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Quintanilla (DAMIR-CSIC)

c©Andrés Asensio Ramos 2004
ISBN: 84-689-7166-9
Depósito legal: TF-178/2006
Some of the figures included in this document have been already published in
Nature and The Astrophysical Journal.



iii

Agradecimientos

En primer lugar quiero expresar mi más sincero agradecimiento por todo el
apoyo que he recibido de mi director de tesis, Javier Trujillo Bueno, tanto a
nivel profesional y cient́ıfico como personal. Ha sido una experiencia realmente
inolvidable haber trabajado con un gran cient́ıfico, junto al cual he podido llevar
a buen puerto el trabajo intensivo de cuatro años. Deseo agradecer también el
apoyo que mi co-director de tesis, Pepe Cernicharo, me ha dado. La distancia
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Teide. Asimismo, la colaboración con Ángel Alonso durante el último año de
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Summary

This thesis presents the development of a variety of methods and techniques for
solving radiative transfer problems in molecular lines, and their application to
some research problems in molecular astrophysics. For example, we investigate
the formation of rotational water lines in the giant molecular complex SgrB2,
the vibro-rotational lines of CO in the circumstellar envelope of the VY CMa
supergiant, the enigma of the “cool clouds” in the solar atmosphere and the
Zeeman and Hanle effects in solar molecular lines.

Our first aim has been to develop an efficient radiative transfer code for
molecular lines in spherically symmetric atmospheres accounting for macro-
scopic velocity fields and without assuming Local Thermodynamic Equilibrium
(LTE). In order to solve this type of radiative transfer problems, it is first
necessary to obtain the molecular number concentrations at each point within
the stellar atmosphere model under consideration. To this end, we have de-
veloped a computer code which allows to obtain the molecular abundances via
the instantaneous chemical equilibrium approximation. However, since in many
astrophysical situations the dynamical timescales are shorter than the molec-
ular formation and destruction timescales, we have also developed a computer
program which allows us to obtain the time variation of the molecular concen-
trations via the numerical solution of the chemical evolution equations. This
type of equations must be based on a sufficiently realistic reaction network for
each particular problem under investigation. We have applied these develop-
ments to investigate several key problems in solar physics, like the enigma of the
cool gas in the solar chromosphere or the possible role of photodissociations for
setting the CH abundance in the G-band bright points, which are thought to be
associated with spatially unresolved and intense magnetic flux concentrations
in the solar photosphere.

In this thesis we also show how the fastest iterative methods for the solu-
tion of multilevel radiative transfer problems can be generalized to spherical
symmetry, for both atomic and molecular lines. In particular, we describe the
generalization of the accelerated Λ-iteration (ALI) method (based on Jacobi’s
method) and the iterative methods developed by Trujillo Bueno & Fabiani Ben-
dicho (1995) (based on the Gauss-Seidel and SOR schemes). We show that the
excellent convergence properties of such methods are maintained when going to
spherical geometry. The method based on the Gauss-Seidel scheme is 4 times
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faster than ALI, while the SOR method represents an improvement of an order
of magnitude in the convergence rate. The convergence rate is very high, with
a computing time per iteration that is very similar to that of the Λ-iteration
method, and without requiring neither the construction nor the inversion of
any large matrix.

The non-LTE computer program that we have developed via the implemen-
tation of such radiative transfer methods constitutes a very powerful tool for
a variety of applications in molecular astrophysics, including the particularly
difficult problem of radiative transfer in maser lines. For example, it has al-
lowed us to calculate the excitation state of the rotational energy levels of H2O
in the giant molecular complex SgrB2, including the modeling of the emergent
hot water spectrum. In addition, we have also investigated the formation of
the fundamental vibration-rotation band of CO in the circumstellar envelope
of VY CMa.

A significant part of this thesis focuses on the investigation of the spectro-
polarimetric properties of molecular lines, with the aim of developing new tools
for empirical investigations on solar and stellar magnetism. To this end, we
have investigated the polarization signals that the Zeeman effect and scatter-
ing processes induce in molecular lines. We present a very general method
for accounting for the effect of a magnetic field on the rotational levels of di-
atomic molecules, which is based on the numerical diagonalization of the effec-
tive Hamiltonian.

Concerning the molecular Zeeman effect, we have first investigated the phys-
ical origin of anomalous polarization profiles observed in sunspots, showing that
they are produced by infrared lines of CN, which show a very particular Zeeman
pattern. In order to extract useful empirical information from this type of spec-
tropolarimetric observations we have developed an inversion code of molecular
Stokes profiles induced by the Zeeman effect, which allows us to infer the strati-
fication of the kinetic temperature, density and magnetic field vector in strongly
magnetized regions of the solar atmosphere. We have also investigated in great
detail the circular polarization spectrum produced by CH in the G-band, and
show novel observations which corroborate our theoretical predictions. In ad-
dition, we have detected for the first time polarization signals produced by the
Zeeman effect in FeH lines in sunspots, pointing out their potential interest for
empirical explorations in solar and stellar magnetism.

Finally, we have investigated the linear polarization signals produced by
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scattering processes in MgH, C2 and CN lines, which have been discovered re-
cently via spectropolarimetric observations of the solar limb spectrum. We have
performed an exhaustive analysis of the properties of all the molecular bands
which produce sizable linear polarization signals. Applying the quantum theory
of polarization, we investigate how anisotropic pumping processes induce popu-
lation imbalances and quantum interferences in the molecular energy levels (i.e.,
atomic level polarization), and how weak magnetic fields modify such atomic
level polarization (and the emergent linear polarization!) via the Hanle effect.
We show that a rigorous interpretation of the observed polarization in molec-
ular lines requires to abandon the use of one-dimensional models of the solar
atmosphere and to carry out detailed investigations by using three-dimensional
hydrodynamical models which describe the inhomogeneity and dynamic nature
of the solar photosphere. Taking into account the different sensitivity to the
Hanle effect of the observed C2 lines, we have been able to put some constraints
on the turbulent magnetic field distribution in the granular regions, showing
that the magnetic fields in such regions have to be very weak.
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Resumen

Esta tesis presenta el desarrollo de una serie de herramientas de transporte
radiativo para ĺıneas moleculares y su aplicación a diversos problemas de in-
terés astrof́ısico: la formación de las ĺıneas rotacionales de agua en el complejo
molecular gigante SgrB2, la formación de las ĺıneas vibro-rotacionales de CO
en la envoltura circunestelar de la supergigante VY CMa, la investigación de
la formación de las ĺıneas de CO en la atmósfera solar y la investigación de
las señales espectropolarimétricas producidas por especies moleculares en la
atmósfera solar.

Nuestro primer objetivo ha consistido en el desarrollo de un código de trans-
porte radiativo para ĺıneas moleculares en atmósferas con geometŕıa esférica y
campos de velocidad macroscópicos. Para resolver tales problemas de trans-
porte radiativo, es necesario obtener las abundancias moleculares en cada punto
de la atmósfera. Para ello, paralelamente hemos desarrollado un código que per-
mite obtener las abundancias moleculares suponiendo la aproximación de equi-
librio qúımico instantáneo. Como muchas veces las escalas de tiempo dinámicas
son más cortas que los tiempos de formación de moléculas, hemos desarrollado
también un código que permite obtener la variación en el tiempo de las abundan-
cias moleculares resolviendo las ecuaciones de evolución que surgen al describir
una red de reacciones adecuada para cada problema. Hemos aplicado estos
códigos para investigar problemas como el enigma del CO en la atmósfera solar
o la importancia de la fotodisociación en el establecimiento de la abundancia
de CH en los puntos brillantes observados en la banda G.

Mostramos en esta tesis cómo generalizar a geometŕıa esférica los métodos
iterativos más rápidos de solución de problemas de transporte radiativo. En
particular, mostramos la generalización de los métodos basados en la iteración
Λ acelerada (basada en el esquema de Jacobi) y los métodos iterativos desarrol-
lados por Trujillo Bueno & Fabiani Bendicho (1995), los cuales están basados en
la iteración Gauss-Seidel y SOR. Mostramos que las propiedades de convergen-
cia de tales métodos en atmósferas plano-paralelas se mantienen en geometŕıa
esférica. El método basado en la iteración Gauss-Seidel es hasta 4 veces más
rápido que la iteración Λ acelerada, mientras que SOR representa hasta un
orden de magnitud de mejora en el ritmo de convergencia. La tasa de conver-
gencia es muy alta, con un tiempo de cómputo por iteración semejante al de
la iteración Λ y no requieren ni la construcción ni la inversión de ninguna gran
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matriz.
Una parte significative de esta tesis se centra en la investigación de las

propiedades espectro-polarimétricas de las ĺıneas moleculares. Hemos investi-
gado las señales de polarización producidas por el efecto Zeeman o por procesos
de dispersión incluyendo el efecto Hanle. Presentamos un método muy general
de calcular el efecto de un campo magnético sobre los niveles rotacionales de las
moléculas diatómicas mediante la diagonalización numérica del Hamiltoniano
efectivo.

En lo que concierne a las señales de polarización en ĺıneas moleculares pro-
ducidas por el efecto Zeeman, hemos descubierto e investigado perfiles anómalos
producidos por ĺıneas infrarrojas de CN y hemos desarrollado un código de in-
versión de ĺıneas moleculares que permite obtener información sobre las condi-
ciones termodinámicas y magnéticas de las zonas magnetizadas en la atmósfera
solar. Hemos investigado en detalle el espectro de polarización circular pro-
ducido por la molécula de CH en la banda G y hemos realizado observa-
ciones corroborando las predicciones teóricas. Por último, hemos observado
por primera vez las señales de polarización producidas por ĺıneas de FeH en
manchas solares.

Finalmente, hemos investigado con gran detalle las señales de polarización
lineal producidas por las ĺıneas de MgH, C2 y CN cuando se observan cerca del
limbo solar. Realizamos en esta tesis un estudio exhaustivo de las propiedades
de las bandas moleculares que producen señal de polarización lineal. Mediante
la aplicación de la teoŕıa cuántica de la polarización, investigamos la polar-
ización atómica en los niveles moleculares y su variación por la presencia de
un campo magnético a través del efecto Hanle. Ilustramos que la señal de
polarización por dispersión en las ĺıneas es modificada por la presencia de un
campo magnético. Mostramos que una interpretación rigurosa de la polar-
ización por dispersión observada en las ĺıneas moleculares requiere abandonar
el uso de modelos unidimensionales de la atmósfera solar y hacer investigaciones
detalladas en modelos hidrodinámicos tridimensionales que describan la inho-
mogeneidad de la fotosfera solar. Teniendo en cuenta la diferente sensibilidad
al campo magnético que tienen las ĺıneas de C2 observadas, hemos sido capaces
de poner algunas restricciones a las distribuciones de campo magnético turbu-
lento en las zonas granulares, constatando que los campos en tales zonas de la
superficie solar deben ser muy débiles.
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1
Introduction

In 1926, Sir Arthur Eddington affirmed that “only atoms are physics, molecules
are chemistry”, advising in this way his astronomy colleagues of not wasting

their time trying to find molecular species in the Universe. Curiously, only a
decade after, Dunham & Adams (1937a, 1937b) detected several spectral lines

in the wavelength range between 3900 and 4300
◦

A which remained unidentified
until several later works demonstrated that these lines were produced by CH in
the interstellar medium. It is the well-known electronic transition of CH, known
nowadays as the G-band. Other lines were assigned to CH+. This discovery
suddenly changed the ideas about the Universe, since the existence of molecular
species was considered to be restricted to the Earth. After the discovery of the
CH lines, molecular astrophysics became one of the most exciting and prolific
branches of modern astrophysics.

Even more striking was the detection of rotational CN lines among its lowest
energy levels. The rotational temperatures of such transitions were very close to
2.3 K and independent of the line-of-sight. CN has a very high dipolar moment
and collisions barely affect the excitation state of the rotational levels. On the
contrary, the excitation state of the rotational lines are mainly driven by the
radiation field illuminating the molecule, being almost in equilibrium with this
field. Therefore, this result suggested the presence of an isotropic radiation field
at a temperature of ∼2.3 K. This result, considered at this moment of quite
limited interest for people like the Nobel laureate Herzberg, was confirmed
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twenty-five years later when the Cosmic Background Radiation (CMB) was
discovered by Penzias & Wilson (1965). It became then obvious that the results
obtained from the CN lines are produced by the radiative excitation due to the
remnant black-body radiation after the Big Bang.

The optical observations at that time did not lead to any other detection of
molecular species in the Universe. The discovery of new molecular species had
to await the development of the first radiotelescopes. The new spectral region
opened up by these telescopes produced a huge amount of new information. The
rotational transitions of many molecules were expected to be situated in the
radio spectral range and the presence of many molecular species was confirmed,
even by the first low-sensitivity telescopes. In the sixties, Weinreb et al. (1963)
discovered the presence of OH. Some years later, H2O and NH3 was discovered
by Knowles et al. (1969) and Cheung et al. (1969), respectively, while H2CO
(formaldehyde) was discovered by Palmer et al. (1969).

During the seventies, and thanks to the expansion of the wavelength range
covered by the receivers in the radiotelescopes, other molecules could be de-
tected. Wilson et al. (1970) observed a very strong emission at 2.6 mm towards
the Orion nebula which was assigned to the J=1-0 rotational transition of CO.
In fact, this molecule is one of the most widely used molecular diagnostics.
Other detected species were CS, HCN, CH3OH and HCO+. The study of the
cold Universe could then be accomplished. The observed molecular lines allowed
the exploration of the physical conditions in different astronomical objects by
using different molecular species. The symbiosis with molecular spectroscopy
turned out to be fundamental. Many of the molecular species were very diffi-
cult to produce in the laboratory due to the special conditions of low density
and high radiation field present in the interstellar medium. Therefore, the fre-
quencies of the transitions and the molecular properties were unknown. At that
time, the astrophysical objects selected for the observations of molecular species
immediately transformed into molecular spectroscopy laboratories where new
species were found and which had to be recognized by their spectral lines.

All these steps led to a new branch in Astrophysics known as Molecular
Astrochemistry. Its main aim is to answer the question of how molecular species
are formed in such low density and highly irradiated environments and to obtain
information on the physical properties of the medium.

