly, in Figure 8.1 we present the distribution in the [Fe/H]–Vrot plane. Both
the WD method and the rotation of the velocity components by 16◦ allow us to identify the
four conspicuous branches and their rather wide range of metallicity. A general correlation can
be seen: a more negative Vrot implies a higher mean metallicity1. Notice that the correlation
is complex due to either the bimodality of the Hyades-Pleiades branch or to the fact that the
Hercules branch does not follow the overall pattern of the three main branches.

The bimodality for the Hyades-Pleiades branch shows the peaks at [Fe/H] ∼ −0.05 and
[Fe/H] ∼ −0.15. The metallicity distribution for the stars along the position that this branch
traces in the U–V plane is studied in detail in Figure 8.2. We observe that the [Fe/H] distribu-
tion evolves from the Hyades (Urot ∼ −30 km s−1) with the peak at [Fe/H] ∼ −0.05 –in agree-

1Notice that this correlation was not as clearly observed in Nordström et al. (2004) (see their Figure 32),

despite using the same sample, which demonstrates the capabilities of the WD method and the rotation.
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8. [FE/H] OF THE KINEMATIC STRUCTURES

Figure 8.1: Kinematic-metallicity relation of the branches. Density field in the Vrot–[Fe/H] plane
for the sample with available [Fe/H] (13109 stars) obtained by WD.

ment with the results of Famaey et al. (2007)– to the Pleiades, which placed at Urot ∼ −5 km s−1

shows a peak at [Fe/H] ∼ −0.15.

Figure 8.3 shows the distribution of the whole sample in the age–[Fe/H] plane. Due to
the complexity in the age-metallicity relation (see the exhaustive discussion on the biases in
Haywood 2006) any new conclusion is beyond the scope of this thesis. Our analysis is restricted
to a comparison between branches. Figure 8.4 shows the distributions in the age–[Fe/H] plane
for the stars along each of the four branches. To a first approximation these distributions exhibit
the same general tendency as the whole sample. The WD treatment allows us to detect other
significant features such as the clumps in age for the Hyades-Pleiades branch detected in Chapter
7 which show a decrease in [Fe/H] with increasing age. For the range 1-3 Gyr, where more data
is available, although it is preliminary, the slope of the Sirius distribution seems to be slightly
more negative than for the other two main branches (from ∼ −0.10± 0.01dex/Gyr for Sirius to
∼ −0.07± 0.01dex/Gyr) for Hyades-Pleiades.
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Figure 8.2: Kinematic-metallicity relation for the Hyades-Pleiades branch. Density field in the
Urot–[Fe/H] plane obtained by WD for the Hyades-Pleiades (2271 stars).

Table 8.1: Metallicity of the branches. Mean metallicities and dispersions for the branches considered
in the present work and for the superclusters according to (1) Helmi et al. (2006).

Branches (this work) Superclusters (1)
[Fe/H] σ[Fe/H] [Fe/H] σ[Fe/H]

( dex) ( dex) ( dex) ( dex)
Hercules −0.15 0.27 −0.13 0.2
Hyades-Pleiades −0.11 0.20 −0.08 0.2
Coma Berenices −0.16 0.22 ...
Sirius −0.21 0.21 −0.18 0.2
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Figure 8.3: Age-metallicity relation. Density field in the age–[Fe/H] plane for all stars with available
metallicities and ages (11215 stars).

(a) (b)

(c) (d)

Figure 8.4: Age-metallicity relation of the branches. Density field in the age–[Fe/H] plane for
the different branches obtained by WD. (a): Hercules(436 stars), (b):Hyades-Pleiades (1973 stars), (c):
Coma Berenices (1559 stars), (d): Sirius (1229 stars).
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Chapter 9

Summary and conclusions

Moving groups will happen to be a powerful tool for studying the large-scale structure and
dynamics of the MW. In this part we have focused our analysis on establishing the observational
constraints that will allow us to study the origin of these structures. We have applied multiscale
techniques –wavelet denoising– to an extensive compendium of more than 24000 stars in the solar
neighbourhood to characterise the observed kinematic structures in U–V –age–[Fe/H] space.
Whereas the accuracy in the kinematic data is unprecedented, metallicities and especially ages
can lack the desired precision. However, it is the first time that a sample provides us with this
exceptional number of stars with these physical parameters. Many of the age determinations
have large errors but a cut-off by error allows us to work with the more reliable determinations.

While the advent of Hipparcos astrometric data led to the definitive recognition of a non-
smooth distribution function of the solar neighbourhood, our results have corroborated this and
gone one step further towards characterising the velocity distribution function. We have found
that the branches that connect the classic moving groups in the U–V plane are the dominant
structures. We have confirmed the existence of the Sirius, Coma Berenices, Hyades-Pleiades and
Hercules branches. The first three branches are spaced at intervals of approximately 15 km s−1

with no significant variations with age or spectral type. The Hercules branch is located about 30
km s−1 from the Hyades-Pleiades branch. The four branches present a negative slope of ∼ 16◦

in the U–V plane, lower than the one found by Skuljan et al. (1999). We identify new structures
such as that centred at (35,−20) km s−1, which may be considered as part of the elongation of
the Sirius or Coma Berenices branch.

On the other hand, we have studied the density drops in the U–V plane and the existence of
abrupt edge lines have been corroborated. The drops are especially conspicuous at negative U
and high V , and between the Hyades-Pleiades and the Hercules branches. Each branch presents
a different density distribution in its extremes near these edge lines. For instance, the density
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drop is considerably steeper for the Hyades-Pleiades branch in part due to the gathering of stars
of the small substructures at one of the extremes. Moreover, the Hyades-Pleiades and Coma
Berenices branches show a slightly asymmetric distribution, with a longer tail of stars at positive
U . These features definitely rule out the classic idea of a smooth velocity field distribution.

The use of the same statistical method for the samples with different spectral types has allow
us an exhaustive comparison between their kinematic planes. The branches are present in all
distributions. Some of the well-known characteristics for different spectral type are observed
in these distributions. The most important are the predominance of the Coma Berenices and
Pleiades groups and the absence of the Hyades moving group for the OBA stars. These features
are equivalent to what is observed for the age dependence (stars younger than 100 Myr). Another
findings are first the kinematic overdensity in the middle of the Hyades-Pleiades branch for the
KM giants sample which is not present for the FGK dwarfs. Second, we observe that the
Hercules branch presents significant differences both in shape and in position of the kinematic
density maximum. This shift is seen for all velocity distributions of stars from this subsample
located further than 100 pc of the Sun. We can not conclusively ascertain whether it is due to
the larger spatial extension of the KM giants subsample or whether it is a consequence of the
distance determination method that could entangle kinematics and distances in a complex way.
Although the subsample of M dwarf also shows this discrepancy in the position of the Hercules
branch, we can not be conclusive due to the lack of statistics for this case.

We have also performed a study of the variations of the kinematic structures with Galactic
position for the KM giant sample. The four branches are present in all regions studied but a
significant change of contrast of the substructures inside the branches have been observed. The
Hyades-Pleiades branch is the dominant structure in all the considered regions. The shape of the
Hercules branch changes from region to another. It is more conspicuous for inner galactocentric
radius, and for a region near the Sun in comparison to a region that is located further in
the direction of rotation. All these considerations suggest a real dependence of the kinematic
branches on Galactic position.

We have analysed the shape and signification of the kinematic structures in the U–V plane
through age. Certain structures inside the branches change their contrasts when subsamples
with different age ranges are considered. The clearest case is the Pleiades group that seems
less significant in the 0.5− 2.0 Gyr range. On the other hand, the structure of branches is well
traced up to the oldest samples. The Hercules one is progressively more conspicuous for the
oldest cases in comparison to the Hyades-Pleiades branch. Contrary to other findings that claim
the Hercules group has an elongated structure for stars with ages > 8 Gyr (Dehnen 1998), here
the extended branch-like shape of Hercules is detected in all subsamples with ages > 2 Gyr.
The chromospheric activity as age indicator for the M dwarf stars do not allow us to perform a
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proper analysis as the number of stars per sample when active and non-active stars are analysed
separately is too low.

For the first time, the age and metallicity distributions of the branches has been studied. We
confirm an extended age distribution for all the branches. This suggests ruling out those models
that propose that these kinematic structures are remnants of disc star clusters. The branches,
however, have a different minimum age of their stars. While the Hyades-Pleiades and Coma
Berenices branches have an important fraction of very young stars, Sirius has its first main peak
for slightly older stars at ∼ 400 Myr. We found a periodicity in age of about 500-600 Myr in the
Hyades-Pleiades branch. As the absolute error in age of some stars exceeds the obtained period,
this finding should be contrasted with more precise accurate. We point out that this periodicity
should be contrasted in the future with the star formation rate obtained in Hernandez et al.
(2000), where an oscillatory component of period ∼ 500 Myr is found. For the other branches
only an outline of the shape of the whole age distribution is observed.

A wide range of metallicity is found for each branch, especially for Hercules with a higher
metallicity dispersion. The WD have revealed a complex relation between kinematics and metal-
licity. For the three branches of Hyades-Pleiades, Coma Berenices and Sirius the more negative
the V components, the higher the mean metallicity. The Hercules branch does not follow the
overall pattern of the three main branches. The metallicity of the Hyades-Pleiades branch shows
a two-peak distribution ([Fe/H] ∼ −0.05 and [Fe/H] ∼ −0.15) which seem related to the kine-
matic groups of Hyades (more metallic) and Pleiades. Concerning the age-metallicity relations,
differences are observed between branches although they all seem to exhibit the same general ten-
dency as the whole sample. The periodic bumps in the age distribution for the Hyades-Pleiades
branch show a decrease in metallicity with increasing age.

All the above observational results and, moreover, the whole set of distributions in the U–V –
age–[Fe/H] space presented here, are the fundamental elements necessary to check the present
and future dynamical models proposed for the formation of kinematic structures. While some of
these current models already explain some of the observational results, other observed features
remain unexplained. For instance, the simulations of De Simone et al. (2004) produce branches
with a slope which fits that measured here. However, features such as the periodic clumps in
the age distribution of the Hyades-Pleiades branch demand an in-depth explanation. To make
further progress in this field, simulations obtained from orbit integration under a model for the
Galactic potential have been undertaken (Parts IV and V). The application of the same statistical
technique to both the observed and simulated data will allow a direct comparison between them,
conforming a powerful test of the models for the formation of the structures. This comparison
may eventually offer a physical interpretation of the formation of the kinematic structures in
terms of the MW large-scale dynamics.

93



9. SUMMARY AND CONCLUSIONS

94



Part IV

TEST PARTICLE SIMULATIONS
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Part IV is concerned with the methodology of our test particle simulations. We have built a
test particle simulation method that considers a great variety of initial conditions and integration
times and procedures. These attempt to represent stars born at different times and with different
kinematic conditions, like those in the solar neighbourhood. On the other hand, we have taken
advantage of the PM04–MW potential model which is a specific model for the MW potential
that includes bar and spiral arms (Pichardo et al. 2003b, 2004). This new model is very flexible
to be adapted to the observations and it has been tuned to be consistent with several recent
observational constraints. It is built directly with a realistic 3D mass distribution from which the
gravitational potential and the forces are derived. To our knowledge, the study of the effects of a
mass distribution model, and in particular of this new model, on the local velocity distribution
has not been considered before. On the other hand, we have also implemented a method to
ascertain the regularity of the orbits conforming the kinematic structures created in the test
particle simulations. In Part V we apply all this methodology in order to evaluate the role of
realistic non-axisymmetric components of the MW, namely the spiral arms and the bar, on the
formation of moving groups in the disc.

First, Chapter 10 provides a description of the simulation method and

the initial conditions. We present also the method for quantifying the

regularity of the orbits. Finally, this chapter examines the advantages

and drawbacks of this method as it is compared with other theoretical

approaches used in the subject. Chapter 11 describes the essential char-

acteristics of the potential model and also is concerned with contrasting

this with other widely used models specially emphasising their force fields.
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Chapter 10

Simulation method

10.1 General description of the simulations

In order to study the effect of the non-axisymmetric Galactic structure on the kinematic distri-
bution of the disc and in particular of the solar neighbourhood, numerical integrations of test
particle orbits on the Galactic disc have been performed. The method is outlined in Figure
10.1. It consists of integrating the orbits of a set of test particles distributed in a disc with
certain initial conditions IC (Figure 10.1a) under a potential model for the MW (Figure 10.1b).
The IC are described in Section 10.2. The potential model (PM04–MW potential model) is
introduced in Chapter 11. It is three-dimensional and it consists of an axisymmetric part and
the non-axisymmetric components (bar and spiral arms). The integration of each particle is
initialised at a time value t = −τ (as a convention) and ended at t= 0, being τ the particle
exposure time to the non-axisymmetric potential. After the integration, the final phase space
of the disc at t = 0 is obtained and studied (Figure 10.1c). In particular, the induced kinematic
distribution at the end of the simulation is analysed using the particles inside spheres of radius
500 pc centred at the solar position and at other regions of the disc (Figure 10.1d). Finally
these predicted velocity distributions and the observed one (Part III, Figure 6.1) are compared.
We use the galactocentric cylindrical coordinates (R,φ,z) as well as the Cartesian XY system
which are defined in Section 1.4. Initially it will be assumed that the solar position is at φ = 0◦,
R = R� ≡ 8.5 kpc and z = 0 (X = 0 and Y = 8.5 kpc). The peculiar velocities U , V , W
are also used and defined in Section 1.4. It is worth mentioning that in the previous Part III
the notation U , V , W indicated heliocentric velocities, in this part and Part V they indicate
peculiar velocities, that is with respect to the RSR as explained in Section 1.4.

The integration of the motion equations is done with the Bulirsch-Stoer algorithm of Press et
al. (1992), conserving Jacobi’s integral within a relative variation of |(EJi − EJf )/EJi| ≈ 10−9.
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Figure 10.1: Diagram of the simulation method.
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10.1 General description of the simulations

(a) Procedure 1 (b) Procedure 2

Figure 10.2: Sketch of the different time integration procedures.

The reference frame used for the calculations is the rotation frame of the spiral arms when only
this non-axisymmetric component is considered and the one of the bar otherwise (model with
only bar and model with both bar and spiral arms). The number of particles in each simulation
is about several million. The symmetries of the Galactic potential (Φ(R,φ)=Φ(R, 180◦ + φ))
allows us to double the number of particles in each sphere. In all cases, we check that the
number of particles in the final distributions of a particular region (sphere of 500 pc) is large
enough (∼ 10000) to be statistically robust.

Two different integration procedures are used. The first one (Procedure 1) is schematised in
Figure 10.2a. In this procedure, each particle is exposed to the non-axisymmetric components
for a time τ chosen at random between two certain values. In particular, τ is chosen between
0 and 2 Gyr as default values. This maximum integration time corresponds approximately to
7 and 15 revolutions of the spiral arms and the bar, respectively (considering for their pattern
speeds the general values of Ωsp = 20 km s−1kpc−1 and Ωb = 45 km s−1kpc−1 for the spiral arms
and the bar, respectively; see Chapter 11). However, we do not exclude the option of varying
these values in Part V. With this procedure, we obtain final velocity distributions resulting of
a superposition of particles integrated different times, resembling up to a certain point the real
observed distribution with a superpositions of stars of different ages. In Figure 10.2b Procedure
2 is outlined. In this case the integration time is fixed at a certain τ for all particles. The
particular default values for τ in this case is τ = 400 Myr corresponding approximately to
1.3 and 3 spiral arm and bar revolutions for the above mentioned pattern speeds. With this
procedure and this integration time, we can study the relatively rapid induced effects of the
non-axisymmetric components on the local kinematics.

The integration time in our simulations pretends to consider only the last stages in the
Galaxy evolution. This late evolution was affected or even dominated by secular dynamical
processes. For example Klypin et al. (2009) showed using N-body simulations with different
codes that, for certain characteristics of the disc and the halo, bars do not show a tendency to

101



10. SIMULATION METHOD

slow down significantly once they have been form. In general we will avoid longer integration
times (larger than 2 Gyr) because they might require to include considerable Galactic evolution
like bar weakening or transient arms, as well as the effect of external perturbations to the MW
disc, perhaps masking the effect of the current MW structure. Although the effects of a time-
varying bar or spirals and the external effects would would be worthy of being studied, it is out
of the scope of the thesis. Therefore we focused on the recently induced kinematic structure in
the solar neighbourhood. However, in some cases longer integration times will be taken in order
to carry out particular exercises.

10.2 The initial conditions

One of the strong points of our method is the variety in initial conditions. We explore three
different types of initial conditions: IC1, IC2, and IC3. The stellar disc density is assumed to
be axisymmetric. In our PM04–MW potential model the density of the disc corresponds to
the Miyamoto-Nagai disc but the in-plane distribution for all IC is approximated to follow an
exponential profile:

Σ(R) ∝ e−R/RΣ (10.1)

with a given scale length RΣ, which is taken to be RΣ = 2.5 kpc also for all IC (Freudenreich
1998)1. The exponential density profile has been observed in the MW and in other galaxies (see
e.g. Binney & Tremaine 2008, Freeman 1970) and are commonly considered in the generation
of IC (Hernquist 1993). It has also helped us to simplify considerably the generation of IC and
specially Equation 10.7 of the asymmetric drift (see below). In Appendix A we have evaluated the
effect of having a different initial density profile or scale length on the final kinematic structures
created by the bar and the spiral arms, concluding that the results are not significantly sensitive
to it. The vertical profile follows a sech2[z/zs] law with a given scale height zs which depends
on the particular IC.

For our density distribution it is not straightforward to derive a consistent DF. Sometimes
even if the DF can be obtained it is not unique Binney & Tremaine (2008). In the method that
we use to generate the initial discs, the density field is generated exactly and the velocity field is
approximated using the collisionless Boltzmann equation to obtain moments of the DF without
recovering the complete DF. The default detailed disc scales, kinematic properties, integration
procedure and integration times for each IC are summarised next and in Table 10.1.

1This scale length is also very similar to the 2.53 kpc adopted in the Besançon Galaxy Model of Robin et al.

(2003) for the stars of the thin disc. The value is also similar to the scale length of the thin disc found by Jurić

et al (2008) (2.6 kpc) using observations of the SDSS
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Table 10.1: Properties of each type of IC. Summary of the structural, kinematic and integration
times of the different IC of the thesis.

MOTIVATION DISC VELOCITIES INTEGRATION
STRUCTURE TIME

IC1 continuous and Gaussian distribution random
uniform birth RΣ = 2.5 kpc constant for all radii for each particle

of stars zρ = 50 pc σU = σV = 5 km s−1 [0 Gyr – 2 Gyr]
in a cold disc σW = 2 km s−1 (Procedure 1)

IC2 rapid induced moments of the
effects RΣ = 2.5 kpc collisionless Boltzmann Eq. 400 Myr

on intermediate zρ = 300 pc σU radial exponential profile (Procedure 2)
populations σU (R�) ∼ 20 km s−1

σW ∼ 8 km s−1

IC3 - old populations as IC2 but:
(between thick RΣ = 2.5 kpc σU (R�) ∼ 40 km s−1 400 Myr
and thin disc) zρ = 500 pc σW ∼ 25 km s−1 (Procedure 2)
- dark disc?

–IC1–

With this IC we aim to simulate the birth of stars in the disc with small velocity dispersion and
the effect of having stars with different ages (different integration times) at the final velocity
distributions. The disc has a small scale height of zρ = 50 pc and it is constant through all
the disc. This value can be compared with the scale height that is defined by the younger
open clusters (Zhu 2009). The initial velocity distribution relative to the RSR is adopted as a
Gaussian with low dispersions σU = σV = 5 km s−1 and σW = 2 km s−1 and constant for all radii
(see Figures 10.3a and 10.3b). These values are similar to the induced gas velocity dispersions in
the plane and in the vertical direction due to Galactic spiral shocks according to Kim (2009) and
to the dispersion of the youngest Hipparcos stars (Aumer & Binney 2009). The distributions
of the U and V components of a group of particles near the solar radius (R = R� ± 0.5 kpc) is
shown in Figure 10.4. This type of IC is integrated with Procedure 1 (Section 10.1)2.

2 N-body disc simulations assuming a low Q parameter (e.g. Thomasson et al. 1991) show that a configuration

with strong spiral arms and low velocity dispersion can be sustained for at least 7 disc revolutions. The conditions

of these experiments are similar to our integrations with spiral arms using IC1.
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(a) Radial velocity dispersion σU (b) Tangential velocity dispersion σV

Figure 10.3: Radial profile of the velocity dispersions.

(a) (b)

Figure 10.4: Initial velocity distributions of the discs. Initial velocity distributions for each IC for
∼30000 test particles in the solar ring (8-9 kpc) for the components (a) U and (b) V .
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–IC2–

In this case the chosen DF confers to the IC2 disc the properties of an intermediate population
of the MW thin disc in terms of the age. The integration follows Procedure 2 and therefore, with
these IC, we can study the relatively rapid induced effects of the non-axisymmetric component
on the local intermediate kinematics. For these IC, the phase space DF of an axisymmetric
disc is constructed, as discussed in Hernquist (1993), using the moments of the collisionless
Boltzmann equation simplified by the epicyclic approximation and sometimes complemented by
observed characteristics of the MW or external disc galaxies.

For the vertical distribution a scale height of zρ = 300 pc is used. This value is adopted to be
constant with R. This was classically taken as an assumption as it was supposedly observed in
external galaxies (van der Kruit & Searle 1981). We will adopt this idealisation although more
recent studies have shown that this value does vary with R in external galaxies and also in the
MW (see studies of the flare in López-Corredoira et al. 2002).

In determining the velocity distribution of this density structure, we use the second order
moments σU , σV , σW and the tangential streaming velocity (asymmetric drift). Once the density
profile has been established (exponential disc in this case), the lowest order moments of the col-
lisionless Boltzmann equation are determined and the velocity distribution can be approximated
by these moments. Isothermal sheets (discs with σW 6= f(z)) have been proved to be a first
approximation through an accurate description of disc galaxies (van der Kruit & Searle 1981,
Hernquist 1993). For an isothermal sheet and with the constant scale height zρ supposition, the
Poisson and Lioville equations are solved to give a vertical profile of:

ρ(z) = ρ0sech2 z
zρ

(10.2)

where ρ0 is the spatial density in the plane and:

zρ =
σW

(2πGρ0)1/2
(10.3)

(see e.g. Hernquist 1993). At large distances from the plane, the vertical density falls off close to
exponentially. By contrast, close to the plane it is nicely rounded over and the density changes
smoothly when crossing from negative to positive z.

With the assumption of constant zρ with R, Equation 10.3 gives a radial exponential profile
for the vertical velocity dispersion:

σW ∝ Σ(R)1/2 ∝ e−R/2RΣ . (10.4)

Following Dehnen (1999), we will adopt σ3
U ∝ Σ, and therefore, the radial velocity dispersion
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has an exponential profile3:
σU (R) = σ0e

−R/3RΣ . (10.5)

The scale length for σU is therefore 3RΣ = 7.5 kpc.

The tangential velocity dispersion profile is obtained using the following expression derived
from the epicyclic approximation:

σ2
V (R)
σ2
U (R)

=
κ2

4Ω2
=
−B
A−B

(10.6)

(Equation 4.317 in Binney & Tremaine 2008) where κ is the epicyclic frequency, A and B are
the Oort’s constants and Ω is the angular frequency (in our case they all can be calculated for
the axisymmetric part of the model which is described in Chapter 11).

Also it is relevant one of the first moments of the collisionless Boltzmann equation (or Jeans
radial equation) that, under the assumptions that the disc is stationary, axisymmetric and
symmetric about its equator, is:

σ2
V − σ2

U −
R

Σ
∂Σσ2

U

∂R
−R

∂σ2
UW

∂z
= V 2

c − V φ
2

= (Vc − V φ)(Vc + V φ)
= va(2Vc − va)
' va2Vc,

(10.7)

(Equation 4.227 in Binney & Tremaine 20084) where Vc is the circular speed and V φ is the mean
galactocentric tangential velocity of the population. Note that Vφ is different from V which is
measured with respect to the RSR. Equation 10.7 gives an expression for the asymmetric drift
va. Considering that the last term of the left-hand side vanishes under the assumption that
the orientation of the velocity ellipsoid remains aligned with the coordinate axes, and using
Equations 10.1, 10.5 and 10.6, it can be obtained:

va = Vc − V φ = −V =
σ2
U

2Vc

(
−B
A−B

− 1 +R (1/RΣ + 2/3RΣ)
)
. (10.8)

3 Indeed provided that the ratio σU/σW is constant with R (uniform anisotropy), the radial velocity disper-

sion would satisfy σU ∝ Σ(R)1/2 and the radial velocity dispersion profile would also be σU ∝ e−R/2RΣ . Old

observations of the MW (Lewis & Freeman 1989) shown that indeed the observed radial velocity dispersion decays

exponentially with R with a scale length consistent with the factor 2RΣ with RΣ obtained through independent

measures of the density profile. Consequently, the uniform anisotropy was proved to be a good assumption and

it could be explained as a result of the velocity dispersion being consequence of secular processes that affect

both W and U (van der Kruit & Searle 1982). All these assumptions are somehow controversial and still in the

theoretical development for isothermal sheets with constant scale height. Recently, in Binney et al. (2010) it is

finally adopted σU (R) ∝ e−R/2.2RΣ for the standard DF that fits density and velocity distributions for stars near

the Sun and above the plane.
4We have substituted the volume density ν in that study for the in-plane density Σ as for our discs with

ν ∝ f(R)g(z) is equivalent.
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According to this expression, distinct populations (with distinctive ages or colours) which have
different velocity dispersion of the U component, have different mean tangential velocity V φ,
being the larger the σU , the more rotational lag with respect to the RSR. Again the initial
velocity distribution relative to the RSR is adopted as Gaussian with the above dispersions and
the value of the asymmetric drift of Equation 10.8.

The local normalisation is chosen σU (R�) ∼ 20 km s−1 and the complete radial profile is
shown in Figure 10.3a. With this normalisation, the tangential velocity dispersion at solar radius
is σV (R�) ∼ 14 km s−1 according to Equation 10.6 and also in agreement with the previous
literature. The complete profile is shown in Figure 10.3b. The asymmetric drift va of Equation
10.8 as a function of radius for our axisymmetric part of the model (Chapter 11) is shown
in Figure 10.5. At solar radius it is va(R�) = 4.4 km s−1. The distributions of the U and V

components of a group of particles in the solar radius (R = R�±0.5 kpc) is shown in Figure 10.4.
Finally, the normalisation of the vertical velocity distribution is chosen to be σW (R�) = 8 km s−1.

Although we do not pretend to model a certain population of the MW, the scale height, the
local normalisations of the velocity dispersions or the asymmetric drift of these IC2 would be
consistent with the corresponding to a population of ∼ 1 Gyr of the thin disc in the age–density–
velocity dispersion–scale height relations of the Besançon Galaxy Model of Robin et al. (2003)
(see their Table 2). The scale height is also compatible with the one given by recent observations
of the MW thin disc (Jurić et al 2008). Despite the discrepancies about the actual age–velocity
dispersion relation in the literature, several studies have found observational evidences for radial
velocity dispersions σU of ∼ 20 km s−1 in populations of ∼ 1 Gyr in the solar neighbourhood
(Holmberg et al. 2007) or only slightly larger (Soubiran et al. 2008). Our chosen vertical velocity
dispersion is also similar to the observational study by Holmberg et al. (2007) for a population
with this σU and ages around 1 Gyr.

–IC3–

They are constructed as in IC2 but with different values for the parameters that confer to
these IC the characteristics of an old population of the thin disc or a population between the
thin and the thick disc. The integration procedure is Procedure 2 as in IC2. A higher scale
height zρ = 500 pc is used now. Also, we employ higher velocity dispersions with a local
normalisation of σU (R�) ∼ 40 km s−1 (σ0 = 125 km s−1). This gives σV (R�) ∼ 28 km s−1 and
va(R�) = 19 km s−1. The radial profiles are shown in Figures 10.3a and 10.3b. The distributions
of the U and V components of a group of particles in the solar radius (R = R� ± 0.5 kpc) are
shown in Figure 10.4. Finally, we adopt a dispersion of σW = 25 km s−1 at R = 8.5 kpc.

For this range of velocity dispersion the discrepancies about the actual age–velocity dispersion
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Figure 10.5: Asymmetric drift as a function of radius.

relation are more evident in the literature. Some studies have found velocity dispersions of ∼
40 km s−1 for populations with ages ∼ 6 Gyr (Holmberg et al. 2007) whereas other authors found
that this velocity dispersion corresponds to populations approximately >∼ 3.5 Gyr (Soubiran et
al. 2008). In the Besançon Galaxy Model of Robin et al. (2003) our chosen scale height would
correspond to a population with ages ∼ 3 Gyr. Our velocity dispersions are similar to the value
corresponding to the old population up to z = 500 pc of Fuchs et al. (2009).

The (σU , σV ,σW ) are slightly smaller than the measured for the thick disc. For instance
Bensby et al. (2007a) used (67, 38, 35) km s−1 or Robin et al. (2003) used larger values (67, 51,
42) km s−1. The values found by Soubiran et al. (2003) were (63, 39, 39) km s−1. Regarding the
scale height of the thick disc, values such as 900 pc are found (Jurić et al 2008). The model by
Robin et al. (2003) uses 800 pc. On the other hand, recent studies of galaxy formation of MW
mass predict that a flattened dark matter structure mirroring the stellar thick disc structural
and kinematic properties will form in a Λ-CDM Universe (Bruch et al. 2008, Read et al. 2008).
Therefore, these IC3 are also approximately consistent with particles in the thick disc and in
the dark disc.

General discussion

As it is not straightforward to obtain and normalise higher moments of the velocity distribution,
we have considered the moments of the velocity distribution only up to second order. Higher
order moments are indeed very difficult to measure all through the MW disc. On the other hand,
the validity of the epicyclic approximation for large velocity dispersions is somehow doubtful.
As discussed in Hernquist (1993), these approximations can break down near the centres of
the discs, specially due to the derivative of the radial velocity dispersion in Equation 10.7. In
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general, the nature of the dispersions in the central part of a disc is not well understood yet,
either observationally or theoretically. Whereas some authors includes a softening of the radial
velocity dispersion profile near the centre, here we keep the initial dispersion profiles and avoid
the central particles in our simulations when necessary. As it will be seen, in the vast majority
of cases, the particles that finally reach the solar radius do not come from such inner radius
where the approximations are more dangerous. In Appendix A we discussed whether these
aspects could suppose a limitation for our study, concluding that only for our hottest disc (IC3)
the effects of these approximations are conspicuous in our simulations. In particular for these
specific kinematic conditions these approximations favour eccentric orbits in the central region
of the disc that tend to reach the solar radius. This will be discussed in the corresponding
chapter where these IC are used as tracer of the phase space (Chapter 15).

Other studies in this field used IC derived from a specific phase-space DF but at the cost
of using highly simplified potential models very different to the realistic PM04–MW potential
model used here. For instance, in Chakrabarty (2007) a warm quasi-exponential disc with a flat
rotation curve was used following Evans & Read (1998). This has been constructed adapting
power-law discs Σ ∝ R−(β+1) (“doubly cut-out power-law distribution functions”) which have
been shown to possess simple self-consistent DF that is obtained directly (Evans & Read 1998,
Binney & Tremaine 2008). Dehnen (2000) used also an equilibrium disc described by a simple DF
that approximately reproduced prescribed surface density and velocity dispersion exponential
profile with R. Again the use of the power-law potentials simplified the method. In this case the
DF of a warm disc was obtained in Dehnen (1999) by warming up the DF for a completely cold
disc (all stars with circular orbits). With our method we do not obtained simple and complete
DF but it can be applied to realistic MW models such as the PM04–MW potential model.
Currently, some studies are exploring novel methods of IC generation such as made-to-measure
(M2M) algorithm consisting of N-body realisations of equilibrium stellar systems (De Lorenzi
et al. 2007). We do not exclude the use of these techniques in the future.

The initial conditions IC1, IC2 and IC3 consist of very idealised discs that do not pretend
to be strict models of the MW. For instance, we do not have into account observed phenomenas
such as the increase of the asymmetric drift and of the velocity dispersions σU , σV and σW

with height, the vertex deviation or the tilt of the velocity ellipsoid toward the plane (Fuchs et
al. 2009). In general, the vertical distribution of our discs is still very unreliable as it has been
obtained supposing an isothermal sheet5. We do not have into account the flare of the Galaxy. In
the case of IC1 we do not consider a more realistic star formation scenario such as star formation
concentrated in the spiral arms, non-uniform star formation with time or large peculiar motions

5This aspect will not be critical as the vast majority of our simulations will be carried out in the plane (z = 0)

as explained in Chapter 12.
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(a) (b)

Figure 10.6: Kinematic distributions of the discs superposition. Initial U (a) and V (b) distri-
butions for the naive superposition of the three types of IC (IC1+IC2+IC3) for ∼90000 test particles in
the solar ring (8-9 kpc).

of star forming regions (Baba et al. 2009). Nevertheless, these three types discs are provide
suitable initial conditions to deal with this thesis aims, allowing us to study the general effects
of the spiral arms and the bar in the velocity distribution and the mechanisms that create the
moving groups. The real disc of the MW is for sure formed by a much more complex distribution
but in a very first approximation it would look like a superposition of several types of IC as
the ones proposed in this section (young, intermediate and old populations). To be rigorous, a
kind of density percentages to each population should be apply before the superposition. Here,
probably unrealistically but as a simple exercise, in Figure 10.6 we show the superposition of
IC1, IC2 and IC3 which now, in general terms, is similar to the observed distribution in the
solar neighbourhood, except of course the observed substructure (Part III).

To conclude, the choice of appropriate initial conditions is somewhat controversial. Tra-
ditionally they are motivated by self-consistency with the present stage of the Galactic disc
structure. However, current scenarios of galaxy formation and evolution predict that both ex-
ternal and internal perturbation mechanisms affect the disc kinematics. Moreover, the initial
conditions hardly consider the evolution of the MW. Our short integration times try to deal in
part with all these issues. Also, using our variety of IC we consider for the first time initial
conditions and integration times that attempt to represent stars born at different times and
with different kinematic conditions, like those in the solar neighbourhood.
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10.3 Quantifying the regularity of the orbits

To support the test particle simulations, a method to quantify the regularity of the orbit cor-
responding to each point of the U–V plane for a given position of the Galactic disc is used in
this thesis. In this section we provide a description of the method which is based on the method
used in Quillen & Minchev (2005), applied to a spiral arm model in that case (see Section 10.4).
The method is, for the moment, designed to be applied for orbits in the plane.