Additional important advances in Molecular Astrophysics were feasible thanks
to the launch of the Infrared Space Observatory (ISO) satellite. The two spec-
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trometers onboard ISO, the Short Wavelength Spectrometer (SWS) and the
Long Wavelength Spectrometer (LWS) have been used to detect several molec-
ular species and to show that some molecular species are found in many differ-
ent systems. The detection of CH3 (Feuchtgruber et al. 2000), an important
precursor in the development of the hydrocarbons chemistry, the detection of
hydrogen fluoride HF (Neufeld et al. 1997), or the striking detection of benzene
in the envelope of an evolved star (Cernicharo et al. 2001) can be considered
as milestones of ISO. Future IR and sub-millimeter satellites like Herschel1 and
ground-based interferometers like ALMA2 will expand our knowledge of the
molecular species present in the Universe. As an example, a list of the molecular
species that have been discovered in the interstellar and circumstellar medium
is shown in Table 1.1

Interestingly, molecular species are also present in the solar atmosphere,
which is a sufficiently dense and cool medium to allow the efficient formation
of molecules. The majority of the molecules found in the solar atmospheric
plasma are diatomic, although in the cooler sunspots, even water has been
detected (see, e.g., Wallace et al. (1995)).

This Thesis focuses on some key problems in the field of molecular astro-
physics, with emphasis on developing the radiative transfer tools that will be
needed to scientifically exploit the future observations we will be able to obtain
with Herschel, ALMA, Gran Telescopio Canarias3 (GTC), GREGOR4 and the
Advanced Technology Solar Telescope5 (ATST). In addition, by using the Sun
as a unique molecular physics laboratory, this Thesis aims also at making a
significant contribution to the emerging field of molecular spectropolarimetry.

Molecular lines contain key information on the physical properties of the
cool regions of the Universe. For this reason, it is of crucial importance be able
to model the observed spectral line radiation. Molecules are found in the outer
parts of the stellar envelopes of evolved stars and in the interstellar medium.
Therefore, they are usually immersed in strong radiation fields, coming from the
lower parts of the atmospheres of evolved stars or the strong UV field present in
the interstellar medium produced by the ionizing photons of young and massive

1http://www.esa.int/science/herschel
2http://www.eso.org/projects/alma
3http://www.gtc.iac.es
4http://gregor.kis.uni-freiburg.de/
5http://atst.nso.edu
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Table 1.1: List of interstellar and circumstellar molecules detected up to 2003.

Diatomic molecules
AlF, AlCl, C2, CH, CH+, CN, CO, CO+, CP, CS, SiC, HCl, H2, KCl

NH, NO, NS, NaCl, OH, PN, SO, SO+, SiN, SiO, SiS, HF, SH, HD, FeO

Triatomic molecules
C3, C2H, C2O, C2S, CH2, HCN, HCO, HCO+, HCS, HOC+, H2O

H2S, HNC, HNO, MgCN, MgNC, N2H
+, N2O, NaCN, OCS, SO2, c-SiC2

CO2, NH2, H+
3 , SiCN, AlNC, H2D

+, SiH2?, KCN?

Molecules with four atoms
c-C3H, l-C3H, C3N, C3O, C3O, C2H2, CH2D

+, HCCN, HCNH+

HNCO, HNCS, HOCO+, H2CO, H2CN, H2CS, H3O
+, NH3, SiC3

Molecules with five atoms
C5, C4H, C4Si, l-C3H2, c-C3H2, CH2CN, CH4, HC3N, HC2NC

HCOOH, H2CHN, H2C2O, H2NCN, HNC3, HNC3, SiH4, H2COH+

Molecules with six atoms
C5H, C5O, C2H4, CH3CN, CH3NC, CH3OH, CH3SH, HC3NH+

HC2CHO, HCONH2m l-H2C4, C5N, C4H2, C−
6 ?, C5S?

Molecules with seven atoms
C6H, CH2CHCN, CH3C2H, HC5N, HCOCH3, NH2CH3, c-C2H4O, C−

7

Molecules with eight atoms
CH3C3N, HCOOCH3, CH3COOH, C7H, H2C6, CH2OHCHO, C−

8 ?, l-HC6H

Molecules with nine atoms
CH3C4H, CH3CH2CN, (CH3)2O CH3CH2OH, HC7N, C8H, C−

9 ?

Molecules with ten atoms
CH3C5N, (CH3)2CO, NH2CH2COOH

Molecules with more than ten atoms
HC9N, C6H6, HC11N
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stars. This radiation field excites the molecular levels driving them far from
thermodynamic equilibrium. In order to infer correctly the physical properties
of the astrophysical plasma under consideration, it is crucial to take into account
that the lines are typically formed outside LTE conditions. The most efficient
numerical methods developed for the solution of radiative transfer problems
in stellar physics have recently started to be applied to the case of radiative
transfer problems in molecular lines (see Asensio Ramos et al. 2001; and more
references therein). Previous schemes of solution were based on Montecarlo
methods, which suffer from some well-known problems like statistical noise.
One of the conclusions of a recent workshop which took place in Leiden was
the development of a set of tests for the easy testing of new numerical codes
for the solution of radiative transfer in molecular lines. In a recent paper (van
Zadelhoff et al. 2002), a comparison between 8 different codes is done, being
only 3 based on the Montecarlo scheme. This shows that the techniques used
in stellar astrophysics are quickly been introduced in the field of molecular
astrophysics. As we will show in Chapter 4 of this Thesis, the fastest numerical
methods developed so far (see Trujillo Bueno & Fabiani Bendicho 1995) can be
applied to radiative transfer problems in molecular lines.

An example of a research field in which molecular astrophysics could play a
fundamental role is in the determination of chemical abundances in metal poor
stars. One of the interesting problems which could be investigated with the RT
tools presented in this Thesis is the “enigma” of the oxygen over-abundance in
metal poor stars (Asplund et al. 2004). This is crucial for the determination
of the age of many astrophysical objects like the globular clusters by means of
their oxygen enrichment. The oxygen abundances obtained with several differ-
ent tracers are not in good agreement (see, e.g., Asplund & Garćıa Pérez 2001).
Among these tracers, we have the OH lines in the UV. Two fundamental prob-
lems arise, which are intrinsic to the technique used for obtaining the chemical
abundances. This technique is based on a comparison between spectroscopic ob-
servations and synthetic spectra obtained in different atmospheric models. The
chosen atmospheric models, typically one-dimensional and in radiative equilib-
rium, and the approximation employed to obtain the molecular abundances,
may crucially influence the emergent spectrum. With the recent development
of realistic three-dimensional simulations (see Stein & Nordlund 2000; Asplund
et al. 2000), the situation for the calculation of atomic abundances has changed
and many of the results have to be revised. As an example, the iron abundance
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in the solar atmosphere has been recently revised (Shchukina & Trujillo Bueno
2001) using NLTE synthesis in three-dimensional hydrodynamical models of
solar surface convection including the effect of the radiation transfer in the
energy budget equation. For the first time, these authors found that NLTE
spectral synthesis in Asplund et al.’s (2000) 3D hydrodynamical model of the
solar atmosphere yields the meteoritic iron abundance. The success of such
three-dimensional hydrodynamical simulations has been extended to the calcu-
lation of the abundance of other species (Asplund et al. 2003; Asplund 2004).
With such 3D atmospheric models, it is now of possible interest to investigate
the impact of non-LTE and chemical non-equilibrium effects when obtaining
molecular abundances.

We have developed the tools needed for investigating this and other type
of problems. The most important obstacles are the enormous lack of reliable
molecular data and the need of computing resources. The first problem has
a difficult solution in view of the amount of available molecular data and the
speed at which new data is generated. Particularly urgent is the need of state-
to-state collisional rates for molecular lines. There are some calculations of
collisional rates for the ground levels of some molecules, which are of interest
in very cold media. However, collisional rates for excited vibrational states
and between different electronic states are not known. Even an approximate
estimation of such collisional rates would be of enormous help for accounting for
non-LTE effects in molecular lines. The second problem is much more related
to technology and efforts in parallelization of non-LTE codes (see, e.g., Höflich
2003; Baron et al. 2003).

The first problem we have tackled in this Thesis as an application of our
chemical evolution codes is the study of the temporal evolution of the carbon
monoxide abundance in the solar atmosphere. The objective of this investiga-
tion was the resolution of the “enigma” emerged 30 years ago when Noyes &
Hall (1972) inferred very low brightness temperature from their discovery of
strong ro-vibrational CO lines at 4.7 µm observed close to the edge of the solar
disk. It was then suggested by Ayres (1981) that the low chromosphere might
not be hot at all but could instead be permeated by CO-cooled “clouds” at
altitudes between 500 and 1000 km above continuum optical depth unity. This
led to controversy (Kalkofen 2001; Ayres 2002; Avrett 2003) because other di-
agnostics had suggested the existence of a uniformly hot chromosphere with a
minimum temperature of about 4400 K near 500 km and a temperature rise
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above this temperature-minimum region. Over the last few years, it has become
increasingly evident that for understanding the thermal structure of the solar
chromosphere we need a rigorous investigation of the CO formation and de-
struction timescales in the solar atmospheric plasma (Uitenbroek 2000a, 2000b;
Ayres & Rabin 1996; Avrett et al. 1996; Asensio Ramos & Trujillo Bueno 2003a;
Avrett 2003). To this end, in this Thesis we have carried out an exhaustive com-
parative study between the CO abundances obtained assuming instantaneous
chemical equilibrium and that obtained by following the chemical evolution in
the one-dimensional hydrodynamical models of the solar atmosphere of Carls-
son & Stein (1995). These models show the generation of acoustic wave trains
which propagate upwards in the atmosphere until transforming into shocks. As
shown in Chapter 3, we have calculated the time evolution of the CO abundance
thanks to reaction databases which are widely used in combustion mechanisms
(Konnov 2000). These processes cover better the kind of reactions present in
the solar atmosphere than the reaction databases used in the investigation of
interstellar chemistry.

It is of interest to point out that our chemical evolution codes can also be
used to investigate the formation processes of complex molecules. The exact
chemical mechanisms which produce such molecules with more than 10 atoms
is not correctly known. Actually, very complex molecules are found in the
interstellar medium. One of the most striking has been the detection of benzene
C6H6 in circumstellar envelopes (Cernicharo et al. 2001).

Chapter 4 describes in detail the computer code developed for the solution
of radiative transfer problems in molecular astrophysics assuming spherical ge-
ometry. We generalize the fast iterative methods developed by Trujillo Bueno &
Fabiani Bendicho (1995) to spherical geometry with macroscopic velocity fields.
We show that the fundamental properties of the iterative methods based on
the Gauss-Seidel and Successive Overrelaxation schemes are maintained when
spherical geometry is considered. We show two application of the computer
code. The first one concerns the formation of pure rotation water spectral lines
in a hot shell of the molecular complex SgrB2 and the second one concerns the
formation of CO vibration-rotation lines in the envelope of the red supergiant
VY CMa.

The study of atomic and/or molecular lines allows us to obtain information
about the physical properties of the medium the radiation is coming from. In
addition to its intensity and frequency, light is characterized by its state of
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polarization. Spectropolarimetry provides an incredible amount of information
about phenomena in which a break of the spherical symmetry occurs in the
astrophysical system in which the spectral lines are being formed. We may
have stellar geometrical asymmetries induced by the presence of another com-
panion star in the case of a binary star, global anisotropies in the radiation
field of non-resolved stars, local anisotropies in the radiation field in the Sun,
the presence of magnetic fields, etc. All these phenomena produce recognizable
features in the polarization state of the observed light. If the study of such po-
larization phenomena is tackled within the framework of the quantum theory
of polarization (Landi Degl’Innocenti 1983), we can obtain reliable information
about the physical properties in a variety of astrophysical objects (see Trujillo
Bueno 2003a).

The polarization state of the light can be quantified by using the Stokes pa-
rameters (Born & Wolf 1980; Landi Degl’Innocenti 2002). As shown in Fig. 1.1,
I is the light intensity, Q is the intensity difference between vertical and horizon-
tal linear polarization, U the intensity difference between linear polarization at
+45◦ and −45◦, while V is the intensity difference between right-handed and
left-handed circular polarization. Observationally, Stokes parameters can be
easily obtained when working on the radio spectral domain since the detectors
are directly sensitive to the polarization state of the light. In the case of shorter
wavelengths, the technique is much more complicated and it relies on modu-
lation schemes (Keller 2002). In the special case of solar physics, the present
instrumentation is very sophisticated. Nowadays, very sensitive polarimeters
based on several modulation schemes have been developed which allow us to
measure the Stokes parameters from the infrared to the ultraviolet (TIP, ASP,
ZIMPOL, etc.). Such sensitive polarimeters allow the detailed investigation
of physical processes which produce very weak signatures in the polarization
state of the light (see the proceedings of the Solar Polarization 3 workshop
edited by Trujillo Bueno & Sánchez Almeida). In this way, the topology and
strength of solar magnetic fields can be inferred via the physical interpreta-
tion of spectropolarimetric observations. The application of spectropolarimetry
to night-time astronomy is currently in expansion thanks to the construction
of several polarimeters: the MuSiCoS échelle spectro-polarimeter for the 2-m
Bernard Lyot Télescope at Pic du Midi, the Semel’s visitor polarimeter on the
UCL Echelle Spectrograph of the 3.9-m Anglo-Australian Telescope or the fu-
ture ESPaDOnS polarimeter mounted on the Canada-France-Hawaii Telescope
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Figure 1.1: Operative definition of the Stokes profiles. Adapted from Landi Degl’Innocenti
(2002).

(CFHT, Donati 2003). These polarimeters are being used or will be used for
the investigation of magnetic fields in magnetic stars (see the proceedings of
the above-mentioned Solar Polarization 3 workshop 2003).

An important part of this Thesis focuses on the investigation of polarization
signals produced by molecular lines. Similar to what happens with the atomic
case, the coupling between the different angular momenta in the molecule with
the external magnetic field produces a magnetic moment and a precession of the
total angular momentum around the magnetic field vector. This is molecular
Zeeman effect. The influence of the magnetic field on the level structure of the
molecules produces an observable effect on the polarization state of the light
emitted or absorbed by the molecule. The investigation of the Zeeman effect in
molecules is much more complex than in atoms, even for the simplest coupling
cases. This is produced by the presence of the rotation of the molecule, which
produces an additional angular momentum (Herzberg 1950; Landau & Lifshitz
1982; Judd 1975). Schadee (1978) developed formulas for the calculation of
the splittings and strengths of the Zeeman components for electronic doublet
states. Recently, Berdyugina & Solanki (2002) extended Schadee’s formulation
to electronic states of arbitrary multiplicity. We have developed in Chapter 5 a
computer program which allows us to obtain the splittings and strengths of the
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Zeeman components for any transition between two arbitrary rotational levels
of arbitrary electronic states in a diatomic molecule. Our approach is capable
of treating the inclusion of any refinement in the quantum description of the
molecular motion by only adding the corresponding contribution to the total
molecular hamiltonian. The calculation of the hamiltonian matrix elements is
carried out by taking advantage of the powerful tools of Racah algebra (Brink
& Satchler 1968; Judd 1975; Brown & Carrington 2003).

The observation of spectral line polarization in cold and magnetized regions
on the solar surface (sunspots) gives us information about the magnetic field
in these regions. In Chapter 6 we show that molecules usually show anomalous
polarization profiles which can be explained via the different strengths of the
angular momenta couplings. Some of the rotational levels of several electronic
states in diatomic molecules present strong interactions with nearby levels. This
produces a transition from the Zeeman regime to the Paschen-Back regime,
often for rather low magnetic field strengths. The observed Stokes profiles for
some molecular species are very anomalous. This is the case of the CN lines
we have observed with TIP in the near infrared, as will be shown in Chapter 6.
Apart from their diagnostic capabilities in solar physics, recently the molecular
Zeeman effect is being used for obtaining information about magnetic fields
in stars with very strong magnetic fields. Such strong fields are thought to
produce very cold spots in the surface of the stars and molecules constitute one
of the few observable tracers of the physical conditions in these regions (see,
e.g., Berdyugina et al. 2001; Valenti & Jonhs-Krull 2001)

A serious problem is the blending of molecular lines with important atomic
lines used for diagnostic purposes. We know that molecular bands are char-
acterized by a huge amount of lines produced by their rotational structure.
Therefore, it is quite probable that a molecular line is blended with an atomic
line. It turns out necessary to include huge numbers of both atomic and molec-
ular lines in our spectral synthesis codes to obtain correct information about
the physical properties of the atmosphere when comparing with observations.
If the molecular line is magnetically sensitive, the influence of the blend on the
polarization state has to be included in the forward modeling. This analysis of
the physical properties of the stellar atmosphere is usually accomplished with
the aid of inversion codes (see, e.g., Ruiz Cobo & del Toro Iniesta 1992). In
Chapter 6 of this Thesis we will develop an LTE inversion code which allows to
include atomic and/or molecular lines in the forward modeling. We will show
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the applicability of our inversion code to obtain information about the thermo-
dynamic and magnetic structure of the umbra of sunspots by using only OH
and CN lines. Ideally, one should include a suitable set of spectral lines which
can trace the physical properties at different heights.

An extra novel subject we have considered in this Thesis is scattering po-
larization in molecular lines. Chapter 7 presents a very detailed and systematic
investigation of the polarization signals produced by scattering processes in
several molecular lines. When one observes the second solar spectrum of the
Sun (the linearly polarized spectrum close to the solar limb) many conspicuous
signals corresponding to molecular lines appear, generated by the scattering of
radiation (Stenflo & Keller 1997; Gandorfer 2000). Such a polarization signal
is modified by the presence of a magnetic field, which is known as the Hanle
effect (Trujillo Bueno 2001). Contrary to what happens with the polarization
of many atomic species, which strongly vary along the solar magnetic activity
cycle, molecular lines always show the same amplitude in the linear polariza-
tion signals. Recently, is has been concluded by Berdyugina et al. (2002) that
this apparent insensitivity of the molecular lines to the magnetic field is due
to the very low effective Landé factors of the molecular lines. However, Landi
Degl’Innocenti (2003) and Trujillo Bueno (2003b) have pointed out that the
magnetic sensitivity of the scattering polarization depends on both the indi-
vidual Landé factors of the levels of the transitions and on the lifetimes of the
energy levels. In fact, the critical Hanle fields of molecular lines are of the same
order of magnitude as those of atomic lines. Therefore, it is to be expected that
molecular lines are affected by magnetic fields of the same strength as atomic
lines. We will show in Chapter 7that this sensitivity to the Hanle effect is found
for fields of the order of 10 G, and that the apparent insensitivity of the molecu-
lar lines has to be assigned to another physical effect (see Trujillo Bueno 2003b).
We will show in detail that this behavior may be explained when taking into
account that the molecules which generate the linear polarization signals are
formed in a three-dimensional medium. When obtaining the molecular abun-
dances in such 3D models, we find that they are larger in the upflowing material
than in the downflowing plasma, at least in the regions where the molecular
lines are “formed”. We explain the apparent insensitivity of the molecular lines
to the magnetic field. Additionally, we show how to obtain information about
the distribution of weak magnetic fields in the “quiet” solar photosphere.

Finally, in Chapter 8 we summarize the main conclusions of this Thesis.





2
Molecular Spectroscopy of Diatomic

Molecules

This chapter will give a brief but complete introduction to the details of
molecular spectroscopy. Such an introduction is fundamental for a com-

plete understanding of the rest of the Thesis. We will start with a brief in-
troduction of the molecular motions. We will continue by describing in detail
the vibrational and rotational motions in diatomic molecules, continuing with a
description of the molecular electronic states. The coupling between electronic
and rotational motions is treated in Section §2.5. We will finish this chapter by
considering molecular transitions and their respective selection rules.

2.1 Introduction

When two or more atoms link together to form a molecule, they constitute a
system which is much more complex than an isolated atom. A way to handle
such a complex system is to use the Born-Oppenheimer approximation, which
consists on treating the motion of the nuclei and that of the electrons in a
separate way (Brown & Carrington 2003). The big mass difference between the
electrons and the nuclei make the latter move much slower than the electrons
do and so this approximation leads to extremely good results. When the nuclei
move, electrons can adiabatically adapt to the new nuclear positions before the
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nuclei change their position in the space. Therefore, they feel some kind of
equivalent potential which depends only on the internuclear distance and the
particular electronic state.

A molecule can produce three types of transitions: rotational transitions
(they involve the rotation of the molecule as a whole), vibrational transitions
(they involve vibrations of the nuclei around an equilibrium position) and elec-

tronic transitions (there is a change on the structure of the electronic cloud
surrounding the molecule). The last type is also present in atoms, while the
first two are exclusive of molecules. Although these transitions usually occur
simultaneously (for example, when a molecule suffers a vibrational transition,
the energy excess usually produces a change in the rotational state), under the
Born-Oppenheimer approximation, we can consider the energy states of the
electrons and those of the nuclei separately and so their corresponding transi-
tions.

In order to get an insight of the magnitudes we are dealing with for each
molecular motion, we can argue on the basis of the following order of magnitude
calculation (Estalella & Anglada 1999). Assuming a typical molecular size

(a ' 1
◦

A), a typical molecular mass (M ' 10mp, where mp is the proton mass)
and the mass of the electron me, the following can be found:

• Electronic transitions. Due to the uncertainty principle, ∆p∆x ' pa '
~ for an electron. ∆p and ∆x are the uncertainties in the determination
of the velocity or momentum and position of the electron. Therefore,
its momentum will be p ' ~/a. Since its energy is E = p2/2me, the
electronic energy level separation will be of the order of

Eel '
~

2

mea2
. (2.1)

For the typical values we have given, Eel ' 1.2×10−11 erg = 7.5 eV, which
corresponds to a frequency νel = Eel/h = 1.8×1015 Hz. This frequency is

in the UV (λel ' 1700
◦

A). Therefore, we expect the electronic transitions
to be in the visible or UV region of the spectrum.

• Vibrational transitions. For the stable molecules, the internuclear
potential have a minimum at a given value of the separation among the
nuclei. We can approximate this vibration around this minimum with the
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model of a harmonic oscillator with angular frequency ω and amplitude
ξ � a. The oscillator energy is Evib ' 1

2Mω2ξ2. We can make a very
rough estimation of ω by assuming that, in the limit ξ ' a, we should
have an energy of the order of the electronic energy:

1

2
Mω2a2 ' ~

2

mea2
⇒ ω '

(

~
2

meMa4

)1/2

. (2.2)

Therefore

Evib ' ~ω '
(me

M

)1/2 ~
2

mea2
'
(me

M

)1/2
Eel. (2.3)

For the typical values we have given, Evib ' 8.9 × 10−14 erg = 0.06 eV,
which corresponds to a frequency νvib = Evib/h = 1.3 × 1013 Hz. This
frequency falls in the IR range of the spectrum (λvib ' 23 µm).

• Rotational transitions. The molecular angular momentum is quantized
and is therefore a multiple of ~. For the lowest rotational levels, it will
be J = Iω ' ~, where I 'Ma2 is the moment of inertia of the molecule.
The rotational energy will be:

Erot '
1

2
Iω2 ' ~

2

Ma2
'
(me

M

)

Eel. (2.4)

For the typical values, Erot ' 6.5 × 10−16 erg = 4 × 10−4 eV, which
corresponds to a frequency νrot = Erot/h = 9.8× 1010 Hz. This frequency
falls in the radio range of the spectrum (λrot ' 3.1 mm).

In the Born-Oppenheimer approximation, these energies are approximately
additive, so E = Eel + Evib + Erot. As we have seen, the contribution of each
motion relative to the total energy is approximately in the proportion:

Eel : Evib : Erot = 1 :
(me

M

)1/2
:
(me

M

)

. (2.5)

Now we will treat in a more rigorous way all the three types of motion in a
diatomic molecule.
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2.2 Principal features of the rotation and vibration in

diatomic molecules

As we have seen in the previous section, molecules can have nuclear motions
that are not present in atoms. In this section we present two simple models
which help to understand the vibrational and rotational spectra of diatomic
molecules.

2.2.1 Rotational states: the rigid rotator

The simplest model for a rotating molecule is that of a rigid rotator. Let’s
assume that the molecule is composed of two point-like masses m1 and m2

situated at a distance r from each other and joined by a massless rigid rod. In
so doing, we neglect, on the one hand, the finite extent of both atoms; on the
other, the fact that the atoms are not rigidly bound one to the other, since the
distance r can vary under the influence of rotation. Obviously, such a simple
model can be reduced to the rotation of a single mass point of mass equal to
the reduced mass µ of the system at a fixed distance r from the rotation axis.
In order to determine the energy levels of such a rigid rotator, the Schrödinger
equation has to be solved, obtaining the following expression of the discrete
values of the energy given by (Herzberg 1950):

E(J) =
h2J(J + 1)

8π2I
, (2.6)

where I is the moment of inertia of the molecule, h is the Planck’s constant
and J is the rotational quantum number, which can take integral values 0, 1,
2, . . . Since only discrete energy and angular momenta values are possible, it
follows that only certain rotational frequencies are possible due to the transition
between an upper level with Ju and a lower level with J`. The wavenumber ω
of the emitted or absorbed photon is:

ω =
E(Ju)

hc
− E(J`)

hc
, (2.7)

where E(Ju) andE(J`) are the upper and lower rotational energies, respectively,
while c is the speed of light. In molecular spectroscopy, it is usual to define the
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rotational term as the energy in units of cm−1:

F (J) =
E

hc
=
hJ(J + 1)

8π2cI
= BJ(J + 1), (2.8)

where B is called the rotational constant. The selection rule for these pure ro-
tational transitions can be obtained from the evaluation of the matrix elements
of the electric dipole moment, giving ∆J = ±1. With this selection rule, the
wavenumber of the emitted or absorbed lines of the rigid rotator can be found
by:

ω = F (J` + 1)− F (J`) = 2B(J` + 1) J = 0, 1, 2, . . . (2.9)

Therefore, the spectrum of the rigid rotator consists of a series of equidistant
lines, the first of these (J` = 0) lies at 2B and their separation is also 2B.

2.2.2 Vibrational states: the harmonic oscillator

The simplest model for describing the vibration of diatomic molecules is that
each atom oscillates moving toward or away from the other atom in a simple
harmonic motion. Such a movement can be reduced to the motion of a single
mass (the reduced mass µ) around an equilibrium position re. In this situation,
the effective potential energy under which the single mass moves can be written
as V (r) = 1

2k(r − re)2, where k is the force constant. Solving the Schrödinger
equation for this potential energy, it is found that there are solutions only for
those values of the energy which obey (Herzberg 1950):

E(v) =
h

2π

√

k

µ

(

v +
1

2

)

, (2.10)

where v is the vibrational quantum number, which can take only integral val-
ues (v=0,1,2,. . . ). It should be noted that even in the lowest vibration level
(v=0), some energy remains. This remnant is called the zero-point energy. The
wavenumber of a vibrational transition can be written as:

ω =
E(vu)

hc
− E(v`)

hc
= G(vu)−G(v`) = ωe

(

vu +
1

2

)

− ωe

(

v` +
1

2

)

, (2.11)

where vu and v` are the upper and lower level vibrational quantum numbers,
G is the vibrational term in cm−1 and ωe is a constant. By evaluation of the
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matrix elements of the electric dipole moment, we can see that the selection rule
for the vibrational quantum number is ∆v = ±1. Therefore, the wavenumber
of the emitted or absorbed lines of the harmonic oscillator can be found by:

ω = G(v` + 1)−G(v`) = ωe. (2.12)

In this very simple model, all vibrational transitions overlap at the same fre-
quency.

2.3 Refinements on the structure of the rotation and

vibration in diatomic molecules

The models presented so far are idealizations of the motion of diatomic molecules.
Although they give a first order representation of the spectrum of diatomic
molecules, a refinement is needed in general for interpreting the observed molec-
ular spectra. In this section, we will improve the level of description of the
rotation and vibration of the molecules by introducing higher order effects.

2.3.1 Anharmonic oscillator

A harmonic oscillator is characterized by a parabolic potential energy. The
potential energy, and therefore the restoring force, increases indefinitely with
increasing distance from the equilibrium position. However, when both nuclei
are very distant, this force must go to zero, and therefore the potential energy
reaches a constant value. We show in Fig. 2.1 the potential curve for the ground
electronic level of H2, showing that the parabola is a good approximation in
the zone of the minimum (the equilibrium point of the molecule), while it is
unsuitable for the rest of the curve. Higher order terms can be included in
the definition of the potential energy, giving rise to better approximations of
the motion of the diatomic molecule. The most obvious anharmonic potential
energy is (see Herzberg 1950):

V (r) = f(r − re)2 − g(r − re)3, (2.13)

where f and g are constants such that g � f . When one solves the Schrödinger
equation with such a potential energy (possibly including higher powers of (r−
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re)), the term values are modified as follows:

G(v) = ωe

(

v +
1

2

)

− ωexe

(

v +
1

2

)2

+ ωeye

(

v +
1

2

)3

, (2.14)

where ωexe � ωe and ωeye � ωexe are vibrational constants. The selection
rule ∆v = ±1 holds, but due to the inclusion of the anharmonic terms in the
potential energy, transitions with ∆v = ±2,±3, . . . can also appear, although
with a rapidly decreasing intensity. The inclusion of this anharmonic terms
produces a shift in the position of the lines for different values of v`, contrary
to what happened with the model of the harmonic oscillator.

Other representations for the potential energy curve are available, being the
Morse potential one of the most widely used (Herzberg 1950). This potential
is given by:

VMorse(r) = De

(

1− e−β(r−re)
)2
, (2.15)

where De is the dissociation energy referred to the minimum of the curve and
β is a constant. In this case, the term values can be obtained with:

G(v) = β

√

Deh

2π2cµ

(

v +
1

2

)

− hβ2

8π2cµ

(

v +
1

2

)2

, (2.16)

without any higher power of (v + 1/2).