The orbital regularity corresponding to each (U ,V ) is computed easily through measuring
the dispersions in positions and velocities at the moment that the orbits crosses a given axis
of the X ′–Y ′ plane (the reference system that rotates with the non-axisymmetric component6).
Orbits with small dispersions can be considered more periodic or closed than orbits with large
dispersions. Although there are more sophisticated methods to calculate the orbital regularity
(e.g. Lyapunov exponents used in Fux 2001, see Section 10.4), this one is easy to implement
and has lower execution time. The exact procedure used here is the following:

1. A grid of points in the U–V plane in the range [−100, 100] × [−100, 100] km s−1 every
2 km s−1 is constructed. This value has been found to be a good compromise between
computing time and resolution.

2. For every point of the grid (U ,V ), the orbit of a test particle with this velocity and located
exactly at a given position in the X ′–Y ′ configuration space at t = 0 (by default at the
solar position with R = 8.5 kpc and φ = 0◦, but also at other positions) is integrated
forward in time from t = 0. In contrast to Quillen & Minchev (2005), here the dispersions
will be computed in two different arbitrary axis: X ′ > 0 and Y ′ > 0 of the rotating frame
of the non-axisymmetric component. The integration stops when at least one of these
axes has been crossed 10 times or if the total integration time exceeds 100 Gyr. The same
model for the Galactic potential (PM04–MW potential model) and the same method for
the integration of the equations of motion as in the test particle simulations (Section 10.1)
are used.

3. We compute the dispersions in radius R, in galactocentric radial velocity VR and in
galactocentric tangential velocity Vφ (in the reference system that rotates with the non-
axisymmetric component) of the phase space points at the moment that the orbit crosses
the X ′ > 0 and Y ′ > 0 axes in the clockwise and/or counter-clockwise directions.

6 Specifically, these reference systems are indicated with X ′′–Y ′′ for the spiral arms and X ′–Y ′ for the bar

according to the notation of Chapter 11 and shown e.g. in Figures 11.5 and 11.10. Here the general notation

X ′–Y ′ is used.
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4. We end up with a maximum of 12 values of dispersions for each orbit or point in the U–V
grid, depending on whether all the crossings occur for the orbit (Table 10.2).

Table 10.2: The 12 dispersions calculated in this method when the orbits cross the X ′ > 0 and
Y ′ > 0 axes.

(X ′ > 0, clockwise) σR σVR σVφ
(X ′ > 0, counter-clockwise) σR σVR σVφ
(Y ′ > 0, counter-clockwise) σR σVR σVφ
(Y ′ > 0, clockwise) σR σVR σVφ

An example of the distribution of orbital regularity in the U–V plane for the 12 variables
of Table 10.2 is shown in Appendix B.1 (Figure B.1). The dark regions show the cases
with small dispersions (more periodic). The (U ,V ) positions marked with a single centred
black point correspond to orbits that do not cross that axis enough times. This could
be due to several reasons: i) they are “slow” orbits and the integration time has exceed
the imposed limit of 100 Gyr without having cross that axis at least 10 times, ii) they are
confined orbits in the X ′–Y ′ plane and they do not cross the particular axis chosen, or iii)
they are orbits that do not cross the axis in that particular direction (e.g. clockwise), but
they do it in the other direction (e.g. counter-clockwise).

5. These 12 values are normalised to unity and subsequently they are quadratically added so
as to obtain a single measure of the orbital regularity.

6. The final result is plotted as a colour plot in the U–V plane where again the darker the
regions, the more periodic the orbit. Regions in the U–V plane with a single centred black
dot correspond to orbits that satisfy i) or ii) conditions above. An example of a final result
is shown in Figure B.2. Once this figure is obtained the regular orbital regions in the U–V
plane can be identified and the corresponding orbits can be studied.

The aim of using a method to quantify the orbital regularity of the points in the U–V plane
are the following. First, it allows as to ascertain if a given structure that has appeared in the test
particle simulations corresponds to a group of periodic or quasi-periodic orbits or not. This can
be simply done by comparing the positions in the U–V plane of both type of methodologies. As
seen in Chapter 2, there is still debate on whether some moving groups correspond to periodic
or chaotic orbits of the non-axisymmetric structure. This will help in trying to clarify this.

Second, it allow us to identify the effects of a particular resonance in the U–V plane by
studying the shapes of the orbits that have emerged as regular through this method. In other
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words, the orbital structure of a given model at a particular region of the disc can be studied
and the resonant features identified and characterised in terms of e.g. shape in the U–V plane.
Although axisymmetric estimates can be used to determine the position (or positions) of a reso-
nant orbit in the velocity plane as e.g. in Dehnen 2000, these are just approximated calculations
as the non-axisymmetric components are not taken into account in them. The exercise is not
straightforward when the full model is considered. These approximations creates differences
between the predictions and the results of the simulations as it is seen in Part V. We point out
that although this method helps us to identify structure in the U–V plane with a certain orbits,
it is not our intention to carry out an exhaustive study of the orbital structure of the potential
model which is beyond the scope of this thesis.

Third, as the computing time of this method is very affordable, it allows us to scan the
parameter space of the potential model more rapidly and study the effects of some interesting
parameters on the orbital structure.

On the other hand, this kind of method has sometimes been used in the sense that moving
groups are directly ascribed to periodic (or chaotic) orbits of a given potential model (e.g. Quillen
& Minchev 2005). According to this procedure, the moving groups could be overdensities of
stars around a periodic orbit. However, here this method will be not applied so daringly in
this sense. The advantages and disadvantages of this method of studying moving groups are
discussed in Section 10.4 where the main simulation methods used in this field are summarised
and compared. To conclude, this method has the advantage of being rapid, which allows us to
scan the parameter space of the potential model, but has a clear disadvantage: it does not show
which structures will be populated and how.

10.4 Comparison with other simulation methods

Differences between the results of this thesis and the results of other works by other authors
may arise in part due to the differences between the exact simulation method applied in each
case. Apart from this, obviously the specific potential model for the MW and the characteristics
of the spiral arms and the bar must have an important role in order to compare this with other
studies. Whereas the differences between the potential models are analysed in Section 11.5, in
the present section we aim to summarise the simulation methods in other important studies of
this field. There are mainly three types of simulation methods used in the literature in the study
of moving groups: test particle simulations (with two different integration procedures: backward
and forward), N-body simulations and study of periodic orbits.
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i) Test particle simulations

Among the test particle simulations, one can find the simulation method of Dehnen (2000)
which is called backward-integrating method by his author. In this method the phase-space
points corresponding to a grid in the U–V plane but at the same position in configuration
space (R� , φ) are integrated backward from t2 (positive) until t = 0. During the integration
the bar grows adiabatically from t = 0 to t1 (t1 < t2) and stays constant from t1 to t2. At
t = 0 a certain DF function of the energy E and the angular momentum Lz is assumed for
an axisymmetric equilibrium (in particular one consistent with an old disc population in that
study). As the collisionless Boltzmann equation determines that the DF remains constant along
stellar trajectories, the DF at t2 is determined for each orbit or point of the U–V plane.

The main advantages of this method are: i) only the necessary orbits that affects the local
velocity distribution are computed, which results in very low execution times and allows an
exhaustive scanning of the parameter space, ii) these velocity distributions are not affected
by Poisson noise and finally iii) a single simulation must be carried out to study different IC
because the DF of these IC only plays its role after the orbit integration. However, this method
has been criticised sometimes in the literature. At least two problems with this method have
been identified. First, as stated in Fux (2001), it needs long integration times to reduce the
effects of the ongoing phase mixing7 that causes the velocity distribution to change with time
and have spurious structures. According to this author, incurved waves appear in some of the
regular orbital regions of the U–V plane and also the chaotic regions becomes noisy. He shown
that even with integration time equal to 120 bar revolutions the velocity distribution had not
still reached a completely stationary state. This technique gives a DF that, according to this
author, never smoothes out on sufficiently small scales. Secondly, it was found in Chakrabarty
(2004) that no matter how slowly the growth and dissolution of the perturbation were carried
out, the resulting velocity distributions were marked with “holes” in them due to those orbits
that come too close to the resonance and become chaotic thereby, which might be expected in
this kind of simulations.

The forward integration technique is the one used here (Procedure 1 and 2) and in Fux (2001),
Chakrabarty (2007). For these two authors, this technique copes with the above mentioned
negative effects in the sense that, although the ongoing phase mixing still occurs for the forward
integration, it is reduced using averages over time. In that two studies the orbits are recorded
in the reference frame rotating with the perturbation (bar or spiral) and the final velocity
distribution is the result of averaging it over time in that frame after the perturbation reached

7In this context, the phase mixing is defined as the attainment of a stationary state by a system in a regular

force field.
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full strength. This is presumably consistent with the observed DF, which presents an average
over ages and reduces the phase mixing problem8. Besides, it is important to note, that to our
knowledge, the study of Chakrabarty (2007) is the only one prior to the present thesis that
includes bar and spiral arms at the same time in some of its simulations. In these particular
case the orbits were recorded in the rotating frame of the bar and the final DF is the average
over the times when the bar and the spiral pattern are at the same relative configuration.

By contrast, we do not take averages of the velocity distribution with time. This in an
important difference between the forward integration of this thesis and the one in Fux (2001)
and Chakrabarty (2007). We consider that the study of the effects of the integration time is
necessary as we can not avoid the possibility that the disc is still experiencing the response to
the bar or to the spiral arms. Our Procedure 2 (see Figure 10.2b in Section 10.1), allows us
to perform this time analysis. As the default integration time for this procedure is 400 Myr ,
it is initially designed to study the rapid induced effects on the local velocity distribution but
it allows us to change the integration time to any desired value. On the other hand, in our
simulations using the integration procedure 1 (Figure 10.2a), we can also obtain a final velocity
distribution with particles with different ages without loosing the opportunity to consider the
effects of time. However, more orbits should be computed, which leads to longer execution times
and makes difficult the scanning of the parameter space of the model or the IC. Also, the final
velocity distribution does present Poisson noise. Here this drawback is treated using the WD
method (Part II).

Nevertheless, the test particle simulations of Dehnen (2000), Fux (2001) and Chakrabarty
(2007) differ from the present ones in the following aspect. In those studies the potential of the
perturbation is adiabatically added to the axisymmetric potential during a certain number of
revolutions of the perturber (spiral arms or bar) and stays stable afterwards. In our method we
study the phase space available to the local stellar distribution using the PM04–MW potential
model but we do not try to do it completely self-consistently as the other authors. Our initial
conditions corresponds to a distribution consistent with a axisymmetric field and our main goal
is to find the response of the disc to non-axisymmetric components which are included all time
or introduced abruptly. Some experiments were carried out to show that the final periodic
orbital structure given the same initial conditions do change significantly with the adiabatic
introduction of the non-axisymmetric component (Pichardo et al., private communication). As
in our study, we explore the hypothesis that moving groups are related to the orbital structure
induced by the bar or the spiral arms this fact will not affect us critically. In fact, even when
adding the perturbation adiabatically, still transitory effects due to phase mixing have been

8The contribution of each particle to the U–V plane becomes proportional to the time the particle spends

within the volume where the distribution is computed (Fux 2001).
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shown to occur (e.g. Minchev et al. (2010)), which lead to some authors to take averages with
time (Fux 2001, Chakrabarty 2007). Nonetheless, we will explore in some cases the results of
simulations where the bar is added progressively to the potential (see Chapter 15).

In later sections we study the effects of the bar and the spiral arms on the velocity dis-
tribution. We expect again some transient effects due to the ongoing phase-mixing that disc
experiences in response to the bar or to the spiral arms. As explained above, the adiabatic
introduction of the perturber do no avoid the appearance of this transient structures. However,
this is not a drawback for us as in fact we can not reject the possibility that the observed moving
groups are in fact transitory structures due to the bar or the spiral arms. We consider that the
study of the effects of different integration time is necessary as we can not avoid the possibility
that the disc is still experiencing the response to the bar, to the spiral arms or to any other
disturbance that has lead the MW disc to a situation of non-relaxation e.g. a recent passage of
an orbiting satellite or other external perturbations.

ii) N-body simulations

Also N-body simulations have been used in order to study the moving groups. In particular,
Fux (2001) run a high-resolution simulation developing a bar to study Hercules as due to the
effects of the bar OLR. This method has the advantage of being a 3D method, self-consistent
and presumably more realistic. The possibility of exploring the time evolution of the U–V
plane while the bar evolves consistently is an advantage of this method but in Fux (2001) this
capability was not explored and the final distributions were averaged over time in a reference
system co-moving with the OLR. Obviously, in these simulations the analysis of the resulting
velocity distributions becomes more complex as the formed bar evolves with time and spiral
arms can be developed. However, it is has been shown that numerical effects can affect the bar
evolution in these simulations (Klypin et al. 2009). On the other hand, the real evolution of
the bar is presently not well-known and will depend on which mechanism has given origin to
the MW. Of course, this would be also an obstacle for a test particle simulation when trying to
model the bar evolution or the recent history of the MW analytically. As main drawbacks of
the method, we can find its extensive CPU time if high space, time and velocity resolution are
required. Also it is difficult to scan the parameter space because of the time computing but also
because of the difficulties in controlling the characteristics of the bar in this type of simulations.

iii) Study of periodic orbits

The method of the study of periodic orbits consist of quantifying the periodicity or regularity of
the orbit (or equivalently, quantifying the degree of stochasticity) corresponding to each point in
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the U–V plane. This can be done through several methods. Traditionally it is carried out using
the Poincaré surface of section but this is for cases at constant value of the Hamiltonian but not
at a fixed position in the configuration space which is required in this study. In Fux (2001) the
Lyapunov coefficients are used. These characterises the rate of divergence of two trajectories
initially close to each other in phase space. There exist several exponents depending on the
dimensions of the phase space but all exponents vanish if the orbit is regular, and if the largest
coefficient is positive, the orbit is chaotic and the amount of chaos increases with its value.

In Quillen & Minchev (2005) a simpler method is used where the periodicity of each orbit is
quantified through the weighting function computed as the sum of the variances in galactocentric
radii and in the velocity component U computed using the R and U from each time the orbit
crosses a given axis in the rotating frame of the spiral arms. The weighting function estimates
the distance in phase space of an orbit from a closed or periodic orbit. The number of orbits is
chosen so as to get an stable weighting function. Our method of estimating the orbital regularity
(Section 10.3) is based on this study.

Apart from the differences in the method of quantifying the periodicity, the studies of Fux
(2001) and Quillen & Minchev (2005) slightly differ in the purpose. In Fux (2001) this method
is used as a tool to determine the phase-space extend of the regular orbits trapped around
stable periodic orbits and the chaotic orbits and this analysis is complemented by test particle
simulations that allow to study how the established orbital structure is actually populated. This
approach is similar to ours. As explained in Section 10.3, in this thesis the periodic orbit analysis
is used only with the aim of ascertain if a given structure that has appeared in the test particle
simulations corresponds to a group of periodic or quasi-periodic orbits or not and to identify
the effects of a particular resonance in the U–V plane (more accurate that the axisymmetric
approximation, see Section 10.3). By contrast, in Quillen & Minchev (2005) this method is
used directly to identify moving groups as they are supposed to be overdensities around periodic
orbits. It is assumed that, as stars are born in spiral arms with low velocity dispersion, they are
born in orbits that are nearly periodic or closed in the frame rotating with the arms. Therefore,
the periodic regions of the U–V plane are orbits where a young star is likely to be born and
remain not exactly in that orbit but oscillating at a greater extent about the periodic orbit due
to scattering by molecular clouds or transient spiral structure. According to these authors, the
theory of adiabatic invariants implies that particles with initially low epicyclic motion settle onto
periodic or closed orbits following the slow growth of a perturbation. However, other studies
have shown that the usual adiabatic invariants are not applicable in the resonant case (Barbanis
1976). Also in Dehnen (2000) the periodic orbits (in this case calculated using the axisymmetric
limit) were used to be identified with moving groups with the assumption that the initially
circular orbits will be turned into (nearly) closed, but no longer circular, orbits in the barred
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potential when the bar is grown (following the same behaviour as the gas, avoiding encounters).
Compared to the integration method, this method is independent of the manner of perturbation
growth. Also it has the advantage that it is independent of the initial conditions. However, this
advantage becomes a drawback as the process of resonant trapping is still poorly known and
this method do not allow to predict which periodic orbit will be populated an to which extent.
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Chapter 11

The PM04–MW potential model

For the Galactic potential we use the PM04–MW potential model which is extensively described
in Pichardo (2003a), Pichardo et al. (2003b, 2004). It consists of an axisymmetric part and
the non-axisymmetric components (prolate bar and self-gravitating spiral arms) which are con-
sistent with several recent observational constraints. The model can be used with only the bar
component, only the spiral component or as a spiral-bar model including both non-axisymmetric
parts. In Section 11.1 the axisymmetric part of the PM04–MW potential model is summarised
and in Sections 11.2 and 11.3 we describe the models for the non-axisymmetric components of
the self-gravitating spiral arms and the prolate bar, respectively. We use the spatial and velocity
coordinate systems defined in Section 1.4.

The simplicity of the axisymmetric part of the PM04–MW potential model contrasts with
the complexity of the construction of the bar and spiral arms components which is carried out as
a superposition of small pieces of mass distribution. However, this complexity counterbalances
the consequent flexibility to be adapted to observations. The main advantages of the PM04–MW
potential model are first this flexibility to fit the observations. Secondly, it is a full 3D model
which, instead of taking an ad hoc dependence on the z coordinate for the spiral arms and bar
(for example adding a term sech2[z/zs] to the potential), it considers directly a three-dimensional
mass distribution from which the gravitational potential and the forces are derived. The self-
consistency of the model has been tested through an analysis of the stellar orbital reinforcement
of the potential as in Patsis et al. (1991) and is presented in Pichardo (2003a), Pichardo et al.
(2003b, 2004).

The non-axisymmetric components of the spiral arms and bar in the PM04–MW potential
model have several free parameters that in Pichardo et al. (2003b, 2004) are chosen taking into
account the ranges given by recent observations and/or self-consistency reasons. The chosen
values for these parameters of the model are shown in Table 11.3 and in Table 11.4 for the spiral

119



11. THE PM04–MW POTENTIAL MODEL

Table 11.1: Adopted observational constraints in the axisymmetric model by Allen & Santillán (1991).

Distance Sun - Galactic centre R� = 8.5 kpc
Local circular velocity Vc(R�) = 220 km s−1

Local total mass density ρ = 0.15M� pc
−3

Rotation curve R ( kpc) Vc ( km s−1)
0.43 259.8±10
1.28 226.2±9.7
2.55 201.5±9.7
4.25 213.5±7.5
6.38 224.0±7.8
10.63 209.0±15
15.94 223.0±20
56.63 206.0±40

Table 11.2: Main constants in the axisymmetric model by Allen & Santillán (1991).

Central mass M1 1.4× 1010M� (1.5 %MT )
Disc mass M2 8.6× 1010M� (9.5 %MT )
Halo mass M3 8.0× 1011M� (89 %MT )
Total mass MT 9.0× 1011M�

arms and the bar respectively and they are thoroughly documented in Pichardo et al. (2003b,
2004). Here we adopt these parameters as default values. Nevertheless, as one of our goals is
to study the dependence of the properties of the spiral arms and the bar on the kinematics
of the disc, in Part V these parameters are changed within their corresponding range and the
new used values will be clearly specified and discussed in terms of their consistency with recent
observations. The model for these non-axisymmetric components of the PM04–MW potential
model are compared with other widely used models in Section 11.5 and elsewhere (Pichardo et
al. 2003b, 2004).
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11.1 The axisymmetric part

Figure 11.1: Model rotation curve. Total rotation curve resulting from the axisymmetric mass model
by Allen & Santillán (1991).

11.1 The axisymmetric part

The axisymmetric Galactic model is taken from Allen & Santillán (1991) and it is composed
by a bulge, a flattened disc and a massive spherical halo which is assumed to be extended to
a radius of 100 kpc. The first two are modelled as Miyamoto-Nagai potentials (Miyamoto &
Nagai 1975) and the halo is built as a spherical potential. The main adopted observational
constraints of the model are summarised in Table 11.1. In particular, a value of R� = 8.5 kpc
for the Sun’s galactocentric distance and a circular speed of Vc(R�) = 220 km s−1 are adopted.
The local circular frequency is therefore Ω(R�) = 25.8 km s−1kpc−1 and the total mass1 is MT =
9× 1011M�. The particular masses of each component are shown in Table 11.2. The resulting
curve of circular velocity of this model is shown in Figure 11.1 and the Oort’s constants at the
solar position are A = 12.95 km s−1kpc−1 and B = −12.93 km s−1kpc−1. Also the circular and
epicyclic frequencies together with the resonance curves are presented in Figure 11.3. Parameters
such as R� do not deprive us, however, to consider the Sun in slightly different positions and in
fact, our simulations allows us to study the kinematic distributions all over the disc.

1 Although several recent observational studies have obtained a double mass, there is not a general concordance

between the estimated mass of the MW. For a discussion see Baiesi Pillastrini (2009). For instance, Reid et

al. (2009) estimated a higher mass similar to that of the Andromeda galaxy and a circular rotation speed of

254 ± 16 km s−1 using parallaxes and proper motions of masers of massive star-forming regions. This would

increase the value of the local circular frequency up to Ω(R�) = 30 km s−1kpc−1. McMillan (2010) reanalysed

the same data to find that they do not favour any particular value of R� and Vc(R�). However they constrained

the local circular frequency to be in the range [29.9, 31.6] km s−1kpc−1, which is higher than the value used here.
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11. THE PM04–MW POTENTIAL MODEL

11.2 The self-gravitating spiral arms

The spiral arm model is a 3D steady model with two arms corresponding to a given mass
distribution from which the potential and forces are derived. The main difference between
the self-gravitating spiral arms and models obtained through the tight-winding approximation
(TWA) falls on the construction itself. In the TWA the spiral arms potential is obtained from the
self-consistent solution of the Poisson equation for tightly wound spiral and small perturbations.
By contrast, the self-gravitating spiral arms allow us to study spiral patterns which are nor
tightly wound neither weak perturbations, which could be the case of the MW. A deep discussion
about it is offered in Section 11.5 where we directly compare both models.

The model has several free parameters that in Pichardo et al. (2003b) are fixed within a
certain range taking into account observations and self-consistency reasons. The default values
of the parameters of this model are shown in Table 11.3. The spiral arms trace the locus reported
by Drimmel & Spergel (2001) using K-band observations2. This locus is taken with the following
form:

g(R) = −
(

2
N tan i

)
ln

(
1 +

(
R

Rsp

)N)
, (11.1)

where i = 15.5◦ is the pitch angle, Rsp = 2.6 kpc is the galactocentric radius of the beginning
of the locus and the parameter N is a measure of how sharply the change from a supposed
bar-like to spiral-like occurs in the inner regions (Roberts et al. 1979). The limit of N → ∞
produces spiral arms that begin forming an angle of 90◦ with the line that joins the two starting
points of the locus whereas for N = 0 this angle would be 180◦. Here it is taken the large limit
approximated by N = 100. Figure 11.2 shows this locus of the spiral arms with respect to the
Sun (and also the bar).

This locus results in an orientation such that the angular offset between the Sun and the
peak of the spiral at the same radius, φ0sp, is 88◦. The arms begin in a line that makes 20◦

with the X axis. This locus is also in agreement with the latest results from Spitzer/GLIMPSE
surveys (Benjamin et al. 2005, Churchwell al. 2009). In this two studies only two arms are seen
in the IR which are the Scutum-Centaurus arm, or sometimes called Scutum-Crux, and the
Perseus arm. This default locus locates the Sun approximately in the middle of the interarm
region but, as stated at the beginning of the chapter, this is a flexible parameter as our study
extends to kinematic distributions all over the Galactic plane. The Scutum-Centaurus arm is
the one near the Sun in the direction to the Galactic centre and the Perseus arm corresponds
to the one beyond the Sun in the anti-centre direction. These two massive arms, formed with
old stars, would be accompanied by two more arms: Norma and Sagittarius (or Sagittarius-

2This corresponds to the second locus of Pichardo et al. (2003b).
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11.2 The self-gravitating spiral arms

Table 11.3: Default parameters for the self-gravitating spiral arms (Pichardo et al. 2003b).

Parameter Default value
Number of arms 2
Pitch angle i (◦) 15.5
Orientation of the arms φ0sp (◦) 88
Scale length RΣ ( kpc ) 2.5
Beginning of the locus Rsp ( kpc ) 2.6
Beginning of the arms Ri ( kpc) 3.3
End of the arms Rf ( kpc) 12
Arm width a0 ( kpc) 1
Arm height c0 ( kpc) 0.5
Mass Msp (M�) 4.3× 109 (5%M2)
New disc mass (M�) 8.17× 1010 (95%M2)
Pattern speed Ωsp ( km s−1kpc−1 ) 20
Revolution period ( Myr ) 300
Corotation radius ( kpc ) 10.9
4:1 ILR ( kpc ) 7.0

Carina). These have less amplitude and are not detected as overdensities in the old stellar
disc by Drimmel & Spergel (2001) neither (Benjamin et al. 2005) but are seen in other classic
(Georgelin & Georgelin 1976) and recent (Vallée 2008 and references therein) studies from HII
regions or CO emission. Hydrodynamic models have shown how it is possible to form arms of
compressed gas without increasing the stellar surface density as a response to a 2-armed pattern
(Martos et al. 2004), which would explain the existence of the Sagittarius-Carina and Norma
arms.

The spiral arms mass distribution is built as a superposition of inhomogeneous oblate
spheroids along the above described locus. The separation between the centres of the spheroids
along the locus is 0.5 kpc. The overlapping of spheroids allows a smooth distribution along the
locus, resulting in a continuous function for the gravitational force. It was checked that no sig-
nificant change was observed if this separation was decreased thus increasing the smoothness of
the spiral mass distribution (Pichardo et al. 2003b). The effective starting distance of the spiral
arms, i.e. the beginning of the spheroid superposition, is Ri = 3.3 kpc and the arms end at a
distance Rf = 12 kpc. Regarding the oblate spheroids, they are oriented with the semi-minor
axis being perpendicular to the Galactic plane. The semi-major and semi-minor axes of the
spheroid, a0 and c0, are 1 kpc and 0.5 kpc, respectively, following other studies of the shape and
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11. THE PM04–MW POTENTIAL MODEL

Figure 11.2: Bar and spiral arms of the MW. Sketch of the locus and location of the Galactic bar
and the spirals arms of the PM04–MW potential model. The solar position according to the default
parameters of the PM04–MW potential model is also shown.
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11.2 The self-gravitating spiral arms

size of the arms (Martos & Cox 1998). A linear density law ρ(a) = p0 + p1a in each spheroid
is considered, with a being the coordinate along the major semi-axis, and the coefficients p0, p1

being functions of the galactocentric distance of the spheroid’s centre. Each spheroid has zero
density at its boundary. Schmidt (1956) gave the expressions for the potential and force fields
for a spheroid with this density law. An exponential fall of the central density of the spheroids
along the arms, equal to that of the disc, is taken and therefore the function p0(R) is:

p0(R) = p01e
−
“
R−Ri
RΣ

”
, (11.2)

where RΣ = 2.5 kpc (e.g. Freudenreich 1998, Robin et al. 2003) and p01 is such that the desired
total mass for the arms Msp is achieved. The ratio of the this total mass in the spiral arms
to the mass of the disc in the axisymmetric part by Allen & Santillán (1991), which is MD =
8.6 × 1010 M�, is taken to be Msp/MD = 0.05 in our default case. This correspond to a high
value between the limits of consistency of the model (Pichardo 2003a) and actually, smaller
values for this parameter will be explored in Part V. When the spiral arms are added to the
model, the mass of the spiral is subtracted from the disc, which guarantees that the total mass
of the model do not change and neither does the mean circular velocity. The force field produce
by this mass distribution model is studied in Section 11.5.

With the default pattern speed of 20 km s−1kpc−1, the solar radius is close to the 4:1 ILR
of the spiral arms. This can be seen in Figure 11.3 where the horizontal line corresponding to
this value for Ωsp crosses the curve of Ω − 1/4κ near the Sun radius. The 4:1 ILR resonance
is therefore the nearest resonance according to this model. The position of this resonance for
Ωsp = 20 km s−1kpc−1 is R = 7.0 kpc. A variation of Ωsp will change the resonance position.
However, it is important to note that the scheme of Figure 11.3 is a simplification of the study
of the resonances as the resonance curves are calculated using only the axisymmetric part of the
PM04–MW potential model. Nevertheless, the method can be used to estimate guiding values
for the positions of the resonances.
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11. THE PM04–MW POTENTIAL MODEL

Figure 11.3: Locations of the bar and spiral arms resonances. Resonance curves in the Allen &
Santillán (1991) axisymmetric model. The horizontal lines are the default values of pattern speed of the
bar and the spiral arms rigid rotation.
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11.3 The prolate bar

11.3 The prolate bar

This bar model is extensively described in Pichardo et al. (2004) and its main parameters are
presented in Table 11.4. It consists of a prolate mass inhomogeneous distribution3 that resembles
Model S of Freudenreich (1998) from COBE/DIRBE data which has a density of the form:

ρb(Rs) = ρ0


sech2(Rs) Rs ≤ RendS

sech2(Rs)e
−
 

(Rs−RendS
)2

h2
endS

!
Rs ≥ RendS

, (11.3)

with RS given by

RS =


[(
|x|
ax

)C⊥
+
(
|y|
ay

)C⊥]C‖/C⊥
+
(
|z|
az

)C‖
1/C‖

. (11.4)

Figure 11.4 shows a scheme of the stratification of the bar in different concentric prolate shells
of similar density. The scale lengths of the bar (ax, ay and az) and the exponents (C⊥ and C‖)
were fitted to the infrared observations. The effective boundary of the bar on the direction of
its major semi-axis, or in other words its length, is ab = 3.13 kpc. This is the length where the
superposition of prolate shells ends. The constant RendS is defined as ab/ax. For Rs ≥ RendS
the density has an additional Gaussian factor with scale length of hend = 0.46 kpc to produce
a steep but smooth fall in the outer region. The parameter hendS is the scale length of this
Gaussian factor scaled to ax, i.e. hendS = hend/ax.

Also following the COBE/DIRBE data, the default orientation of the bar respect to the Sun
is chosen φ0b = 20◦ as it can be seen in Figure 11.2. Very similar parameters for the orientation
and shape of the bar were found with a more recent analysis of the COBE/DIRBE data together
with the apparent magnitude distributions of clump giant stars in certain bulge fields (Bissantz
& Gerhard 2002).

The mass of the bar is probably the parameter which involves more uncertainty. However,
several estimations have given a total central mass (bar + bulge) of about 1 × 1010 M� (e.g.
Dwek et al. 1995 from photometric observations with the Hubble Space Telescope). Although
greater masses are also found in the literature4, here a total central mass of 1.4× 1010 M� has
been adopted as default value. In particular, the bar includes the 70% of this central mass

3In Pichardo et al. (2004) three different bar models are presented: a triaxial bar, a prolate bar and a boxy

bar. The choice of the prolate mass distribution answers to the fact that, although the boxy distribution would

match better the observations, the prolate shape is a good approximation to the COBE/DIRBE data and, it is a

simpler model that gives lower computation times.
4 For instance Zhao et al. 1996 reported a value up to 2.2 × 1010 M� using observations of microlenses and

models restricted by COBE/DIRBE.
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11. THE PM04–MW POTENTIAL MODEL

Table 11.4: Default parameters for the bar (Pichardo et al. 2004).

Parameter Default value
Length ab ( kpc) 3.13
Axis ratio 10:3.12
Scale lengths ax, ay, az ( kpc) 1.7, 0.54, 0.54,
Stratification parameters C⊥, C‖ 2, 2
Angle respect to the Sun φ0b (◦) 20
Mass Mb (M�) 9.8× 109 (70%M1)
New bulge mass (M�) 4.2× 109 (30%M1)
Pattern speed Ωb ( km s−1kpc−1) 45
Revolution period ( Myr ) 136
Corotation radius ( kpc ) 4.7
OLR ( kpc) 8.3

(9.8 × 109 M�) whereas the bulge covers the remaining 30% (4.2 × 109 M�). Therefore, when
the bar is added to the model, the bulge mass is decreased with respect to its original value
so as to guarantee that the total central mass of the model do not change and neither does
the mean circular velocity (the maximum variation of the circular velocity is less than 0.5% at
R = 8.5 kpc). The force field produce by the prolate bar is studied in Section 11.5.

A bar pattern speed of 45 km s−1kpc−1 is the chosen as default value. This is in the lowest
part of the range [40, 60] km s−1kpc−1 favoured by other studies (see a revision of the different
values obtained for this parameter in Gerhard 2002). With this pattern speed, the solar radius is
close to the bar 2:1 OLR. As it can be observed in Figure 11.3, the horizontal line corresponding
to this value for Ωb crosses the curve of Ω + 1/2κ near the Sun radius. The 2:1 OLR resonance
is therefore the nearest resonance according to this model. The position of this resonance for
Ωb = 45 km s−1kpc−1 is R = 8.3 kpc. Again it is worth noticing that this a simplified method
to calculate the resonance positions (see discussion in Section 11.2). In Part V we explore the
results obtained also with different pattern speeds.