2.3.2 Non-rigid rotator

Thus far we have treated the vibrational and the rotational motions indepen-
dently. However, it is quite obvious that the molecule cannot be a rigid rota-
tor when it is allowed to perform vibrations around the equilibrium distance.
Therefore, a better model to represent the rotational motion of the molecule
would be that of a non-rigid rotator in which we have two masses which are
connected by a massless spring, instead of a massless rigid bar. In this system,
and due to the action of the centrifugal force, the internuclear distance changes
with rotation. Therefore, the moment of inertia of the molecule depends now
on the rotational energy (and therefore on the rotational quantum number J),
and thus on the rotational constant B. When the Schrödinger equation is
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Figure 2.1: Potential energy curve for H2 (solid line) using ωe=4395.2 cm−1, ωexe=117.99

cm−1 and re=0.7416
◦

A with the parabolic approximation (dashed line) which is valid for
internuclear distances close to the equilibrium distance re (from Herzberg 1950).

solved with this improvement, one obtains the rotational terms of the non-rigid
rotator, which can be written as (Herzberg 1950):

F (J) = BJ(J + 1)−DJ2(J + 1)2, (2.17)

where D � B is the rotational constant due to the centrifugal distortion. The
selection rule obtained for a rotator (∆J = ±1) is valid independently of wether
or not the rotator is rigid. Therefore, it can also be applied for the case of the
non-rigid rotator to obtain the pure rotational spectrum. However, and because
D � B, it is usually a good approximation to consider diatomic molecules as
rigid rotators.

2.3.3 Vibrating rotator

We have considered the vibrational and rotational motions separately. However,
it is obvious that both motions take place simultaneously. Furthermore, vibra-
tions affect the rotational motion of the molecule. Therefore, we will consider
the model of a vibrating rotator as the most refined model of the nuclear mo-
tion of a diatomic molecule. During vibrations, the internuclear distance, and
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consequently, the moment of inertia and the rotational constants, are chang-
ing. After quite involved quantum mechanical calculations, one ends up with
a formula for the rotational terms equal to Eq. (2.17) in which the rotational
constants depend on the vibrational quantum numbers (Herzberg 1950):

Bv = Be − αe

(

v +
1

2

)

+ . . . (2.18)

Dv = De + βe

(

v +
1

2

)

+ . . . , (2.19)

where Be and De are the rotational constants which correspond to the equilib-
rium distance re, while αe � Be and βe � De are constants which account for
the variation of the internuclear distance during the vibration.

By taking into account the interaction between vibration and rotation, and
using the fact that under the Born-Oppenheimer approximation the total energy
is obtained by addition of the rotational and vibrational energies, it is possible
to obtain the formula for the term values of a vibrating rotator (Herzberg 1950):

T = G(v) + Fv(J) = ωe

(

v +
1

2

)

− ωexe

(

v +
1

2

)2

+ ωeye

(

v +
1

2

)3

+ . . .

+ BvJ(J + 1)−DvJ
2(J + 1)2 + . . . , (2.20)

where we have included the possibility of adding higher order distortions to the
vibrational and rotational energies.

The selection rules ∆v = 0,±1,±2, . . . and ∆J = ±1 are used to recover the
vibro-rotational spectrum of a diatomic molecule. The selection rule ∆v = 0
represents the pure-rotational spectrum. The wavenumber of the vibrational
transitions between an upper vibrational level (vu) and a lower vibrational
level (v`) can be obtained, neglecting the small correction term for Dv, by
substitution in Eq. (2.20):

ωR = ω0 + 2Bu
v + (3Bu

v −B`
v)J + (Bu

v −B`
v)J

2 J = 0, 1, 2, . . .

ωP = ω0 − (Bu
v +B`

v)J + (Bu
v −B`

v)J
2 J = 1, 2, 3, . . . , (2.21)

where we have explicitly indicated the rotational constants of the upper and
lower vibrational levels, and ω0 = G(vu) − G(v`) is the wavenumber of the
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pure vibrational transition without taking into account the rotational structure.
These two formulae represent two series of lines with ∆J = Ju − J` = +1 and
∆J = −1, which are called the R and P branches, respectively. Both formulas
can be also represented with a single one, namely:

ω = ω0 + (Bu
v +B`

v)m+ (Bu
v −B`

v)m
2, (2.22)

wherem is an integer taking values 1, 2, . . . for the R branch (i.e., m = J+1) and
the values −1, −2, . . . for the P branch (i.e., m = −J). Note that, depending
on the values of the rotational constants, one of the parabolas have a maximum
value on the range of J ≥ 0. If Bu

v < B`
v (the internuclear distance is greater

in the upper state than in the lower), this maximum is placed on the R branch
(if the condition B`

v ≤ 3Bu
v is fulfilled), while it is in the P branch if Bu

v > B`
v

(the internuclear distance is greater in the lower level than in the upper). The
vertex of the parabolas are, therefore:

JR
vertex = − 3Bu

v −B`
v

2 (Bu
v −B`

v)

JP
vertex =

Bu
v +B`

v

2 (Bu
v −B`

v)
(2.23)

All these calculations have been performed assuming that the molecule can
be considered as a simple rotator; i.e., that there is only one nonzero moment of
inertia and that the one about the axis joining both atoms is zero. However, the
electron cloud around the atoms produce a non-zero moment of inertia about
this axis. Therefore, a better model to represent a diatomic molecule would
be that of a symmetric top. If we consider the vibro-rotational spectrum of a
symmetric top, we find that the R and P branches can be obtained with the
same formulae as for a simple rotator (Eq. 2.21), and the transitions ∆J = 0
are now permitted by the selection rules. This ∆J = 0 transition form the Q
branch whose wavenumbers can be obtained with

ωQ = ω0 + (Bu
v −B`

v)J + (Bu
v −B`

v)J
2 J = 1, 2, 3, . . . (2.24)

Because αe is very small, the J dependence of Eq. (2.24) is very weak, and the
Q branch is characterized by having all the rotational transitions very close to
ω0.
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Figure 2.2: Potential energy curves for the lowest energy electronic states of CN. These curves
have been obtained using the Morse potential with the re, β and De values for each electronic
level.

2.4 Electronic states

The band spectra observed in the visible and the ultraviolet cannot be un-
derstood with vibrational and/or rotational motions. The frequencies of the
transitions are too large in comparison with rotational or vibrational frequen-
cies. On the other hand, the band structure does not have the well-defined
simplicity of the vibration-rotation transitions. As pointed out in Section 2.1,
the spectra observed in these spectral regions are produced by transitions be-
tween electronic states. The atomic nuclei in a molecule are held together by
the electrons (the nuclei alone would repel each other). Depending on the or-
bitals in which the electrons are, we expect different electronic states of the
molecule. An example can be found in Fig. 2.2 for the CN molecule, where we
show the potential curves for the lowest three electronic states.

2.4.1 Orbital angular momentum

The motion of the electrons in an atom takes place in a spherically symmetric
force field. As a consequence, the electronic orbital angular momentum L is
a constant of the motion if the effect of the spin is small or neglected. In a
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Figure 2.3: Precession of the orbital angular momentum L about the internuclear axis.

diatomic molecule, this symmetry is transformed into an axial symmetry about
the internuclear axis. As a consequence, only the projection of the orbital
angular momentum about the internuclear axis is a constant of motion. As
illustrated in Fig. 2.3, the angular momentum L precesses about the internu-
clear axis maintaining the value of its projection on the internuclear axis (ML).
As usual, ML can take the values

ML = L,L− 1, L− 2, . . . ,−L. (2.25)

Because ML is a constant of motion, it is more appropriate to classify the
electronic states of a molecule according to the value ofML instead of L itself. In
the electric field produced by the electronic cloud on the non-rotating molecule,
reversing the directions of motion of all electrons does not change the energy of
the system, while ML is transformed into −ML. Therefore, only the absolute
value of ML is important. Following standard notation, we write:

Λ = |ML|, (2.26)

which can take the following values:

Λ = 0, 1, 2, . . . , L. (2.27)

Similar to what happens in atomic spectroscopy, the electronic states Λ =
0, 1, 2, 3, . . . are indicated with the capital Greek letters Σ,Π,∆,Φ, . . .. Due to
the inclusion of the absolute value in the definition of Λ, states with Λ ≥ 1 are
doubly degenerated (i.e., the Π,∆,Φ, . . . states are degenerated, while Σ are
not).
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2.4.2 Spin

Just as for atoms, the spins of the individual electrons of both atoms form a
resultant total spin S. If Λ 6= 0, the orbital motion of the electrons generates
a magnetic field along the internuclear axis which produces a precession of S
about the internuclear axis. The projection of the total spin on the internuclear
axis is a constant of the motion and is designated as Σ, whose possible 2S + 1
allowed values are

Σ = S, S − 1, S − 2, . . . ,−S. (2.28)

2.4.3 Total electronic angular momentum. Multiplets.

The total electronic angular momentum about the internuclear axis (denoted by
Ω) is obtained by adding Λ and Σ. Therefore, we define the quantum number
for the total angular momentum along the internuclear axis by

Ω = |Λ + Σ|. (2.29)

If Λ 6= 0, there are 2S+1 possible values of Λ+Σ. As a result of the interaction
of S with the magnetic field produced by Λ on the internuclear axis, the levels
with different value of Λ + Σ have different energy. This multiplet splitting
produces 2S + 1 components for each value of Λ. On the other hand, if Λ = 0,
no coupling is possible and the Σ states are non-degenerate. The multiplicity of
the electronic state is given by 2S+1, in a similar fashion as in atomic physics.

Concerning the notation of the multiplets, the value of the multiplicity is
added as a left superscript to Λ and the value of Λ + Σ is added as a right
subscript to Λ. Therefore, a term with Λ = 3 and S = 2 has the components:
5Φ5,

5Φ4,
5Φ3,

5Φ2 and 5Φ1. Additionally, it is usual to include a letter in front
of the term name to give a fast idea of the energy ordering of the electronic levels.
The fundamental level is labeled as X and the excited levels are labeled using
A,B,C, . . . , a, b, c, . . . in increasing order of energy, except for some exceptions.
As an example, the energy levels of CH in increasing order of energy are X 2Π,
a4Σ−, A2∆, B2Σ−, etc. while those of OH are X2Π, A2Σ+, B2Σ+, etc. (see
Huber & Herzberg 2003 for other molecules). The superscripts + and− indicate
the parity of the level and will be discussed in section §2.5.3.
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2.5 Coupling of rotation and electronic motion

The interaction between the vibrational and electronic motions are taken into
account by calculating the vibrational levels in a potential energy curve that
depends on the electronic state under consideration. This potential energy
represents the dependence of the electronic energy on the internuclear distance.
The mutual interaction between vibration and rotation has been considered in
§2.3.3. However, we have to consider the interaction between the rotational and
electronic motions and indicate which are the quantum numbers that describe
the molecular energies.

2.5.1 Hund’s coupling cases

All the angular momentum of the molecule (electronic orbital Λ, spin angu-
lar momentum Σ and rotational angular momentum R) form a resultant total
angular momentum which is designated by J. If Λ = Σ = 0, J directly repre-
sents the rotational angular momentum, and the formulas of the simple rotator
can be straightforwardly applied. For the rest of cases, we have to distinguish
between different modes of coupling.

• Hund’s case (a). We assume that the rotational motion is weakly in-
teracting with the spin and orbital motions, while the electronic motion
is strongly coupled to the internuclear axis. Therefore, Ω is well defined
and, together with the rotational angular momentum R, form the total
angular momentum J. The vector diagram is shown in Fig. 2.4. In
Hund’s case (a) coupling, the orbital angular momentum L and the spin
S precess about the internuclear axis, while R and Ω nutate about the
total angular momentum J, which remains constant in magnitude and
direction. An extra assumption is that the precession of L and S is much
faster than the nutation of Ω and R.

Given that Ω is the projection of J over the internuclear axis (because
R is perpendicular to the internuclear axis), the latter cannot be smaller
than its projection, so:

J = Ω,Ω + 1,Ω + 2, . . . (2.30)

Except for the missing levels with J < Ω, the energy of the rotational
levels are given by the formulas of the vibrating rotator.
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Figure 2.4: Vector diagram for Hund’s case (a). The nutation of the internuclear axis is
indicated with the solid-line ellipse. The much more rapid precessions of the L and S vectors
about the internuclear axis are indicated by dotted-line ellipses After Herzberg (1950).

J

R

S

L

N

Figure 2.5: Vector diagram for Hund’s case (b). The nutation of the internuclear axis (rep-
resented with the dotted-line ellipse) is much faster than the precession of N and S about J

(represented with the solid-line ellipse).
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• Hund’s case (b). The total electronic orbital angular momentum is
strongly coupled to the internuclear axis (Λ is still a good quantum num-
ber) while the spin is very weakly coupled to the internuclear axis. There-
fore, Ω is not defined. Λ and the rotational angular momentum R form
a resultant N (the total angular momentum apart from spin), which can
take the values

N = Λ,Λ + 1,Λ + 2, . . . (2.31)

Care must be taken with the notation, because some authors (e.g. Herzberg
1950) use K instead of N . If Λ = 0 and S 6= 0, the spin is totally uncou-
pled from the internuclear axis and the electronic state always belongs to
case (b) (i.e., the 2Σ, 3Σ, . . . states). The angular momenta N and S form
a resultant J, the total angular momentum including spin, whose possible
values are, according to the rules of angular momentum addition:

J = N + S,N + S − 1, N + S − 2, . . . , |N − S|. (2.32)

The vector diagram can be seen in Fig. 2.5. In general, except when N <
S, each level with a given value of N is composed of 2S + 1 components
characterized by a different value of J . The molecular rotation produces
a very slight magnetic moment in the direction of N, causing a small
coupling of S and N. This coupling produces a slight splitting of the
levels with the same J and different value of N , which increases as N
increases. This is the well-known spin-rotation coupling. Each of these
components is given an integral value i=1, 2, 3,. . . , starting from the
maximum value of J . For example, a molecule with spin S = 1/2 has
components with J = N + 1/2 and J = N − 1/2, which are given the
indices 1 and 2, respectively. A molecule with spin S = 1 has components
with J = N + 1, J = N and J = N − 1, which are given the indices 1, 2,
and 3, respectively.

• Hund’s case (c). In this case, the interaction between the electronic or-
bital angular momentum L and the spin S is stronger than the interaction
with the internuclear axis. Therefore, Λ and Σ are not well defined. L
and S form a resultant Je which is then coupled to the internuclear axis
giving rise to the component Ω. This electronic angular momentum is
added to the rotational angular momentum R forming the total angular
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momentum J. The rotational energy values are given by the same formu-
las as for case (a). For a schematic representation of the vector diagram,
refer to Herzberg (1950).