It must be stressed that the recent new finding of a long bar using near-infrared colour-
magnitude diagrams and star counts (Hammersley et al. 2000) and data from the Spitzer/GLIMPSE
(Benjamin et al. 2005) have not been considered yet in the PM04–MW potential model given
the recentness of its discovery and the lack of observational constraints about for example its
mass or its pattern speed. This bar is called the long bar while the bar of the PM04–MW
potential model is usually called triaxial bulge, COBE/DIRBE bar or bulgey-bar (Churchwell
al. 2009). The long bar has a half-length of around 4 kpc according to Hammersley et al. (2000)
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11.4 The spiral-bar model

Figure 11.4: Construction of the prolate bar. Scheme of the stratification of the bar in different
concentric prolate shells of similar density (Figure from Pichardo 2003a).

or even 4.4 kpc according to Benjamin et al. (2005) and it is oriented with an angle of φ0b ∼ 40◦

(Hammersley et al. 2000, Benjamin et al. 2005). The long bar seems to be less massive. It
has a third as many bright stars as the triaxial bulge and considering roughly that the popu-
lations of the triaxial bulge and the long bar were similar this would result in a less massive
bar (López-Corredoira et al. 2007). Without having an specific component for this long bar in
our PM04–MW potential model, we will venture in some cases to analyse its effects on the local
velocity distribution considering the described prolate model but with a relative orientation of
φ0b = 40◦. It will be interesting also to study the combined effects of both bars but this is
postponed for a future study.

11.4 The spiral-bar model

The PM04–MW potential model that includes both the bar and the spiral arm components is
also used in Part V (Section 16). We will refer to it as spiral-bar PM04–MW potential model.
This model adds the spiral arms just as described in Section 11.2 and the bar of Section 11.3
which are relatively oriented as in Figure 11.2. This spiral-bar PM04–MW potential model,
with different pattern speeds for the bar and the spirals, is supported by recent observations
from external galaxies in Patsis et al. (2009). They reported that the best match between
observations and models for the galaxy NGC 3359 is found when different pattern speed for the
bar (39 km s−1kpc−1) and for the spiral arms (15 km s−1kpc−1) is considered. Also Bissantz et al.
(2003) found that a model with separate pattern speeds for the bar and the spirals explains better
the observed 12CO (l,v) diagram in the MW. In particular, they favoured Ωb = 60 km s−1kpc−1

and Ωsp = 20 km s−1kpc−1, which are values studied and discussed in Part V.
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11. THE PM04–MW POTENTIAL MODEL

11.5 Comparison with other MW potential models

It is interesting to compare the PM04–MW potential model with other MW potentials used
in this field. Our comparison is restricted to models that are usually applied to the particular
study of moving groups. Therefore, models for the Galactic bar such as the derived from the
density of Ferrers (1877) are not considered here. In particular, we explore the basic differences
between models, emphasising the differences in the derived force fields.

In order to quantify the strength of non-axisymmetric models some useful parameters can
be defined following other studies. Although this formalism has been classically applied to bars,
some observational studies have used it recently to measure the strength of spiral arms as well
(Block et al. 2004). First, it will be useful the Fourier decomposition of the potential of the bar
and the spiral arms. The decomposition of the potential in the m = 0, m = 2, m = 4 and m = 6
modes is for the spiral arms:

Φsp(R,φ) = Φsp0(R) +
∑
m

Φspm(R) cos(mφ) (11.5)

and for the bar:
Φb(R,φ) = Φb0(R) +

∑
m

Φbm(R) cos(mφ). (11.6)

This decomposition allows us to evaluate the relative contribution of the different modes. On
the other hand we will compute the forces of the m = 2 component relative to the total axisym-
metric radial force that is worked out as the m = 0 total component of the model. Following
Athanassoula et al. (1983), we explore first the parameter qr which is the m = 2 radial compo-
nent of the Fourier decomposition of the bar force scaled to the radial force of the axisymmetric
background. It is computed through:

qr(R) = Φ′2(R)/Φ′0(R) (11.7)

where primes denote derivatives with respect to R. Note that now Φ refers to the whole potential
of the model: non-axisymmetric component + axisymmetric part by Allen & Santillán (1991).
As it will be seen, the mass models for the non-axisymmetric components that we use have
contributions to the total axisymmetric radial force. We can also study the parameter qt which
is the tangential force of the m = 2 component of the Fourier decomposition scaled to the radial
force of the axisymmetric background. This parameter is calculated as:

qt(R) = 2|Φ2(R)/RΦ′0(R)| (11.8)

following again Athanassoula et al. (1983). Similarly, the parameter QT (R) is used in Buta
(2001) and is the ratio of the maximum tangential force due to the bar or the spiral arms to the
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11.5 Comparison with other MW potential models

mean radial axisymmetric force as a function of radius:

QT (R) = Fmaxφ / < FR0(R) > . (11.9)

Again the mean radial force represents the whole axisymmetric background due to the bulge,
disc, and spiral arms and/or bar. QT is larger than qt as it can include tangential forces due to
modes m ≥ 2. In particular the maximum of QT (R), which is the maximum of the tangential-
to-radial force ratio, gives a single and quantitative measure of the torque or strength of the bar
and the spiral arms. In Block et al. (2004) this maximum is called Qs for the spiral arms and
Qb for the bar.

Whereas the maximum values for qr, qt and QT can give general measures of how weak or
strong is a non-axisymmetric component, these maximums often occur for small R. As we are
interested in the effects of the non-axisymmetric components at outer radius, it is interesting to
compared the general profiles of radial and tangential forces and also their values at solar radius
or at radius near resonances.

The spiral arms

The more widely used model for the spiral arms is the one derived from the tight-winding
approximation (TWA5, see e.g. Binney & Tremaine 2008) for small pitch angles. In the spiral
density wave theory (Lin 1971) the spiral structure of galaxies was modelled as a periodic
perturbation term to the axisymmetric potential in the disc. The model gives a potential in the
Galactic plane of the form:

Φsp(R,φ; t) = A cos[m
(
Ωspt− φ

)
+ g(R)], (11.10)

where A is the amplitude of the spiral pattern, R and φ are the galactocentric cylindrical
coordinates, m is the number of arms and the function g(R) defines the shape of the spiral. A
can be a function of radius R and time and is ∝ | tan i|

m . Usually a logarithmic shape such as
g(R) = − m

tan i ln R
R�

+ φ0 is assumed, where φ0 is a constant to fix the orientation of the arms.

The main difference between the self-gravitating spiral arms and the TWA falls on the
construction itself. Whereas in the approximation of the TWA the spiral arms are a small
perturbative term of the potential, the self-gravitating spiral arms correspond to an independent
mass distribution. More precisely, in the TWA the spiral arms potential is obtained solving the
Poisson equation for a plane wave in a razor-thin disc (Binney & Tremaine 2008). The solution
is self-consistent but it has several restrictions. First, it is restricted to tightly wound spiral

5Sometimes it is called WKB approximation after the Wentzel-Kramers-Brillouin approximation of quantum

mechanics.
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11. THE PM04–MW POTENTIAL MODEL

(a) Self-gravitating spiral arms (b) TWA spiral arms

Figure 11.5: Force field of different spiral arm models. Detailed force fields as vector plots for the
different models of spiral arms. Note that these figures correspond to a new reference system X ′′Y ′′ such
that the spiral arms begin at the horizontal axis X ′′. The circle in (b) at R = 3.3 kpc indicates that,
despite the appearance, the effective start of the TWA arms is the same than in (a) as no arrow begins
at a shorter distance.

arms (i.e. small pitch angle) with |kR| = m/ tan i >> 1, where k is the radial wave-number. As
stated in Binney & Tremaine (2008) this situation is satisfied in most galaxies (with i between
11◦ and 15◦) but not with a very comfortable margin. Specially for the MW, with a default
pitch angle of i = 15.◦5 this assumption is at least doubtfully satisfied. Second, the solution for
the TWA requires the spiral arms to be a small perturbation, i.e. it is a perturbative solution
for small density contrasts. This produces a cancellation of the contribution from the distant
parts of the pattern to the local force. In this sense, the self-gravitating spiral arms allow us
to study spiral patterns which are nor tightly wound neither weak perturbations, which could
be the case of the MW. By contrast, it is not a self-consistent solution in the sense of potential
and induced density. However, as explained in Section 11.2 the self-consistency of the model has
been tested through an analysis of the stellar orbital reinforcement of the potential as in Patsis
et al. (1991), which is presented in Pichardo et al. (2003b).

It is worth comparing the exact force fields of these two models. For our comparison, we will
adopt for the TWA arms the same locus, i.e. the same g(R) function, as in the self-gravitating
spiral arms (Equation 11.1). Following Contopoulos & Grosbol (1986), an amplitude with an
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exponential decay with radius of the form

A(R) = −AspRe−εsR (11.11)

is used with εs = 1/RΣ which gives the same scale length as for the self-gravitating spiral arms
(Table 11.3). A value of Asp = 850[ km s−1]2 kpc−1 for the amplitude normalisation is chosen
so as to reproduce approximately the force amplitude range of the self-gravitating arms when
the default values are used (Msp = 0.05Md). Besides, the force of the TWA is set to 0 if the
radius is smaller than 3.3 kpc which is the effective beginning of the self-gravitating arms (see
Table 11.3). Figure 11.5 represents both force fields in a vector plot. Note that the panels in
this Figures correspond to a new coordinate system X ′′Y ′′ oriented such that the spiral arms
begin at the horizontal axis6 X ′′.

For given azimuths φ and radius R, the radial and tangential forces (in this case scaled to the
axisymmetric radial force) are compared in Figures 11.6 and 11.7. The solid line corresponds to
the self-gravitating arms whereas the dotted line shows the model of the TWA. In general, the
self-gravitating spiral arms present more abrupt features and different positions for the minima
and maxima of the force for both the radial force and the tangential force. The contribution to
the force from the entire spiral pattern in the self-gravitating spiral arms model, in contrast to
the TWA in which the force is determined by local properties of the arms, produces important
differences regarding the force profiles. For instance, it causes the radius at which the radial
force changes from negative to positive values to be closer to the spiral locus than for the
TWA model. For example, if we look at the bottom-left panel of Figure 11.6a corresponding
to φ = 120◦ we see that the radius of the locus is 7.2 kpc: this coincides by definition with the
potential minimum in the TWA and it is the point where the force changes from positive to
negative. The radius at which the force changes from negative to positive (interarm region) is
4.7 kpc for the TWA but 6.4 kpc for the self-gravitating arms which is closer to the locus. Also
the maxima of the radial force are achieved at larger R for the self-gravitating spiral arms. In
addition, the attraction of the whole spiral pattern shifts the radial force to negative values at
larger radius. See for example the variation of the radial force with R in any of the panels of
Figure 11.6a or the variation of the radial force as one moves to panels corresponding to larger
radius in Figure 11.6b.

Pichardo et al. (2003b) also compared the potential and force fields produced by the present
3D-spiral mass distribution with a TWA but showing examples using different parameters from
the ones that are used here. Their conclusions are however extensible to our study. They con-
clude that the observed differences between models are due to the effect of the self-gravitation of

6 Although it would seem that the beginning of the TWA arms is set to smaller R in Figure 11.5b than in

Figure 11.5a, the circle at R = 3.3 kpc in this plot shows that the no arrow begins at a shorter R.
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11. THE PM04–MW POTENTIAL MODEL

(a) As a function of radius for fixed azimuths

(b) As a function of azimuth for fixed radii

Figure 11.6: Spiral arms radial force. Radial force scaled to the radial axisymmetric force. The solid
line corresponds to the self-gravitating arms whereas the dotted line shows the model of the TWA.
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(a) As a function of radius for fixed azimuths

(b) As a function of azimuth for fixed radii

Figure 11.7: Spiral arm tangential force. Tangential force scaled to the radial axisymmetric force.
The solid line corresponds to the self-gravitating arms whereas the dotted line shows the model of the
TWA.
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Figure 11.8: Fourier decomposition of the spiral arms potential. Modes of the Fourier decompo-
sition of the potential of the self-gravitating spiral arms.

the mass of the spiral arms, important in the middle and outer Galactic regions. The self-gravity
of the spiral pattern (i.e. contributions to the potential from the entire pattern), which is not
accounted for in a potential like that of the TWA (which acts more like a local approximation),
cause the local spiral potential to adopt shapes that are not correctly fit by the simple perturbing
term that has been traditionally used. As proved in Franco et al. (2002), this difference have
far-reaching consequences on the gaseous dynamical behaviour in a potential of this type and
consequently, differences in the stellar response may be expected too. The study of the effects of
this new model on the local stellar velocity distribution which is addressed here have not been
considered before.

From this study we see that the quotient between the radial force of the self-gravitating
spiral arms and the background peaks at 0.24. This corresponds to the minimum reached for
R ∼ 4 kpc and φ ∼ 90◦ (see middle right panel of Figure 11.6a). At the solar position the radial
force produced by the arms scaled to the radial axisymmetric force is 0.06. However, in order
to be compared with observational values of the spiral strength, this must be done in terms of
the parameters described at the beginning of the section. The Fourier decomposition (Equation
11.5) of the self-gravitating spiral arms potential is shown in Figure 11.8. Obviously, in the
decomposition of a TWA model for the spiral arms only an m = 2 component would show up
whereas the self-gravitating spiral arms have a large m = 0 component that contributes to the
axisymmetric part of the global potential. It also has a non-vanished m = 4 and m = 6 terms.
Figure 11.9a shows the parameter qr for this model (Equation 11.7). From this we see that the
m = 2 radial force of self-gravitating spiral arms with respect to the total axisymmetric radial
force is 13%. When comparing this Figure with the radial forces of Figure 11.6 we see that the
peaks of that Figure were enhanced only due to the contribution of the m = 0 component of the
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11.5 Comparison with other MW potential models

(a) qr (b) qt

Figure 11.9: Spiral arms strength. Quantification of the spiral arms strength through the parameter
qr and qt. The grey curve in (b) corresponds to the parameter QT .

force that we were attributing to the spiral arms instead of to the axisymmetric background.
Around R� the parameter qr takes a value of 0.02. According to Patsis et al. (1991), strong
spirals are those in which the force produced by the spiral perturbation is greater than 6% of
the background force. Galaxies with a percentage up to 16% were found. However, an specific
potential model for the axisymmetric background and for the spirals were used in that study to
estimate values and, therefore, we believe that it is not straightforward to consider our default
self-gravitating spiral arms as strong.

The parameter qt (Equation 11.8) is shown in Figure 11.9b. The grey curve in Figure 11.9b
is directly the parameter QT (Equation 11.9) and is equivalent to qt but includes all the modes
with m ≥ 2. In this case weird shapes are obtained for this parameters as in the case of observed
external spiral galaxies (see Figure 6 of Block et al. 2004). The maximum value for qt is 0.041
whereas Qs (maximum QT ) is 0.18. In Block et al. (2004) the spiral strengths Qs range from 0
to 0.46. It is again risky to compare the obtained Qs for our model with the observations. There
are only 15 galaxies in the sample of galaxies for which that observational study was carried out
and also the observational method entails a delicate separation between spiral and bars which
is direct in our potential model. Nevertheless, this preliminary study points to the conclusion
that the self-gravitating spirals of the PM04–MW potential model are in the middle of the range
that is found for external galaxies.

Among the specific studies that use a potential model for the spiral arms that are also devoted
to study moving groups we find for example, Chakrabarty (2007) who used a model following
the TWA with 4 equivalent arms. This number of arms, which seems in disagreement with the
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latest observations (Benjamin et al. 2005), makes it difficult to compare directly her results with
the present ones. Moreover, in that case spiral arms at the weaker end of the observational
range (with a fractional amplitude of less than 4% of the background disc density) were used
whereas in the present study relatively moderate spirals are obtained when the default value of
the mass is used. As stated in Section 11.2, smaller values for this parameter will be explored
in Part V.

On the other hand, the locus of the TWA spiral arm in Quillen & Minchev (2005) is based
on Drimmel & Spergel (2001) as the self-gravitating arms. However, the location of the Sun is
nearer the Perseus spiral arm in their favoured model. In terms of the parameter φ0sp, which is
defined as the angular offset between the Sun and the peak of the spiral at the same radius, their
best match with observations is obtained using φ0sp = 15◦ (parameter γ in that study, see their
Figure 5). By contrast, the present model has φ0sp = 88◦. In other words, the orientation of the
arms in that study is equivalent to locate the Sun at φ = 73◦ in our coordinate system keeping
fixed the orientation of the arms (see Figure 1.1). However, the indetermination of the exact
position of the arms and in the general distance scale of the Galaxy, makes it difficult to fix the
exact orientation of the spiral arms. This characteristic of the spiral arms, despite having a first
guiding default value, will be kept variable in our study as well as other uncertain parameters.
Besides, the range of pattern speed in Quillen & Minchev (2005) was∼ 15−17 km s−1kpc−1. Here
we will use a range that reaches larger values (15 − 25 km s−1kpc−1) and the default pattern
speed is ∼ 20 km s−1kpc−1. Regarding the strength of the spiral, Quillen & Minchev (2005)
quantifies it in terms of density, fitting it to the values offered by Drimmel & Spergel (2001).
This latter study pointed out that the density contrast of the spiral arms of the MW appears to
be smaller than that of found in other galaxies. Therefore, the strength of the spiral in Quillen &
Minchev (2005) could be considered as relatively weak. However, in Drimmel & Spergel (2001)
it is suggested that their obtained weak spiral arms may result from several underestimations
of their method. The confirmation of these underestimations would imply the existence of more
massive arms in the MW.

The bar

A comparison between this model for the bar and the ones used in the other studies of this
field deserves also special attention. The usually used model is the one in Dehnen (2000) which
consist of an elaborated version of a potential dominated by the quadrupole (m = 2 component
of the Fourier decomposition of the potential):

Φb = Ab cos (2[φ− Ωbt]) ×

{
−(Rb/R)3 if R ≥ Rb,
(R/Rb)3 − 2 if R ≤ Rb

(11.12)
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(a) Prolate bar (default parameters of Table 11.4) (b) Quadrupole bar with α = 0.01

Figure 11.10: Force field of different bar models. Detailed force fields as vector plots for the different
models. Note that in this plots the X ′Y ′ reference system has been oriented so as to place the major
semi-axis of the bar along the X ′ axis.

where Rb and Ab are the size and the amplitude of the bar, respectively. The strength of the bar

is quantified by the parameter α = 3Ab
v2
0

(
Rb
R�

)3
which is the ratio of the radial forces due to the

bar and the axisymmetric background at the Sun galactocentric radius on the bar’s semi-major
axis, being v0 the circular velocity at R� .

To compare the different bar models it is useful to study their force fields. These are presented
in Figure 11.10 as the absolute force field in a vector plot. The amplitude of the quadrupole
bar has been chosen so as to produce α = 0.01 (as in Dehnen 2000) at the present default
solar radius R� = 8.5 kpc. Note that these panels have a new reference system X ′Y ′ where
the long semi-axis of the bar is on the X ′ axis. The evident differences between these panels
are next explained in terms of the decomposition of the forces in the monopole and quadrupole
components.

In order to compare the quadrupole potential and the prolate bar, Figure 11.11a is a cut of
the previous Figure 11.10. It corresponds to the bar’s radial force as a function of radius along
the direction of the major axis of bar for the prolate and the quadrupole bar with α = 0.01. The
radial force has been scaled to the same axisymmetric radial force to facilitate the comparison.
In particular, we use the model by Allen & Santillán (1991) of the PM04–MW potential model.
Note that for the prolate bar we have reduced the mass of the bulge of the axisymmetric part
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(a) (b)

Figure 11.11: Radial force of the bar. Comparison of (a) the bar’s radial force along the major axis
of the bar and (b) the bar’s maximum tangential force for the different models.

in order to maintain the total central mass (see Section 11.3). On the other hand, Figure
11.11b compares the tangential force of the bar for different bar models. This is done using
the maximum bar’s tangential force along all azimuths for a given radius. The values are also
scaled to the radial axisymmetric force of the model by Allen & Santillán (1991). From these two
panels of Figure 11.11, it might appear that the prolate bar seems to be by far the strongest one.
However, to perform a fair comparison we must do it in terms of the Fourier decomposition of
the forces. The prolate bar contributes substantially to the monopole component of the potential
as its introduction has involved an additional mass component to the global model. The not
null radial force curve for the prolate model at very large R in Figure 11.11a is an indicative of
this fact. By contrast, the quadrupole bar entails an total integrated mass of 0.

The Fourier decomposition of the potential in the m = 0, m = 2, m = 4 and m = 6
modes according to Equation 11.6 allows us to prove the important contribution to other modes
apart from the m = 2 in the prolate model. This decomposition is shown in Figure 11.12a
for the prolate bar and in Figure 11.12b the quadrupole bar with α = 0.01. Obviously, in the
decomposition of the quadrupole only an m = 2 component shows up whereas the prolate bar
has a large m = 0 component that contributes to the axisymmetric part of the global potential.
It also has a non-vanished m = 4 and m = 6 terms.

Our last exercises allow us to compare the m = 2 force component of the different bar models
scaled to the total axisymmetric radial force from the m = 0 component. The parameter qr
calculated as in Equation 11.7 is shown in Figure 11.13a. Note that for the model with the
quadrupole bar the m = 0 component comes exclusively from the axisymmetric force of the
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(a) Prolate bar (b) Quadrupole bar with α = 0.01

Figure 11.12: Fourier decomposition of the bar potentials. Comparison of the modes of the Fourier
decomposition of the potential of the different models. The grey curve in (b) corresponds to the parameter
QT .

Allen & Santillán (1991) model. By contrast, the prolate bar also contributes in the m = 0
potential, i.e. in the denominator of Equation 11.7. This Figure demonstrates that the peak of
the radial force of the prolate bar is slightly lower than for the quadrupole bar. The maximum
m = 2 component of the radial force with respect to the total axisymmetric radial force is of
19% for the quadrupole bar and 14% for the prolate bar. Besides, the curves are completely
different in terms of the shape. Note the non-differentiable cusp of the quadrupole model at the
inner parts of the disc which is totally solved for the prolate bar. It is worth mentioning that
the radius of this peak for the quadrupole model depends on the pattern speed of the bar (here
set to the default value) through the relation between corotation radius and bar length. Also
note the negative values of qr for the prolate bar at inner radii. This negative contribution is
counterbalanced by the other terms of the multi-pole expansion as no negative values appear in
the global case (Figure 11.11a). However, at large distances around R� the parameter qr takes
lower values for the prolate bar than for the quadrupole model. In particular, in terms of the
α parameter of Dehnen (2000) (ratio of the radial forces due to the bar and the axisymmetric
background at the Sun Galactocentric radius) it is 0.005 for the prolate bar and it has been set
to 0.01 for the quadrupole bar.

We can also study the parameter qt. For the two models, these are shown in Figure 11.13b.
Again we see that at larger radius the prolate bar produces lower force than the quadrupole bar.
This plot also shows that the prolate bar has only slightly higher qt at the inner regions. The
maximum value for the prolate bar is 0.3 and for the quadrupole bar it is 0.24. The grey curve
in Figure 11.13b is the parameter QT (Equation 11.9) which is equivalent to qt but includes
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(a) qr (b) qt

Figure 11.13: Bar strength. Comparison of (a) the bar’s parameter qr and (b) the bar’s parameter qt
for the different models.

all the modes with m ≥ 2. In particular the maximum of these curve Qb gives a single and
quantitative measure of the torque or strength of the bar according to Buta (2001). This value
is 0.38 for the prolate bar and 0.24 (equal to qt) for the quadrupole bar. These values of Qb for
the two models are in perfect agreement with the range of values found by Block et al. (2004)
with a sample of external galaxies which is from 0 to 0.75.

To quantify how weak or strong is the bar of our study, their maximum values for qr and
qt (or similarly Qb) and also the value of α can be compared with the ones of the literature.
In particular, the quadrupole bar of Equation 11.12 is used in Dehnen (2000), Fux (2001) and
Minchev et al. (2010). The bar of Chakrabarty (2007) is a pure quadrupole term. Differently to
the previous analysis in this section, those studies were carried out with a different axisymmetric
potential. In general, power-law potential were used. Recalculating the values of qr and qt

using the corresponding axisymmetric potentials, we found the values of Table 11.5. The bar
in Minchev et al. (2010) is equal to that of Dehnen (2000) and Chakrabarty (2007) uses a
quadrupole bar quantified to be between the Dehnen (2000) and Fux (2000). The strength
in the inner parts of the disc can be quantified by the maximums of the parameters qr and
qt. We conclude that at small radius the prolate bar is comparable to the bar in Fux (2001).
However, in the outer parts of the disc the prolate bar is substantially weaker than the other
quadrupole bars. In particular, the range used by Dehnen (2000) for the strength parameter α
is [0.007, 0.013] (the standard value is taken as 0.01). Fux (2001) used the same model but with
a stronger bar with α in the range [0.011, 0.022]. By contrast, the prolate bar used in this study
has α = 0.005. In the fourth row of Table 11.5 we show the parameters for the quadrupole bar
with the axisymmetric part of Allen & Santillán (1991) that is used in this thesis in some of the
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Table 11.5: Parameters qr, qt and α for the bar of the present study and for the standard models of other
studies in the field.

qr max qt max α

Prolate bar (axisymmetric part of Allen & Santillán 1991) 0.140 0.30 0.005
Quadrupole bar Dehnen (2000) (axisymmetric power-law potential) 0.085 0.11 0.010
Quadrupole bar Fux (2001) (axisymmetric power-law potential) 0.190 0.25 0.022
Quadrupole bar of this thesis (axisymmetric part of Allen & Santillán 1991) 0.190 0.24 0.010
Massive prolate bar (axisymmetric part of Allen & Santillán 1991) 0.190 0.36 0.007

simulations devoted to compared the prolate and quadrupole bars. This model has been fixed
to have the same parameter α as in Dehnen (2000). However the forces at the inner parts of the
disc resembles our default prolate bar. Also a more massive prolate bar (Mb = 1.4 × 1010M�)
will be used in the simulations. Its corresponding strength parameters are shown in the last row
of Table 11.5.

To conclude with this analysis, the prolate bar is comparable to the quadrupole model in
terms of its quadrupole term in the multi-pole expansion but is a more sophisticated and realistic
model which includes also other terms. Although the maximum values of the forces of both
models are similar, the shapes of the forces at inner radius are significantly different. Specially
the prolate bar describes better the regions near or in the bar itself whereas the quadrupole bar
is an approximations for outer regions. We have also seen that the prolate bar of the PM04–
MW potential model has a very low strength at the outer parts compared with other quadrupole
models used in the literature. Any attempt of make these models more similar fails. Trying to
have similar bars in the inner regions will cause the outer regions to differ substantially and vice
versa due to the different shapes of the bar potential and of the axisymmetric part.
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Part V

MOVING GROUPS

AS IMPRINTS OF

THE MILKY WAY STRUCTURE
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This part reports the results of the test particle simulations of the methodology developed
in Part IV. Our method allows us to evaluate the role of realistic non-axisymmetric components
of the MW, namely the spiral arms and the bar, on the formation of moving groups in the disc.
In particular we obtain the induced kinematic distribution not only of the solar neighbourhood
but in other positions of the disc. We explore the parameter space of the PM04–MW potential
model using different simulations in order to evaluate the effects of each particular characteristic
of the spiral arms or the bar on the velocity distributions. We also explore the results on disc
with different initial conditions and compare our results with studies by other authors obtained
through other methods. The final velocity distributions are treated also with the WD multiscale
technique as the observational sample in order to be statistically analysed and compared with
observations and with the results of other studies.

Chapter 12 deals with some preliminaries regarding the presentation of

the results, by giving more specific details about the simulations and

methodology. Chapter 13 examines the effects of the spiral arms while

Chapter 14 does the same with the bar. Next the effects produced on a

hotter population (IC3) are shown separately in Chapter 15 as they de-

serve special considerations. Finally, Chapter 16 presents the results of

the spiral-bar PM04–MW potential model (the model that includes bar

and spiral arms). At the end of the main chapters in this part, we sum-

marise and discuss the results. In all cases, the simulations are presented

beginning with the default values of the PM04–MW potential model and

with the default parameters of the IC described in Part IV. After this,

variations of these parameters will be studied and the corresponding re-

sultant Figures are mostly shown in Appendix B.
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Chapter 12

Preliminaries

The complexity of the problem lead us to simplify the methodology as follows. First, we need to
study the effects of each non-axisymmetric component separately before considering the more
complex problem of the spiral-bar model including both components. Therefore, separate results
are presented for the PM04–MW potential model including only spiral arms (Chapter 13),
the PM04–MW potential model including only the bar (Chapter 14) and the spiral-bar model
(Chapter 16). Secondly, for the moment our main aim is to study the effect of these non-
axisymmetric Galactic components on the kinematic distribution of regions located in the plane
(z = 0) or near the plane. We will assume that the vertical motion is decoupled with the in-
plane movement, which is reasonably true for nearly circular orbits and that do not take larger
heights above the plane (see e.g. Binney & Tremaine 2008). For these orbits the timescales
of the vertical motion is short compare to in-plane motion and the vertical frequency do not
change significantly along the orbit. The validity of these assumption for our hottest IC (IC3)
will be discussed in Chapter 15. For this reason, as a first natural step, our analysis is for the
moment restricted to simulations for z = 0 and the 3D study is postponed to future work. This
allows us also to reduce significantly the computing time of the simulations.

We use the galactocentric cylindrical coordinates (radius R and azimuth φ) detailed in
Section 1.4. In general, figures with 9 panels will be offered for each simulation correspond-
ing to the circular regions of 500 pc located at R = 8.5 kpc, on the Galactic plane and at
φ = 0◦, 20◦, 40◦, 60◦, 80◦, 100◦, 120◦, 140◦, 160◦ (circles in Figure 12.1. The Sun is located at
φ = 0◦ and R = R� = 8.5 kpc but as this is uncertain, it will be worth studying other regions
on the plane. Note that if we want to relate the azimuthal angle φ of a certain region with the
corresponding phase with the bar or the spiral is:

φ0sp = 88◦ − φ (12.1)
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Figure 12.1: Diagram of the regions where the velocity distributions are analysed superimposed to a
sketch of the MW disc.

φ0b = 20◦ − φ (12.2)

More important, the results must be compared to the observed velocity distributions which
at this moment is available with enough accuracy only for the solar neighbourhood (Figure
6.1 of Part III). An additional limitation appears in this comparison due to the uncertainty
in the velocity of the Sun with respect to the LSR. Although the commonly used values for
(U� , V� , W�) are around (10, 5, 7) km s−1 (Dehnen & Binney 1998), several new studies suggest
that these values should be modified to (11, 12, 7) km s−1 (Binney et al. 2010, Schoenrich et al.
2009). In Figure 6.1 the heliocentric velocities are presented, that is not corrected for the solar
motion. The simulations show peculiar velocities and a certain value for the solar motion should
be assumed in order to compare exact positions in the U–V plane. The indetermination in the
solar motion and specially in the V� component, means a limitation for the comparison.

The denoising method WD described in Part II as been applied to the results of the simu-
lations as with observations in Part III. This helps us to treat the Poisson noise of the results.
Also contour lines have been added in some cases to highlight the structures. The simulations
have been run mainly at KanBalam (HP CP 4000 cluster with distributed memory and 1368
processors with AMD Opteron 2.6 GHz core) at the DGSCA/UNAM and at Sol (CATON cluster
with 72 cpus Intel Xeon 2,73Ghz core) at the DAM/UB.
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Chapter 13

Imprints of the spiral arms

In this chapter the kinematic structure developed by the self-gravitating

spiral arms of the PM04–MW potential model is presented. First in

Section 13.1 the results of these simulations with the default parameters

of Tables 11.2 (for the axisymmetric component) and 11.3 (for the spiral

arms) are presented for IC1 (default values of Table 10.1). Afterwards,

the effect of the variation of some default parameters is shown. Finally,

the model with only spiral arms is applied to IC2 (default values of Table

10.1). The results for IC3 are postponed for Chapter 15 as the hottest disc

deserve special considerations. In Section 13.2 we study the regularity of

the orbits on the U–V plane for the self-gravitating spiral arms. At the

end, Section 13.3 shows a summary and a discussion of the results of

this chapter.

13.1 New insights on the influence of the spiral arms

IC1– Figure 13.1 shows the U–V plane for the regions of Figure 12.1 at different azimuths φ
and at R = 8.5 kpc, assuming the IC1. We find that the self-gravitating spiral arms produce
interesting effects on the velocity distribution in these positions. In general, the model produces
a central group (low epicyclic energies) that in some cases presents several structures inside and
a branch at low angular momentum (with V ∼ −40 km s−1) separated from a central structures.

Regarding the central structures, the richest case is achieved at φ ∼ 100◦ where three slightly
tilted branches appear, resembling some of the observed central kinematic branches. Figure 13.2
compares the branches for the observations of the solar neighbourhood and the simulations at this
position. The component Vβ is the projection of the U and V velocities to an axis perpendicular
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Figure 13.1: Kinematic effects of the spiral arms on a cold disc. U–V velocity distributions after
WD at R = 8.5 kpc and at different azimuths φ for the simulations with the PM04–MW potential model
using only spiral arms and IC1.
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(a) Observations (heliocentric) (b) Simulations (RSR)

Figure 13.2: Observational kinematic branches and branches induced by the spiral
arms.Comparison between the branches of the observational sample and the branches generated by
the simulations with the PM04–MW potential model using only spiral arms and IC1 at φ = 100◦ and
R = 8.5 kpc. The branches are shown in the Vβ component (clockwise rotation of β = 16◦ of the U–V
plane) after WD for several scales.

to the branches (clockwise rotation of β = 16◦). Please note that due to the fact that Figure
13.2a shows the heliocentric velocities whereas Figure 13.2b shows the velocities with respect
to the RSR, the Vβ axis are not directly comparable. The fact that the spiral arms are able to
produce these similar branches is encouraging. This position corresponds to an azimuth very
close to the arm (see Figure 12.1), which in principle is not a plausible position of the Sun with
respect the K-band spiral arms. However, the uncertainty about the real positions of the arms
of the MW is large and complex due to the existence of the additional gaseous arms (see Section
11.2) that deprive us from rejecting the possibility that the Sun is near an spiral arm. The first
panel of Figure 13.1 (φ = 0◦) shows the U–V plane for the supposed solar position according
to the default PM04–MW potential model. At this position the central part of the distribution
seems to be split into two groups or branches.