• Hund’s case (d). In this case, the orbital angular momentum L is
strongly coupled to the rotational angular momentum R, forming the
total angular momentum apart from spin (N) by angular momentum
addition. Therefore, the values of N are:

N = R+ L,R+ L− 1, R + L− 2, . . . , |R− L|. (2.33)

This resultant angular momentum N and the spin S form the total angular
momentum J. Usually, the coupling between N and S is so weak that it
is enough to consider only N as the total angular momentum. The vector
diagram can be found on Herzberg (1950).

• Hund’s case (e). As in Hund’s case (c), we assume that L and S are
strongly coupled, forming the resultant Je. However, this total electronic
angular momentum couples to the rotational angular momentum R in-
stead of with the internuclear axis, to give the total angular momentum
J. Refer to Herzberg (1950) for the vector diagram.

Almost all the electronic states can be correctly studied assuming that case
(a) or case (b) represent the coupling of angular momenta in the molecule.
However, as we will see in the next section, there are some situations in which
the molecule is in a coupling case intermediate between both cases.

2.5.2 Uncoupling phenomena

Hund’s coupling cases are limiting cases. The relative strength of the couplings
change when the rotation is increased, and a transition from one case to other
occurs. Although some molecules can be correctly described with the limiting
Hund’s cases, intermediate cases are many times needed. In what follows we
describe some of the uncoupling phenomena typically found.

• Λ-doubling. In Hund’s cases (a) and (b) the interaction between the ro-
tation and the electronic orbital angular momentum L has been neglected.
We have seen that levels with Λ 6= 0 are doubly degenerate in the case
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of zero rotation. However, when rotation is taken into account, the L-R
interaction leads to a splitting into two components for each value of J .
Although observable, this splitting is usually very small, only arriving to
a few cm−1 for large values of J . The splitting is relatively the largest for
terms with the smallest Ω.

• Spin doubling. While Σ states always belong to case (b), Π, ∆,. . . states
usually belong to intermediate cases between (a) and (b). For these states,
case (a) is usually a good approximation for no rotation or small rota-
tion. However, as J increases, the rotational velocity increases and can
become comparable with the precession of S about the internuclear axis.
If the rotational velocity is increased further, the influence of the rota-
tion dominates and the rotational angular momentum R couples with the
projection of the orbital angular momentum Λ forming a resultant N.
Then, the spin couples with N and forms the total angular momentum J.
Therefore, we effectively have a transition from case (a) to case (b) when
rotation increases, which is called spin-uncoupling.

As we have seen, for small rotation the angular momentum N is not
defined, since S is coupled to the internuclear axis. However, we can
formally assign N values to the levels by direct extension to low rotation
of the numbering used for high rotation. Molecules in the high rotation
limit (J � 1) are usually very well described by the Hund’s case (b)
coupling, independently of the electronic state we are dealing with.

2.5.3 Parity

In the classification of the electronic states, it is of fundamental importance
to specify the parity of the eigenfunctions under an inversion of the electronic
and nuclear coordinates with respect to the center of mass of the molecule. If
the eigenfunction of the state changes its sign under this inversion, the state
is odd, while it is even if it does not change under this inversion. As we will
show in Section §2.6, the importance of the parity of the energy is related to the
existence of selection rules which have to be fulfilled in a molecular transition.

For a molecule without spin, the parity is given by the factor p(−1)J , where
J is the total angular momentum of the molecule, while p = ±1 is a factor
which accounts for the parity of the electronic eigenfunctions under a reflection
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under any plane passing through both nuclei. For a non-degenerate state (Σ
state), we have a Σ+ state (p = 1) if the eigenfunction does not change its sign,
while we have a Σ− state (p = −1) if the eigenfunction changes its sign. For
states with Λ 6= 0, we have seen that electronic levels are degenerate for the
two possible values of ML. Each of the components, which are non-degenerate
when rotation increases (Λ-doubling) has a definite parity (each one has a value
of p).

There have been many attempts to define the parity of a rotational level.
The labeling suggested by Brown et al. (1975) has become successful. It in-
cludes the effect of the spin into the definition of the parity. Levels are labeled
as “e” or “f” according to the following scheme:

• Molecules with semi-integer value of J (semi-integer spin):

– e levels have parity (−1)J−1/2

– f levels have parity −(−1)J−1/2

• Molecules with integer value of J (integer spin):

– e levels have parity (−1)J

– f levels have parity −(−1)J

For the case of a molecule in which both nuclei have the same charge, the
field in which the electrons move has, in addition to the symmetry axis, a
center of symmetry. Therefore, the electronic eigenfunctions remain unchanged
or have a sign change under a reflection on this center of symmetry. This
symmetry property is indicated by adding a subscript g (even) or u (odd) to
the term symbol (from the german “gerade” and “ungerade”). Therefore, we
have Σu, Σg, Πu, Πg, . . . levels. The spin has no influence on this symmetry
property and therefore the components of a given multiplet term are either all
even (g) or all odd (u).

We point out that the distinction between even and odd states under the
reflection about the center of symmetry is independent of wether the molecule
is homonuclear or not, provided the charge of both atoms is the same. Even for
heteronuclear molecules, this distinction approximately holds when the charge
of the atoms is very similar. This is the case of molecules like CN.
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2.6 Selection rules

The quantum numbers introduced before for the description of the coupling
affect the observed molecular spectra through the selection rules. As usual, the
electric dipole selection rules are obtained by evaluation of the matrix elements
Rul = 〈ψu|M|ψl〉, where M is the electric dipole moment and ψu and ψl are
the eigenfunctions of the upper and lower levels of the transition, respectively.

We distinguish between the selection rules that hold generally and those
which hold only for some of the Hund’s coupling cases.

2.6.1 General selection rules

For any atomic or molecular system, the selection rule for the quantum number
J of the total angular momentum is

∆J = 0,±1, (2.34)

with the restriction that a J = 0→ J = 0 radiative transition cannot take place.
Together with this selection rule, parity selection rules hold quite generally,
allowing only transitions in which there is a change in the parity of the levels:

+↔ −, + = +, −= −. (2.35)

This selection rule for electric dipole transitions can be written as follows with
the parity defined as in Brown et al. (1975):

e↔ f for ∆J = 0

e↔ e and f ↔ f for ∆J = ±1. (2.36)

2.6.2 Selection rules for Hund’s cases (a) and (b)

Besides the general selection rules, there are some selection rules which hold
only in Hund’s cases (a) and (b). Since these two coupling cases are by far
the most frequent, these selection rules have a quite general significance. As
we have seen, the quantum number Λ is defined for both Hund cases, and the
selection rule is:

∆Λ = 0,±1, (2.37)



2.6 Selection rules 33

so Σ−Σ, Σ−Π, Π−Π, . . . transitions are allowed, while Σ−∆, Σ−Φ, Π−Φ,
. . . are forbidden. This selection rule is equivalent to the ML selection rule for
atoms in an electric or magnetic field.

The total spin S is well defined for both cases, and the selection rule for the
associated quantum number is the same as for atoms, namely:

∆S = 0. (2.38)

This means that we can only have transitions between states of the same mul-
tiplicity.

2.6.3 Selection rules for Hund’s case (a)

The quantum number Σ corresponding to the projection of the total electronic
spin on the internuclear axis is well defined in Hund’s case (a). The selection
rule for this quantum number is:

∆Σ = 0. (2.39)

Therefore, if both states belong to case (a), transitions like 2Π1/2 −2 Π1/2 and
2Π3/2 −2 Π3/2 are allowed, while transitions like 2Π3/2 −2 Π1/2 are forbidden.

The quantum number Ω of the projection of the total electronic angular
momentum on the internuclear axis has the selection rule:

∆Ω = 0,±1. (2.40)

This selection rule adds nothing new as long as the selection rules given by Eqs.
(2.37) and (2.39) hold. However, this selection rule holds even in case that Λ
and/or Σ loose their meaning, while Ω is still a good quantum number, as it
happens in case (c).

If Ω = 0 for both electronic states of a transition, ∆J = 0 transitions are
forbidden, and only ∆J = ±1 holds. As a consequence, no Q branch appears
for these transitions, like the 3Π0 −3 Π0 component of a 3Π−3 Π transition.

2.6.4 Selection rules for Hund’s case (b)

The quantum number N for the total angular momentum apart from the spin is
well defined in case (b). If both states belong to case (b), the following selection
rule holds:

∆N = 0,±1, (2.41)
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with the restriction that ∆N = 0 is forbidden for Σ− Σ transitions.

2.6.5 General cases

The special selection rules just discussed hold if both states of a transition
belong to one and the same coupling case. In the general case in which one
state belongs to one coupling case and the other state to other, these selection
rules lose their validity and there remain only the selection rules which hold for
both cases simultaneously. Therefore, the number of branches allowed in such
transitions is much greater.

As a result of the spin uncoupling, it often happens that both states ap-
proach case (b) for large rotations, while usually belonging to case (a) for small
rotation. Therefore, the selection rules which hold change when rotation is
increased.

2.7 Nomenclature of the transitions

In designating a given electronic transition, the upper state is always written
first and then the lower. For example, 1Π−1 Σ means a transition between an
upper level 1Π and a lower level 1Σ. Sometimes, an arrow explicitly indicates
if the transition is in emission (1Π→1 Σ) or in absorption (1Π←1 Σ).

Concerning the notation of an individual rotational transition, the conven-
tion of calling P branch to that with ∆J = Ju − J` = −1, R branch to that
with ∆J = 1 and Q branch to that with ∆J = 0 holds. Due to the spin
of the molecule, each of the rotational levels with a quantum number J are
splitted into 2S + 1 levels due to the interaction of the spin and the rota-
tion. As mentioned above, each of these levels if labeled by an integer value
i=1,2,3,. . . starting with J = N + S and finishing with J = |N − S|. Although
the rotational quantum number N is not well defined, it is useful to retain it in
order to label the rotational levels. The spin-rotation index of the upper and
lower level of a transition is appended as two subscripts to the P , Q or R. If
both subscripts are the same, they are collapsed into only one for simplicity
(i.e., R12, R22 ≡ R2, . . . ). If we take into account which is the variation of N
during a transition, we can divide them into:

• Principal branches: they fulfill ∆J = ∆N . Thus, the upper and lower
spin-rotation index have to be the same. They are usually the strongest
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transitions in a given branch. As an example, for a molecule with S = 1/2,
we have the P1, P2, R1, R2, Q1 and Q2 rotational lines. The Einstein
coefficient of these transitions are comparable to the electronic transitions
in atoms (although usually a bit smaller) .

• Satellite branches: they fulfill ∆J 6= ∆N . Thus, the upper and lower
spin-rotation index have to be different. They are usually the weakest
transitions in a given branch, although if the electronic state is not well
reproduced in Hund’s case (b), this conclusion may change. The Einstein
coefficient of these transitions are usually some orders of magnitude lower
than transitions belonging to the principal branches. As an example, for a
molecule with S = 1/2, we have the P12 (∆N = −2), P21 (∆N = 0), R12

(∆N = 0), R21 (∆N = 2), Q12 (∆N = −1) and Q21 (∆N = 1) rotational
lines. The transitions with |∆N | ≥ 2 are forbidden from electric dipole
selection rules under Hund’s case (b) coupling. However, since molecules
are sometimes not well described by pure Hund’s cases, these transition
are not strictly forbidden. Their Einstein coefficients are many orders of
magnitude lower than the lines of the main branches or even those of the
satellite branches.

As an example, a schematic representation of a transition between doublet
states in case (b) is shown in Fig. 2.6, where each individual rotational tran-
sition is labeled, differentiating between lines from the principal branch and
those from the satellite branch.
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Figure 2.6: Energy diagram for a transition between two doublet states which are described
under Hund’s case (b) coupling. Each level is labeled by its quantum numbers N and J ,
indicating also the spin-coupling index i. High enough N values are selected in order to be
sure that case (b) is more or less correct. All the possible transitions between a single upper
rotational level are also indicated with their corresponding notation. The solid lines are those
from the principal branch while the dashed lines are those from the satellite branch. The
two lines marked with dotted lines are those with ∆N = ±2, which are not permitted. After
Herzberg 1950.
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2.8 Résumé of molecular spectroscopy

We present in this section a brief summary of molecular spectroscopy in which
we summarize all the properties presented in the chapter.

Type of angular momentum Operator Quantum numbers
Total Projection

Electronic orbital L L Λ = 0, 1, 2, . . . , L

Electronic spin S S Σ = S, S − 1, . . . ,−S

Rotational R R · · ·

Total J = R + L + S J Ω = |Λ + Σ|

Total apart from spin N = R + L N Λ

Table 2.1: The angular momenta involved in Hund’s coupling cases.

Hund’s case Case (a) Case (b)

Good quantum numbers Λ, S, J , Σ ( Ω = Λ + Σ) Λ, S, J , N

Degeneracy (non-rotating)

(

2 if Λ 6= 0

1 if Λ = 0

(

2(2S + 1) if Λ 6= 0

2S + 1 if Λ = 0

Degeneracy (rotating)

(

2 if Λ 6= 0

1 if Λ = 0

(

2 if Λ 6= 0

1 if Λ = 0

Values of J Ω, Ω + 1, Ω + 2, . . . N + S, N + S − 1, . . . , |N − S|

Values of N Not defined Λ, Λ + 1, . . .

Table 2.2: Brief description of Hund’s cases properties.

Value of the spin Parity

Semi-integer

(

e levels have parity(−1)J−1/2

f levels have parity − (−1)J−1/2

Integer

(

e levels have parity(−1)J

f levels have parity − (−1)J

Table 2.3: Parity of the rotational levels.
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Type of selection rule Selection rule

Parity

+ ↔ −, + = +, − = −
or

(

e ↔ f for ∆J = 0

e ↔ e and f ↔ f for ∆J = ±1

General ∆J = 0,±1 (except J = 0 → J = 0)

Case (a)
+

Case (b)

∆Λ = 0,±1
∆S = 0

Case (a)
∆Σ = 0

∆Ω = 0,±1

Case (b) ∆N = 0,±1

Table 2.4: Selection rules of rotational transitions.



3
Non-equilibrium chemistry in stellar

atmospheres

In this chapter, we show how molecular abundances can be obtained, either
assuming instantaneous chemical equilibrium or solving the full chemical evo-

lution problem. We present the details of both schemes, including basic equa-
tions, implementation details, simple applications to the solar atmosphere, etc.
We present in Section §3.3 an investigation of the relaxation times of molecular
formation in the solar atmosphere. This serves as a background for understand-
ing the results obtained in Section §3.5.1 in which we study in detail the time
evolution of the CO abundance in the 1D hydrodynamical simulations of Carls-
son & Stein (1997) and the effect of the finite reaction times in the emerging
CO spectrum. Finally, we investigate in detail in Section §3.5.5 the molecular
formation in the 3D hydrodynamical simulations of Asplund et al. (2000).