In addition, the model reproduces for a wide range of φ a branch at low angular momentum
with V ∼ −40 km s−1 which is consistent with the V velocity of the observed Hercules structure.
Up to now this structure has been believed to be exclusively due to bar resonances (see Chapter
2). To our knowledge, this is the first time that an unbarred model has produced a similar
structure. Although the shape of the structure at V = −40 km s−1 is not exactly equal to the

153



13. IMPRINTS OF THE SPIRAL ARMS

Figure 13.3: Age distribution of a simulated kinematic structure. Age (or integration time)
distribution of the particles belonging the supposed Hercules structure at different galactic regions φ.

Hercules branch, especially regarding its inclination in the U–V plane and regarding its average
radial motion U < 0 (Figure 6.1), our simulations show that the spiral arms by themselves
crowd the velocity space at these negative V . At φ = 0◦, which would correspond to the solar
neighbourhood according to the PM04–MW potential model, despite being fainter than in other
azimuths, the analogous to the Hercules moving group also appears. Given the uncertainty on
the exact position of the arms, it is interesting to consider also small variations respect to the
configuration of Drimmel & Spergel (2001). Consequently, velocity distributions such as the one
for φ = 160◦, corresponding also to inter-arm regions, with a more prominent Hercules structure
should be highlighted.

It is very significant that we find that the Hercules structure may be produced by the spiral
arms and not only by bar resonances as traditionally believed. Dehnen (2000) concluded that
the Hercules branch is unlikely to have been produced by resonant scattering processes due to
spiral arms. His main argument was that spiral arms do not act on stars with epicycles greater
than the interarm separation. However, in our case the interarm separation in the locus of
our default model is in the range 5.5 − 7 kpc whereas the particles in the structure created in
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our simulations (at U ∼ [−30, 30] and V ∼ [−45,−35]) have a radial excursion amplitude1 of
about 3 kpc. This is sufficient to produce the Hercules structure and still in agreement with the
argument by Dehnen (2000).

The fact that the test particles in the simulations with IC1 have different integration times
(Procedure 1) allows us to study the ages (age=−τ) of the particles in each velocity distribution
or in particular structures in the U–V plane. It is very interesting for instance, to look at the
ages of the particles belonging to the structure equivalent to the Hercules moving group. We
see that this kinematic group have a distribution of integration times different for each region at
different φ. Figure 13.3 shows the age histograms of the regions φ = 0◦, φ = 60◦,φ = 100◦ and
φ = 160◦ for this particular structure. The minimum age of the distribution for these 4 regions
are respectively: 1200 Myr, 420 Myr, 660 Myr and 650 Myr. In next Section 13.2, it will be seen
that this can be explained in terms of the orbits of these particles and the gap near age= 0 in
Figure 13.3 is due to the fact that particles need a certain minimum time to reach the orbital
condition that corresponds to this structure.

Other characteristics of the particles forming this kinematic structure at V ∼ −40 km s−1 are
the following. First, they all come from inner radii compared with the rest of particles that have
ended up in this region. The grey particles in Figures 13.4a and 13.4b are the particles of the
supposed Hercules kinematic structure of the regions at φ = 0◦ (inter-arm region) and φ = 100◦

(arm region) respectively. The initial radius of all the particles in these regions are shown in the
histograms of Figures 13.4c and 13.4d, where the grey dashed lines correspond to the particles
of the supposed Hercules. These particles are distributed at inner radii compared to all particles
that end up in the final region at 0◦ and 100◦. Secondly, if the final distribution in the X-Y
plane of the particles is studied, we see that the particles of the structure at V ∼ −40 km s−1 are
located in the inner parts of the region considered. This can be seen in Figures 13.4e and 13.4f
for φ = 0◦ and φ = 100◦ respectively where again the grey points correspond to the particles
in the supposed Hercules. Note that for φ = 100◦ the GC is located at the left side of the
panel approximately in straight line whereas for φ = 0◦, it is located just below the panel (see
Figure 12.1). Note also that for φ = 100◦ the particles are more extended all through the whole
final region of 500 pc, reaching a larger fraction of the region. It is expected that considering
regions near φ = 0◦ but at slightly different radius or azimuths, we would obtain different spatial
extensions of the particles of this kinematic structure. This is be very useful in order to compare
with observations. For instance, our preliminary results of Section 6.4 shown that the Hercules
structure was weaker for a region located at X > 160 pc. For the moment, the spatial study of
the observed moving groups is limited by the extension and precision of the current observational

1 This value is obtained theoretically by calculating the epicyclic amplitude from the epicycle approximation

(e.g. Asiain et al. 1999b) or directly from the orbits obtained in the simulation (see Section 13.2).
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13. IMPRINTS OF THE SPIRAL ARMS

(a) U -V plane (φ = 0◦) (b) U -V plane (φ = 100◦)

(c) initial radii R (φ = 0◦) (d) initial radii (φ = 100◦)

(e) final X-Y plane (φ = 0◦) (f) final X-Y plane (φ = 100◦)

Figure 13.4: Spatial characteristics of a simulated kinematic structure. Characteristics of the
particles in the regions at φ = 0◦ (left column) and at φ = 100◦ (right column). The particles in the
kinematic structure equivalent to Hercules are indicated with grey circles and grey dashed lines in the
histograms and the rest of the particles are indicated with black dots and black solid lines.
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13.1 New insights on the influence of the spiral arms

samples and this deprives us to draw a definitive conclusion about the spatial extension of the
observed Hercules moving group. However, the future characterisation of the spatial distribution
of the stars in each moving group would suppose useful additional constrains in this study.

Varying the default parameters– Next we present the results of the simulations when
the default values for some relevant parameters (pattern speed, pitch angle and mass) of the
PM04–MW potential model are changed.

• Pattern speed: Changing the pattern speed Ωsp of the spiral arms corresponds to bring-
ing the resonances nearer or closer the solar radius and therefore we expect an important
change in the velocity structures. With the default model Ωsp = 20 km s−1kpc−1, the ILR
4:1 is the nearest one as detailed in Section 11.2 and is located at radius R = 7.0 kpc. In
Figure 13.5, the positions of the 4:1 ILR for several pattern speeds of the spiral arms are
shown as vertical lines. This positions are obtained with the crossing of the horizontal
lines corresponding to each Ωsp with the Ω − κ/4 curve. The vertical black line shows
the radius of the default Sun, where the simulations are analysed. We have repeated the
simulation for the values of Figure 13.5: Ωsp = 15 km s−1kpc−1, Ωsp = 18 km s−1kpc−1,
Ωsp = 22 km s−1kpc−1 and Ωsp = 25 km s−1kpc−1 moving the ILR 4:1 to 9.5 kpc, 7.8 kpc,
6.2 kpc and 5.4 kpc. The results are shown in Appendix B in Figures B.5, B.6, B.7 and B.8
respectively. In the last two cases of higher pattern speed, the resonances are far from the
Sun and only few significant structures are seen specially near the arm (φ ∼ 100◦). How-
ever, for the first two cases corresponding to regions placed nearer the resonance different
and abundant substructure appears. Specifically, these two cases correspond to being at
1 kpc out of the ILR 4:1 (Ωsp = 18 km s−1kpc−1) and being ∼ 1 kpc inside the ILR 4:1
(Ωsp = 15 km s−1kpc−1). For instance, it is interesting that for Ωsp = 18 km s−1kpc−1 the
upper part of the distribution on the U–V plane is shifted to U > 0 as the observed Sirius
moving group for φ = 0◦ and φ = 100◦. For Ωsp = 15 km s−1kpc−1 this also happens at
φ = 20◦, φ = 40◦, φ = 100◦ and φ = 120◦.

• Pitch angle: Regarding the influence of the pitch angle i, a change from i = 15.5◦ to
i = 12.0◦ (still between the limits of the observed values) causes the results of Figure B.9.
The decreasing of the pitch angle results in a near position of the arms with respect to
φ = 0◦ (see Figure 13.6). The phase difference is exactly of 53◦ at solar radius (the new
orientation of the arms is φ0sp = 35◦ whereas the default is φ0sp = 88◦). Therefore the
results for i = 12.0◦ are very similar to Figure 13.1 for the default model except that it
seems to be rotated ∼ 60◦ (φ = 0◦ for this case is approximately equal to φ = 60◦ for the
default case in Figure 13.1). Apart from this difference, a slight weakening of the group
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13. IMPRINTS OF THE SPIRAL ARMS

Figure 13.5: Location of the spiral arm resonances. Resonance curves in the Allen & Santillán
(1991) axisymmetric model for corotation (Ω) and 4:1 ILR (Ω − κ/4). The horizontal blue line
corresponds to the default value of pattern speed of the spiral arms. The other coloured lines
corresponds to several variations for this parameter. The vertical lines coloured following the same
pattern indicates the position of the 4:1 ILR for each pattern speed. The default position of the
Sun is shown with a black vertical line.
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13.1 New insights on the influence of the spiral arms

Figure 13.6: Two different locus of the spiral arms. Comparison between models with pitch
angle i = 15.5◦ (solid line) and i = 12◦ (dotted line).

at low angular momentum (Hercules) but no other significant differences in the velocity
distributions are observed.

• Mass: It is also worth mentioning that if the mass Msp of the spiral arms is decreased
from Msp = 0.05MD to Msp = 0.03MD, only several but minor differences are observed
(Figure B.10). First, the group at low angular momentum is still present although it is
less extended in the U–V plane compared to the central structures. That is however,
also similar to the observed U–V plane where the Hercules structure has significantly less
contrast than the central regions. Second, the central branches of the velocity distribution
at φ = 100◦ have also become less strong but are still visible. In the other regions, the
central part is also very similar to the default case. It is worth noticing that the default
mass of the self-gravitating spiral arms correspond to a high value between the limits of
consistency of the model (Pichardo 2003a) and higher compared to other studies in this
field as explained in Sections 11.2 and 11.5. In this sense, considering Msp = 0.03MD is
still a proper value for the model that produces also interesting results.

• Integration time: If the maximum integration time τ for IC1 is increased to 3000 Myr
(Figure B.11), no significant increase in the crowding of Hercules and neither changes in
the central structure are observed. This means that an stationary state has been reached
although with these IC we have in our final velocity distributions particles with very low
integration times.

159



13. IMPRINTS OF THE SPIRAL ARMS

Comparison with the TWA– Unfortunately, the detailed comparison of our results with
other mentioned studies using the TWA (Section 11.5) is not straightforward. First, they used
a model with different spiral arm characteristics such as the locus, the pattern speed and in
some cases, even a four-armed model (Chakrabarty 2007), while ours includes two arms. These
differences between the models have been analysed in Section 11.5. Finally, they used a different
simulation strategy: Quillen & Minchev (2005) assigned the moving groups to periodic orbits
of the spiral potential and in Chakrabarty (2007) the final result of each simulation was an
average over time in the reference frame of the spiral arms as explained in Section 10.4. With
the different method and model, Quillen & Minchev (2005) reproduced the Hyades-Pleiades and
Coma Berenices branches as ascribed to periodic orbits related to the spiral arm 4:1 ILR, but not
the Hercules structure (see Section 13.2). A more recent study (Chakrabarty 2007) argues that a
model with only weak spiral arms does not reproduce the observed local velocity distribution as
efficiently as a model with the combined effect of a bar and spiral arms. In the spiral-only models
more but less strong kinematic structures were generated. However a particular description of
these structures was not offered in that study.

Here we aim to study the effects of the TWA in the more similar conditions as our previous
simulations with the self-gravitating spiral arms as possible. This means that we should use the
same IC1, the same axisymmetric background and the same method. Also we have used the
same pitch angle, locus and pattern speed as in the default model for the self-gravitating spiral
arms and an approximately equivalent amplitude of the force range (Asp = 850( km s−1)2 kpc−1,
see Section 11.5). Nevertheless, we have seen in Section 11.5 that this two models have very
significant differences in their force field shape. Figure B.12 shows these equivalent results to
Figure 13.1 but for the TWA. We see now that the velocity distributions in this case are very
poor in terms of structures. An homogeneous central small group appears for all φ. If the
amplitude of the TWA arms is doubled to Asp = 1500(kms)2 kpc−1 (Figure B.13), surprisingly
the structure at V ∼ −40 km s−1 appears again but only for the range φ = 80◦ − 100◦. By
contrast, we have seen that the self-gravitating spiral arms create rich structures even if the
mass is decreased. Therefore, we can conclude that the self-gravitating spiral arms produce
ample substructure compared to the TWA arms. This should be due to the differences in the
force field shape discussed in Section 11.5 (Figure 11.6 and Figure 11.7).

IC2– Also interesting is the case of IC2 (Figure 13.7) where the rapid induced effects of the
spiral arms is shown. With an integration time of 400 Myr, the spiral arms with the default
parameters have rotated only for 1.2 revolutions. In this case, a clear bimodality appears at
several φ but mainly for φ = 120◦ and the adjacent ones. In particular for φ = 100◦ the two
groups has positions and inclinations on the U–V plane that resemble the branches of Hyades-
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Figure 13.7: Kinematic effects of the spiral arms on the intermediate disc. U–V velocity
distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the PM04–
MW potential model using only spiral arms and IC2.
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Pleiades and Sirius. Also for φ = 60◦ and φ = 80◦, a structure similar to the one discussed
for IC1 (V ∼ −40 km s−1) is observed at smaller |U |. Although there are particles that reach
V ∼ −40 km s−1 (e.g. at φ = 120◦), they do not appear as a clear structure separated from
the central region as in Figure 13.1. This is probably due to the lower integration time of IC2
compared with IC1 because, as previously seen, the integration time of the particles in that
structure was at least 420 Myr (Figure 13.3). It can be checked that if the integration time for
IC2 is increased to 1000 Myr (3 spiral arm revolutions), the panels change and the structure
equivalent to Hercules emerges (Figure B.14) but no at all φ. The integration time of IC2 is
short for the spiral arms (only 1.2 revolutions) to produce stable distributions and in this case we
are therefore studying a velocity distribution that is still experiencing the response of the spiral
arms (see Chapter 10). This situation demonstrate that recent spiral arms produce transient
but strong and interesting kinematic structures.

13.2 Relation to regular orbits of the spiral arms

In this section the method of quantifying the regularity of the orbits corresponding to each
region of the U–V plane is applied. The method and the aims of using it are detailed in Section
10.3. Basically we intend to ascertain if a given structure that has appeared in the test particle
simulations corresponds to a group of periodic or quasi-periodic orbits or not and to identify
the effects of a particular resonance in the U–V plane. The corresponding result for the default
model of spiral arms (Table 11.3) at φ = 0◦ and R = 8.5 kpc is shown in 13.8. In this Figure
some of the main periodic regions are indicated with a coloured circle and a character. The
corresponding orbits are shown in Figure 13.9 with the same colours. The analysis of these two
Figures leads to the following conclusions.

First, the locations of the resonances are clearly marked as arches opened to the V < 0
direction as discussed for instance in Fux (2001). The more negative or smaller the V , the smaller
the guiding radius or centre2 of the orbit and therefore the inner the resonance associated. This
Figure helps us to illustrate the discussion about the axisymmetric estimates of the resonances
begun in Section 10.3. As shown in Dehnen (2000) for a case applied to the bar of the MW these
kind of estimates predicts that the local velocities of orbits that are in resonance (in that case the
OLR) satisfy a parabola whose maximal V occurs at U = 0. Nevertheless, we see in this Figure
(and equivalently for the simulations with the bar of Section 14.2 and in Dehnen 2000) that
some features corresponding to the resonances are asymmetric in U . This demonstrate that
calculations of the location of the resonances in the U–V plane using only the axisymmetric
potential as a simplification are not very accurate.

2The radius around which the orbit oscillates according to epicyclic theory.
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Second, the region of V ∼ −40 km s−1 equivalent to the Hercules stream that appears in
most of the previous simulations of Section 13.1 is here discovered to be a dark region in this
map or, equivalently, a quasi-periodic region in the U–V plane. This region is marked with
points (b) and (c). These two points and all the surrounding points follow a square orbit related
to the 4:1 ILR of the arms finishing 4 radial oscillations during one angular revolution (Figure
13.9b and 13.9c). This type of orbits support the arms near two of its four vertexes. The radius
of the orbits oscillates between ∼ 6 kpc and 8.5 kpc, which is well-around ∼ 7 kpc where the 4:1
ILR is located according to the simplified method of Figure 13.5. For the orientation of these
orbits, we conclude that the particles following this orbit are exactly at the vertex of the square
when they cross the φ = 0◦ and R = 8.5 position. Also, the structure at V ∼ −40 km s−1, which
was specially prominent for φ = 100◦ in the test particle simulations, coincides with the position
of the other vertex. However, as these orbits are not exactly periodic orbits but oscillate around
the closed square, the vertexes of the orbit also oscillates around the disc and eventually covers
all azimuths at solar radius. That is the reason why this structure appears for all azimuths
but have different minimum time of exposure to the spiral arms (or age) at different azimuths
(Section 13.1).

Figure 13.9a is similar to the mentioned squared orbit (Figure 13.9b) but has loops in its
vertexes. It may be also related to 4:1 ILR. By contrast, Figure 13.9p corresponds to an effect
of the 4:1 OLR of the spiral as it is an orbit that finishes exactly 4 radial periods for a complete
azimuthal oscillation but around a larger guiding radius than the one associated with the 4:1
ILR (R4:1OLR ∼ 14.3 kpc). The effects of the 5:1 ILR resonance can be seen in Figure 13.9d.
The 6:1 ILR has its imprints in orbits such as Figures 13.9e, 13.9g and 13.9i, the 7:1 ILR in
Figures 13.9f and 13.9h and continuing similarly depending on the number of radial oscillations
for one angular revolution (Figures 13.9j, 13.9k, 13.9l and 13.9m).

The strong black stripe at V ∼ 50 km s−1 and covering a large range of U correspond to
orbits such as Figure 13.9n. These are orbits around one of the equilibrium points of the spiral
arms potential located at corotation radius (Rcr = 10.9 kpc). In the frame of reference rotating
with the spiral structure (X ′′–Y ′′) there are 4 equilibrium points at corotation distance. L4 and
L5 are stable and located at the effective potential maxima whereas L1 and L2 are saddle points
of the effective potential, therefore, unstable. For the PM04–MW potential model with only
spiral arms the curves of equipotential and the equilibrium points of the model in the X ′′–Y ′′

reference system are shown in Figure 13.10. As studied in Barbanis (1976), the resonant orbits
at corotation can be divided in 3 types according to their shape which depends on the particular
value of the Hamiltonian and the initial position. In our case in the centre of the stripe we find
an elongated ring orbit around the L4 (or L5) stable equilibrium point such as Figure 13.9n (a-
type orbits in Barbanis 1976). The rest of the stripe surrounding this centred point corresponds
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13. IMPRINTS OF THE SPIRAL ARMS

Figure 13.8: Orbital regularity of the self-gravitating spiral arms. U–V plane coloured according
to the periodicity of the corresponding orbits for the default model of spiral arms at φ = 0◦ and R =
8.5 kpc. The darker the region is, the more periodic or closed the corresponding orbit is. The points
corresponding to orbits in Figure 13.9 are marked with coloured circles.

164



13.2 Relation to regular orbits of the spiral arms

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 13.9: Spiral arm-induced regular orbits. Orbits of the U–V points indicated in Figure 13.8
with the same colour and character. The velocity (U , V ) is indicated in the top-right part of each panel.
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Figure 13.10: Equipotential curves (black lines) and the equilibrium points of effective potential of the
PM04–MW potential model with only spiral arms. The positions of the resonances for the default value
of the pattern speed of the arms are shown (green lines). From inside out these are the 2:1 ILR, the 4:1
ILR, the corotation resonance and the 2:1 OLR. The Sun corresponds to the blue symbol. Plot courtesy
of M. Romero-Gomez.

to asymmetric banana orbits (c-type orbits in Barbanis 1976) following an oval curve around the
stable L4 and unstable L2 points (or L5 and L1) such as in Figure 13.9o. This particular orbit
and all the white region inside these stripe is formed by similar orbits oriented in a way that do
not cross the axes (X ′′ and Y ′′) where the periodicity is calculated (through the dispersions).
In our test particle simulations (Section 13.1), all these orbits, however, are unpopulated by the
chosen initial conditions. Besides, no observed moving group (Figure 6.1) appears to be in a so
large positive V . The b-types of orbits in Barbanis (1976) (banana orbits librating around L4

orL5) have not been localised in this Figure.

In the comparison between the map of periodic orbits in the U–V plane (Figure 13.8) and
the test particle simulations (Figure 13.1 for φ = 0 and R = 8.5 kpc) we find the following
similarities. First, as mentioned above, the square orbit at V ∼ −40 km s−1 due to the 4:1 ILR
has its corresponding kinematic structure in the test particle simulations made from a set of
points oscillating around this square orbit. On the other hand, it is not trivial to associate
other periodic orbits with the structures that are crowded in our test particles. For instance, in
the U–V plane at φ = 0 and R = 8.5 kpc of our test particle simulations the central region is
occupied continuously by particles and there is not a clear separation between the three regions
of points (d), (e) and (g), and (i) such as in the regularity map. Only the central region of the
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distribution in Figure 13.1 for φ = 0 and R = 8.5 kpc is elongated to negative and positive V
similarly as the central structure of Figure 13.8 passing through points (e) and (g). The orbit
(g) is related to the 6:1 ILR whereas (e) is a rounded orbit which seems to have influence of the
6:1 ILR and/or the 4:1 ILR.

As discussed in Chapter 12, because of the uncertainty in the solar motion we must be very
careful when comparing the black regions in Figure 13.8 with the velocities of observed moving
groups of Table 6.1 and Figure 6.1. They can differ up to 11 km s−1 in U and 12 km s−1 in V .
However, special attention would deserve orbits such as (d), (e), (g) and (i) that correspond
to periodic orbits at the central region of the U–V plane: (12,-16), (0,-4), (36,0) and (-4,6)
km s−1 respectively. Although it is too venturous to compared the exact values of the U and
V of these orbits with the kinematic groups that are seen in the observations, we can conclude
that the spiral arms are able to carve the orbital structure corresponding to the central velocity
distribution following similar shapes to the branches in the observed U–V plane. Other resonant
orbits at the outer parts of U–V plane such as that of points (f) or (j) produce very thin features
which can hardly be associated with groups in the test particle simulations or to observed moving
groups.

The periodic orbits of this model are expected to change with position and also with model
parameters. In the rest of the panels in Figure 13.11, the results for the default case is shown
in panel 13.11a and small variations from the default model are shown in the rest of the panels.
Our preliminary important conclusions are listed next.

• Pattern speed: When decreasing the pattern speed of the spiral arms to Ωsp = 18 km s−1kpc−1

(Figure 13.11b), the 4:1 ILR are brought closer from R = 7.0 kpc to 7.8 kpc (see Figure
13.5). The resonant orbits are closer in radius to R = 8.5 kpc and consequently, they have
larger (less negative) V compared to Figure 13.11a. For example, the 4:1 ILR that we find
at (0,-40) km s−1 is now positions such as (0,-6) km s−1 or (44,-24) km s−1. With this
pattern speed, the 4:1 ILR could be associated with the Hyades-Pleiades structure which
has smaller |V |. In Quillen & Minchev (2005) similar pattern speeds were explored (see
Section 11.5) which also located the effects of the 4:1 ILR in the position of this observed
kinematic structure. However, the differences in the shapes of the structures in our panels
may be due to the differences in the underlying model of spiral arms. New periodic or-
bits corresponding to inner new resonances are now able to reach the solar position. For
instance, the orbits at smallest V (∼ −36 km s−1) of this plot seem to be related with the
7:2 ILR.

The contrary is expected for Ωsp = 22 km s−1kpc−1 (Figure 13.11c). The 4:1 OLR corre-
sponds for instance to the periodic orbit at ∼(-80,70) km s−1 instead of at (-80,80) km s−1.
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(a) Default (b) Ωsp = 18 km s−1kpc−1 (c) Ωsp = 22 km s−1kpc−1

(d) Msp = 0.0175Md (e) Msp = 0.03Md

(f) φ = 60◦ (φ0sp = 28◦) (g) φ = 100◦ (φ0sp = −12◦) (h) i = 12◦

Figure 13.11: Orbital regularity of the self-gravitating spiral arms with different properties.
U–V plane coloured as the periodicity of the corresponding orbits for several variations of the parameters
of the default model of the spiral arms.
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Now some orbits correspond to outer resonances not previously seen so clearly such as the
8:1 OLR at ∼(0,62) km s−1. The 6:1 ILR is now at (0,−20) km s−1 and the clear group
at ∼(0,-38) km s−1 is not the 4:1 ILR (as in Figure 13.11b) but the 5:1 ILR. The effects
of the 4:1 ILR are barely seen here.

• Mass: No significant differences are seen when the mass is decreased to Msp = 0.0175MD

and Msp = 0.03MD (Figures 13.11d and 13.11e). The positions of the resonances do not
change significantly as a result of the mass change as they depend mainly on the pattern
speed. Only minor changes are expected due to the fact that when varying the mass,
despite conserving the total mass of the model because the spiral mass is subtracted to the
disc, minor and local variation in the resonant curves are expected. However, the shape
of the resonant regions can slightly change. In fact, more clear periodic structures and
arches are seen in these two cases probably due to the higher regularity of the orbits for
lower strengths of the spiral arms. The structure at V ∼ −40 km s−1 is maintained when
the mass is decreased but is now located at slight more negative V (∼ −50 km s−1) due to
the above mentioned minor changes expected. It appears even more relevant than before.
We have seen in Section 13.1 that in our test particle simulations for Msp = 0.03MD

(Figure B.10) the group at these negative V had became very weak for φ = 0◦. But we
see now that the resonant structure at negative V (V ∼ −40 km s−1) exists for masses of
the spiral arms lower than the default case but becomes less populated in our test particle
simulations.

• Orientation of the arms: Figures 13.11g and 13.11f are obtained with the default
model but at different azimuths: 100◦ (φ0sp = −12◦) and 60◦ (φ0sp = 28◦) respectively.
The position of the resonances do not change for these cases. However, the periodic
orbits crosses these φ in different parts of the orbit (for example nearer the apocentre or
pericentre) and therefore the periodic regions can be observed in different positions of the
U–V plane. The structure at V ∼ −40 km s−1 appears enhanced in Figure 13.11g and
at lower V compared to Figure 13.11a as it happen with the test particle simulations at
φ = 100◦. Also very clear and strong central regular regions appears for this region near
the arms.

• Pitch angle: Figure 13.11h shows the same as Figure 13.11a but with a pitch angle of 12◦.
In this case a clear arched stripe at V ∼ −46 km s−1 corresponding to the squared orbit
of the 4:1 ILR. However this was not populated in our test particle simulations (Figure
B.9). This panel is very similar to panel (g) because, as discussed in Section 13.1, a model
with this new pitch angle produce an orientation of the arms of φ0sp = 35◦ similar to the
orientation of (g).

169



13. IMPRINTS OF THE SPIRAL ARMS

All in all, the orbital regular structure is very sensitive to the pattern speed or to the
orientation of the spiral arms. For instance, we have seen that only slightly smaller pattern
speeds (18 km s−1kpc−1) can shift the kinematic structures in the U–V plane as largely as about
20 km s−1. Also, for changes in pattern speed not only the resonant regions are shifted to upper
or lower region of the U–V plane but they change their shapes and their mutual separation.

13.3 Summary and discussion

To our knowledge the effects of self-gravitating spiral arms on the velocity distribution have
not been studied before. Here we report that these spiral arms produce significant strong
imprints on the velocity plane. This contrasts with the findings of other authors who used
the TWA. They claim that the spiral arms create abundant but weak kinematic structures.
Comparison with other authors is not straightforward because of differences in the model used
(TWA), the characteristics of the spiral arms (pattern speed, number of arms or locus) and
simulation strategy followed. Here we have studied the TWA model in the same conditions as our
experiments with the self-gravitating spiral arms: same initial conditions and simulation method,
same axisymmetric background, same pattern speed and locus, and similar force amplitude
range. We conclude that the self-gravitating spiral arms produce ample substructure compared
to the TWA arms. This can be attributed to the differences between the force-field shape of
a TWA model and the force-field shape derived from a mass distribution. The differences in
the velocity fields could help to stablish whether the arms of the MW follow the TWA and are,
therefore, weak and tightly wound, or whether they are strong self-gravitating arms.

When the self-gravitating arms act on a cold disc for a long time (∼ 10 spiral arm revolutions),
they create a centred group in the velocity distributions (low epicyclic energies) at solar radius
that usually contains several structures. In particular, near the locus of the arms three slightly
tilted branches appear, resembling some of the observed central kinematic branches. In addition,
the spiral arms by themselves can crowd the velocity space at V ∼ −40 km s−1. For a wide
range of azimuths the model reproduces a branch at low angular momentum at that V which is
consistent with the V velocity of the observed Hercules structure, although it is not inclined in
the U–V plane and does not have negative average radial motion. It is significant that we find
that the Hercules structure may be populated by the spiral arms and not only by bar resonances,
as traditionally believed. As spiral arms act mainly on stars whose epicycles are small or similar
to the interarm separation, the current plausible interarm separation of the spiral arms indicates
that stars of the Hercules kinematic structure are influenced by the spiral arms.

Our simulations indicate that the velocity distributions induced by the self-gravitating arms
do not change significantly with slight variations of mass or pitch angle. In contrast, higher
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pattern speeds that brought the 4:1 ILR further, do not induce strong kinematic groups. Smaller
pattern speeds that locate the Sun near this resonance create different and strong kinematic
structures. In particular for these cases and for several relative orientations of the arms with
respect to the solar position, the upper part of the distribution on the U–V plane is shifted to
U > 0, as for the observed Sirius moving group.

When the spiral arms affect a hotter disc for short times (∼ 1 spiral arms revolution), strong
kinematic imprints are also seen. A clear split into two groups appears at several azimuths,
especially near the arms. We see that if they act on this disc for longer times (∼ 3 revolutions) the
kinematic structures change, and therefore with this integration time the velocity distributions
are still responding to the effects of the spiral arms. This demonstrates that recent spiral arms
produce transient but strong kinematic structures.

The strong imprints that the self-gravitating spiral arms induce on the velocity distributions
at solar radius and the sensitivity of our results to the properties of the arms indicate that
kinematics could be one of the constraints on the current observational ambiguities surrounding
the spiral arms (e.g. pattern speed, orientation, strength), whether they are long-lived or whether
short-lived non-axisymmetric components.

Our preliminary investigations about the characteristics of the particles that belong to a
particular kinematic group suggest interesting consequences for this study. First, these particles
can have distinctive final spatial distributions when they are compared to all particles in the
region or to the particles of a similar kinematic structure in other disc regions. Although the
spatial study of the observed moving groups is limited by the extension and precision of the
current observational samples, we expect a future improvement in the characterisation of the
spatial distribution of the stars in each moving group and in the velocity distributions in other
disc regions. Second, the particles of a kinematic group can also have distinctive initial spatial
distribution and distinctive time of exposure to the spiral arms. For the moment our initial
conditions are idealised. When our method is complemented with chemical models of galaxy
evolution which refine the relation between age, chemical abundances and migration, these dis-
tributions can be used as tracers of the chemistry or the age of these particles, and they may
eventually be able to be compared with the distinctive metallicities and ages of the observed
moving groups. The inclusion of all these additional elements in the comparison between ob-
served and simulated moving groups may provide useful additional constraints. Although we
have only studied the test particle properties of a particular simulated structure as an example
with the spiral arms model, this analysis can be extended to any other kinematic group in our
simulations.

Regarding our analysis of orbit regularity, we have derived some interesting conclusions.
We identify several resonant orbits that cross the solar neighbourhood. First, the kinematic
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13. IMPRINTS OF THE SPIRAL ARMS

structure at V ∼ −40 km s−1 coincident with the velocity of Hercules is found to be a region of
orbits oscillating a around a square orbit due to the 4:1 ILR. Second, the central part of the
U–V plane is filled with strong regions of regularity which are mainly related to the 6:1 ILR.
Although it is not trivial to associate these central regular orbital regions with the structures
that are crowded in our test particles or with the observed moving groups, we conclude that
the spiral arms can carve the orbital structure corresponding to the central velocity distribution
following similar shapes to the branches in the observed U–V plane. For other strong signals of
orbital regularity on the U–V plane, we have not found their counterparts in the test particle
simulations nor in the observed U–V plane. There are also other resonant orbits in the outer
parts of U–V plane that produce thin features in the U–V plane which can hardly be associated
with observed moving groups. The regular orbital structure is mainly sensitive to the pattern
speed and to the orientation of the spiral arms, which is encouraging in order to use this method
in support to the test particle simulations to constrain the characteristics of the spiral arms.
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Chapter 14

Imprints of the bar

In this chapter the kinematic structure developed by the the prolate bar of

the PM04–MW potential model with is presented. First in Section 14.1the

results of these simulations with the default parameters of Tables 11.2

(for the axisymmetric component) and 11.4 (for the bar) are presented

for IC1 and IC2 (default values of Table 10.1). Afterwards, the effect

of the variation of some default parameters is shown and discussed. The

case of out hottest IC3 is analysed only in a central parts of the U–V

plane as the lower parts are studied in Chapter 15. In Section 14.2 we

study the regularity of the orbits on the U–V plane for the prolate bar. At

the end, Section 14.3 shows a summary and a discussion of the results

of this chapter.

14.1 The bimodality induced by the bar

The effects of the bar on the local velocity distribution have been exhaustively studied by other
authors (Dehnen 2000, Fux 2001). All these studies agreed in the fact that the bar creates a
bimodality, that is two groups, in the U–V plane for some parameters of the bar. The velocity of
one of these two groups coincides with the observed Hercules moving group, whereas the other
one is approximately centred on the U–V plane (here called the central mode). These authors
have claimed that the bimodality is related to the effects of the bar 2:1 OLR on the orbits,
although the studies do not agree in the exact mechanisms that take part in it. In Section 14.2
a discussion about this in terms of periodic and chaotic orbits is offered. However, all these
studies are carried out using a quadrupole bar. We want to explore the kinematic structure
developed by the the prolate bar that has not been considered prior this thesis.
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14. IMPRINTS OF THE BAR

IC1– Figure 14.1 shows the U–V plane for several Galactic azimuths φ at R = 8.5 kpc and
assuming low velocity dispersions (IC1). We find that this model hardly produces substructure.
For φ = 100◦ a kind of bimodality or two small groups can be observed but this bar inclination
(φ0b = 100◦) is very unrealistic. Unlike the spiral arms, currently the relative orientation bar-Sun
is relatively tightly constrained. Among the panels of Figure 14.1, realistic velocity distributions
are the ones around φ = 0◦ (corresponding to a bar orientation of φ0b = 20◦) and also around
160◦ (with a bar orientation of φ0b = 40◦ which would correspond to the case of the long bar,
see Section 11.3). For this likely positions φ, we observe only a group in the central position of
the U–V plane but that is distorted towards positive U . Although for the default value Ωb =
45 km s−1kpc−1, the resonance is very near to the solar radius (ROLR = 0.98R� = 8.3 kpc) the
low velocity orbits of IC1 seem to be barely affected by the resonance except for the mentioned
distortion towards positive U . We conclude that orbits from IC1 which have guiding centres
around a very narrow range of radius around the solar radius and very low epicyclic amplitudes
fall on a region of short influence.

IC2– In agreement with previous studies with the quadrupole bar (e.g. Dehnen 2000), we find
that the prolate bar can trigger a bimodality in the velocity distribution at solar radius for its
default parameters. For example, a kinematic group at V ≤ 0 and U ≤ 0 appears at φ = 160◦

and surroundings (140◦, 160◦, 0◦, and 20◦) if the bar is used with IC2 (Figure 14.2). These
positions correspond to a bar inclination φ0b of approximately [0, 60]◦ which are realistic values
according to the recent observations of the Galactic bar with φ0b ∼ 20◦ and the long bar with
φ0b ∼ 40◦ (see discussion above and Section 11.3). As this structure was not formed for IC1,
we confirm that the bimodality is obtained only when hotter initial conditions are used. The
increase of the initial velocity dispersion allows more inner particles to reach the solar radius and
populate this structure. However, it is worth mentioning that in the study of Dehnen (2000) the
initial conditions were hotter (σU (R� ∼ 0.2Vc) than IC2 (σU (R� ∼ 0.09Vc). Also Chakrabarty
(2007) found that the bar could also induce a bimodality for cold discs with σU ∼ 10 km s−1

(between our IC1 and IC2).

As discussed in the beginning of the chapter, the group at low angular momentum have been
usually associated with the Hercules moving group. However, the mean branch velocity V in
our simulations is slightly smaller (V ∼ −20 km s−1) than the mean velocity of the observed
Hercules structure (V ∼ −40 km s−1). Therefore, even accepting a large mean velocity for the
Sun V� = 12 km s−1 as discussed in Chapter 12, our bimodality would be still inconsistent with
the Hercules kinematic group. Alternatively, this simulated structure could be associated with
Hyades-Pleiades in our case. For other φ the structure at negative V shifts to the central regions
of U axis (e.g. φ = 100◦). The central mode in this simulation is distorted towards positive U , as
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14.1 The bimodality induced by the bar

Figure 14.1: Kinematic effects of the bar on a cold disc. U–V velocity distributions after WD at
R = 8.5 kpc and at different azimuths φ for the simulations with the PM04–MW potential model using
only bar and IC1.
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14. IMPRINTS OF THE BAR

Figure 14.2: Kinematic effects of the bar on an intermediate disc. U–V velocity distributions
after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the PM04–MW potential
model using only bar and IC2.
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14.1 The bimodality induced by the bar

observed for IC1, and reaches velocities up to U ∼ 60 km s−1. The relative fraction of particles
in this position in the U–V plane exceeds the observed relative fraction in the observational
sample (Figure 6.1).

Varying the default parameters– Next we present the results of the simulations when
the default values for some relevant parameters (pattern speed, mass, initial conditions) of the
PM04–MW potential model are changed.

• Pattern speed: A small change in pattern speed from Ωb = 45 km s−1kpc−1 to Ωb =
48 km s−1kpc−1 produces a shift in the OLR from 8.3 kpc to 7.8 kpc (see Figure 14.3). The
test particle simulation for this new pattern speed (Figure B.15) indicates that in this case
the group of low angular momentum is less populated than in the default case at least for
φ = 0◦ and φ = 160◦. The distortions of the central mode is still clearly observed.

The situation reverses when a bar pattern speed of Ωb = 60 km s−1kpc−1 under IC2 (Figure
B.16). Now the OLR resonance is located at even inner radius ROLR = 0.74R� = 6.3 kpc
(Figure 14.3). In this case, also a bimodality is induced in the U–V plane. Now the group
at low angular momentum is clearly separated from the central mode and is located at
more negative V (∼ −60 km s−1). However, this branch is at an incorrect position in U

(U ≥ 0) for the realistic positions (φ = 0◦ or φ = 160◦) to be consistent with the Hercules
group.

• Radius: If the pattern speed is kept to Ωb = 60 km s−1kpc−1 but we study the velocity
distribution of a region located at different radius but φ = 0◦, the results of Figure B.17
are obtained. For very inner radius R = 6.5 kpc we are studying velocity distributions
nearer the OLR which is now at ROLR = 6.3 kpc (ROLR/R ∼ 0.97). Only in this case
a structure appears at U ≤ 0 and it has more negative V (∼ −30 km s−1). This value
is still not negative enough to be consistent with Hercules but is better than for Ωsp =
45 km s−1kpc−1. We conclude that only by bringing the resonances nearer (changing Ωb

or looking at smaller radius), an Hercules structure at U < 0 is obtained. On the other
hand, the distortion of the central mode at R = 6.5 kpc reaches values that are higher
than 60 km s−1, which seems even more unrealistic than for Ωsp = 45 km s−1kpc−1 and
R = 8.5 kpc. This case of Ωb = 60 km s−1kpc−1 and R = 6.5 kpc is apparently equivalent
to considering Ωsp = 45 km s−1kpc−1 and the solar radius at 8.5 kpc (ROLR/R ∼ 0.98).
The only difference between these two cases than can explain the more negative V for
the supposed Hercules structure in the case of Ωb = 60 km s−1kpc−1 and R = 6.5 kpc is
the slightly higher initial dispersion of the particles of IC2 at this inner radius (σU ∼
25.2 km s−1 in front of 20 km s−1 at 8.5 kpc). This higher dispersion would allow more
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14. IMPRINTS OF THE BAR

Figure 14.3: Location of the bar resonances. Resonance curves in the Allen & Santillán (1991)
axisymmetric model for corotation (Ω) and 2:1 OLR (Ω + κ/2). The horizontal blue line corresponds to
the default value of pattern speed of the bar. The other coloured lines corresponds to several variations
for this parameter. The vertical lines coloured following the same pattern indicates the position of the
2:1 OLR for each pattern speed. The default position of the Sun is shown with a black vertical line.
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14.1 The bimodality induced by the bar

inner particles to reach the solar radius and populate this structure. It also would explain
the higher distortion of the central mode.

• Mass: Now we increase the mass of the bar from 9.8×109 (default) to Mb = 1.4×1010M�.
If this more massive bar is used for IC2 (Figure B.18), the hypothetical Hercules branch
appears far more clearly and differentiated from the central mode but is still at V not
negative enough to be consistent with Hercules. Again the central model is shifted to
very high and U . This more massive bar has now the strength parameters of Table 11.5.
In particular, the parameter α is 0.007, which is higher than for the default bar. This
indicates this more massive bar has higher values of the radial force at radius where the
resonances are located (in particular the OLR). The fact that the resonant feature are
more clear in this simulations could answer to this.

• Integration time: In Figure B.19 we show the simulations for IC2 with a longer inte-
gration time. Whereas the default value was 400 Myr, now the particles are integrated
for 1 Gyr. Similarly to what found in Dehnen (2000), longer integration times seem to
produce to stronger resonant feature in the U–V plane. The distortion of the central
mode is greater than in Figure 14.2, that is reaches higher U . Regarding the low angular
momentum group of the bimodality, it appears clearer and sharpen. For instance see the
clearer valley between the two groups of the bimodality for φ ∼ 100◦. Also the group at
low angular momentum at φ = 0◦ and φ = 160◦ is more extended.

• Initial velocity dispersion: If we consider hotter initial conditions without modifying
the parameters of the bar’s potential, slightly different results are obtained. We will use
IC3 but studied only in the same range as in IC1 and IC2. The lower parts are studied in
Chapter 15 as they deserve special analysis. Figure 14.4 shows this simulation. As it can
be seen, now the supposed Hercules branch appears at V ∼ −40 km s−1 at φ = 0◦ more
in agreement with the observed structure. With this simulation we conform the influence
of the initial velocity dispersion that allows more particles to reach the solar radius and
populate this structure as we have seen for the analysis of the variation with R. For
instance, the work by Dehnen (2000) obtained good results for initial local radial velocity
dispersion of 0.2Vc ∼ 44 km s−1 similar to our IC3 for which σU is 40 km s−1(for our IC2
it is σU = 20 km s−1). As it will be seen in Section 14.2, the separation between the two
groups of the bimodality depends on the resonant structure of the potential and this is not
modified if the initial disc is hotter. The higher initial velocity dispersion of the IC simply
populates the supposed Hercules structure at more negative V . This is in agreement with
the studies in Fux (2001).

For the realistic positions φ = 0◦ and φ =∼ 160◦ (consistent with the Galactic bar and
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Figure 14.4: Kinematic effects of the bar on a hot disc. U–V velocity distributions after
WD at R = 8.5 kpc and at different azimuths φ for the simulations with the PM04–MW potential
model using only the bar and IC3.
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14.1 The bimodality induced by the bar

the long bar), the structure of Hercules is clearly observed and has a negative slope in the
U–V plane similar to that observed (Chapter 6). At opposite positions φ ∼ 100◦, the vast
majority of particles with negative V are in the positive U range.

Comparison with the quadrupole bar– It has been repeated the default simulation for the
quadrupole bar described in Section 11.5. As we have concluded in that section, the forces of this
bar are not very different in terms of their maximum values in the inner regions but the profiles
of these forces with radius show very different shapes. Also the radial force at solar radius has
doubled with respect the prolate bar and therefore it is also higher at the ROLR. Figure B.20)
shows the results of this simulation. The more evident difference is that the equivalent to the
Hercules structure appears more separated from the central group but it still has not negative
enough V . Also the difference between the mean U of the two groups of the bimodality has
become larger. The shift of the central mode to high U is also present and in this case very
strong. The results of this simulation are very similar to that of the simulation of the prolate
bar with higher mass that we have discussed in a previous paragraph (Figure B.18). This would
be due to the similarities in the parameters α and maximum qr of the massive prolate bar model
and quadrupole model. The fact that the bimodality is clear for these two bars can be due to
the stronger force of the quadrupole bar at the ROLR as discussed above.

It is worth noticing that in the literature the values obtained for the best pattern speed of
the bar with different methods are directly compared without having into account differences in
the local circular frequency, solar radius or rotation curve. In Dehnen (2000), the best match
with observation is obtained for Ωb ∼ 1.85Ω0 that with his assumed local circular frequency
(28.5 km s−1kpc−1) it gave him a good fit for a pattern speed of Ωb ∼ 53 km s−1kpc−1. In our
model with a local circular frequency of 25.8 km s−1kpc−1 this would give Ωb ∼ 48 km s−1kpc−1.
In other words, the results for Dehnen (2000) with Ωb ∼ 53 km s−1kpc−1 should be equivalent to
our results using Ωb ∼ 48 km s−1kpc−1. The results for this value are shown in Figure B.15. The
fact that in these simulations the supposed Hercules structure is less populated than in Dehnen
(2000) maybe due to the different initial conditions and/or the strength of the bar as we have
previously seen and discussed. In Chakrabarty (2007) a value of Ωb ∼ 57 km s−1kpc−1 (with a
local circular frequency of 27.5 km s−1kpc−1) gave her the best value in terms of a goodness of fit
parameter for the models with only bar1. This value would correspond to Ωb ∼ 54 km s−1kpc−1

in our simulations. A comparison between the values for the best pattern speed of the bar
according to several studies based on the effects of the resonances are shown in the second
column of Table 14.1. In the third column, the approximate equivalent result for the conditions
of our simulations is shown. Also an example of pattern speed obtained through an completely

1Her simulations with bar+spiral arms are discussed in Chapter 16
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Table 14.1: Results for the Ωb and φ0b obtained by other studies and equivalent Ωb in the PM04–MW
potential model. The error in brackets in the last row indicates the possible systematic error reported by
the authors.

Ωb ( km s−1kpc−1) φ0b (◦)
Equivalent in the

Obtained PM04–MW potential Obtained

model

Dehnen (2000) Ωb = 1.85± 0.15Ω = 53± 4 48± 4 10-70
Chakrabarty (2007) Ωb = 57± 3 54± 3 0-30
Debattista et al. (2002) Ωb = 59± 5(±10) 55± 5(±10) -

different method (Tremaine & Weinberg method , Tremaine & Weinberg 1984) is shown in the
last row of Table 14.1. Their value is higher than the ones obtained through the fitting of
observed moving groups but all values are consistent if we take into account the errors reported
by these studies. Finally, the fourth columns of Table 14.1 shows the values for bar inclination
φ0b according to several studies. Regarding this parameter our results are similar to the values
for which the bimodality is formed in these other studies.

14.2 Relation to regular orbits of the bar

In this section the method of quantifying the regularity of the orbits corresponding to each
region of the U–V plane is applied. This method and its goals are detailed in Section 10.3.
Basically we intend firstly to ascertain if a given structure that has appeared in the test particle
simulations corresponds to a group of periodic or quasi-periodic orbits or not, and secondly to
study the variation of the orbital structure of the prolate bar with the parameter variation with
special emphasis to the location of the Hercules branch. The debate about the periodicity or
chaoticity of the stars in the moving groups is specially interesting for the simulations of the
bar as the Hercules structure has been associated with both cases (Dehnen 2000, Fux 2001).
Although this do not pretend to be an exhaustive study of the periodic orbits of the model, it
has the aim of comparing with some of the results obtained by other studies. The analysis of
the existent periodic orbits of the bar potential has been performed for instance in Contopoulos
& Grosbol (1989), Dehnen (2000) and Fux (2001). Here we will focus on the study of the orbits
that crosses a particular region of the disc that could be considered as the solar neighbourhood.

The periodicity map on the U–V plane for the default model of the prolate bar (Table 11.4)
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at φ = 0◦ and R = 8.5 kpc is shown in 14.5. In this Figure some of the main periodic regions are
indicated with a coloured circle and a character. The corresponding orbits are shown in Figure
14.6 with the same colours. The analysis of these two Figures leads to the following conclusions.

Figure 14.6a and 14.6c show interesting orbits corresponding to the 4:1 and 3:1 OLR. More
complex but noticeable resonant orbits are the ones that stand for the 7:2 (Figure 14.6b), the
4:2 OLR (Figure 14.6d) and the 3:2 OLR (Figure 14.6j). Also an orbit close to the so-called 1:1
asym orbit is present (Figure 14.6k). An orbit that is called asymmetric in a barred potential
is an asymmetric orbit with respect to the short axis of the bar according to the usual notation
(Dehnen 2000, Fux 2001). However, these resonance at high V is not specially populated in the
test particle simulations of Section 14.1.

As other authors have claimed, the bimodality is related to effects of the 2:1 OLR on the
orbits. According to Dehnen (2000) for φ0b ∼ 25◦ and ROLR/R� ∼ 0.9 the bimodality is
caused by the separation that produces a group of unstable chaotic orbits called x1 ∗ (2) just
in the position of the valley that appears between the central mode and the supposed Hercules
structure. With our method, we find that the valley is perfectly seen in Figure 14.5 as a white
thin arched line at V ∼ −12 km s−1 at negative U which goes towards more negative V for
positive U . For its colour we know that this region or line on the U–V plane corresponds to a
region of non-regular orbits.

There is controversy regarding the orbits of the particles of the supposed Hercules itself (the
low angular momentum group of the bimodality). According to Kalnajs (1991), the bimodality
is caused by the crossing of x1(1) and x1(2) orbits in a given position relative to the bar. The
antialigned orbits x1(2) would form the group at low angular momentum although he identified
this group with the Hyades stream instead of Hercules. In Fux (2001) it consist of chaotic orbits
which have been forced to avoid the regular region of orbits called x1(2) at the other side of
the U–V plane (U > 0) which are orbits antialigned with the bar. By contrast, according to
Dehnen (2000) the orbits of Hercules are simply orbits scattered by the OLR. In Chakrabarty
(2007), the orbits forming the structure that would support the Hercules stream consist of a
great variety of orbits apart from antialigned or the chaotic orbits. According to this author,
the variety of orbits depend on the initial velocity dispersions of the disc. For a cold disc, only
aligned and antialigned orbits appear similar to Kalnajs (1991). When the disc is hotter and the
bar is stronger, also chaotic orbits appear but only at more negative U (U ≤ 70 km s−1). On the
other hand, according to Dehnen (2000) for φ0b ∼ 25◦ and ROLR/R� ∼ 0.9 in the central mode
there are two periodic orbits of the family x1(1) which is a family of orbits that are aligned with
the bar and originated out of the OLR. One is almost a circular orbits and therefore centred at
(U, V ) ∼ (0, 0) and the other is the one that causes a distortion of the central mode to positive
U and negative V . Depending of the radius and the orientation of the bar, this orbital structure
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Figure 14.5: Orbital regularity of the prolate bar. U–V plane coloured according to the periodicity
of the corresponding orbits for the default model of bar at φ = 0◦ and R = 8.5 kpc. The darker the region
is, the more periodic or closed the corresponding orbit is. The points corresponding to orbits in Figure
14.6 are marked with coloured circles.
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i)

(j) (k)

Figure 14.6: Bar-induced regular orbits. Orbits of the U–V points indicated in Figure 14.5.
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changes. Some of these periodic orbits do not cross the studied region and other new closed
orbits such as the antialigned x1(2) can show up, as in out simulations.

Here the bimodality will be exemplified with the orbits from Figure from 14.6e to 14.6i. The
periodic orbits of the central mode are identified also in our simulations. They are those of
Figure 14.6h and Figure 14.6i which are quite elliptic orbits aligned with the bar. In particular
Figure 14.6h is the orbit that creates the above mentioned distortion of the central mode. In
our test particle simulations this distortion was also appreciated as mentioned in Section 14.1
for the simulations with IC1, IC2 and IC3 at φ = 0 and at other positions.

In the region that would correspond to the Hercules moving group just below the valley
or the white line in 14.5 we find the orbit of Figure 14.6f which despite not presenting clear
periodicity, it is an orbit more or less antialigned with the bar. At more negative V and still in
the region of the group at low angular momentum, we find orbits such as Figure 14.6e, which
do not seem to be specially periodic. It is unclear if the orbit of Figure 14.6d due to other
resonances as explained above (4:2 OLR), would be part of this group. Here, orbits close to
the antialigned x1(2) orbital family are surprisingly found also just above the valley of unstable
orbits (Figure 14.6g).

In Figures 14.7 and 14.8 some results of the application of this method with other parameters
of the bar potential are presented and compared with the default model. From now on we refer
to the position of the valley as the largest V (lowest |V |) reached for the curvature of the valley.

• Orientation of the bar: For instance if φ is changed, the valley moves from negative to
central U (Figure 14.7c and even to positive U 14.7b). This explains why the vast majority
of particles at V < 0 move from U < 0 to U ∼ 0 and to U > 0 for φ = 60◦ (φ0b = −40◦)
and φ = 100◦ (φ0b = −80◦) in our test particle simulations (Figures 14.2 and 14.4). Other
structures in this panels have also moved to different regions of the U–V plane (e.g. the
one due to the 4:1 OLR).

• Mass: We now explore the changes with bar mass. We see that the valley has moved
from V ∼ −12 km s−1 (default case) to V ∼ −10 km s−1 when the mass is decreased
(Figure 14.7d) and to V ∼ −14 km s−1 when it is increased (Figure 14.7e). Although we
have not modified the pattern speed of the bar for these two simulations the resonant
structure has changed to a small degree. The reason is the fact that varying the mass of
the bar, despite conserving the total mass of the model (the bar mass is subtracted to the
bulge), can produce minor and local variations in the rotation curve (different shape and
normalisation). Consequently the model has slightly different resonant orbital structure.
With these figures we ascertain the dependence of the valley of the bimodality on the curve
of circular speed pointed out e.g. in Dehnen (2000).
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(a) Default

(b) φ = 60◦ (φ0b = −40◦) (c) φ = 100◦ (φ0b = −80◦)

(d) Mb = 7.0 · 109M� (e) Mb = 14 · 109M�

Figure 14.7: Orbital regularity of the prolate bar with different properties (I). U–V plane
coloured as the periodicity of the corresponding orbits for several variations of the parameters of
the default model of the bar.
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(a) Default

(b) Ωb = 43 km s−1kpc−1 (c) Ωb = 48 km s−1kpc−1

(d) Ωb = 50 km s−1kpc−1 (e) Ωb = 60 km s−1kpc−1

Figure 14.8: Orbital regularity of the prolate bar with different properties (II).U–V plane
coloured as the periodicity of the corresponding orbits for several variations of the parameters of
the default model of the bar. The darker the point is, the more closed the corresponding orbit is.

188



14.2 Relation to regular orbits of the bar

• Pattern speed: When the pattern speed is changed, the orbital structure changes (more
or less equivalently to a change in the solar radius) and the resonant orbits appear at differ-
ent position in the U–V plane. For a value of Ωb = 43 km s−1kpc−1 (Figure 14.8b) the val-
ley that separates the central mode and the Hercules branch is located at V ∼ +8 km s−1.
For Ωb = 48 km s−1kpc−1 (Figure 14.8c) the valley moves to V ∼ −34 km s−1 and there-
fore the particles below the valley have V more consistent with the observed Hercules
group as the valley is at V ∼ −35 km s−1 for the observed sample. This observed value
is determined from Figure 6.1 (without taking into account the solar motion V�). Larger
pattern speed such as Ωb = 50 km s−1kpc−1 produces a more diffused gap at approximately
V ∼ −52 km s−1 which is too negative. For Ωb = 60 km s−1kpc−1, the valley locates at
V ∼ −60 km s−1 and has moved to the right side of the U–V plane consistently with B.16.
Apart from the valley, the other orbits have also changed with pattern speed.

Now we will try to estimate the pattern speed of the bar that would produce a valley
around the position where it is really observed if the bimodality is assigned to the Hercules
moving group. From Figure 6.1, we determine that the heliocentric velocity of the observed
valley is approximately V ∼ −35 km s−1. Assuming the classic estimates for the solar motion
V� = 5 km s−1 (see Chapter 12), the peculiar motion of the observed valley is V = −35 +
5 km s−1 = −30 km s−1. This value is still subject to the uncertainty in the solar motion which
gives sometimes values as large as 11 km s−1 (see Chapter 12). For this reason we will take an
assume an extreme error of 10 km s−1 in the position of the observed valley: V = −30±10 km s−1.
For our simulations, a plot of the velocity V of the mentioned valley (again taken as the largest
V or lowest |V | reached for the curvature of the valley) versus the pattern speed of the bar Ωb

shows approximately a linear relation 2 (Figure 14.9). The points of Figure 14.9 are directly

2 Equation 10 and 9 of Dehnen (2000) can be combined to give that the the V component of the valley that

separates the central mode and the supposed Hercules structure is (in our notation):

V ≈ aeV − (b+ cβ)V0 (14.1)

being β a parametrisation of the shape of the rotation curve Vc = V0(R/R�)β and eV defined as:

V +
U2

2V0

∼= V0
1 + β

1− β

"
1− Ωb/Ω0

1 +
p

(1 + β)/2

#
≡ eV , (14.2)

which is the relation that the orbits that are in OLR satisfy approximately. For the same rotation curve (shape β

and normalisation V0), the velocity V of the valley is proportional to Ωb. These equations however are obtained

neglecting the effect of the bar, that is only considering the axisymmetric part in the potential, and estimating

the orbits that would be exactly resonant. According to Equation 14.2 these set of orbits would have a parabolic

shape in the U–V plane centred in the U component. A simple glance at the panels of Figure 14.7 indicates

that despite the approximate parabolic shape of the resonances, the parabolas are not centred in the U direction.

However, these equations give us a first estimate.
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14. IMPRINTS OF THE BAR

Figure 14.9: Fit to the Hercules moving group. Linear regression of the velocity of the valley between
the central mode and the supposed Hercules branch versus the pattern speed Ωb.

read from Figure 14.8b, 14.8a, 14.8c and other additional similar simulation for Ωb = 46.7 with
the valley located at 24 km s−1. We have consider only the simulations that approaches more
the observed value of the valley. The vertical error bars correspond to the pixel size in Figure
14.8. The linear regression gives:

V ( km s−1) = 317.5(±8.3)− 7.320(±0.18) Ωb( km s−1kpc−1) (14.3)

Equation 14.2 gives a pattern speed of Ωb = 47.5 ± 1.6 km s−1kpc−1 to obtain the valley at
V ∼ −30 km s−1. The largest contribution to the uncertainty in Ωb comes from the uncertainty
in V . It is worth mentioning that all these calculations are carried out for φ = 0◦ (which
corresponds to a bar’s inclination of 20◦), which may not be necessarily true. The result of this
simulation for Ωb = 47.5 km s−1kpc−1 is shown in Figure 14.10.

Having fitted the position of the observed valley between the central mode and the supposed
Hercules structure for our model of the prolate bar, it is important to look for other similarities
between the observational U–V plane (Figure 6.1) and other structures associated with the
bar’s resonances. In Figure 14.10 we have also plotted the branches of Part III and the groups
of Dehnen (2000) (Table 6.1) corrected for the classic solar motion (U� = 10 km s−1 and V� =
5 km s−1).
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14.2 Relation to regular orbits of the bar

Figure 14.10: Orbital regularity of the prolate bar with a pattern speed of 47.5 km s−1kpc−1

.U–V plane coloured according to the periodicity of the corresponding orbits for the prolate bar with
Ωb = 47.5 km s−1kpc−1 at φ = 0◦ and R = 8.5 kpc. The white dotted lines show the position of the
observational branches (Chapter 6 and the red crosses are the groups found by Dehnen (2000)). These
observed features have been all corrected for the classic solar motion (U� = 10 km s−1 and V� = 5 km s−1).

For instance, in Dehnen (2000) the effects of the 1:1 sym resonance in the U–V plane were
related to an the observed small wave that he called ripple at (U, V ) = (−80,−5) and at
(U, V ) = (40, 5) and to the excess of stars at |U | < 20 km s−1 and V > 20 km s−1. These feature
are indicated with blue circles in Figure 14.10. However, the arch-shaped structure caused
by the effects of the 1:1 resonance (point (k) in Figure 14.5) goes through V ∼ 46 km s−1 at
U = 0 km s−1 in Figure 14.10 and therefore is considerably above these observed features in the
U–V plane. Moreover, in our case this region of the U–V plane is related to the 1:1 asym orbit
which is unstable according to Dehnen (2000) or Fux (2001). By contrast, these observed ripples
as well as group 10 (red cross) and the elongation of the Sirius branch seem to coincide more
with the arch due to the 3:2 OLR although this is a very thin features in the U–V plane which
is difficult to be associated with this observed moving group.

Also the ripple and the new group found in Part III at (U, V ) = (35,−20) (orange circle),
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the groups 7 and 11 and the elongation of the Coma Berenices branch could be related here to
the distortion of the central mode due to the x1(1) orbits. Dehnen (2000) related this effect to
the extension of the connection between Hyades and Pleiades but pointed out that at this low
epicyclic energy, the orbits will be additionally distorted by the spiral arms and other deviations
of the local smooth field and therefore, he is less conclusive about this issue. This discussion will
be resumed in Chapter 16 where the effects of the spiral-bar PM04–MW potential model are
studied. Here the Hyades group coincides with the position of the x1(2) orbits. In agreement
with Dehnen (2000) it is important to point out that these groups should be studied in more
detail as effects such as these ones, should be taken into account in order to constrain the
bar’s characteristics and to reduce systematic errors (for example due to the uncertainty of the
movement of the LSR).

On the other hand, another intriguing and prominent structure is the one around point (a)
corresponding to the 4:1 resonance (Figure 14.6a). This strong kinematic structure with V ∼
90 km s−1 could be tentatively associated with observed structures at low angular momentum
such as the Arcturus moving group. These groups have been usually associated with remnants of
accreted satellites. The possibility that they can also be due to resonances of the bar is specially
encouraging and Chapter 15 is devoted to study and discuss this subject.

14.3 Summary and discussion

We have studied a bar potential model derived from an observationally constrained density
distribution and whose effects on the velocity distribution has never been studied before. We
find that this prolate bar model create significant and strong imprints on the velocity plane as
in the case of the self-gravitating spiral arms. By contrast to the spiral arms whose orientation
with respect to the Sun is very uncertain, in this case the bar inclination is relatively well
constrained by other independent studies. For this reason, we have focused on the results for a
bar orientation of around 20◦ corresponding to the Galactic bar (or triaxial bulge) and around
40◦ similar to the recently discovered long bar of the MW.

When the prolate bar with those realistic inclination acts on a cold disc during long times
(∼ 15 bar revolutions), it hardly produces kinematic substructures except for a unique central
group that is distorted towards positive U . However, when the bar acts on a slightly hotter disc
during short times (e.g. only 3 bar revolutions), the prolate bar can produce clear kinematic
structures. In particular the prolate bar triggers a bimodality, i.e. two groups, in the velocity
distribution at solar radius if the bar has certain characteristics, specially concerning its pattern
speed. One of the groups has negative V . The other one is approximately centred on the
U–V plane (here called the central mode). For the bar orientations which are consistent with
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independent bar restrictions, the group at negative V have mean negative radial motion U .
Additionally, in most of these simulations the central mode of the bimodality is distorted towards
positive U . This causes a relative density of particles in this region higher than that in the
observed velocity field.

These resonant features are far more clear and sharpen when the prolate bar is stronger
(Mb = 1.4 × 1010M�) and if the integration time is longer (∼ 10 bar revolutions) but these
parameters do not change the position of the line that discriminates the groups of the bimodality.
What probably produce stronger resonant imprints on the U–V plane is the higher strength of
the massive bar at radius where the resonances are located (in particular the OLR).

The group at negative V of the bimodality has usually been associated with the Hercules
branch (Dehnen 2000, Fux 2000). Depending on the pattern speed of the bar, this simulated
group at negative V shifts to upper or lower positions on the U–V plane. We find that for some
pattern speeds this group could be better related to Hyades-Pleiades instead of Hercules as it is
usually assigned.

We find that only a disc with intermediate velocity dispersions is necessary to create the
bimodality in contrast to other studies that used a hotter disc (Dehnen 2000). However, higher
velocity dispersions contribute to populate the structure towards more negative V , showing that
higher initial velocity dispersion allow more particles to reach the solar radius and crowd that
region of the U–V plane. The line that separates the two groups, however, do not change since
it depends on the resonant structure of the potential but not on the initial disc. This exemplifies
the differences between the existing resonant or orbital structure of a potential model and how
the groups are actually crowded given a certain initial disc.

Here we have also studied the effects of the quadrupole bar in the same conditions that
our experiments with the prolate bar: same initial conditions and simulation method, same
axisymmetric background and same pattern speed. We have found that, if the force of the
quadrupole bar at solar radius is comparable to our massive prolate bar, only minor differences
between the effects of both models are observed at solar radius: the bimodality created by the
quadrupole seems to be stronger as when the more massive prolate bar is studied. Therefore we
attribute this to the strength of these two bar models at the ROLR as discussed above. From
this comparison we conclude that in contrast to the case of the spiral arms where important
differences were found between models, it seems more difficult to discriminate between bar
models. At the outer parts of the disc, the force curves and amplitude ranges of the two
models can be similar. However, in later chapters we work with hotter initial conditions and
therefore, we consider orbits that have large radial excursions that can even enter the bar itself
where the quadrupole bar model is probably not a good approximation. The prolate model is a
more realistic model which includes also other multi-pole terms and therefore describes better
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the regions near or in the bar itself. The possible differences between models in this case are
discussed in Chapter 15.

We have seen with our method of quantifying the regularity of the kinematic regions on the
U–V plane, that what separates the two groups of the bimodality is a thin line in the kinematic
plane made of irregular orbits probably related to the 2:1 OLR. This line or valley that separates
the two groups is inclined in the U–V plane producing an Hercules group that is slightly tilted
as in the observations.The distortion of the central mode seems to be created by quite elliptic
orbits aligned with the bar and also a similar group of orbits appears centred in the central mode.
These orbits seems to be the stable x1(1) related to the 2:1 OLR of the bar. Below the valley,
we find different types of orbits. For instance, there are orbits more or less antialigned with
the bar (probably related to the x1(2) orbits), orbits that do not show any especial periodicity
or orbits finishing 4 radial oscillations in 2 azimuthal periods (related to the 4:2 OLR). Orbits
close to the antialigned x1(2) orbital family are surprisingly found also just above the valley of
irregular orbits.

If we assume a bar’s inclination of 20◦ and the bimodality as the cause of the Hercules moving
group, our best fit for the pattern speed of the bar is Ωb = 47.5 ± 1.6 km s−1kpc−1 where the
largest contribution to the uncertainty comes from the uncertainty in the solar motion and in the
velocity V of the observed Hercules moving group considered (for discrepancies in the kinematic
position of Hercules see Section 6.3). It is worth noticing that in the literature the values
obtained for the best pattern speed of the bar with different methods are directly compared
without having into account differences in the local circular frequency, solar radius or rotation
curve. However, all values are consistent if we consider the uncertainties in each case.

For our fit, other strong features such the distortion of the central mode due to the x1(1)
orbits could be identified to the new group found in Part III at (U, V ) = (35,−20) (orange
circle) and, in general, the elongation of the Coma Berenices branch. Besides, the Hyades group
coincides with the position of the x1(2) orbits above the line of irregular orbits. There are also
other resonant orbits at the outer parts of U–V plane such as the one related to the 1:1 sym
resonance or the arch of the 3:2 OLR but they produce very thin features in the U–V plane
which can hardly be associated with observed moving groups. Besides, they do not have their
counterparts in the test particle simulations nor in the observed U–V plane.