3.1 Instantaneous chemical equilibrium

Molecules are usually found in highly dynamic systems (e.g., the solar atmo-
sphere, winds of AGB stars, ...) and their formation is influenced by the time
variation of the physical conditions in the medium. However, when the dy-
namical timescales are much slower than the timescales of molecular formation,
the approximation of Instantaneous Chemical Equilibrium (ICE) can be used



40 Non-equilibrium chemistry in stellar atmospheres 3.1

with extremely good results. Under the ICE approximation, molecules are as-
sumed to be formed instantaneously and their abundances depend on just the
local temperature and density. Another consequence of this assumption is that
the specific reaction mechanisms that create and destroy a given molecule is
irrelevant and only the molecule and its constituents are important. In spite
of the great simplification, the ICE approximation holds in many astrophysical
situations (Russell 1934, Tsuji 1964, Tsuji 1973, McCabe et al. 1979, etc.).

3.1.1 Basic equations

Consider three elements A, B and C which stick together to form the molecule
AaBbCc, in which a, b and c are the stoichiometric coefficients indicating the
number of times an element is present in the molecule. Because the explicit
reactions which form the molecule are irrelevant under the ICE approximation,
it is enough to consider the following dissociative process for the formation of
the molecule AaBbCc:

AaBbCc ⇔ aA+ bB + cC. (3.1)

This reaction is characterized by its dissociative reaction constant or equilibrium
constant. It is given by the ratio between the product of the partial pressures
of the individual elements and the partial pressure of the molecule:

Kp(T ) =
P a

AP
b
BP

c
C

PABC
, (3.2)

being Kp(T ) a function of the temperature and Pi the partial pressure of the
species i. For example, the equilibrium constant for the dissociation of CO and
H2 is given by

KCO
p (T ) =

PCPO

PCO
, KH2

p (T ) =
P 2

H

PH2

. (3.3)

The partial pressure is related to the number density ni of a given species by
the usual ideal gas equation:

Pi = nikT, (3.4)

where k is the Boltzmann constant and T the local temperature. This partial
pressure is the pressure species i would yield if it were occupying all the volume.
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The sum of all the partial pressures amounts the total pressure in the medium.
Therefore, considering the case of an atmosphere with hydrogen and helium as
the only components, the total pressure is given by:

PT = PH + PH+ + PH− + PH2 + PHe + Pe− . (3.5)

Following the same line of reasoning, one can consider the ionization equi-
libria for the atomic species:

A⇔ A+ + e−

A+ e− ⇔ A−, (3.6)

with their corresponding equilibrium constants:

KA+(T ) =
PA+Pe−

PA
KA−(T ) =

PA−

PAPe−
. (3.7)

We now define the fictitious pressure P (i) as the pressure produced by element
i if all the gas were in the neutral form of the atomic species i. In general,
it is usual to give the partial pressures of all the atomic species in terms of
the fictitious pressure of hydrogen P (H). The coefficient relating one and the
other is the abundance of each element with respect to hydrogen, A(i), so
P (i) = A(i)P (H). The abundance of each atomic species depends on the
metallicity of the star we are considering. For the solar case, we have selected
the standard solar abundances given by Grevesse (1984).

Under ICE conditions, the number of atoms and molecules are obtained
by solving the conservation of mass and the chemical equilibrium conditions
given by Eq. (3.2). The conservation of mass establishes that the sum of the
partial pressures of all the species containing a given atomic element (taking into
account the stoichiometry) equals the fictitious pressure of the given element:

P (i) = Pi + Pi+ + Pi− +
∑

k

ωi
kPk, (3.8)

where Pi, Pi+ and Pi− are the partial pressure of the neutral element i, and
the ionized elements i+ and i−, respectively, while Pk is the partial pressure
of molecule k which has species i in its composition. ωi

k is the stoichiometric
coefficient which indicates the number of times element i appears in molecule k.
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The sum is extended over all the molecules in which the element i takes part.
The previous equation can be rewritten with the aid of Eqs. (3.2) and (3.7):

P (i) = Pi +Ki+
Pi

Pe−
+Ki−PiPe− +

∑

k

ωi
k

P
ωi

k
i P

ωj
k

j · · ·P
ωl

k
l

K
(k)
p (T )

, (3.9)

where i, j, . . . , l are the atomic species composing molecule k, ω i
k + ωj

k + . . .+

ωl
k = nk is the number of atoms of molecule k and K

(k)
p (T ) is its equilibrium

constant. Charged molecules can be easily included by taking into account
its dissociation and the ionization equilibrium, simultaneously. Consider the
dissociation equilibrium of a ionized diatomic molecule. The only thing to take
into account is that when a charged molecule dissociates, the atomic element
which remains ionized is the one with the lowest ionization potential:

AB+ ⇔ A+ +B, (3.10)

so that D0(A) < D0(B). Therefore, using Eq. (3.2) and Eq. (3.7) we can
calculate the partial pressure of the ionized molecule:

Kp(T ) =
PA+PB

PAB+

=
KA+(T )

Pe−

PAPB

PAB+

, (3.11)

We can write an equation like Eq. (3.9) for each of the N atomic species
included in the calculation. Therefore, once the molecular and ionization equi-
librium constants are known, we have a set of N non-linear algebraic equations
which depend on the local temperature and density. The ICE approximation
is intrinsically local since it depends only on the local values of the temper-
ature and density. Therefore, for calculating the molecular number densities
in a model atmosphere, we have to solve the algebraic system of equations for
each point in the atmosphere. Once the partial pressures for all the atomic
species are known, we can calculate the ensuing atomic number densities by
using Eq. (3.4). The molecular number densities are calculated by solving for
their partial pressures in Eq. (3.2), using the equilibrium constant appropriate
for each molecule.

3.1.2 Equilibrium constants

As we have seen, the problem of obtaining the atomic and molecular number
densities is completely defined once the temperature and the total density (or
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pressure) is known. However, we also need to know the value of the equilibrium
constant for each temperature. Consider the dissociative equilibrium given by
Eq. (3.1). The value of the equilibrium constant can be obtained with the aid of
the partition function of the molecule and of the individual atomic components,
their respective masses and the dissociation energyD0 (see, e.g., Tejero Ordoñez
& Cernicharo 1991 for detailed information on how the equilibrium constants
can be calculated). The expression is given by (Tejero Ordoñez & Cernicharo
1991 and references therein):

Kp(T ) = (kT )NA−1

(

2πkT

h2

)3(NA−1)/2 (ma
Am

b
Bm

c
C

mABC

)3/2 (
φa

Aφ
b
Bφ

c
C

φABC

)

e−D0/kT ,

(3.12)
where mi is the mass of atomic or molecular species i, NA = a + b + c is the
number of atoms present in the molecule, φi is the partition function of species
i. h and k stand for the Planck and Boltzmann constants, respectively. This is
nothing but the law of mass action. The partition function of the atomic and
molecular species are calculated with the usual formula:

φ =
∑

j

gje
−Ej/kT , (3.13)

where gj is the degeneracy of level j and Ej its energy. Ideally, the sum has to
be extended over all the energy levels of the species. However, due to the diffi-
culty of accounting for all the energy levels, the most complete available set of
energy levels must be used. For molecules, the partition function has to include
the contribution from the electronic, vibrational and rotational levels. Since
this summation cannot be performed each time an ICE calculations is being
performed, several works have been aimed at building tables with polynomial
fits to the partition functions (Russell 1934, Tsuji 1971, Sauval & Tatum 1984,
Tejero Ordoñez & Cernicharo 1991). If we substitute the values of the constants
in the mks unit system, and take logarithms in Eq. (3.12), we end up with the
following formula:

logKp(T ) = 3.41405(NA − 1) +
5

2
(NA− 1) log T +

3

2
log

Ma
AM

b
BM

c
C

MABC
+

log
φa

Aφ
b
Bφ

c
C

φABC
− 5039.9

D0

T
, (3.14)
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where MABC = aMA + bMB + cMC is the molecular weight and Mi is the
atomic weight of each species. The dissociation energy is now given in eV. This
expression gives the equilibrium constant for a given temperature in terms of
the partition function and the masses of the molecule and its constituents and
the molecular dissociation energy. The accuracy in the equilibrium constant is
now given by the accuracy one can obtain for the partition function and the
dissociation energy (either measured or calculated using quantum-mechanical
methods). The equilibrium constant can be transformed to the cgs unit system
by noting that:

logKcgs
p (T ) = logKmks

p (T ) +NA. (3.15)

From direct inspection of Eq. (3.12), we can see that the equilibrium constant
strongly depends on the dissociation energy. Therefore, from the combination
of Eqs. (3.12), (3.4) and (3.2) it is expected that the molecular number density
is proportional to eD0/kT . For this reason, molecules with a higher dissociation
energy are more abundant than molecules with a lower dissociation energy.
This is correct only approximately because the non-linearities of the system
of equations can lead to molecules with lower dissociation energy to be more
abundant than molecules with a higher dissociation energy.

Several authors have published compilations of equilibrium constants in the
form of polynomial fits. Let us briefly summarize the available data:

• Russell (1934). This is one of the first works in which an extensive cal-
culation of the equilibrium constants are obtained. A compilation of the
molecular constants is done for about thirty molecules and used for the
interpretation of the molecular bands in the Sun and other stars with dif-
ferent chemical composition. It was shown in this work that many of the
molecular bands which had been observed in the stars at that time could
be interpreted based on the theory of dissociative equilibrium, as stated
in the previous sections. The small set of molecules included in the calcu-
lations led to incorrect results as shown in later works, but it represents
the first serious attempt to apply the theory of dissociative equilibrium
to the interpretation of molecular bands.

• Tsuji (1971). This much recent work is considered as a classical reference.
A set of 44 molecules composed of H, C, N and O are included, obtain-
ing the molecular abundances for a range of temperatures and total gas
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pressures, corresponding to stars of different spectral types. The most up-
dated molecular data was used and one of the most important results was
the demonstration that polyatomic molecules like CH4, C2H2, NH3, CH2,
. . . are important for some physical conditions. However, these special
physical conditions are not typical in stars like the Sun, except perhaps
in the colder regions like sunspots.

• Sauval & Tatum (1984) This work is considered one of the most exhaus-
tive calculations of partition functions and equilibrium constants. The
molecular data is obtained for 300 diatomic molecules of astrophysical
interest and for the relevant atoms for a temperature range from 1000
to 9000 K. Almost all the molecular spectroscopic data is obtained from
Huber & Herzberg (1979) in order to lead to a homogeneous set of data.

• Tejero Ordoñez & Cernicharo (1991) This work represent one of the
biggest compilations of molecular data for 240 molecules. Spectroscopic
data for 128 diatomic molecules and equilibrium constants for 240 di-
atomic and polyatomic molecules are obtained based on the determina-
tion of the partition function by summation of Eq. (3.13). The electronic
energy levels and the vibrational and rotational constants are those ob-
tained from the compilation of molecular data from different sources. In
this thesis we have made use of the equilibrium constants and partition
functions of this work which are complete enough and represents a totally
self-consistent work. The molecular data is given as the coefficients of a
polynomial fit to the partition function and equilibrium constants.

3.1.3 Numerical method

We have developed a computer program which solves the non-linear system of
equation given by Eq. (3.9). To this end, we have applied a Newton-Raphson
method for the solution of nonlinear equations (Press et al. 1986). We will
briefly sketch the basis of this method. The system of equations given by Eq.
(3.9) can be rewritten as:

Fi(P1, P2, . . . , PN ) = 0 i = 1, 2, . . . , N, (3.16)

where N is the number of included atomic species, while the N unknowns Pi are
the partial pressures of the atomic elements. We denote by P the entire vector
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of unknowns Pi and by F the entire vector of functions Fi. In the neighborhood
of P, each of the functions Fi can be expanded in Taylor series:

Fi(P + δP) = Fi(P) +
N
∑

j=1

∂Fi

∂Pj
δPj +O(δP2), (3.17)

where δP is a correction to the partial pressure vector. The matrix of partial
derivatives appearing in the previous equation is the Jacobian matrix J, defined
as:

Jij =
∂Fi

∂Pj
. (3.18)

One has to take into account that this Jacobian matrix can be calculated an-
alytically by calculating the partial derivatives of Eq. (3.9). The previous Eq.
(3.17) can be written in matrix notation as:

F(P + δP) = F(P) + J · δP +O(δP2). (3.19)

If we now neglect terms of order δP2 and higher and assume that the perturbed
vector of partial pressures is the solution to the system of equations –that is, we
set F(P+δP) = 0– we end up with a set of linear equations for the corrections:

J · δP = −F. (3.20)

Since we have neglected terms of order two and higher, the new estimation
Pnew = Pold + δP is not the exact solution to the nonlinear system and the
procedure must be iterated to convergence.

3.1.4 Molecular abundances in the solar atmosphere

In order to give an idea of the molecular abundances in different regions of the
solar atmospheric plasma, we have solved the ICE problem at all the heights of
various solar models. We have chosen the FAL-C model (Fontenla et al. 1993)
as representative of the magnetic network of the most quiet regions of the Sun,
the COOL-C (Ayres et al. 1986) model as representative of the inter-network
regions and a granular and intergranular models from the 3D hydrodynamical
simulations of Asplund et al. (2000). The temperature profiles of the four
models are shown in Fig. 3.1. Note that the granular and intergranular models
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Figure 3.1: Temperature stratification of the FAL-C, COOL-C, granular and intergranular
models. Note that the upper boundary for the granular and intergranular models is placed at
800 km because this simulation did only include photospheric regions.

arrive only to 800 km above the visible solar “surface” (defined as the position

of continuum optical depth unity at 5000
◦

A at vertical incidence) because the
3D simulation only included photospheric regions. On the other hand, FAL-C
and COOL-C semi-empirical models do include a chromospheric region since
they were constructed to fit observed spectral features which are generated in
the chromosphere. We now discuss some of the properties of the molecular
abundances shown in Fig. 3.2, which we have calculated in each atmospheric
model:

• FAL-C. The upper left panel of Fig. 3.2 shows the molecular abundances
relative to the hydrogen abundance for the FAL-C quiet Sun model. We
can see that the molecular abundances of all the species considered have
a peak below ∼500 km, which is the atmospheric height where the model
has its temperature minimum. The most abundant molecule is H2 due
to the high abundance of atomic hydrogen. The second most abundant
molecule is CO. This results in part by its extremely high dissociation
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Figure 3.2: Molecular abundances relative to the total hydrogen abundance for the semi-
empirical models FAL-C and COOL-C and two models taken from the 3D hydrodynamical
simulations of Asplund et al. (2000) representative of a granule and an intergranule.

potential of 11.23 eV which makes this molecule quite difficult to disso-
ciate at the typical temperatures in the solar photosphere. However, in
this log-linear plot we see that the abundance of all the molecules fall
above 500 km following an almost linear trend. This is caused by the ex-
ponential decrease of the density in the solar atmosphere. Consequently,
there is a decrease in the number of collisions and, therefore, a decrease
in the number density of the molecular species. Furthermore, the expo-
nential decrease is accompanied by a rise in the kinetic temperature (the
chromospheric temperature rise) which plays also a role in decreasing the
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molecular abundances by its effect on the equilibrium constant. However,
the physical conditions in these regions are favorable for the formation of
ionized species like H+

2 and CH+ which can even become more important
than the molecular hydrogen itself.