The position of the Hercules structure is therefore an important constraint to the characteris-
tics of the bar of the MW. However, there is a degeneracy in the parameter space, as the pattern
speed of the bar, the orientation of the bar or the rotation curve contribute to the definition of
the position of this structure on the U–V plane. On the other hand, we found among all our
simulations several alternative interpretations of each moving group. For this reason, it is very
difficult to establish conclusively the best fit for the pattern speed.
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14.3 Summary and discussion

From our analysis of orbit regularity we confirm that the orbital structure created by the
bar is very sensitive to the bar inclination, to the pattern speed, and to the underlying circular
velocity curve from which the resonant curves are derived. On the contrary, the valley of the
bimodality do not change with parameters such as the strength of the bar. However the strength
of the bar, the exposure time to the bar or disc velocity dispersion influences in the way that the
structures are populated. This is, as in the case of the spiral arms, very encouraging in order to
use this method to constrain the bar characteristics.
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Chapter 15

Imprints on models with hotter

kinematics

In this chapter we study the kinematic structure developed when our

hottest initial disc IC3 (see default values of Table 10.1) are used. First

in Section 15.1 we present the results of our simulations when only the

axisymmetric part of the PM04–MW potential model is used. Secondly,

in Sections 15.2 and Section 15.3 we study specifically the effects of the

bar and the spiral arms on hot discs. Section 15.4 deals with the study of

the regularity of the orbits on the low angular momentum region of the

U–V plane for the prolate bar. Finally, Section 15.5 shows a summary

and a discussion of the results of this chapter.

15.1 Transient arches

In Section 10.2 and in Appendix A, we have seen that the IC3 favours eccentric orbits in the
central region of the disc that tend to reach the solar radius. With the initial non-homogeneous
coverage of the phase space biased to these highly eccentric orbits, a process of radial migration
and phase-mixing is triggered becoming apparent in the formation of transient structures in
the U–V plane until the complete phase mixing and relaxation are achieved. For these reason,
these IC are used as a representation of a disc which is initially non-relaxed. As we know from
current scenarios of galaxy formation and evolution that it is plausible that both external and
internal perturbation mechanisms perturb the galaxy, we also want to consider this possibility
for the MW. This methodology of using unevenly distributed in phase space initial conditions
as a proxy for studying an unrelaxed population was first used in Minchev et al. (2009).
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In this case the study becomes more complex as the effects of the bar and/or the spiral arms
are superposed to the transient effects due to the mentioned phase-mixing. As we do not take
averages with time, the transient kinematic structures are susceptible to be mixed up with the
kinematic structures created by the bar and the spiral arms that we want to study. Therefore,
it is mandatory to study them in the presence of only an axisymmetric potential. This is carried
out in the present section. In Section 15.2 we study in detail the effects of the bar and the spiral
arms on this non-relaxed disc whereas in Section 15.3 we use several approaches to study the
effects of the bar on relaxed IC.

We show now the final velocity distribution of the simulations with the axisymmetric part
of the PM04–MW potential model applied to hot initial conditions (IC3). The panels of Figure
15.1 are obtained when the integration is carried out for the default time of these IC (400 Myr).
In this panels arch-shaped structures appear specially at lower V . The positions of the arches
on the U–V plane are equal for all φ as expected for axisymmetric systems. These arches are,
however, asymmetric in U and they change with time. Figure 15.2 shows the evolution with time
of the arches. From Figure 15.2a to 15.2d we can see how the arches change in snapshots every
100 Myr. For large integration times, the arches successively disappear leading to the smooth
and symmetric in U distribution of Figure 15.2g after 2000− 5000 Myr.

As we do not expect kinematic structures for an axisymmetric model and we have seen
that the arches that appear with IC3 (Figures 15.1 and 15.2) are a transitory effect, we can
definitely attribute the existence of these transient features in the U–V plane to the ongoing
phase mixing. Similar arches were obtained and discussed in past studies such as Fux (2001). In
that case the author was using the backward integration technique (see Section 10.4) applied to
a potential were a bar is slowly developed. He found that incurved waves appear in the valley
of the bimodality (see Chapter 14) with a spacing between the maxima decreasing with time
relating them to a typical signature of ongoing phase mixing in a regular region of phase space.
In other regions of the U–V plane similar arches appeared but on a shorter timescale and the
orientation of the wave fronts changed from nearly-horizontal to nearly-vertical.

Also recently and simultaneously to the development of this thesis, Minchev et al. (2009) re-
ported that they found that the velocity distribution exhibited waves travelling in the direction
of positive V and these waves becoming closer as the system relaxes when using a non-relaxed
model (a population unevenly distributed in phase space). In that study a high velocity dis-
persion of σU = 50 km s−1 was used and they discussed the possibility that the MW disc is in
a non-relaxed situation due to e.g. a recent merger and that these arches were similar to some
observed kinematic groups at low angular momentum. Using a semi-analytical model, Minchev
et al. (2009) were able to explain their arches and the decreasing separation with time. It is
however noteworthy that according to this model, the arches appear to be symmetric with re-
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15.1 Transient arches

Figure 15.1: Transient kinematic arches in the axisymmetric potential. U–V velocity distri-
butions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the PM04–MW
potential model with only the axisymmetric part and IC3.
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(a) t = 200 Myr (b) t = 300 Myr

(c) t = 400 Myr (default) (d) t = 500 Myr

(e) t = 2000 Myr (f) t = 4000 Myr (g) t = 5000 Myr

Figure 15.2: Time evolution of the kinematic arches. U–V velocity distributions after WD at R =
8.5 kpc and φ = 0◦ for the simulations with the PM04–MW potential model with only the axisymmetric
part and IC3 for different integration times.
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spect to the U axis whereas in their test particle simulations (see their Figure 1) we identify an
asymmetry for the some of the arches with lower integration times that it is not mentioned in
that study. Similar asymmetry is observed in the arches of our simulations.

In next section we study the effects of the bar and the spiral arms on the velocity distribution
of this non-relaxed disc. We expect again some transient effects in the case of IC3 due to the
ongoing phase-mixing. However, we consider this as a plausible situation for the MW as it is
possible that the disc is still experiencing the response to certain perturbation such as a recent
passage of an orbiting satellite.

15.2 Transient groups influenced by non-axisymmetric compo-

nents

The discs with hot kinematic allow us to discuss the influence of the non-axisymmetric compo-
nents at the region of low angular momentum of the U–V plane. The observed groups with low
angular momentum have been sometimes associated with remnants of past accretion events of
satellite galaxies (e.g. Arcturus as discussed in Navarro et al. 2004). The possibility that these
groups can be influenced and indeed caused by the resonances of the bar is a very new and
promising subject of study. In this section and in Section 15.3 we provide some new preliminary
clues to this so poorly understood issue.

In this section we study the effects of the bar and the spiral arms on IC3. As we have
discussed in Section 10.2 and in Appendix A, the use of IC3 is representative of a non-relaxed
disc that favours eccentric orbits in the central region of the disc which tend to reach the solar
radius. This is a plausible possibility for the disc of the MW if it has suffer a certain perturbation.
Therefore, assuming this possibility, we want to examine how the arches seen in the velocity
distribution due to the readjustment of the disc (Section 15.1) are influenced by the effects of
the bar or the spiral arms.

We study first what happens to the velocity distribution if we use IC3 and the PM04–MW
potential model with only spiral arms. The results are shown in Figure 15.3. It is expected
that the transitory features or arches in the U–V plane still appear: the disc is experiencing
phase-mixing. The fact that a non-axisymmetric component has been include in this simulation
can actually intensify the process. Effectively, we still see the arches in the velocity distribution
in Figure 15.3. In fact they appear to be the same arches than in the axisymmetric case
(Figure 15.1) with the same integration time and again they are equal for all φ. With this we
conclude that the spiral arms with the default parameters have not a noticeable influence on the
structures of low angular momentum. This can be explained by the fact that at V so negative
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Figure 15.3: Effects of the spiral arms on the transient arches. U–V velocity distributions after
WD at R = 8.5 kpc and at different azimuths φ for the simulations with the PM04–MW potential model
using only spiral arms and IC3.
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(large epicyclic frequencies) the spiral arms hardly affect the orbits (see discussion in Chapter
13).

The results become more interesting when we apply to IC3 the PM04–MW potential model
with the bar component with the default values (Figure 15.4). Again arch-shaped structures
appear at lower V . But what is encouraging is that in these simulations these kinematic arches
have changed. The arches are no longer equal to the ones in the axisymmetric case (Figure
15.1) and now depend on φ. For instance, the arch at V ∼ −100 km s−1 is shifted to the left for
φ = 0◦ compared with φ = 80◦ where it appears more or less centred in U . Also, differences are
observed if we use either Ωb = 45 km s−1kpc−1 (Figure 15.4) or Ωb = 60 km s−1kpc−1 (Figure
B.21). For example the arch developed at V ∼ −100 km s−1 for the lower bar pattern speed at
φ = 0◦ is not seen now when Ωb = 60 km s−1kpc−1. Furthermore, the velocity distributions at
other φ are quite different for these two pattern speeds. All these are evidence that the bar’s
resonances influence significantly the orbits with inner guiding centres which at solar radius
achieve so negative V .

The arch developed at V ∼ −100 km s−1 for the lower bar pattern speed has a V com-
ponents closer to the Arcturus observed structures1. For the positions φ = 0◦ and φ = 160◦

(corresponding to realistic bar orientations φ0b of 20◦ and 40◦ respectively) the arches, despite
being extended through a wide range of U , have mean negative U . That is exactly what was
determined in the observational study of (Williams et al. 2009): the Arcturus stars are observed
to preferred negative U . This result should be considered for the moment only as evidence of
sensitivity to the model but not necessarily as favouring a particular Ωb value. To conclude,
these simulations show the important role of the bar in the development of the local kinematic
structure suggesting that both kinematic initial conditions and Galactic structure contribute to
create the kinematic groups.

Minchev et al. (2009) was the first to suggest that Arcturus and other groups at low angular
momentum could have an origin related to non-relaxed initial conditions. In that study, four
observed moving groups at low angular momentum were used to fit the time since the perturbing
event that caused the transient arches in the U–V plane: the new group at V ∼ −160 km s−1

that was found by Klement et al. (2008), the Arcturus group at V ∼ −100 km s−1, the group of
Arifyanto & Fuchs (2006) at V ∼ −80 km s−1 and HR1614 at V ∼ −60 km s−1. However, they
used only an axisymmetric model and did not take into account that some of these groups have
a mean U component different from 0 (Arcturus according to Williams et al. 2009) or that some
other groups have low chemical and age scattering and seem to be remnants of a dispersed star

1Notice that the observed Arcturus structure do not appear in Figure 6.1 (it is actually out of the range of the

Figure) as this structure is not prominent in our observational sample used in Part III. See Figure 2 of Williams et

al. (2009) for a U–V plane containing the Arcturus structure and built using sample from Schuster et al. (2006).
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Figure 15.4: Effects of the bar on the transient arches. U–V velocity distributions after WD at
R = 8.5 kpc and at different azimuths φ for the simulations with the PM04–MW potential model using
only bar and IC3.
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forming event (HR1614 according Feltzing & Holmberg 2000 and De Silva et al. 2007).

15.3 Non-transient structures at low angular momentum

The simulations of Section 15.2 have shown us that both the conditions of the disc and the
influence of the bar can create and shape the kinematic structures at low angular momentum.
We now want to study specifically the long-lasting effects of the bar at the region of low angular
momentum of the U–V plane. We use several approaches with the aim of avoiding the transient
structures.

Longer integration times. First, we extend the integration time of Figure 15.4 in order
to stabilise the possible transient kinematic features. As we have seen in Section 15.1 (Figure
15.2) the arches have disappeared with integration times of 5000 Myr. Therefore, we choose
this integration time for the new simulation. As discussed in Chapter 10, such a longer time
would require to include many phenomena of Galactic evolution. As it is warned also in that
chapter this simulation should be taken as a particular experiment that do not try to mimic the
evolution of the MW. We just aim to isolate the effects of the bar resonances avoiding transient
features on the U–V plane. The simulation with the prolate bar with IC3 and integration time
of 5000 Gyr is shown in Figure 15.5. In the central parts of these distributions, the structure at
V ∼ −30 km s−1 in most panels is the group of low angular momentum of the bimodality which
is usually associated with the observed Hercules group. This structure has been discussed in
Chapter 14 and here it follows the same behaviour. For example, at φ = 0◦ this group appears to
be shifted towards negative U and that is why it can be associated with the Hercules structure.
Particularising for the groups at lower angular momentum we see some weak substructures below
the bimodality. An arch can be glimpsed between V ∼ −50 km s−1 and V ∼ −100 km s−1 at
almost all φ. The fact that this structure changes the U component depending on φ (for instance
is shifted to positive U for φ = 100◦ but is shifted towards negative U for φ = 140◦) may indicate
that it is caused by the influence of the bar. However, the weakness of this structure deprive us
to formulate a definitive conclusion about it.

Massive bar. We know from Section 14.1 that a more massive bar can produce stronger
resonant features. We now explore the effects of a stronger bar. We will use the quadrupole
bar described in Section 11.5 that has comparable strength at inner radius (R < 2 kpc) but
it is stronger for approximately R > 2 kpc. We apply the quadrupole bar to IC3 with an
integration time of t = 5000 Myr in order to avoid transient features in the U–V plane. The
results for this simulation are shown in Figure 15.6. Again arched structures appear and in
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Figure 15.5: Kinematic effects of the bar on a hot disc. U–V velocity distributions after WD at
R = 8.5 kpc and at different azimuths φ for the simulations with the PM04–MW potential model using
only bar and IC3 with integration time of 5000 Gyr.
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Figure 15.6: Kinematic effects of a stronger bar on a hot disc. U–V velocity distributions after
WD at R = 8.5 kpc and at different azimuths φ for the simulations with the quadrupole bar model and
IC3 with integration time of 5000 Myr.

207



15. IMPRINTS ON MODELS WITH HOTTER KINEMATICS

particular, the presence of at least three very clear arches can be noticed conspicuously from
φ = 60◦ to φ = 160◦. We have performed a simulation corresponding to an integration time of
5500 Myr (Figure B.22) where exactly the same structures show up. With this we check that
these structures are not-transient kinematic groups, or at least, they are stable groups at these
long time scales.

In particular the velocity distribution at φ = 160◦ is the one that corresponds to a bar
orientation of φ0b = 40◦. This orientation is consistent with the orientation of the recently
discovered long bar of the MW (see Section 11.3). At this position the structure is located
at V ∼ −70 km s−1. Its mean U is ∼ −50 km s−1. We check that with the pattern speed of
Ωb = 47.5 km s−1kpc−1 which has been derived in Section 14.2 to fit the position of the Hercules
moving group, all the structures of the panel shift towards more negative V (Figure B.23). In
particular the arch at V ∼ −70 km s−1 achieve V ∼ −100 km s−1 and would be consistent with
the V of the observed Arcturus moving group and also with its mean negative U . The central
kinematic arch at this φ is compatible with the Hercules structure. At φ = 0◦, which corresponds
to a bar orientation of φ0b = 20◦ as the Galactic bar, this central kinematic structure similar to
the Hercules groups is also very conspicuous.

According to these simulations we see that the bar create also kinematic groups at low
angular momentum. However, we must be careful in interpreting these results. First, particles
with V ∼ −100 km s−1 in this potential have radial excursions that arrive to very inner regions
that can even enter through the bar itself for which the quadrupole potential is not a very
accurate model (see Section 11.5). Therefore, this requires a confirmation using the massive
prolate bar which, as it is a potential model derived from an observationally constrained density
distribution, gives a better description at the inner regions. We expect that this arch would also
appear as we have recognised some weak structures following the same behaviour for the default
prolate bar. Secondly, it is worth mentioning that our simulations have consider the Galactic
bar and the long bar separately. Simulations including both bars with their corresponding
orientations have not been carried out yet. If the two bars rotate at different pattern speeds
the results can vary significantly (see discussions in Chapter 16 where we combine two non-
axisymmetric components –bar and spiral arms– rotating at different speeds). By contrast, we
expect that if the bars rotate at similar pattern speed we will have an approximate combination
of the previous panels at φ = 0◦ and φ = 160◦. Besides, the relative strength of these two bar
would play an important role on the final induced effects. In any case, this conclusion is awaiting
for a confirmation with a simulation including both bars at the same time.

Progressive introduction of the bar. A more elaborated exercise consist of the following.
First we built a new set of IC with the following process. We run a simulation using IC3 and
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15.3 Non-transient structures at low angular momentum

integrating for 5000 Myr in the PM04–MW potential model with only the axisymmetric part in
order to get a relaxed distribution as in Figure 15.2g where the arches had disappeared. The final
result of the simulation is taken as IC for new simulations. These new IC will be named IC4. In
particular, we design a simulation whose novelty with respect to the previous simulations is that
the bar grows progressively during the initial times of the integration and stays stable after this
period. Several N-body experiments have concluded that the bar growth and evolution depends
on its mechanism of formation and on several parameters (e.g. Athanassoula 2003). We indeed
do not know which has been the case of the MW. We do not pretend to model the real MW
bar formation but we only intend to add it slowly to the potential in order to avoid an abrupt
or response of the disc. We have chosen arbitrarily the growth following Equation 4 by Dehnen
(2000) which is flexible and can be easily fit to a a slower of faster growth. For the moment
we only explore the values used in that study. In our case is the mass of the bar instead of the
amplitude of the potential which changes as a function of time2. The integration is carried out
as usually from ti (negative, see Section 10.1) to tf = 0 and the bar grows progressively from ti

to t1 according to this expression:

Mb = Mbf

(
3
16
ξ5 − 5

8
ξ3 +

15
16
ξ +

1
2

)
, ξ ≡ 2

(t− ti)
t1 − ti

− 1. (15.1)

In this equation Mbf is simply the mass of the default model (Table 11.4). The period of the
growing of the bar is Tg = t1− ti and this is usually taken as a certain number of periods of the
bar rotation. Preliminary, we will take 2 bar revolutions. Afterwards, the bar stays stable up
to tf .

A first example of this simulation is shown in Figure 15.7. For this case, ti = −400 Myr.
The vertical arches at V ∼ −100 km s−1 which are very similar to the vertical arches obtained
by Fux (2001) show that with only 400 Myr of integration the velocity field has not achieved a
stationary state. As the bar is growing during his first two revolutions with a period of 136 Myr,
in this simulation the bar has been fully grown for only one more revolution. The region of
Hercules is however well populated and consistent with all the results of Chapter 14. If the
integration is carried out for a longer time of ti = −1000 Myr we obtained the results of Figure
15.8. Now the bar has accomplished 5 revolutions from the moment it was fully grown. The
vertical arches have disappeared. Again three weak arches are seen at some φ and are specially
visible at 40◦, 80◦, 120◦ or 140◦.

As these kinematic structures at low angular momentum appear to be very weak in most
cases, we study the component Vβ is the projection of the U and V velocities to an axis per-
pendicular to the structures (clockwise rotation of β = 16◦). We use this rotation β as it is

2Contrary to the case of the quadrupole model, in this model there is a global increase of the total mass. In

future simulations a progressive transfer of mass from the bulge/disc to the bar will be implemented.
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15. IMPRINTS ON MODELS WITH HOTTER KINEMATICS

Figure 15.7: Kinematic effects of the recently introduced bar on a hot disc. U–V velocity
distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the PM04–
MW potential model using only bar but introduced progressively in time with IC4 and integration time
t = 400 Myr.
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Figure 15.8: Kinematic effects of the progressively introduced bar on a hot disc. U–V velocity
distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the PM04–
MW potential model using only bar but introduced progressively in time with IC4 and integration time
t = 1000 Myr.
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(a) Default quadrupole bar (b) Quadrupole bar Ωb = 47.5 km s−1kpc−1

(c) Default prolate bar (d) Progressive introduction of the prolate bar

Figure 15.9: Bar-induced branches at low angular momentum. Comparison between the kinematic
branches at low angular momentum generated by different simulations at φ = 0◦ (φ0b = 20◦) and
R = 8.5 kpc. The branches are shown in the Vβ component (clockwise rotation of β = 16◦ of the U–V
plane) after WD for several scales.
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15.3 Non-transient structures at low angular momentum

(a) Default quadrupole bar (b) Quadrupole bar Ωb = 47.5 km s−1kpc−1

(c) Default prolate bar (d) Progressive introduction of the prolate bar

Figure 15.10: Bar-induced branches at low angular momentum with a bar orientation of
40◦. Comparison between the kinematic branches at low angular momentum generated by different
simulations at φ = 160◦ (φ0b = 40◦) and R = 8.5 kpc. The branches are shown in the Vβ component
(clockwise rotation of β = 16◦ of the U–V plane) after WD for several scales.
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the one that fits the observed branches in Part III and seems approximately the same for the
branches created in these simulations for φ = 0◦ and φ = 160◦ that we assume that are the
more plausible ones given independent determination of the bar inclination. At positions such
as φ = 100◦ different or even null β would be more correct. The results are shown in Figures
15.9 and 15.10 for φ = 0◦ and φ = 160◦, respectively. In these panels we can notice several
clear kinematic structure at low angular momentum (Vβ < −50 km s−1). For the quadrupole
bar and φ = 160◦ 3 clear arches were observed in Figure 15.6 which again are seen in Figure
15.10a at Vβ = 5 km s−1, Vβ = −30 km s−1 and at Vβ = −90 km s−1. Even a fourth but weak
structure is observed at Vβ = −70 km s−1. We confirm that with a higher pattern speed (Figure
15.9b) all these arches are shifted towards more negative Vβ. Although for φ = 0◦ the arches
were difficult to notice in Figure 15.6 now we see that weak but several kinematic structures
appear. Also for the case of the prolate bar, despite being a less strong bar, we can confirm with
these panels the existence of kinematic structure at low angular momentum. See for instance
the peaks at Vβ = 0 km s−1, Vβ = −30 km s−1 and the two more around Vβ = −100 km s−1 for
φ = 0◦ (Figure 15.9d) and the peaks at Vβ = 0 km s−1, Vβ = −40 km s−1, Vβ = −75 km s−1 and
Vβ = −100 km s−1 for φ = 160◦ (Figure 15.9d).

It is very tentative to associate these structures with observed moving groups such as Arc-
turus. However, we must emphasise that the positions of the previous peaks are very sensitive to
the parameters of the model which are still very uncertain. On the other hand, these simulated
structures at low angular momentum are still very weak to be conclusive. Although the observed
groups at this region of the U–V plane are also weak, we require stronger kinematic features in
our simulations to confirm these results. Using a more strong bar, higher velocity dispersions
or higher density of test particles in the inner regions allowing more particles to populate these
groups would help in this.

To study in depth the possible influence of the bar’s resonances on the arches Section 15.4
deals with the periodic orbits of the bar located at the low angular momentum part of the U–V
plane, repeating the study of Section 14.2 but extending the grid to V = −300 km s−1.

15.4 Regular orbits of the bar at low angular momentum

This section is an extension of Section 14.2 where we will look at the periodicity of the orbits
corresponding to the region of low angular momentum of the U–V plane. The procedure is the
same as in Section 14.2 but now the region of study is extended to V = −300 km s−1. This
method will help us to study the orbital structure of the bar at low angular momentum that
can be identify with groups such as Arcturus.
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Figure 15.11: Orbital regularity of the prolate bar model at low angular momentum. U–V
plane at low angular momentum coloured as the periodicity of the corresponding orbits for the default
model of bar at φ = 0◦ and R = 8.5 kpc. The darker the region is, the more periodic or closed the
corresponding orbit is.
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The result for the default model of the prolate bar (Table 11.4) at φ = 0◦ and R = 8.5 kpc
is shown in 15.11. The new region at negative V has been placed below the previously obtained
Figure to show the continuity of the structures. The colour scale of the region has been enhanced
to make easier the analysis. It can be seen that this region of the U–V plane is far more complex.
The more conspicuous structure is the big and oval dark region of regular orbits that spreads
out in the range U ∼ [−10, 80] km s−1 and V ∼ [−100,−70] km s−1. As we saw in Section 14.2
this region is formed by orbits related to the 4:1 OLR of the bar. As it is clearly shifted through
positive U it can not be related directly to the Arcturus group.

As we have seen in Chapter 14, we have found a new value for Ωb that shows more consistency
in creating the observed Hercules structure. Now we study in detail the region of low angular
momentum of the U–V plane using Ωb = 47.5 km s−1kpc−1. The result for φ = 0◦ and R =
8.5 kpc is shown in Figure 15.12. Here the main periodic regions are indicated with a coloured
circle and a character. The corresponding orbits are shown in Figure 15.13 with the same
colours. The main difference between this an Figure 15.11 is that now all structures have shifted
towards more negative V as expected for having moved further the resonances from this position.
We find nearly resonant regions on the U–V plane corresponding to the 5:1 and 6:1 resonance
at more negative V and the corresponding orbits are shown in Figures 15.13c-15.13f. On the
other hand, we check that the orbits forming the big oval region that now extends in the ranges
U ∼ [0, 60] km s−1 and V ∼ [−120,−90] km s−1 are orbits related to the 4:1 OLR (point (b)
and orbit of Figure 15.13b). Point (a) has the same V component but a negative U and is
also a regular 4:1 orbit (Figure 15.13a). The fact that this point and its surroundings are not
so highlighted as the region of point (b) shows a weakness of this method for quantifying the
regularity of the orbits. With this method the dispersions of the orbit are calculated when the
orbit crosses two axes that are in the direction of the bar semi-major and semi-minor axis (see
Section 10.3). Particularly for these orbits, we can see how the loops are oriented precisely in
these two directions for orbit (a) and by contrast, the loops appear 45◦ rotated for orbit (b).
This produces higher regularity for orbit (b) whereas both orbits are absolutely equivalent in
terms of regularity. Periodic orbits of the bar are symmetric with at least one of the axes of the
bar (Fux 2001). Therefore, a geometry exercise indicates that there would be no similar problem
with other orbits apart from the 4:1 orbits, 8:1 orbits, and in general 4×n:1 orbits with n ≥ 1.
A change in the axes of the method would fix this drawback.

As in our test particle simulations we have detected kinematic structures at low angular mo-
mentum also for a bar orientation of φ0b = 40◦ (Section 15.3) we now want to explore if it is due
to a resonance of the bar. The map of regularity of the orbits for φ = 160◦ and R = 8.5 kpc for
the default prolate bar is shown in Figure 15.14a. Now the oval dark region of regular orbits have
been split into two groups at negative and positive U , respectively. For Ωb = 47.5 km s−1kpc−1,
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which is the pattern speed that would be favourite to fit the Hercules structure, we obtain Figure
15.14b. From Figure we see that at V ∼ −100 km s−1 two conspicuous structures appear. The
first is the oval dark region at U ∼ −90 km s−1 that now only appears at negative U . The orbit
followed by point (b) is shown in Figure 15.15b. Although its negative U is more consistent
with the Arcturus groups, this structure seems too shifted to the left compared to the observed
structure that is more extended along the U axis. The second feature is indicated with the point
(a) and corresponds to the 5:1 sym orbit of Figure 15.15a. Also the 3:1 resonance that produce
a region of regularity around V ∼ −65 km s−1 as discussed in Section 14.2, could take part in
the shaping of some structures at low angular momentum. However, all these regions of regular
orbits are difficult to associate with any structure of our test particle simulations due to the
weakness of the latter.

To our knowledge, it was the study of Fux (2001) who first pointed out the coincidence of
the position of the Arcturus kinematic group with some periodic orbits of the bar. According
to his method of quantifying the periodicity of the orbits on the U–V plane, he found for a bar
orientation of φ0b and R/ROLR = 1.1−1.2 (equivalent to Ωb ∼ 51 km s−1kpc−1 in the PM04–MW
potential model) that the stable eccentric orbits x1(2) and 5/1 asym had a velocity V/Vc ∼ −0.6
(V ∼ 132 km s−1 for the PM04–MW potential model) and U/Vc ∼ −0.1 (U ∼ −22 km s−1 for
the PM04–MW potential model). This was not among his main conclusion and it was not
discussed in terms of phase space crowding in his section of test particle orbits. Alternatively
Williams et al. (2009) recently discussed a possible disc-dynamical origin of Arcturus based on
stellar population evidence, and postulated the bar 6:1 OLR as the triggering mechanism from
an extrapolation of the 2:1 being the cause of the Hercules group. By contrast, from these panels
we see that, assuming a pattern speed that links the Hercules structure to the 2:1 OLR, the
region at V ∼ −100 km s−1 seems to be influenced by the resonances 4:1 and/or 5:1. Also the
3:1 resonance seem to produce a region or regularity around V ∼ −65 km s−1 which could take
part in the shaping of some structures at low angular momentum.

Another derived consequence of this orbital study is the fact the the orbits of the structures
belonging to this region of low angular momentum of the U–V plane have large radial excursions
that arrive to very inner regions (R ∼ 3 kpc) that can even enter through the bar itself (see e.g.
Figure 15.15). This indicates that a model with an accurate description of the potential in the
region near the bar is necessary in this study. The prolate bar of the PM04–MW potential model
fulfils this requirement but it is doubtful if pure quadrupole bars give proper descriptions for
inner radius.
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Figure 15.12: Orbital regularity of the prolate bar model at low angular momentum for
Omegab = 47.5 km s−1kpc−1. U–V plane at low angular momentum coloured as the periodicity of the
corresponding orbits for the prolate bar with Omegab = 47.5 km s−1kpc−1 at φ = 0◦ and R = 8.5 kpc.
The points corresponding to orbits in Figure 15.13 are marked with coloured circles.
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(a) (b)

(c) (d) (e)

(f)

Figure 15.13: Bar-induced regular orbits at low angular momentum. Orbits of the U–V points
indicated in Figure 15.12.
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(a) Default (b) Ωb = 47.5 km s−1kpc−1

Figure 15.14: Orbital regularity of the prolate bar model at low angular momentum for a bar
orientation of 40◦. U–V plane coloured according to the periodicity of the corresponding orbits for the
prolate default bar and with Ωb = 47.5 km s−1kpc−1 at φ = 160◦ (φ0b = 40◦) and R = 8.5 kpc.

220



15.5 Summary and discussion

(a) (b)

Figure 15.15: Bar-induced regular orbits at low angular momentum for a bar orientation of
40◦. Orbits of the U–V points indicated in Figure 15.14b.

15.5 Summary and discussion

We have found two alternative plausible origins of the groups at low angular momentum such
as Arcturus, different from the origin associated with the remnants of past accretion events of
satellite galaxies. These are found when the bar acts on a relatively hot stellar disc.

We have studied a disc where there have been a certain perturbation such as a recnet in-
teraction with an orbiting satellite that has caused it to experience a relaxation process. We
consider this as a plausible situation for the MW as current scenarios of galaxy formation and
evolution have shown that both external and internal perturbation mechanisms perturb galaxies.
In this case, as a product of the ongoing phase mixing arch-shaped structures in the velocity
distributions at solar radius appear. These arches are open towards negative V in the U–V
plane and they are transient structures that progressively gather together and eventually blur.
We have explored the effects of the bar and the spiral arms on the local velocity distribution of
this special disc. We have found that our default spiral arms do not have a noticeable influence
on these structures of low angular momentum. By contrast, the bar modify the position of
the arches making them to depend clearly on azimuth. Moreover, different bar pattern speeds
produce different modifications on the arches and even make some of them disappear in several
cases. All these are evidence that, as expected, the bar influences significantly the orbits with
inner guiding centres that at solar radius achieve so negative V .

In particular, for short bar exposure times (400 Myr) and a bar pattern speed of Ωb =
45 km s−1kpc−1 the velocity distribution at solar radius exhibits a clear arch at V ∼ −100 km s−1

which is close to the Arcturus V component. Moreover, this simulated structure covers a wide
range of U but for realistic bar orientations it is slightly shifted to towards negative U like
the observed structure. However, as we have not carried out an exhaustive exploration of the
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influence of the bar pattern speed on the arches at low angular momentum nor an thorough
exploration of the time dependence of these arches, this result should be considered for the
moment only as evidence of sensitivity to the model but not necessarily as favouring a particular
Ωb value or time since the perturbing agent. It is risky to use other observed moving groups
at low angular momentum to fit the time since the perturbing event that caused the transient
arches using an axisymmetric model (Minchev et al. 2009): some of these groups have a mean
U component different from 0, which the axisymmetric model can not account for, and some
groups have low chemical and age scattering in contrast to this formation scenario.

Our results support an internal disc origin for structures such as Arcturus. We find that the
dynamics of the bar has a strong influence on these low angular momentum kinematic groups
that have been generated due to the phase mixing in the disc caused by a given perturbation,
suggesting that both kinematic initial conditions and Galactic structure contribute to create
these kinematic groups. The fact that the bar is able to shift the arches to the left or to the
right depending on the properties of the bar and the position studied is also promising in the
sense that the positions of the real structures at low V can help to constrain the properties of
the bar.

On the other hand, we found that the bar also creates steady kinematic structures at low
angular momentum that maybe associated with its induced resonant effects on the U–V plane.
We have studied this in relaxed discs obtained following several approaches, leading all of them
to similar conclusions. When we extend the integration time in order to stabilise the possible
transient kinematic features we found very promising results. For instance, if the quadrupole
bar is studied, it creates three conspicuous and stable structures in the U–V plane for many
bar orientations. The two first groups are the ones of the bimodality discussed in Chapter
14. The third one is located at more negative V and it mean U component depends on the
bar orientation which is a clear imprint of the bar influence. In particular for an orientation
of φ0b = 40◦ which is consistent with the recently discovered long bar of the MW and a bar
pattern speed around 47.5 km s−1kpc−1 the first two arches are consistent with the central mode
at low peculiar velocities and the Hercules structure whereas the third arch is consistent with
the V ∼ −100 km s−1 of the Arcturus moving group and also its mean negative U . However, we
must be careful in interpreting these results as the particles that form this structure have large
radial excursions that arrive to very inner regions that can even enter through the bar itself for
which the quadrupole potential do not give a proper description.

For the case of the prolate bar which gives a potential model derived from an observationally
constrained density distribution we do observed kinematic structures at around V ∼ −100 km s−1

but they are weaker probably because it is a less strong bar. For the realistic bar orientations
of φ0b = 20◦ and φ0b = 40◦ the created branches are titled ∼ 16◦ similarly to the observed
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branches. When these kinematic structures are studied in more detail using the projection of
the U and V velocities to an axis perpendicular to the structures we observe 4 overdensities for
the two realistic bar orientations. Two of them are located below V ∼ −50 km s−1 and the other
two are the ones of the bimodality discussed in Chapter 14. It is very tentative to associate
these structures with observed moving groups such as Arcturus. However, we must emphasise
that the positions of the previous peaks are very sensitive to the parameters of the model which
are still very uncertain. Using a more massive prolate bar, higher velocity dispersions or higher
density of test particles in the inner regions allowing more particles to populate these groups at
low angular momentum and this would help in deriving definitive conclusions about these two
kinematic structures at low angular momentum.

Our very preliminary orbital analysis points the fact that, assuming a pattern speed that links
the Hercules structure to the 2:1 OLR, the region at V ∼ −100 km s−1 seems to be influenced
by the resonances 4:1 and/or 5:1. Also the 3:1 resonance seem to produce a region or regularity
around V ∼ −65 km s−1 which could take part in the shaping of some structures at low angular
momentum. However, we do not find evidence that these regions of regular orbits corresponding
to these resonances are equivalent to overdensities in the our test particle simulations.

On the other hand, two key points related to this issue must be stressed. First, we have
found promising results for the bar orientations corresponding to the Galactic bar and to the
long bar separately. We expect that if the bars rotate at similar pattern speed we will have an
approximate combination of the previous panels at φ = 0◦ and φ = 160◦ but if not, the results
can vary significantly. The relative strength of these two bar would play an important role on
the final induced effects. A definitive conclusion would require a simulation including both bars
at the same time. Second, our simulations have been carried our in the disc plane under the
assumption that vertical movement is decoupled from the in-plane motion. This assumption
is valid for nearly circular orbits and that do not take larger heights above the plane (see e.g.
Binney & Tremaine 2008). Therefore the results of these chapter which deals with hot initial
discs are subject to a 3D experiment that recover also the arches at low angular momentum
confirming that at least a certain fraction of particles, perhaps the ones with small W and the
most near-circular, give shape to these kinematic structures. Although the vertical distributions
of our IC must be improved in order to carry out these final proves, the PM04–MW potential
model is ready to be used in 3D simulations as it is a full 3D model which, instead of taking
an ad hoc dependence on the z coordinate for the spiral arms and bar, it considers directly a
three-dimensional mass distribution. The possibility that the resonances of the bar affect also
the stars in the thick disc, which groups such as Arcturus are assigned to belong to, is a very
intriguing issue.

Originally, the Arcturus moving group was introduced to be a thick disc moving group
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remnant of a dissolved open cluster (Eggen 1996b). Later, this kinematic group was proposed
to have arisen from a past accretion event (Navarro et al. 2004, Villalobos & Helmi 2009) based
on its kinematic and metal abundance pattern. Alternatively Williams et al. (2009) recently
discussed a possible disc-dynamical origin of Arcturus based on stellar population evidence, and
postulated the bar 6:1 OLR as the triggering mechanism from an extrapolation of the 2:1 being
the cause of the Hercules group. On the other hand, Minchev et al. (2009) was the first to
suggest that Arcturus and other groups at low angular momentum could have an origin related
to non-relaxed initial conditions. Here we have seen that first, the dynamics of the bar has
a strong influence on the low angular momentum kinematic groups that have been generated
due to the phase mixing in the disc that could have been caused by a given perturbation. We
wonder also if the some moving groups that can be remnants of past accretion events of satellite
galaxies are in fact influenced by the bar resonances which give them certain shapes or certain
mean U . We also have found that the bar itself creates steady kinematic structures at low
angular momentum that maybe associated with its induced resonant effects. The possibility
that these groups can be influenced and indeed caused by the resonances of the bar is a very
promising subject of study that, however, needs further investigation.

An additional encouraging consequence of the analysis with the hot disc is the possible
resonance influence on the particles in the dark disc predicted in cosmological simulations of
galaxy formation. These particle may indeed follow similar behaviour to the stellar particles.
This issue is discussed in Appendix C.
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Chapter 16

Combining spiral arms & bar

In this chapter the kinematic structure developed by the spiral-bar PM04–

MW potential model, that is a model that includes the prolate bar and

the self-gravitating spiral arms, is presented. First in Section 16.1 the

results of the simulations with the spiral-bar PM04–MW potential model

(parameters of Table 11.2 for the axisymmetric component, Table 11.3

for the spiral arms and Table 11.4 for the bar) are presented for IC1

and for IC2 (default values of Table 10.1). Afterwards, the effect of the

variation of some default parameters is shown.In Section 16.2 we study

the regularity of the orbits on the U–V plane for the spiral-bar model. At

the end, Section 16.3 shows a summary and a discussion of the results

of this chapter.

16.1 How do they act together?

The complexity of these simulations is higher not only because the the total number of free
parameters of the potential is larger. First, the relative phase between the spiral arms and the
bar varies with time due to the different pattern speed of the bar and the spiral in the default
model. This require that the velocity distributions must be studied only at fixed times when the
desired relative phase is achieved. Second, the spiral-bar PM04–MW potential model depends on
time and the analysis comes to be clearly time-depending. We expect that the final distributions
depend on the final relative phase and also on the history of the combined influence of the bar
and the spiral arms.

The aim of this chapter is not to find the set of parameters of the spiral-bar model that
best fits the observed moving groups. This would require a large number of high CPU time

225



16. COMBINING SPIRAL ARMS & BAR

simulations. The first affordable step is to analyse whether the groups generated by the spiral
arms or the bar separately are maintained or modified when the spiral-bar model is used. This
will tell us if the simulations with the individual non-axisymmetric components can be used
to constrain the properties of the bar and the spiral arms. It would be interesting to see in
which conditions or in which regions of the U–V plane it is the bar or t he spiral influence
which dominates on the kinematic structures or if the action of the two MW components or the
resonance superposition create new kinematic structures. The results of these simulations can
prove the speculations of other authors about the influence of the bar or the spiral arms in a
particular region of the U–V plane (see details in Page 230 and subsequent pages). Moreover
it will be interesting to compare the present results with the simulations of Chakrabarty (2007)
with a model that, despite including the two non-axisymmetric components at the same time,
studied the case of 4 weak spiral arms (see Section 11.5).

It has been seen in Chapter 15 that the spiral arms do not show significant influence on the
region of low angular momentum of the U–V plane which is explored using the IC3 disc. For
this reason the results that we show in this chapter are restricted to IC1 and IC2. The CPU
cost of the present simulations is high compared with the simulations of previous chapters. This
complicates the scanning of the model parameter space and for this reason show only a few
examples of the influence of several parameters.

IC1– Figure 16.1 shows the results for the spiral-bar PM04–MW potential model with the
default parameters used with IC1 at several azimuths φ of the solar radius R = 8.5 kpc. From
this panels we can see that the kinematic structure at V ∼ −40 km s−1 created by the spiral
arms (Figure 13.1) appears again for almost every azimuth.

On the other hand, in the central part of the distribution several features that we can identify
with the effects of the bar (Figure 14.1) or with the effects of the spiral arms (Figure 13.1) are
also differentiated depending on the azimuth φ. For instance, at φ = 0◦ we see an elongation
through positive U at V ∼ 0 km s−1 that is observed also for the simulations with the bar.
Besides, as in the results for the spiral arms, there is a bifurcation at U ∼ −20 km s−1 and
V ∼ 0 km s−1. Therefore at this position where the orientation of the bar is φ0b = 20◦ and
the one for the spiral arms is φ0sp = 88◦ we might identify effects of both non-axisymmetric
components.

In the case for φ = 100◦ the orientation of the bar is φ0b = −80◦ (or 100◦) and the one for the
spiral arms is φ0sp = −12◦ (or 168◦), that is almost on the arm. In this position the influence
of the spiral arms seems to dominate as we can observe the three central branches again. The
influence of the spiral arms is also notorious at φ = 120◦.

For positions in the ranges 20− 60◦ and 140− 160◦ the central parts of the distributions are
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Figure 16.1: Kinematic effects of the bar and the spiral arms on a cold disc. U–V velocity
distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the spiral-bar
PM04–MW potential model (bar and spiral arms) and IC1.
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almost identical that the case with only the prolate bar. This positions correspond to orientations
of φ0b = [−40◦, 0◦] and φ0b = [40◦, 60◦] for the bar and φ0sp = [28◦, 68◦] and φ0sp = [−52◦,−72◦]
for the spiral arms. Remarkably, at φ = 80◦, φ = 100◦ and φ = 120◦ we notice a band or stripe
at the highest V that was only slightly discerned for the simulations with only the bar but at
lower V . This constitutes an example of joined action of the two non-axisymmetric components.

IC2– Figure 16.2 shows the results for the spiral-bar PM04–MW potential model with the
default parameters used with IC2 at several azimuths φ of the solar radius R = 8.5 kpc. Again
tracers of the bar and the spiral arm influence can be seen in certain azimuths φ. For instance,
at φ = 0◦ we see again an elongation through positive U at V ∼ 0 km s−1 that is observed also
for the simulations with the bar. Also we see the tendency of the particles with negative V to
be shifted towards negative U as in the bimodality caused by the bar alone. For φ = 120◦ and
φ = 140◦ the two groups are very similar to the groups created by the spiral arms alone.

Varying the default parameters– As explained at the beginning of the chapter, for the
spiral-bar PM04–MW potential model the space parameter has become very extensive and in
addition to the complexity of being time-dependent simulations. Next we present a few examples
of interesting simulations when some default parameters are modified.

• Orientation of the spiral arms: Now we explore the velocity distributions of a simula-
tion where we change only the orientation of the spiral arms. These are rotated counter-
clockwise as indicated in Figure 16.3. The new orientation of the spiral arms with respect
to φ = 0◦ is φ0sp = 39◦ (the default value is 88◦) and now the outer arm is nearer the
supposed position of the Sun. We use IC2. The results are shown in Figure 16.4. As
compared to Figure 16.2, we see that the velocity distributions that shown two groups due
to the spiral arms at φ = 120◦ and φ = 140◦ that were maintained in the spiral-bar model
are now observed at φ = 80◦ and φ = 100◦ due to new orientation of the spiral arms. It
is interesting that the group at negative V appears now shifted to positive U whereas it
was approximately centred in U in the previous simulations. This may be attributed to
the effects of the bar.

• Bar pattern speed: Now we repeat the simulation of the previous item that has a
new orientation for the spiral arms (φ0sp = 39◦) but in addition we change the default
bar pattern speed to Ωb = 60 km s−1kpc−1 (Figure 16.5). It is surprising the richness and
clearness of the kinematic structures that are generated in these simulations. Again tracers
of the bar and the spiral arms are identified. For instance, the group at V ∼ −60 km s−1

was also seen in the simulations of the prolate bar with Ωb = 60 km s−1kpc−1. The two
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Figure 16.2: Kinematic effects of the bar and the spiral arms on an intermediate disc. U–V
velocity distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the
spiral-bar PM04–MW potential model (bar and spiral arms) and IC2.
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Figure 16.3: Different orientations of the spiral arms.Comparison between the default spiral
arms and the spiral arms oriented with φ0sp = 39◦.

central groups at φ = 80◦ and φ = 100◦, which were produced by the spiral arms, are
again observed.

• Integration time: With additional simulations that are shown in Figures B.24 and
B.25 in Appendix B, we also state that the time variation of the structures can be very
significant.

Although Chakrabarty (2007) is the only study prior to the present one that have analysed
the problem of the moving groups using a model that includes the spiral arms and the bar at the
same time, other authors have speculated about the combined effects of both non-axisymmetric
components. For instance in Dehnen (2000), it is argued that stars should have epicycles smaller
than the interarm separation to be affected by the spiral arms. This lead him to conclude that
the bimodality (Hercules) was unlike to be produced by the spiral arms (see Chapter 13). This
discussion applied perfectly for the interarm distance that he considered. However, we have seen
that in the PM04–MW potential model this can be as large as 5.5 − 7 kpc and the stars of a
structure located at V ∼ −40 km s−1 have epicycles of ∼ 3 kpc. Therefore, we can not avoid the
effects of the spiral arms at the regions of negative V of the U–V plane, as we have confirmed
with our test particle simulations with the spiral-bar model. Following the same argument,
Dehnen (2000) concluded that the effects of the bar on the central part of the U–V plane, which
correspond to orbits of low eccentricity and small epicycles, are little conclusive as these kind of
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Figure 16.4: Kinematic effects of the bar and differently oriented spiral arms on. U–V
velocity distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with
the spiral-bar PM04–MW potential model (bar and spiral arms) with φ0sp = 39◦ and IC2.
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Figure 16.5: Kinematic effects of a rapid bar and differently oriented spiral arms. U–V
velocity distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations
with the spiral-bar PM04–MW potential model (bar and spiral arms) with φ0sp = 39◦, Ωb =
60 km s−1kpc−1 and IC2.
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orbits would now have been highly influenced by the spiral structure. We have confirmed with
our simulations that in the central parts of the U–V plane both non-axisymmetric components
have important influence. But we have seen that the influence of these components in this
central parts of the U–V plane depends on the particular parameters of the model and on the
studied position on the disc. In this sense, we agree with the reasoning of Chakrabarty (2007):
from considerations of the average epicyclic amplitude of the orbits and the interarm separation,
the effects of the spiral arms can not be ruled out neither can be the effects of the bar that will
be strong near the OLR. In fact we have seen that for the vast majority of our simulations with
the default spiral-bar model, the influence of the spiral arms is great (except for IC3). However,
we have also seen that under several conditions and positions on the disc, the spiral arms or the
bar can have only minor influence.

According to Quillen & Minchev (2005), only stars that are affected by a Lindblad resonance
from a certain perturbation are strongly affected by this perturbation. Away from a resonance,
the orbital kinematics can be treated with low-order perturbation theory and the orbits are only
weakly influenced. The effects of the bar should be noticed only in stars of negative V of the
Hercules stream by means of the influence of the bar’s 2:1 Lindblad resonance. And the orbits
of stars with low values of |U | and |V | which are very close to the solar radius should be distant
and so unaffected by Lindblad resonances with the Galactic bar. With this argument, they
conclude that the periodic orbits induced by the spiral arms in the central parts of the U–V
plane are weakly affected by the bar. We have shown how the bar can have great influence on
the central parts of the distribution in contrast with this argumentation.

It was seen in Chakrabarty (2007) that the inclusion of the spiral pattern reduces the boldness
of the features created in the U–V plane and the action of the two perturbers produces numerous
small clumps in the central parts of the velocity distributions at many locations as a consequence
of the presence of a relatively greater variety of families of stellar orbits in these simulations.
We do not particularly observe such trends although it must be stressed that in that study weak
and 4 arms were used. Here the influence of the spiral arms is great and and they can create
large and conspicuous kinematic structures when they act together with the bar.

16.2 Orbital regularity in the simulations with the spiral-bar

model

Although there exist no periodic orbits when a time-dependent potential is used (there is no
possible reference frame where the potential is fixed), the quantification of how regular the
orbits are when the two non-axisymmetric components are included in the potential model is
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still possible and indeed very interesting. Moreover, the computing time of this method makes
easier the scan of the parameter space which in this case is very time expensive with the test
particle simulations. It is worth mentioning that this kind of regularity maps can depend on time
or on the reference system of study is needed. As a first approach we keep the time integration
fixed as in the original design of the method (see Section 10.3) and establish the reference system
to be the one than moves with the bar. This first approximation is equivalent to considering
how the orbital structure of the bar is distorted or changed by the effects of the spiral arms.
Further research will be needed o study the reverse case and establish definitive conclusions.

We begin this study by comparing the results for the default spiral-bar PM04–MW poten-
tial model with the results obtained from the individual non-axisymmetric components (Figure
16.6). As expected due to the above discussion about the reference frame of the method, Figure
16.6alooks more similar to Figure 16.6c. From this Figure we see that the valley of the bimodal-
ity that is created by the bar (see Section 14.2) still appears but now is clearly distorted due to
the effects of the spiral arms. The same happens with the oval dark feature at positive U and
negative V . Between the valley and this oval feature complex shapes appear. Also we can see
tracers of the oval feature which was formed for the spiral arms at large positive V . The central
splitting into two groups for the spiral arms case that creates an approximately horizontal valley
at V ∼ 0 km s−1 is still observed for the spiral-bar case despite being more diluted.

Next we present the analysis of regularity for several variations of the parameters. We
have explored the changes in mass, pattern speed and orientation of the spiral arms and the
bar. Among all these case we want to emphasise some interesting aspects. We see for instance
that when the mass of the bar is increased (Figure 16.7b) the regularity map has not changed
essentially but it seems a little more distorted. By contrast, we can notice that when the mass of
the spiral arms is decreased (Figure 16.7c) the resonant arches at negative V are less distorted.

Figure 16.7d corresponds to a case where the 4:1 ILR of the spiral arms and the 2:1 OLR of
the bar are very close and located just in the solar radius. This corresponds to pattern speeds
of Ωsp = 16.7 km s−1kpc−1 and Ωb = 44.1 km s−1kpc−1. It has been suggested in Quillen (2003)
that when the resonances of the bar and the spiral arms overlap the fraction of chaotic orbits
is larger that for individual perturbations. (Chakrabarty 2007) corroborated it and noticed the
impossibility to use this method to constrain the bar characteristics in that case, which could be
an important drawback if there is some dynamical mechanism that couple the bar and the spiral
like this. With our results we see that in this case this map is very irregular in the central part
of the U–V plane and even the two clear groups of the bimodality appear here highly blurred.
Nevertheless some features of this maps can still be identified with the effects of the bar or the
spiral arms.
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(a) Default spiral-bar model

(b) Default self-gravitating spiral arms (c) Default prolate bar

Figure 16.6: Orbital regularity of the prolate bar and the self-gravitating spiral arms. U–V
plane coloured according to the periodicity of the corresponding orbits at φ = 0◦ and R = 8.5 kpc for
the default spiral-bar PM04–MW potential model (bar and spiral arms), the model including only the
self-gravitating spiral arms and for the model including only the prolate bar. The darker the region is,
the more periodic or closed the corresponding orbit is.

235



16. COMBINING SPIRAL ARMS & BAR

(a) Default

(b) Mb = 14 · 109M� (c) Msp = 0.03Md (d) Resonances overlapping

Figure 16.7: Orbital regularity of the prolate bar and the self-gravitating spiral arms with
different properties. U–V plane coloured as the periodicity of the corresponding orbits for several
variations of the parameters of the default spiral-bar PM04–MW potential model (bar and spiral arms).
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16.3 Summary and discussion

In this chapter we have analysed whether the groups generated by the spiral arms or the bar
separately are maintained or modified when the spiral-bar model is used. This gives us clues
about whether the results of our models that use only bar or only spiral arms can be extrapolated
for the spiral-bar model. The complexity of the simulations that include bar and spiral arms
is very high because of the number of free parameters of the potential and also because the
spiral-bar PM04–MW potential model depends on time.

Some previous speculations in the literature about the effects of the bar and the spirals arms
pointed to the conclusion that the central region of the U–V plane is more affected by the spiral
arms whereas regions at V around V ∼ −40 km s−1 (the velocity of the Hercules moving group)
and below would be mainly affected by the bar (Dehnen 2000, Quillen & Minchev 2005). In
contrast with this argumentation, we see that the bar can have large influence on the central
parts of the distribution and the spiral arms create groups at V ∼ −40 km s−1. That is, in
general, the two non-axisymmetric components have important influence on both the central
parts of the U–V plane and in the regions moderate negative V .

For the vast majority of the obtained velocity distributions under the spiral-bar model the
influence of the spiral arms is great and and they can create large and conspicuous kinematic
structures. This is in contrast to the studies of Chakrabarty (2007) where the weak arms in her
spiral-bar model only contributed to more subtle effects such as reducing the boldness of the
kinematic structures or increasing the number of small kinematic clumps in the U–V plane.

For our spiral-bar PM04–MW potential model, in general we see that the velocity distribu-
tions show separated imprints of the bar and the spiral arms, that is some kinematic structures
are maintained. The detailed imprints depend on the particular parameters of the model and
on the studied position on the disc. In some positions we identify separated effects of both
non-axisymmetric components whereas sometimes the effects of one of the components seem to
dominate. For example, the intermediate disc the bimodality that is produced by the bar is
still observed if the spiral arms are also acting on the disc. Besides, the kinematic structure at
V ∼ −40 km s−1 that is created by the spiral arms appears again if the bar acts together with
the spiral arms on the cold disc. In particular, in positions near the arms the imprints of the
spiral arms seems to be more significant. We have found a particular kinematic structure which
was created by the spiral arms alone that appears now shifted in the U–V plane due to effects of
the bar. But we do not find cases where the U–V plane is distorted so as to present completely
different kinematic structures.

Due to the fact the test particle simulations with the spiral-bar model are very expensive in
CPU time, we do not have carried out an exhaustive exploration of the parameters space. On
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the other hand, we see that the final distributions depend on the final relative phase and on the
history of the combined influence of the bar and the spiral arms. However, our first simulations
and the fact that it is still possible to identify tracers of the bar and the spiral arms separately
shows that our studies with only spiral arms or only bar are a valid way to understand the
effects of each component and eventually be used to constrain the characteristics of the bar and
the spiral arms. Assuming that each moving groups is an imprints of the bar or of the spiral
arms, if the structures are seen to be distorted with time we could even obtain limits on the
joint action of the spiral arms and the bar.

Although strictly there are no periodic orbits for a time-dependent potential, the quantifica-
tion of how regular the orbits is still possible. An exploration of how this kind of regularity maps
would depend on time or on the reference system of study is needed. For the moment, the study
of regularity of the regions on the U–V plane leads to conclusions that are equivalent to our test
particle simulations. In general we see how the main regular regions and resonant features are
maintained but they can be distorted by the additional non-axisymmetric component for some
combinations of the model parameters. For instance the valley that creates the bimodality in the
bar only case appears in almost all our experiments with the spiral-bar model but it is distorted
in some occasions. We see that when the 4:1 ILR of the spiral arms and the 2:1 OLR of the bar
overlaps we see that distortion is high. The maintenance of at least some orbital properties due
to the bar or due to the spiral arms supports the hypothesis that moving groups are due to the
orbital structure and resonances of the non-axisymmetric components of the MW.
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Chapter 17

Summary, conclusions &

perspectives

In this chapter Section 17.1 summarises the main outcomes of the whole

thesis, Section 17.2 brings out the general conclusions of the study and,

finally, Section 17.1 examines the required improvements and perspectives

for future studies of moving groups.

17.1 Summary

One of the most intriguing features of the stellar velocity distribution in the solar neighbourhood
is the existence of moving groups. At present, the origin of these kinematic structures is far from
completely understood although it is more than 140 years since they were discovered. Nowadays,
several explanations for their origin are considered: cluster disruption, dynamical effects induced
by the non-axisymmetric components of the MW (i.e. spiral arms and bar), remnants of past
accretion events and external dynamical effects on the disc resulting from interaction events.
This thesis has dealt with the origin of the moving groups, with particular reference to the
possibility that moving groups are imprints of the bar and spiral arms of the MW, which would
mean that they could be used to constrain the large-scale structure of our Galaxy.

It has already been shown that the effects of the non-axisymmetric components can induce
kinematic groups in the local stellar velocity distribution. The most compelling evidence is the
demonstration that the effects of the Galactic bar resonances can trigger a kinematic group
similar to the observed Hercules group (Dehnen 2000, Fux 2001). But despite the efforts made
in these recent studies, there is a long list of unresolved questions that are still a matter of
debate or that have not yet been addressed (some of them are detailed in Chapter 1). This
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shows that further research is required. In this thesis we have attempted to answer some of
these questions. This study had two specific goals, undertaken via different approaches. First,
we aimed to analyse and characterise the observed moving groups, establishing observational
insights into their origin. Second, we aimed to explore the extent to which we can use the
kinematic imprints to constrain the large-scale structure of the MW and its recent evolution.

Observations Results

To undertake the observational study we have compiled an extensive compendium with the best
available astrometric and photometric data for more than 24000 stars in the solar neighbourhood.
We have applied the WD multiscale technique to this sample to characterise and analyse the
moving groups in the U–V –age–[Fe/H] space. The main outcomes of the observational analysis
are the following:

• The dominant kinematic structures in the U–V plane are the branches of Sirius, Coma
Berenices, Hyades-Pleiades and Hercules. They all present a negative slope of ∼ 16◦ in
the U–V plane.

• A new kinematic group centred at (35,−20) km s−1 is identified, which may be considered
as part of the elongation of the Sirius or Coma Berenices branch.

• The geometrical structure of the branches and the observed density drops in the kinematic
space rule out the classic idea of a smooth velocity distribution.

• The branches are significant for all ages, except for stars younger than 100 Myr.

• The four branches are present in all spatial regions studied, but there is a dependence of
the kinematic branches on Galactic position. The shape of the Hercules branch changes
from one region to another. It is more conspicuous in the region of inner galactocentric
radius, and for a region near the Sun in comparison to a region that is located further in
the direction of rotation. A significant change of contrast among kinematic substructures
inside the branches depending on the spatial region has also been identified.

• There is a large spread of ages inside each branch. This suggests ruling out those models
that propose that these kinematic structures are remnants of disc star clusters.

• While the Hyades-Pleiades and Coma Berenices branches have an important fraction of
very young stars, Sirius has its first main peak for slightly older stars at ∼ 400 Myr. The
extended branch-like shape of Hercules is detected in all subsamples with ages > 2 Gyr.

• There is a periodicity in age of about 500-600 Myr in the Hyades-Pleiades branch although
the large errors in ages compared to this period require more investigation. For the other
branches only an outline of the shape of the whole age distribution is observed.

242



17.1 Summary

• A wide range of metallicity is found for each branch, especially for Hercules with a higher
metallicity dispersion.

• The three branches of Hyades-Pleiades, Coma Berenices and Sirius show a kinematic-
metallicity correlation: the more negative the V component of the branch, the higher the
mean metallicity. However, the Hercules branch does not follow this pattern of the three
main branches.

• The Hyades and Pleiades kinematic substructures inside the branch show distinctive metal-
licity, the former being more metallic.

• The age-metallicity relations of all the branches exhibit the same general tendency as the
whole sample.

Simulation results

We have performed test particle simulations with the PM04–MW potential model to explore
the phase space available to the local stellar distribution. This is a specific potential model
for the MW which is very flexible and has been tuned to reproduce some recent observational
constraints. We have also considered a great variety of initial conditions and integration proce-
dures. This methodology has allowed to study the imprints of the spiral arms and the bar on
the velocity distribution at different disc positions. We have also used a method to ascertain
the regularity of the orbits in the U–V plane. The main results of our simulations are:

• Contrary to common speculations, the spiral arms influence the kinematic velocity distri-
bution at moderate negative V (apart from its influence in the central parts of the U–V
plane) and the bar has a large influence on the central parts of the distribution (apart
from its well-established influence on groups at more negative V ).

• In our simulations where both the spiral arms and the bar are included, individual imprints
of the bar and the spiral arms can still be identified in the final velocity distributions
throughout the solar radius.

• The self-gravitating spiral arms by themselves create significant strong imprints on the
velocity plane. The imprints are particularly intense at positions near the arms.

• The arms can induce slightly tilted kinematic branches that resemble some of the observed
central kinematic structures.

• We identify several resonant orbits that cross the solar neighbourhood. In particular, the
spiral arms are able to carve the regular orbital structure in the central region of the U–V
plane, which is mainly influenced by the 6:1 ILR, following similar shapes to the observed
branches.
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• The spiral arms can crowd the region of the Hercules moving group in the velocity plane
(V ∼ −40 km s−1) and not only the bar, as traditionally believed. These orbits oscillate
around a square orbit due to the 4:1 ILR.

• The velocity distributions induced by the arms change significantly with variations of
pattern speed. Pattern speeds that locate the Sun near the 4:1 ILR produce different
strong kinematic structures. For several relative orientations of the arms, the upper part
of the distribution on the U–V plane is shifted to U > 0, as for the observed Sirius moving
group.

• Spiral arms that act for short times on the disc produce transient but strong kinematic
structures. A clear split into two groups appears at most azimuths in this case.

• The prolate bar with realistic orientation and density profile triggers a bimodality in the
velocity distribution: one kinematic group at negative V and another in the central part
of U–V plane. This is caused by a thin region of irregular orbits that are probably related
to the bar 2:1 OLR. This region is inclined in the U–V plane, which makes the group at
negative V slightly tilted, as in the observations.

• For realistic bar orientations the group at negative V has mean negative radial motion
U , as the Hercules branch does. But for some pattern speeds this group could be better
related to Hyades-Pleiades.

• The central mode of the bimodality is distorted through positive U , which is created by
elliptic orbits aligned with the bar and also related to the bar 2:1 OLR. This distortion
could be associated with the new observed group found here at (U, V ) = (35,−20) km s−1

and with the elongation of the Coma Berenices branch. However, in the simulations, the
relative density of particles in this region is higher than that in the observed velocity field.

• Orbits close to the antialigned orbital family are found to cross the solar neighbourhood
in a position on the U–V plane that may be coincident with the Hyades group.

• The low angular momentum moving groups, including Arcturus, could have two distinct
viable origins related to the bar acting on a relatively hot stellar disc.

• As a first possibility, the dynamics of the bar could have a strong influence on the transient
kinematic groups at low angular momentum that are products of the ongoing phase mixing
in an un-relaxed disc. The bar makes these transient arches depend clearly on azimuth
and bar pattern speed.

• For particular conditions, the velocity distribution exhibits a clear arch at V ∼ −100 km s−1

which covers a wide range of U but for realistic bar orientations it is slightly shifted towards
negative U . This could be associated with the Arcturus moving group.
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• The second possibility is that the bar also creates steady kinematic structures at low
angular momentum that may be associated entirely with its induced resonant effects on the
U–V plane. For the realistic bar orientations of φ0b = 20◦ (consistent with the Galactic bar)
and φ0b = 40◦ (consistent with the long bar), two overdensities at low angular momentum
are seen, apart from the two of the above-mentioned bimodality.

• The bar resonances 3:1, 4:1 and/or 5:1 could be responsible for these kinematic groups at
low angular momentum.

17.2 Capabilities of the kinematic imprints to constrain the

MW structure and recent evolution

Our analysis of the observational sample and the simulations indicates that it is very feasible
that some of the moving groups observed in the solar neighbourhood have a dynamical origin
related with the effects induced by the spiral arms and the bar. Our test particle simulations ap-
proach has shown that non-axisymmetric Galactic components that are consistent with several
observational constraints induce strong imprints on the local stellar kinematics. The imprints
are mainly sensitive to the orientation and pattern speed of the spiral arms and the bar. We
have confirmed this with our study of the orbital regularity on the U–V plane. In contrast, the
strength of the non-axisymmetric components, the time of exposure to the non-axisymmetric
components, or the characteristics of the discs used to trace the phase space DF such as its
velocity dispersion, influence mainly the way that kinematic groups are populated. The depen-
dence of the stellar kinematic groups on the structure and dynamics of the model and on the
initial conditions of our experiments show that kinematic groups may provide useful constraints
on non-axisymmetric MW components.

In the case of the spiral arms, there is currently a great deal of observational ambiguity
surrounding, e.g., their pattern speed, strength, orientation, number of arms and lifetime. The
strong imprints of the self-gravitating spiral arms on the velocity distributions at solar radius
and the sensitivity of our results to the properties of the arms indicate that kinematics could be
used as one of the constraints on this current uncertainty. We find strong but different imprints
when the spiral arms are a long-lived or a short-lived non-axisymmetric component. To our
knowledge, the effects of self-gravitating spiral arms on the velocity distribution have not been
studied before. Furthermore, we find significant differences between the effects produced by the
self-gravitating spiral arms and the TWA arms due to the important differences between the
force-field shape of a TWA model and that derived from a mass distribution. We have also seen
that the self-gravitating spiral arms create stronger substructure than the TWA arms. This
could help to establish whether the arms of the MW are weak and tightly wound following the
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TWA or whether they are strong self-gravitating arms.

In particular for the bar of the MW, its orientation with respect to the Sun is currently
rather tightly constrained. However, its pattern speed has been determined using independent
methods that yield similar results but still contain considerable uncertainty. The kinematic
groups can help in the determination of this parameter as well as in constraining the properties
of the recently discovered long bar of the MW. Only minor differences between the induced
effects of the quadrupole model and of the prolate bar are observed for similar force amplitude
when they are applied to discs that are not very hot. Therefore, we conclude that in contrast
to the case of the spiral arms, where important differences were found between models, it seems
more difficult to discriminate between bar models. However, we have seen that the force profiles
are indeed very different at inner regions of the disc or in the bar itself. As with hotter initial
conditions there can be orbits that have large radial excursions that can even enter the bar itself,
we expect more accurate results with the prolate model which is more realistic for these regions.
By contrast, the quadrupole bar model is probably only a good approximation at larger radii.

There are some examples of revealing results from our simulation study. First, the spiral
arms and the bar can have an influence on regions on the U–V plane that was unexpected
according to other authors. For instance, contrary to common conjecture, the spiral arms, and
not only the bar, can crowd the region of the Hercules moving group. It is compelling that this
moving group can help to constrain both the spiral arms and the bar. Also, we see that the
observed branches and moving groups in the central part of the U–V plane can be produced not
only by the spiral arms but also influenced by the bar. Secondly, the bimodality induced by the
bar could explain the existence of Hyades-Pleiades. This would change the restrictions on the
bar pattern speed that are usually obtained by fitting the Hercules moving group.

Finally, the possibility that the kinematic groups of low angular momentum can be influenced
and indeed caused by the resonances of the bar introduces a new perspective into the recent
interpretation of its extragalactic origin. Although our observational sample does not include low
angular momentum moving groups, other observational studies have pointed out that this group
is more likely to have a disc-dynamical origin based mainly on stellar chemical abundances. Our
simulations have demonstrated this by relating them to the bar influence. It is very promising
that kinematic groups such as Arcturus can help to constrain properties of the bar, such as
the pattern speed or the orientation. Moreover, as the stars in these kinematic structures can
originate at very small Galactic radii, they can provide information regarding the processes that
takes place in the central regions of the Galaxy or near the bar itself. If they finally turn out
to be transient kinematic groups, they could also offer information about the evolution of the
MW. Moreover, the Hercules moving group could be consistent with one these transient groups.