• COOL-C. The molecular abundances in this semi-empirical model are
shown in the upper right panel of Fig. 3.2. This model atmosphere
presents a higher relative abundance because the COOL-C model is colder
than FAL-C. The COOL-C model has an almost constant temperature
above 1000 km and, therefore, the fall of the molecular abundances above
1000 km is essentially produced by the decrease in the density due to the
exponential stratification. Although below 600 km the most abundant
molecule is H2, above this height the most abundant molecule is CO,
reaching a peak at ∼900 km.

• Granular model. As seen in Fig. 3.1, the granular plasma is very hot
deep in the photosphere. As a consequence, the molecular abundances
in this region are quite low. The molecular abundances are shown in
the lower left panel of Fig. 3.2. H2 and H+

2 become the most abun-
dant molecules, although still 5 orders of magnitude lower than atomic
hydrogen. CO only becomes dominant above ∼700 km while deeper in-
side it is 5 orders of magnitude lower than molecular hydrogen. Since
temperature and density are monotonically decreasing with height in the
atmosphere, the formation of ionized molecular species is not favored and
its abundance rapidly decreases when going outwards.

• Intergranular model. The temperature stratification in the intergranu-
lar gas is much less steeper than in the granular plasma and this behavior
is transferred to the stratification of molecular abundances. CO becomes
the most important molecule above ∼650 km, while H2 is the most im-
portant below this height. The behavior of the ionized species is similar
to what happens in the granule, although their abundance in the deeper
regions is much lower due to the lower temperature. The molecular abun-
dances are shown in the lower right panel of Fig. 3.2.
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Figure 3.3: CH abundance obtained when considering different sets of molecules to solve the
chemical equilibrium equations: H2 and CH (solid lines), H2, CO and CH (dotted lines),
and up to 12 molecular species, including H2, CO and CH (dashed line). The latter can be
regarded as the exact solution. In the quiet Sun model (see panel (a)), even considering the
sole formation of CH gives reasonable values. This approximation clearly breaks down in
umbrae (see panel b). In this case, however, including just H2 and CO renders good results.
Note that the dashed and the dotted lines are overlapped and they cannot be distinguished
graphically.

3.1.5 Completeness

The size N of the system of equations depends only on the number of atomic
species included in the problem. The number of molecular species does not
increase the size, but adds more terms in each Eq. (3.16). The larger the
number of molecular species included, the more realistic the result would be.
The number of species included (atomic and molecular) is one of the most
important parameters, together with the value of the equilibrium constants.
One decides the number of molecular species included in the model according
to the problem under investigation. It is a compromise between the realism of
the calculation and the time to solve the problem. The list of molecules for
which we have equilibrium constants are formed by combinations of 21 atomic
species. Therefore, we have decided to always maintain the size of the system to
21×21 (the maximum size) and the free parameter is the number of molecular
species included. If a given atomic species is not entering in the formation of
any molecular species, we only solve its ionization equilibrium.

We have applied our ICE code to calculate molecular number densities for
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many molecules in the solar atmosphere. We have even included molecules
which, although having low abundances, show conspicuous signals in the solar
spectrum (either the non-polarized or the polarized spectrum). Therefore, we
will discuss the number of molecular species needed for molecules with high
abundance and those with low abundance.

High abundance molecules

If we are interested in one of the most abundant molecules in the solar environ-
ment, it is enough to include only a restricted subset of the molecular species in
our database. The formation of the less abundant molecules negligibly affects
the formation of the more abundant ones, which are mainly driven by the rest
of more abundant molecules and the atomic species.

As an example, we will discuss the formation of CH in the solar atmosphere.
Except in the umbrae of sunspots, most of the photospheric plasma in the quiet
Sun is in the form of atoms. We have verified that a restricted subset containing
CH, CO, H2, H+

2 , C2, N2, O2, CN, NH, NO, OH and H2O is complete enough
for a reliable calculation of the number density of CH molecules. However, for
the calculation of the CH abundance, this subset can be reduced further by
including simply H2, CO and CH. This gives correct results because H2 and
CO are usually the most abundant molecules. Almost all the hydrogen that is
not in atomic form is in the form of molecular hydrogen and the rest is taken
by the formation of CH (the rest of molecules containing hydrogen, even if
they are more abundant than CH, do not influence the formation of CH since
the hydrogen used in these molecules is negligible with respect to the most
abundant H2). On the other hand, almost all the oxygen and carbon not in
atomic form is in the form of CO, and the rest is taken by CH (similarly to
what happens with hydrogen, the rest of molecules containing hydrogen do not
influence the formation of CH). Therefore, the reduced set of equations given
by Eq. (3.9) can be written as:

P (H) = PH +
PCPH

KCH
+ 2

P 2
H

KH2

ACP (H) = PC +
PCPO

KCO
+
PCPH

KCH

AOP (H) = PO +
PCPO

KCO
, (3.21)
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which can be even solved analytically. In order to show the effect of the number
of molecular species included in the system, we have solved the ICE equations
in two different photospheric models: the quiet Sun model VAL-C of Vernazza
et al. (1981) and the umbra model of Collados et al. (1994). We have done
calculations for the following cases:

1. CH and H2;

2. CH, CO and H2;

3. CH, CO, H2, H+
2 , C2, N2, O2, CN, NH, NO, OH and H2O,

where the third case is supposed to represent the exact solution. The general
behavior is very well illustrated in Fig. 3.3, where we have indicated as complete

set that obtained from case 3. The number of CH molecules corresponding to
cases 2 and 3 differ by less than 0.01 % in the quiet Sun (Fig. 3.3a). Even
if the formation of CO is neglected (case 1), the errors are smaller than 10
% (see Fig. 3.3a). We have verified that the approximation corresponding to
cases 1 and 2 works even better in hotter models, like models of network and
plage regions. However, sunspot umbrae are different. Here the CO exhausts
the carbon available to create CH, and its formation must be considered (Fig.
3.3b). The approximation in case 2 still holds within 1 %.

Therefore, it is shown that for very abundant molecules, smaller subsets of
the total database can be used without obtaining a very big difference in the
calculated molecular number densities. However, things might change for other
molecules, even if its abundance is supposed to be high. Therefore, it turns
out necessary to study in detail each case if one is interested in speeding up
the calculations by reducing the numerical work. On the other hand, we think
that the actual computing power is high enough to permit the solution of the
ICE problem with the full molecular database without many problems except
in selected situations in which poor convergence is obtained in the Newton-
Raphson scheme. This poor convergence can be produced by initializing the
scheme very far from the final solution. In this situation, the assumptions made
on the Newton-Raphson method are broken (see Eq. 3.19) and the method does
not converge. However, more powerful numerical schemes are available which
converge to the correct solution even if the initialization is far from the solution
(see Press et al. 1986 for a description of such global methods).
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Low abundance molecules

When one is interested in the abundance of trace molecules, a very careful
selection of molecular species has to be done. Since the numerical methods for
the solution of the ICE problem are very fast, we think it is worth including
the whole database of molecular species. The system turns out to be extremely
non-linear, but the solution is usually obtained in less than 10 iterations.

3.2 Formulation of the chemical evolution problem

3.2.1 Basic equations

The mechanisms responsible for the formation or destruction of a molecule are
of no importance under the ICE approximation. However, this assumption
is only valid when the equilibrium situation has been reached. In any other
case, the formation and destruction paths and their timescales are of crucial
importance.

When the timescales in which the physical conditions change in a gas are
smaller than the time to reach the molecular equilibrium abundances, it is
fundamental to consider all the reactions which create and destroy a given
species and solve the full chemical evolution (CE) problem. The change in time
of the abundance of a given species i can be modeled with the following set of
nonlinear ordinary differential equations (e.g., Bennett 1988):

dni

dt
=
∑

A

∑

B

∑

C

kABCnAnBnC +
∑

A

∑

B

kABnAnB

+
∑

A

kAnA −
∑

A

∑

B

kABinAnBni

−
∑

A

kAinAni − kini.

(3.22)

We have classified the set of reactions according to the number of species which
have to collide to let the reaction take place:

• Three-body reactions. The reactions are of the type A + B + C →
products. They are included in the model by means of the first and
the fourth terms in Eq. (3.22). They correspond to reactions which
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create and destroy species i from the reaction of other three components,
respectively. They are characterized by the reaction rates kABC in units
of cm6 s−1 whose value is usually extremely small. They typically give
a negligible contribution to the total rate of variation of the abundance
of species i for low density media. On the other hand, for relatively high
density media like the solar photospheric plasma these reactions become
extremely important. For example, the catalytic formation of hydrogen
by the three body reaction H+H+H → H2+H has a rate of ∼10−30 cm6

s−1. However, the typical hydrogen densities in the solar photosphere are
of the order of 1015-1017 cm−3 and the rate of formation of H2 turns out
to be of the order of 1015-1021 cm−3 s−1.

• Two-body reactions. The reactions are of the form A+B→ products.
They are included in the model by means of the second and fifth terms
in Eq. (3.22). They correspond to reactions which create and destroy
species i from the reaction of other two components, respectively. They
are characterized by the reaction rates kAB in units of cm3 s−1 and typ-
ically represent the most important reactions in almost all the media in
which chemical reactions take place.

• One-body reactions. The reactions are of the form A → products.
They usually represent photodissociation or photoionization in which the
species is dissociated by photons of energy greater than the dissociation
potential (this is only valid for molecular species because atomic species
cannot dissociate) or ionized by photons higher than the ionization po-
tential (valid both for atomic or molecular species). Therefore, these
reactions are often written as A + hν → products, where we have explic-
itly indicated the necessity of a radiation field for the reaction to take
place. This dependence on the radiation field present in the medium is
implicitly taken into account in the reaction rate kA in units of s−1. The
model includes these reactions by means of the third and sixth terms in
Eq. (3.22), corresponding to reactions which create and destroy species
i, respectively.

Once the physical conditions, the set of species included in the model, and
the reaction rates of the reactions which take place among them are known,
the system of equations given by Eq. (3.22) is completely defined. This set of
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nonlinear differential equations represents a very stiff problem because of the
different variables and rates having disparate ranges of variation. A suitable
method that can cope with this stiffness has to be used. We employ an algorithm
based on the backward differentiation formula which can assure stability (see
e.g. Gear 1971) and allow to use time steps high enough to obtain the solution
for very long evolution times.

3.2.2 Initial conditions

In order to solve the set of first order differential equations (3.22) we need the
initial conditions for all the unknowns. There are two obvious options depending
on the study we want to perform:

• Zero molecular abundance. This means that we set the number den-
sity of all the molecular species to zero and all the atomic number densi-
ties proportional to the hydrogen abundance, where the proportionality
is given by the abundance of every atomic species relative to hydrogen.
For chemical studies in the solar atmosphere, we have selected the atomic
abundances given by Grevesse (1984). For metal-poor or metal-rich en-
vironments, these abundances can be changed accordingly. This type of
initial condition can be used to verify the formation time of the molecular
species at given heights of different atmospheric models.

• ICE. This means that the initial number densities are obtained assuming
the ICE approximation.

The chosen initial condition should be in accordance with the problem un-
der investigation. In order to be conservative, we consider that initializing with
the abundances given by the ICE approximation is a good option in general.
This approach is better for regions of high density and temperature since the
equilibrium abundances are rapidly obtained. On the contrary, the zero molec-
ular abundance option may be of application for regions where extreme shocks
have just passed and molecules have been efficiently destroyed.

3.2.3 Reaction databases

In order to get reliable results out of Eqs. (3.22), it is desirable to include all
the reactions that can produce or destroy a given species. Incompleteness in the



56 Non-equilibrium chemistry in stellar atmospheres 3.2

reaction database will produce differences between the molecular abundances
obtained in the ICE approximation and those obtained by solving the chemical
evolution equations until reaching the equilibrium solution. Time-dependent
chemistry has been extensively used in the interstellar medium (ISM) (e.g.,
van Dishoeck & Blake 1998), typically including only two-body reactions, pho-
toionization and photodissociation by the interstellar UV radiation field as the
set of fundamental processes. This approximation is justified owing to the low
densities present in the ISM that make three-body reactions extremely rare.
There are some databases with reactions oriented towards interstellar chem-
istry. This is the case of the UMIST1 astrochemistry database (Le Teuff et al.
2000) which was recently updated to include 4113 gas-phase reactions impor-
tant for interstellar and circumstellar chemistry among 396 species involving
the 12 elements H, He, C, N, O, Na, Mg, Si, P, S, Cl and Fe. This database
includes two- and one-body gas-phase reactions, but lack from the important
three-body reactions. Therefore, this database does not contain the full set of
reactions needed for solar-like stars.

For our problem, it is better to use a chemical reaction database oriented
towards the description of combustion reactions Konnov (2000)2. This database
contains reactions mechanisms which take place in the Earth environment in a
combustion process. Therefore, they are useful for high density media at high
temperature (conditions compatible with the solar atmosphere ones). Contrar-
ily, this database lacks from some reactions present in the UMIST database
which are important in the solar environment. The final database we are us-
ing is a combination of combustion and interstellar reaction databases. Our
database contains 1950 reactions between species involving H, He, C, N and O.