In our simulations where both the spiral arms and the bar are included, individual imprints
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of the bar and the arms can still be identified in the final velocity distributions throughout the
solar radius. The detailed imprints depend on the particular parameters of the model and on the
position on the disc studied. This shows that in most cases, studies with only spiral arms or only
the bar are a valid way to understand the effects of each component, and eventually they could
be used to constrain the characteristics of the bar and the spiral arms. Moreover, in the case
with both non-axisymmetric components, as the structures are seen to be distorted with time,
we could even obtain temporal limits on the joint action of the components. The maintenance of
at least some orbital properties due to the bar or due to the spiral arms supports the hypothesis
that moving groups are due to the orbital structure and resonances of the non-axisymmetric
components of the MW.

17.3 Improvements & future perspectives

In this section we first present the main limitations and required improve-

ments in our particular approach to the study of moving groups. We end

up with a list of some examples of future research lines and perspectives

for the study.

The results of this thesis are encouraging in that they show that the moving groups could
be used to constrain spiral arms and bar characteristics. This study represents a significant
advance in the field, especially concerning the statistical method used to analyse the observed
and simulated data, the large observational sample, the flexibility of the MW potential and its
consistency with some recent observational constraints, the variety of initial conditions of the
simulations and the different simulation strategies. However, several improvements are needed
in the field in order to definitively disentangle the origin of the different kinematic groups in the
solar neighbourhood and finally constrain some properties of the MW and its evolution.

(i). Observational sample. Whereas the accuracy in the kinematic data of our observational
sample is unprecedented, metallicities and especially ages, lack the desired precision, de-
spite being key parameters in this study. At the cost of having relatively imprecise ages
and metallicities, the sample provides us with an exceptional number of stars with these
physical parameters. In general, the photometric metallicities have been sufficient for our
general purposes but for the moment they are available only for part of the FGK-type stars
of our sample and only the [Fe/H] parameter. The ages have large error determinations. A
cut-off by error for this parameter has been necessary to work with the more reliable ages.
The near spatial limits of the sample provide us with accurate kinematic measurements
but do not allow us to study the observed moving groups in other disc positions. The
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sample of KM giant stars is more extended but this subsample only includes stars from
the northern hemisphere and, therefore, it has a non-uniform sky coverage. The limits
of completeness of the sample make it difficult to estimate the relative density of stars in
each kinematic branch. For instance, the limit of volume completeness is only 40 pc. On
the other hand, our sample does not contain many stars with low angular momentum or
low metallicities, so new sample selection criteria must be planned.

(ii). Potential model. The potential of the MW used in this thesis is a significant improve-
ment upon other studies in the field. Its main advantages are that it is very flexible, it has
been tuned following several observational constraints, and it is a 3D model. However,
its self-consistency has been proved formally only for the periodic orbital structure which
may not be representative of all other orbits. Also, this and all other models need contin-
uous updating to incorporate the contributions of the scientific community to increased
knowledge about the Galaxy. New findings must be incorporated and explored (e.g. two
bars, and their respective masses and pattern speeds).

(iii). Simulation method and initial conditions. Our variety of initial conditions and
different integration times improve significantly on previous studies. However, here and in
all similar studies in the field, the main limitations of the method probably come from the
idealised initial conditions. We have shown that the results can depend significantly on the
properties of initial discs, which is revealing of the complexity of the real MW case. Due to
this dependence, comparison between the observed velocity distribution and the results of
test particle simulations is not straightforward. Besides, our simulations have been carried
our in the disc plane under the assumption that vertical movement is decoupled from the
in-plane motion, which is valid for nearly circular orbits that do not involve large heights
above the plane. This may not be correct for hot discs. The PM04–MW potential model
is ready to be used in 3D simulations, which can help us to deal with this issue.

(iv). Method of determining the orbital regularity. Whereas the test particle simulations
can depend on the initial conditions that for the moment are very idealised, the study
of regular orbits does not show which orbital features are populated or how. It is not
straightforward to directly ascribe moving groups to periodic (or chaotic) orbits. First,
we see that there are very clear regions of regularity which are not seen as a significant
overdensity in the test particle simulations. Second, the coincidence in position on the
U–V plane of a periodic orbit with some observed kinematic group is not sufficient proof
that the observed structure has a dynamical or resonant origin. On the other hand, the
method does not deal with the stability of these orbits, which would help us to determine
whether stars could be trapped around these orbits. This method, together with the test
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particle simulations, has provided some clues to the resonant origin of moving groups. In
some cases we have seen a clear correspondence between regions of regular orbits in the
U–V plane and groups created by our potential model in the test particle simulations. In
other cases, the groups seem to be due to regions delineated by empty regions of irregular
chaotic orbits.

(v). Degeneracy. With our simulations we are been able to examine the degeneracy inherent
in this field. This means that for a given moving group there can be several interpretations
that relate it to effects of the MW non-axisymmetric components (e.g. Hercules, Hyades,
Arcturus). Unfortunately, it is currently difficult to decide which is the most appropriate.
Moreover, a unique interpretation is no proof that the group has this orbital origin. To
reduce this ambiguity we are currently planning strategies that involve both simulations
and observations concerning chemical and age tagging, moving groups in other disc regions
or relative density contrast in the U–V plane of the kinematic structures.

(vi). Best fit of the MW structure. A large systematic scan of the parameter space of
the model will be required in order to constrain some properties of the MW and its
history. The exploration of the influence of each parameter carried out in this thesis
has not been exhaustive. We have not used a goodness-of-fit parameter or an equivalent
quantification to evaluate how well the simulated distributions fit the observed one, which
would be useful for the fit of the best model parameters. However, due to the mentioned
current degeneracy and to the fact that other processes will influence and sculpt the real
velocity distributions, we should not expect an exact mathematical equivalence between
simulations and observations. For instance, the fit will be highly biased if some of the
observed moving groups have not been induced by the bar or the spiral arms or if some of
them have additional influences such as dispersion by giant molecular clouds or additional
transient effects. An additional limitation to constrain the parameters of the potential
comes from the uncertainty in the solar motion that makes it difficult to determine with
exactitude the peculiar velocity of the observed moving groups. The problem is complex
as the presence of kinematic substructure due to resonant effects in the nearby velocity
field calls into question some of the methods for determining the solar movement. For
the moment, we have chosen a simple exploration of the parameter in order to study
qualitatively the effects of each particular component and parameter.

(vii). Phenomena simplification. With the increase of knowledge about the structure and
the evolution of the MW, we have to cope with a more complex scenario and a variety
of processes that can play a role in the formation of the moving groups. We have not
considered external processes like past accretion events or tidal interactions, or internal
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disc processes like star formation bursts. We have hardly addressed the bar or spiral arm
evolution and we have not taken into account the possible evolution of the disc which can
change its kinematic properties or mass. Our short integration times can partially allow for
some of these latter phenomena, but the evolution must be taken into more consideration.
Although some of these mechanisms were initially considered mutually exclusive, they are
all natural in current galaxy formation models. The observed velocity field may be the
result of the combined action of several Galactic and external processes.

We have seen that the kinematic groups can very plausibly be created by the effects of the
bar and the spiral arms. However, we cannot reject the possibility that some moving groups
could indeed have other origins such as being remnants of clusters or past accretion events
in the disc. It will be interesting to study how all these Galactic and external mechanisms
interact. For instance, we wonder whether some of these remnants of satellite galaxies are
influenced by the bar resonances which give them certain shapes or certain mean U . It is
also possible that some dispersed star clusters, which in fact experience the same resonant
influence as other stars, also appear as part of a moving group.

In view of all the improvements required in the study of moving groups, we can identify
several scientific challenges for the coming years as far as moving groups are concerned. We
consider that a combination of chemical tagging, improved large-scale Galactic dynamics studies
and cosmological simulations applied to the MW are required in order to disentangle the origin of
the kinematic structures in the Galactic disc. These may lead to more reliable use of the moving
groups to trace the structure of the MW and its formation and evolution. New theoretical and
observational strategies to approach the problem are needed in preparation for the upcoming
Gaia and other surveys. Some examples of future research lines and perspectives are:

• Study of the velocity distribution at different Galactic positions on the disc.
Our simulations can be studied from the point of view of the whole disc and we have already
seen that the particles that belong to a given kinematic group have distinctive final spatial
distribution. The spatial study of the observed moving groups is limited by the extension
and precision of the current observational samples. The comparisons between observed
and simulated velocity distributions in several regions of the disc may establish additional
constraints on the MW potential. We expect an improvement in the characterisation of the
spatial distribution of the stars in each moving group and of velocity distributions in other
disc regions. Future (and current) surveys (USNO, UCAC3, 2MASS, RAVE, SEGUE,
PanStars, LAMOST, GAIA) are required.

Recently we have carried out a preliminary evaluation of the Gaia capabilities to provide
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new insights into the study of moving groups. We have calculated the accuracies in U , V ,
W velocities using the Gaia Universe Model Snapshot (GUMS), based on the Besançon
Galaxy Model, and the current estimations of the Gaia errors1. We have found, for in-
stance, that even using the relatively inaccurate radial velocities offered by Gaia for stars
up to V=16 we may be able to perform robust statistical analysis of the disc velocity
distribution (with accuracies better than2 km s−1) up to ∼ 3 kpc from the Sun.

• Metallicity and age characterisation of the disc kinematic structures. Although
the available ages and metallicities for our observational sample lack the desired precision,
they are key parameters in this study. Our simulations have shown that the particles
of a kinematic group can have distinctive initial spatial distribution and distinctive time
exposure to the non-axisymmetric components. When our method is complemented with
chemical models of galaxy evolution which refine the relation between age, chemical abun-
dances and migration, these distributions can be used as tracers of the chemistry or the
age of those particles. They may eventually be able to be compared with the distinctive
metallicities and ages of the observed moving groups. In the observational domain, new
IR photometric and spectroscopic surveys will play an important role in this context. The
inclusion of all these additional elements in the comparison between observed and simu-
lated moving groups are mandatory. This will also allow us to investigate and perhaps
confirm, for instance, the periodicity found in the age distribution of the Hyades-Pleiades
observed branch. Although several recent studies have begun to obtain high-resolution
spectra that have led to accurate and complete chemical determinations, our methodology
requires metallicity and α-element abundances for larger samples. The future systematic
use of multi-spectrographs may contribute significantly to this.

• Study of the resonant streams in N-body simulations developing bar and/or
spiral arms. Up to now moving groups have been studied theoretically mainly through
test-particle simulations. The goals of using N-body simulations as a new type of modelling
are the following. First, to model the temporal evolution of the MW self-consistently
(evolution of the bar and the spirals). Second, to use cosmological simulations that include
gas and star formation which will allow simulated stellar ages and metallicities to be
obtained that can be compared to our observational data. Future N-body simulations
with larger numbers of particles in the Galactic disc, improved initial conditions and
better spatial and temporal resolution are required (massive parallel computation).

• Inclusion of Galactic evolution. Up to now, moving groups have been used mainly

1For more information see Antoja et al. 2009,

http://www.ari.uni-heidelberg.de/meetings/milkyway2009/talks/index.html
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as tracers of the current structure of the MW (properties of bar and the spiral arms). In
the future the time evolution of MW must be included in our test-particle simulations,
adding complexity to the problem but also realism. The first step is the inclusion of
time-dependent bar and spiral arms. The fact that the evolution of the non-axisymmetric
components of the disc (e.g. slowing down of the bar or transient spirals) also creates
imprints on the local velocity distribution leads to the possibility of using the moving
groups to constrain the MW evolution and not only its present structure. As a result of
new perspectives, the study of moving groups has grown to be more complex. It is now
becoming progressively integrated with galaxy formation and evolution, thus establishing
a link between cosmology and near-field cosmology

• Extension to all kinds of moving groups. As the resonant moving groups are used to
constrain the properties of the bar and the spiral arms, other kinds of moving groups (e.g.
remnants of accreted satellites) can also help in the study of other large-scale properties
of the MW (e.g. shape of the halo). The extension of our study to other types of moving
groups and the application of the same but adapted techniques (denoising methods of data
treatment, analysis through simulations) are a natural step. For example, WD techniques
could be used to detect streams in the MW halo.

• Study of the “dark moving groups”. As a result of our dynamical studies, we have
been recently interested in the effects of the resonances on the possible dark disc of the
MW predicted by recent studies of galaxy formation in the Λ-CDM Universe. In this thesis
we have suggested that the particles in this possible dark disc are also influenced by the
resonances, as stars are. The motivation is to examine whether the “dark moving groups”
generated could influence direct dark matter detection. A deep study of this should begin
with the analysis of the cosmological simulations to establish proper initial conditions for
the dark disc that will be the input for simulations including bar and spiral arms. This will
allow an analysis of the conditions of resonant trapping of dark matter and the triggered
dark matter currents.

To conclude, this thesis has involved statistical data analysis (multiscale techniques), scien-
tific exploitation of astronomical catalogues (kinematics, photometric ages, metallicities), rigor-
ous treatment of observational errors and biases, galactic dynamics, analytical models for the
potential of the MW, test particle orbit simulations, programming and running simulations in
multi-processing systems, and knowledge of the data simulation in the preparation tasks of the
Gaia mission and of the accuracies expected for this mission. All this technical and method-
ological background sets us at a good starting point to address the Gaia scientific challenge in
the next decade.
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Appendix A

Considerations about the initial

conditions

As we have discussed in Section 10.2, several assumptions and approximations in our method
of IC building have been taken. These are: i) exponential approximation of the radial density
distribution of the disc in contrast to the density of the PM04–MW potential model (Miyamoto-
Nagai disc), ii) truncation of the collisionless Boltzmann equation at certain order and iii)
epicyclic approximation. In this appendix we evaluate if these approximations mean a limitation
for our study.

A.1 Phase mixing due to the initial conditions

In this section we evaluate the behaviour of our three types of IC: IC1, IC2 and specially IC3 for
being the more extreme case. In short, we study how all these IC evolve under the PM04–MW
potential model using only the axisymmetric part. Regarding the spatial distribution of the disc,
in Figure A.1 we show the initial surface density of the disc (imposed exponential) compared to
the final distribution with R after evolving for 400 Myr and 5000 Myr for the three types of IC.
In the left panels of this figure we see how the initial density distribution fits the exponential
curve with scale length of 2.5 kpc (see Section 10.2). After the longer time, the final density
profile is stabilised. For IC1 and IC2 (Figures A.1a and A.1b) the final density profile do not
change significantly. However, for IC3 (Figure A.1c) the final density distribution differs notably
from the imposed at the beginning. The difference is noticed even for 400 Myr of integration.
Globally, a migration of particles from the inner to the outer parts of the disc has occur.

Concerning the velocity distributions, we now study them after an integration of 5000 Myr.
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A. CONSIDERATIONS ABOUT THE INITIAL CONDITIONS

(a) IC1

(b) IC2

(c) IC3

Figure A.1: Initial and final density distributions. Comparison between the initial analytical density
distribution with the numerical initial distribution (left column) and with the distributions after 400 Myr
and 5000 Myr of evolution under the axisymmetric part of the PM04–MW potential model (right column)
for IC1, IC2 and IC3. The analysis is done with 100000 particles of the disc.
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A.1 Phase mixing due to the initial conditions

(a) IC1 (b) IC2 (c) IC3

Figure A.2: Initial and final velocity distributions. Comparison between the initial V velocity
distribution of 15000 particles in the solar ring (8-9 kpc) with the distributions after 400 Myr and 5000 Myr
of evolution under the axisymmetric part of the PM04–MW potential model for IC1, IC2 and IC3.

Table A.1: Moments of the initial and final U distribution. Some moments of the initial and final
U distribution for the 15000 particles in the solar ring (8-9 kpc) with 5000 Myr of evolution under the
axisymmetric part of the PM04–MW potential model for IC1, IC2 and IC3. For IC3 we also indicate in
brackets the same statistical parameters but only considering particles with initial radius R > 2.5 kpc.

IC1 IC2 IC3
t = 0 t = 5000 Myr t = 0 t = 5000 Myr t = 0 t = 5000 Myr

mean ( km s−1) -0.06 -0.02 -0.03 0.05 -0.2 0.2 (-0.1)

standard deviation ( km s−1) 5.0 6.1 19.0 20.0 40.0 49.0 (46.0)

skewness -0.002 -0.031 -0.026 -0.005 -0.020 -0.005 ( -0.021)

kurtosis -0.02 0.16 0.07 0.18 0.1 1.6 ( 0.8)

Table A.2: Moments of the initial and final V distribution. The same as Table A.2 but for eh V

component.

IC1 IC2 IC3
t = 0 t = 5000 Myr t = 0 t = 5000 Myr t = 0 t = 5000 Myr

mean ( km s−1) 0.03 -0.08 -4.4 -5.3 -19.0 -33.0 (-28.0)

standard deviation ( km s−1) 5.0 4.4 14.0 15.0 29.0 46.0 (37.0)

skewness 0.02 0.02 0.0 -0.5 0.0 -1.1 (-0.7)

kurtosis 0.0 0.3 0.0 0.8 0.0 1.3 (0.3)
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A. CONSIDERATIONS ABOUT THE INITIAL CONDITIONS

Figure A.2 shows the initial and final V distributions for IC1, IC2 and IC3 at solar radius.
Similarly to what we conclude for the studies of the density, the distribution is almost invariable
for IC1 and IC2. But for IC3 it has became clearly asymmetric. To quantify the degree of
similarity or difference between initial and final U and V distributions we present in Tables A.1
and A.2 some statistical parameters concerning these distributions. In particular we present the
mean, standard deviation, skewness and kurtosis for the initial and final velocity distributions
in the solar ring (8-9 kpc) with 5000 Myr of evolution under the axisymmetric part of the PM04–
MW potential model for IC1, IC2 and IC3. For IC3 we also show in brackets the same statistical
parameters but only considering particles with initial radius R > 2.5 kpc. With this we avoid
the central parts of the disc where the presence of the bulge in the PM04–MW potential model
is significant and where the velocity dispersions are most uncertain. The main outcomes of these
calculations are the following. The final average in V , i.e. the asymmetric drift, has become
significantly larger for IC3, even if the more inner particles are rejected. The dispersions in both
components of the velocity have grown also significantly for IC3. We see from these calculations
that the mean and velocity dispersions for IC1 and IC2 have varied less than 1 km s−1. To
establish the significance of the skewness and the kurtosis we use approximate formulae to
calculate their standard errors following Tabachnick & Fidell (1996): they can be estimated
roughly with

√
6/N for the skewness and with

√
24/N for the kurtosis, where N is the number

of points in the sample. For our samples with 15000 points these are 0.02 and 0.04 respectively.
Taking into account these values, we conclude that all discs (IC1, IC2, IC3), which initially
had null kurtosis and null skewness as they are Gaussian distributions, have changed these
parameters. They have all gained a significant positive kurtosis both in U and in V . Significant
negative skewness has been found in the final distributions only in the V component for IC2
(which is noticed in the weak tail of particles at negative V in Figure A.2b) and for IC3 (perfectly
noticeable in Figure A.2c).

With these tests we conclude that strictly all discs (IC1, IC2, IC3) suffer from phase mixing
processes due to the approximations made in their construction. We see that for IC1 and IC2
the effects of this process are minor or at least, it is not necessary to take them into consideration
in the time scales of relevance in our simulations. However, the hottest disc IC3 experiences
conspicuous effects that can have consequences on our results. In particular, the phase mixing
causes transient effects on the velocity plane until the final relaxation is reached. We see in
Chapter 15 that the velocity distributions exhibit arch-shaped structures specially at lower
V which successively disappear with time leading to the smooth velocity distribution when the
complete phase mixing has been achieved. In other words, the initial non-homogeneous coverage
of the phase space due to the followed approximations triggers a process of phase-mixing that
becomes apparent in the formation of these transient arches. With the use of IC3 as a tracer of
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A.2 Exponential density approximation

the final DF we are probably biasing the DF through inner and very eccentric orbits that tend
to reach the solar radius. Neither IC1 nor IC2 exhibit these arches.

We have generated a new set of IC with a density profile consistent with a Miyamoto-Nagai
disc following the same process and normalisation as in IC3 detailed in Section 10.2. Repeating
the above tests using these new IC, we see that similar phase-mixing processes occur and,
therefore, the approximation in the density (i) is not the cause, or at least the unique cause,
of the mentioned transient effects in the disc. This is discussed in Section A.2. Besides, the
significant skewness and kurtosis in the final the velocity distributions of IC3 points to the fact
that probably higher order moments in the collisionless Boltzmann equation (ii) should have
been considered. On the other hand, the invalidity of the epicyclic approximations (iii) for high
velocity dispersion such as the one of IC3 and specially at the inner parts of the disc should not
be forgotten either. Examining carefully which approximation has the maximum contribution
to these transient effects and establishing a new set of IC without these approximations are out
of the scope of this thesis although it is a point that can be dealt with in our future work.

Whatever it is the exact cause of the transient features in the disc, we take advantage of
IC3 to study the effects of the bar and the spiral arms on a disc that experiences strong phase
mixing at the same time that experiences the influence of the non-axisymmetric components of
the potential. The use of IC3 is therefore consistent with simulating a disc which is not in perfect
relaxed equivalently to what a galaxy would experience if an certain phenomena perturbed it
(e.g. a passage of an orbiting satellite or if a bar develops and evolves). This methodology of
using unevenly distributed in phase space initial conditions as a proxy for studying an unrelaxed
population was first used in Minchev et al. (2009). Traditionally the choice of IC is motivated
by self-consistency with the present stage of the Galactic disc structure. However, current
scenarios of galaxy formation and evolution predict that both external and internal perturbation
mechanisms affect the disc kinematics. Therefore, we want also to consider as plausible the
possibility that a recent perturbation on the MW disc has changed the overall potential that
governs it.

A.2 Exponential density approximation

In this section we evaluate the effects of the exponential approximation in the initial density
profile. This approximation helped us to simplify considerably Equation 10.7 in the IC derivation
but differs from the density of the PM04–MW potential model which includes a Miyamoto-
Nagai disc and a bulge. In particular, the bulge exceeds the 1% of the disc density, i.e. begin
to contribute importantly, for R < 2.2 kpc. The comparison between both densities is shown
in Figure A.3. The normalisation of the density has been chosen to give equal density at

267



A. CONSIDERATIONS ABOUT THE INITIAL CONDITIONS

Figure A.3: Different density profiles. Density profile of an exponential disc with the scale length of
RΣ = 2.5 kpc (as in all our IC) and density profiles of the components and full axisymmetric model by
Allen & Santillán (1991). The density of the discs have been matched at solar radius R = 8.5 kpc.

R = 8.5 kpc. The exponential profile is steeper than the Miyamoto-Nagai disc and it is, therefore,
equivalent to considering a shorter scale length.

As we deal with test particles, we consider that the exponential density profile approximation
would not cause significant alterations with respect to a Miyamoto-Nagai profile. In principle for
not very different density distributions the only expected changes in the final velocity distribution
are minor differences in the relative crowding of the kinematic groups. This is due to the fact
that in general the particles that crowd a specific group come from a certain initial ranges of
radius and the different slope of the density profiles causes differences in the relative density
in these ranges. In any case we have undertaken some tests to evaluate the importance of
the exponential density profile approximation generating a new set of IC with a density profile
consistent with a Miyamoto-Nagai disc following the same process as in IC2 detailed in Section
10.2. We have evaluated the effect of the new density profile on the kinematic structures created
by the bar and the spiral arms by comparing equal simulations with these two different discs.
With these tests we conclude that the results are not significantly sensitive to this different initial
distribution. For instance in Figure A.4 we show the same simulation as in Figure 13.7 but using
a Miyamoto-Nagai profile. This simulation uses the PM04–MW potential model including only
spiral arms and is described in the corresponding Section 13.1. We show also an example of a
simulation with only bar (Figure A.5) that must be compared with Figure 14.2. Mo significant
changes are noticed between the two figures of each pair.
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A.2 Exponential density approximation

Figure A.4: Kinematic effects of the spiral arms on a Miyamoto-Nagai disc. U–V velocity
distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the PM04–
MW potential model using only spiral arms and IC consistent with a Miyamoto-Nagai disc.
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A. CONSIDERATIONS ABOUT THE INITIAL CONDITIONS

Figure A.5: Kinematic effects of the bar on a Miyamoto-Nagai disc. U–V velocity distributions
after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the PM04–MW potential
model using only bar and IC consistent with a Miyamoto-Nagai disc.
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A.2 Exponential density approximation

We have followed the evolution of IC that are as hot as IC3 and consistent with a Miyamoto-
Nagai disc. As it is seen in Appendix A.1 and in Section 15.1 the use of the hot disc IC3 produces
several arches in the velocity distributions when they are integrated with the axisymmetric part
of the PM04–MW potential model. These arches are eventually mixed up and dissolved. We
check that exactly the same arches appear when these IC are used and integrated for 400 Myr
(compare Figure A.6 with Figure 15.1 where we used IC3 that have exponential density profile).
To be more consistent, we can consider only particles with initial radius R > 2.5 kpc, where
the density of the bulge is smaller than 0.7% of the disc. In this case Figure A.6 is turned into
Figure A.7. Although we have cut out the arches at lowest part of the panels still some arches
and transient features appear in this case.
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Figure A.6: Velocity distribution of a hot Miyamoto-Nagai disc for the axisymmetric part of
the potential model. U–V velocity distributions after WD at R = 8.5 kpc and at different azimuths
φ for the simulations with the PM04–MW potential model with only the axisymmetric part and the IC
consistent with a Miyamoto-Nagai disc.
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A.2 Exponential density approximation

Figure A.7: Velocity distribution of a hot Miyamoto-Nagai disc for the axisymmetric part
of the potential model without the inner particles. The same as FigureA.6 but only considering
particles with initial radius R > 2.5 kpc.
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Appendix B

Additional materials

B.1 Method figures

Figure B.1: U–V plane coloured as the periodicity of the corresponding orbits calculated for the 12
variables following the order of Table 10.2 for the model of spiral arms.
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B.1 Method figures

Figure B.2: U–V plane coloured as the periodicity of the corresponding orbits for the default model of
spiral arms.
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B.2 Simulations with the axisymmetric part of the potential

Figure B.3: Velocity distribution of the cold disc for the axisymmetric part of the poten-
tial model. U–V velocity distributions after WD at R = 8.5 kpc and at different azimuths φ for the
simulations with the PM04–MW potential model with only the axisymmetric part and IC1.
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B.2 Simulations with the axisymmetric part of the potential

Figure B.4: Velocity distribution of the intermediate disc for the axisymmetric part of the
potential model. U–V velocity distributions after WD at R = 8.5 kpc and at different azimuths φ for
the simulations with the PM04–MW potential model with only the axisymmetric part and IC2.
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B.3 Simulations with the spiral arms

Figure B.5: Kinematic effects of spiral arms with Ωsp = 15 km s−1kpc−1 on a cold disc. U–V
velocity distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the
PM04–MW potential model using only spiral arms with Ωsp = 15 km s−1kpc−1 and IC1.
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B.3 Simulations with the spiral arms

Figure B.6: Kinematic effects of spiral arms with Ωsp = 18 km s−1kpc−1 on a cold disc. U–V
velocity distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the
PM04–MW potential model using only spiral arms with Ωsp = 18 km s−1kpc−1 and IC1.
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Figure B.7: Kinematic effects of spiral arms with Ωsp = 22 km s−1kpc−1 on a cold disc. U–V
velocity distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the
PM04–MW potential model using only spiral arms with Ωsp = 22 km s−1kpc−1 and IC1.
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B.3 Simulations with the spiral arms

Figure B.8: Kinematic effects of spiral arms with Ωsp = 25 km s−1kpc−1 on a cold disc. U–V
velocity distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the
PM04–MW potential model using only spiral arms with Ωsp = 25 km s−1kpc−1 and IC1.
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Figure B.9: Kinematic effects of wounder spiral arms on a cold disc. U–V velocity distributions
after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the PM04–MW potential
model using only spiral arms with i = 12◦ and IC1.
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B.3 Simulations with the spiral arms

Figure B.10: Kinematic effects of less massive spiral arms on a cold disc. U–V velocity distri-
butions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the PM04–MW
potential model using only spiral arms with Msp = 0.03MD and IC1.
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Figure B.11: Kinematic effects of spiral arms acting on a cold disc for longer times. U–V
velocity distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the
PM04–MW potential model using only spiral arms and IC1 with maximum integration time of 3000 Myr.
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B.3 Simulations with the spiral arms

Figure B.12: Kinematic effects of the TWA spiral arms on a cold disc. U–V velocity distributions
after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the TWA model for the
spiral arms and IC1.
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Figure B.13: Kinematic effects of stronger TWA spiral arms on a cold disc. U–V velocity
distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the TWA
model for the spiral arms with approximately double amplitude Asp = 1500( km s−1)2 kpc−1 compared
to Figure B.12 and IC1.
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B.3 Simulations with the spiral arms

Figure B.14: Kinematic effects of spiral arms acting on an intermediate disc for a longer time.
U–V velocity distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with
the PM04–MW potential model using only spiral arms and IC2 with total integration time of 1000 Myr.
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B.4 Simulations with the bar

Figure B.15: Kinematic effects of the bar with Ωb = 48 km s−1kpc−1 on an intermediate disc.
U–V velocity distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with
the PM04–MW potential model using only a bar with Ωb = 48 km s−1kpc−1 and IC2.
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B.4 Simulations with the bar

Figure B.16: Kinematic effects of the bar with Ωb = 60 km s−1kpc−1 on an intermediate disc.
U–V velocity distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with
the PM04–MW potential model using only a bar with Ωb = 60 km s−1kpc−1 and IC2.
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(a) R = 10.5 kpc

(b) R = 9.5 kpc

(c) R = 7.5 kpc

(d) R = 6.5 kpc

Figure B.17: Kinematic effects of the bar at different radius. U–V velocity distributions after WD
at φ = 0◦ and at different radius R for the simulations with the PM04–MW potential model using only
bar with Ωb = 60 km s−1kpc−1 and IC2.
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B.4 Simulations with the bar

Figure B.18: Kinematic effects of a more massive bar on an intermediate disc. U–V velocity
distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the PM04–MW
potential model using only the bar with a mass M = 1.4× 1010M� and IC2.
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Figure B.19: Kinematic effects of a more massive bar acting on an intermediate disc for
a longer time.U–V velocity distributions after WD at R = 8.5 kpc and at different azimuths φ for
the simulations with the PM04–MW potential model using only the bar and IC2 with integration time
t = 1000 Myr.

294



B.4 Simulations with the bar

Figure B.20: Kinematic effects of the quadrupole bar on an intermediate disc. U–V velocity
distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the quadrupole
bar model Ωb = 45 km s−1kpc−1 and IC2.
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B.5 Simulations for the hot disc

Figure B.21: Kinematic effects of the bar with Ωb = 60 km s−1kpc−1 on a hot disc. U–V velocity
distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the PM04–MW
potential model using only a bar with Ωb = 60 km s−1kpc−1 and IC3.
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B.5 Simulations for the hot disc

Figure B.22: Kinematic effects of the quadrupole bar acting on a hot disc for longer times.
U–V velocity distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with
the quadrupole bar model and IC3 with integration time of 5500 Gyr.
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Figure B.23: Kinematic effects of the faster quadrupole bar acting on a hot disc for longer
times. U–V velocity distributions after WD atR = 8.5 kpc and at different azimuths φ for the simulations
with the quadrupole bar model with Ωb = 47.5 km s−1kpc−1 and IC3 with integration time of 5000 Gyr.

B.6 Simulations with the bar and the spiral arms
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B.6 Simulations with the bar and the spiral arms

Figure B.24: Kinematic effects of the bar and the spiral arms on a cold disc. U–V velocity
distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the spiral-bar
PM04–MW potential model (bar and spiral arms) with Ωb = 60 km s−1kpc−1 and IC2.
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Figure B.25: Kinematic effects of the bar and the spiral arms on a cold disc. U–V velocity
distributions after WD at R = 8.5 kpc and at different azimuths φ for the simulations with the spiral-
bar PM04–MW potential model (bar and spiral arms) with Ωb = 60 km s−1kpc−1 and IC2 with total
integration time of 1000 Myr.
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Appendix C

Local dark matter kinematics

Another unexpected aspect of the bar- and spiral arm-induced phase space structure is the
effect on the local dark matter kinematics. Particles in a possible dark matter bar (Coĺın et
al. 2006) and even in the dark matter halo (Athanassoula 2005) are trapped/scattered in the
same resonances as stars are. It has been shown that different bar-induced resonances can be
populated by disc-like and halo particles (Athanassoula 2002, 2003, Ceverino & Klypin 2007).
For instance, Ceverino & Klypin (2007) shown in their figures 9 and 11 that different bar-induced
resonances can be populated by disc-like and halo particles. Recent studies of galaxy formation
of MW mass predict that a flattened dark matter component mirroring the stellar thick disc
structural and kinematic properties will form in a Λ-CDM Universe (Bruch et al. 2008, Read
et al. 2008). We suggest that the particles in this possible dark disc are also influenced by the
resonances as stars are.

Following (Read et al. 2009) we assume that our hottest initial conditions (IC3) are the ones
that more closely represent the dark particles in the dark thick disc. As discussed in Section
10.2, the thick disc would be even hotter and have more rotational lag. However, these IC3
are a first approximation for the particles in the dark disc. With this approach, the results of
Chapter 15 are extrapolated to the dark disc and their Figures could also reproduce the local
dark matter kinematics induced by the PM04–MW potential model, mainly the bar. The main
conclusion is that some “dark groups” at low angular momentum could be influenced and indeed
caused by the resonances of the bar.

This is a very promising subject of study that, however, needs further investigation and
it is subject to all the mentioned restrictions such as the validity of the 2D approximation.
Moreover, the characteristics of the dark disc are poorly constrained, which makes it difficult to
build proper IC to represent this MW component. This issue has never been addressed before
and these dark-matter currents would be independent of the Galactic assembly history or the
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dark substructure abundance. The dynamical history of the Galaxy and its detailed large-scale
structure may help to establish whether the amplitude of the dark matter kinematic structure
is detectable by planned dark matter detection experiments.
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