Common sense suggests that the higher the temperature, the faster a given
chemical reaction takes place. Quantitatively this relationship between the
rate a reaction proceeds and its temperature is determined by the Arrhenius
equation:

k(T ) = Ae−Ea/RT , (3.23)

where R = 8.314×107 erg K−1 is the universal gas constant, equivalent to
R = kNA, where k is the Boltzmann constant and NA is Avogadro’s number.
Ea is the activation energy of the reaction, i.e. the amount of energy required

1http://saturn.ma.umist.ac.uk:8000/∼tjm/rate/rate.html
2http://homepages.vub.ac.be/∼akonnov/
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to ensure that a reaction happens. This energy is necessary because there is
usually a potential barrier between the reactants and the products, even when
the products are more stable than the reactants. A is assumed to be a constant
in the Arrhenius equation, although usually depends on the temperature. We
will model this temperature dependence as a power-law. Therefore, the final
expression for the reaction rate we will use is:

k(T ) = k0T
βe−γ/T , (3.24)

where γ = Ea/kNA. As we have said, reactions take place by the collision of
the reactants with an energy higher than the activation energy. The higher the
temperatures, the higher the probability that two molecules will collide. This
higher collision rate results in a higher kinetic energy, which results in collisions
with enough kinetic energy to surpass the activation energy of the reaction.
This intuitive idea is represented in the Arrhenius equation by the exponential
term, which increases as the temperature increases. For example, consider the
reaction 2NO2 → 2NO + O2 with a reaction rate of 10−10 s−1 at 300 K and an
activation energy of 111 kJ mol−1. The ratio between the reaction rate at two
temperature can be obtained by the expression:

k(T1)

k(T2)
=

(

T1

T2

)β

e
−γ
(

1
T1

− 1
T2

)

. (3.25)

If we assume that β = 0, the rate reaction at 273 K is k(273 K)= 1.23×10−2

k(300 K). Therefore, a reduction of a factor of 80 is obtained in the reaction
rate by a small reduction of 27 K in the temperature. It is clear that the
temperature is a crucial factor in determining how fast the chemistry is. In a
very crude first-order approximation, we can assume that chemical reactions
take place the faster the higher the temperature is by neglecting the completely
nonlinear character of the chemical evolution equations. However, this very
crude approximation is often only correct for very abundant species like CO,
whose time evolution abundance barely depends on the rest of species and only
on the atomic carbon and oxygen abundances.

3.2.4 Photodissociation

We have pointed out that one-body reactions are photodissociations and pho-
toionizations produced by the radiation field present in the medium where the



58 Non-equilibrium chemistry in stellar atmospheres 3.2

reactions are taking place. If this radiation field has a strong contribution in the
UV region, one-body reactions can become important and affect the chemistry.
Photodissociation plays a dominant role in the chemistry of diffuse interstel-
lar clouds and in the outer parts of dense clouds (Bates & Spitzer 1951). It
has been realized that cosmic-ray induced photons can significantly affect the
chemistry inside dense clouds (Prasad & Tarafdar 1982, Sternberg et al. 1987).
Finally, it can be also important for the outer parts of the circumstellar en-
velopes (Goldreich & Scoville 1976).

The mean photodissociation rate for a given molecular species can be written
as:

kphoto =
4π

hc

∫ λdis

λH

λJλσ(λ)dλ. (3.26)

Jλ stands for the mean intensity in the medium, σ(λ) corresponds to the cross
section for the photodissociation processes and c and h are the speed of light
and the Planck constant, respectively. The integral is extended from the Lyman
limit λH at 912

◦

A to the molecular dissociation potential in wavelength units
λdis. Bluer photons than 912

◦

A are efficiently absorbed by neutral hydrogen
to produce H+ by photoionization. Photons with larger wavelengths than the
molecular dissociation potential λdis cannot dissociate the molecule and only
produce excitations to the high energy electronic-vibration-rotation levels. This
effect is already taken into account in the dissociation cross section and so the
upper limit of the integral can be formally extended to infinity since σ(λ) falls
off below the dissociation wavelength.

Although photodissociation is usually referred to as a relatively simple pro-
cess, it can proceed in various ways. The process is the responsible for the
dependence on wavelength of the dissociation cross section σ(λ). A discussion
about all these mechanisms can be found in van Dishoeck (1987a). We briefly
summarize the possible mechanisms for a diatomic molecule:

• Direct photodissociation: the molecule, initially in a vibrational state of
a bound electronic state (state with a stable potential well) absorbs a
photon and jumps to a repulsive state (state without a stable potential
well) and dissociates. The cross section is a continuous function of λ and
its shape reflects that of the vibrational wave function of the lower state.

• Indirect photodissociation: the molecule, initially in a vibrational state
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of a bound electronic state absorbs a photon and jumps to another vi-
brational level of an excited electronic state which subsequently interacts
with another repulsive state and the molecule dissociates. The cross sec-
tion depends on whether the symmetry of the repulsive state is the same
or different as the excited bound state. If it is the same, σ(λ) may consist
of a continuous background with superposed resonances. If it is different,
the cross section consists of a series of discrete peaks, broadened by the
predissociation process.

• Spontaneous radiative dissociation: the molecule, initially in a vibrational
state of a bound electronic state absorbs a photon and jumps to another
vibrational level of an excited electronic state. Then, a radiative transition
can occur to a lower lying repulsive state, producing the dissociation. The
cross section consists in this case of a series of sharp peaks situated at the
wavelength of the transitions whose widths are determined by the natural
radiative lifetimes of the levels.

We have applied the chemical evolution equations to investigating the im-
portance of photodissociation in the solar photosphere for the establishment of
the CH abundance. In order to take into account the possible photodissocia-
tion of CH, we need the photodissociation rates of the CH molecule in the solar
environment. The dissociation potential of CH is 3.47 eV (3575

◦

A in wave-
length units) and it dissociates mainly through indirect photodissociation. CH
photodissociation rates have been computed for the interstellar medium (van
Dishoeck 1987b), where the UV radiation field responsible for the dissociation
is much lower than in the Sun (Draine 1978). Therefore, because these rates are
of no use for the solar case, we have calculated the photodissociation rate using
Eq. (3.26). Kurucz et al. (1987) tabulate the CH photodissociation cross sec-
tions for a discrete set of temperatures. We used them to integrate Eq. (3.26)
under the assumption that Jλ is given by the local Planck function. We have
selected four combinations of T and nH characteristic of the solar photosphere
physical conditions. The photodissociation rates are shown in Table 3.1.

The table also contains the mean lifetime of a CH molecule owing to pho-
todissociation, defined as the inverse of the photodissociation rate t̄photo =
1/kphoto. Some of these lifetimes are fairly small (2×10−4 s), indicating that it
could be an efficient process in the solar chemistry. However, these numbers are
not enough to conclude whether the photodissociation is important or not since
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Table 3.1: Value of the photodissociation rates for the CH molecule for the limiting physical
conditions in the solar photosphere.

T (K) kphoto (s−1) t̄ (s) nH (cm−3) rphoto

4400 1.65 × 102 6.1 × 10−3 2.7 × 1015 4.8 × 10−4

4400 1.65 × 102 6.1 × 10−3 1.2 × 1017 1.1 × 10−5

6520 4.05 × 103 2.5 × 10−4 2.7 × 1015 1.2 × 10−2

6520 4.05 × 103 2.5 × 10−4 1.2 × 1017 2.6 × 10−4

one has to take into account all possible branches producing and destroying CH.
Such a simple molecule results from dissociation of more complicated molecules
and can be easily generated in several reaction paths where very efficient two-
or three-body reactions are present.

In order to solve the chemical evolution problem, we have adopted a set of
110 neutral-neutral reactions involving the following species: H, C, O, N, He,
CH, CO, H2, OH, NH, CN, N2, NO, O2, HO2, H2O and H2O2. The reaction
rates have been obtained from the reaction database for combustion mecha-
nisms of Konnov (2000). Although reactions involving ions should be included
for comprehensiveness, our assumption is reasonable considering that the main
atoms involved in the CH formation (H, C and O) remain neutral under typical
photospheric conditions. The photodissociation of CH is included in the set
of reactions by using the rates obtained from Eq. (3.26). The solutions are
initialized assuming that no molecular species are present in the medium and
everything is in atomic form. Hydrogen densities for the typical photospheric
conditions are chosen (see Table 3.1). The rest of atomic species are taken ac-
cording to standard solar abundances (Grevesse 1984). We have checked that
the set of reactions included in our chemical evolution code for the solution
of this problem are adequate since the most important species approach ICE
abundances when the solutions become stationary. Small differences and differ-
ences in other minor molecules are to be expected because of the incompleteness
of the database. In Fig. 3.4a we show the equilibrium abundances of H2, CO
and CH in the quiet Sun VAL-C model. The CH abundance has a peak at
the bottom of the photosphere where the temperature and density conditions
allow an efficient formation. Its abundance is largest at around 50 km and it
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goes away where the CO formation peaks. Interestingly, since the dissociation
potential of H2 is 4.47 eV (Herzberg 1950), its abundance peak is in a position
similar to that of CH, while the CO peak is at ∼250 km due to the higher
dissociation potential.

We have also explored which processes produce CH in the photosphere.
First we investigate the importance of photodissociation as compared to the
rest of the destruction mechanisms. We define the parameter rphoto as the ratio
between the number of photodissociations of species i and the total number of
destructions of this species:

rphoto = kphoto

/(

∑

A

∑

B

kABinAnB −
∑

A

kAinA − ki

)

. (3.27)

This ratio in equilibrium (actually we present the ratio after 102 s) is listed in
Table 3.1. Note that rphoto < 2%, even in the worst-case scenario. This clearly
indicates that photodissociation is of secondary importance for destroying CH
in the Sun. The conclusion is based on photodissociation rates that assume the
radiation field to be Planckian at the local temperature. We would have reached
the same conclusion using a more realistic radiation field to evaluate kphoto. For
example, even if Jλ were 10 times the local Planck function, photodissociation
would still be negligible.

Fig. 3.4b shows the time evolution of the abundances of the most important
molecular species at the bottom of the photosphere. The analysis of the different
destruction rates indicates that, in all cases, CH is predominantly destroyed by
collisions with neutral hydrogen that yield molecular hydrogen, namely:

CH + H→ C + H2. (3.28)

We have also inspected the creation rates, i.e. the positive terms in Eq. (3.22).
The CH is produced via the reverse reaction of Eq. (3.28), i.e.,

C + H2 → CH + H. (3.29)

The direct reaction between the CH constituents (C + H → CH) is ∼2 orders
of magnitude slower. The tight link between CH and H2 is made clear in Fig.
(3.4b), where the CH curve closely follows the curve of H2. In particular, both
reach the equilibrium abundance within 10−5 s. This timescale depends very
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Figure 3.4: Abundance of the main diatomic molecules in the quiet Sun VAL-C model atmo-
sphere (left panel) an the temporal evolution for the case T=6500 K and nH=1.7×1017 cm−3

(right panel). The variation with height of each species is normalized to its maximum value:
3.4×1013 cm−3 for H2, 2.4×1012 cm−3 for CO and 7.2×109 cm−3 for CH. Note that the CH
peaks deep down in the atmosphere, just 50 km above continuum optical depth unity at 5000
◦

A in normal incidence. The integration of the chemical evolution equations has been initialized
with no molecules. The (thermodynamic) equilibrium CH abundance is reached within 10−5

s, a timescale primarily set by the reactions that produce and destroy H2. Photodissociation
seems to play a minor role in determining the CH abundance, and so its exact rate does not
modify these curves. All abundances n are referred to the abundance of atomic hydrogen nH .

much on the densities and temperatures in the atmosphere, but it is extremely
short and always below 10−4 s for the typical photospheric atmospheric condi-
tions. Due to its intrinsic high abundance, the time needed for CO to reach its
equilibrium abundance is ∼2 orders of magnitude larger.

3.3 Relaxation times

Consider that we have a medium at a given temperature T and hydrogen den-
sity nH. We initialize the chemical evolution calculation without molecular
species (only atomic species are present at t = 0 s). Let the system evolve
until reaching the equilibrium abundances which, if the set of reactions and
the species included are complete enough, will be similar to the abundance ob-
tained using directly the ICE approximation. Next we introduce a perturbation
in the physical conditions and we calculate the time to reach the new equilib-
rium situation, compatible with the new physical conditions. We will call this
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timescale the relaxation time. In order to be able to get some information from
these relaxation times, we will assume that the perturbations are small enough
to consider that the performed analysis is in the linear regime (|∆T |/T � 1,
|∆nH|/nH � 1). We have selected a granular and an intergranular model from
the three-dimensional hydrodynamical simulations of the solar surface convec-
tion of Asplund et al. (2000). In Fig. 3.5 we show the temperature profile for
both models, noting that, while the granular model is hotter in the deep regions
of the photosphere, it turns out to be cooler above ∼250 km. These models
are very realistic up to heights around 400-500 km. For comparison, we have
made the calculations in the FAL-C and COOL-C semi-empirical models. In
Fig. 3.6 we plot the molecular abundance relative to the abundance at t = 0
for some selected species at some atmospheric heights. These calculations have
been obtained by performing a 1% relative decrease in the temperature. It is
clear from the figure that almost all the species increase their abundance after
the perturbation, once the new equilibrium situation is reached. This can be
understood since molecular equilibrium constants usually decrease when the
temperature increases (see Eq. 3.14). If the atomic partial pressures remain
constant, the molecular partial pressure increases following Eq. (3.2). It is
interesting to take into account that the relaxation time for the regions above
600 km in the COOL-C model are very high, produced by the low temperatures
and densities in these regions.

The time evolution of the molecular abundances seems to be quite simple
for some molecules like CO following a smooth step function. On the other
hand, it becomes complicated for the majority of the molecules shown in the
plots, with episodes in which the abundance is increasing and others in which
it is decreasing. However, one thing that is clear in the plots is that the time to
reach equilibrium increases when going to higher heights. This is produced by
the fall in the temperature and the hydrogen density in both the granule and the
intergranular material when going to higher regions. Both the temperature and
hydrogen density fall produce a lower rate of collisions which result in slower
reactions. However, the time to reach equilibrium at all the heights is below 10
s. Although this analysis is linear, we can make an order-of-magnitude study
of what is going to happen
with the molecular abundances in the deep regions on the solar atmosphere.

The quite simple time variation of the CO abundance can be explained using
the following model, which resembles the investigation performed by Ayres &



64 Non-equilibrium chemistry in stellar atmospheres 3.3

Figure 3.5: Temperature profile of the chosen representative granular and intergranular models
of Asplund et al. (2000) hydrodynamical simulations. Note that, while the granule is hotter
in the inner regions of the atmosphere, it turns out to be cooler for heights above ∼250 km.

Rabin (1996). Since CO is one of the most abundant molecules in the solar
environment, we can first assume that its formation and destruction depends
only on its abundance and the abundance of the constituents in atomic form.
Therefore, the equilibrium we have to solve is given by:

C + O
KCO−−−→ CO

CO
K′

CO−−−→ C + O,
(3.30)

where KCO and K ′
CO are the reaction rate for the formation of CO by neutral

association of its constituents and the reaction rate for the dissociation of CO,
respectively. The differential equation which governs the time variation of nCO

can be written as:
dnCO

dt
= KCOnCnO −K ′

COnCO. (3.31)

If we assume that the atomic abundances are constant, we can solve this equa-
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Figure 3.6: Time evolution of the molecular number densities for some selected molecules at
some heights of the granular and intergranular models and the semi-empirical models FAL-
C and COOL-C. At t = 0 s, a reduction of 1% in the temperature has been performed
and the evolution until reaching the new equilibrium abundance has been obtained. Note
the simple behavior of the CO abundance, while the rest of molecules have a complicated
evolution showing the extremely non-linear character of the chemical evolution problem. All
the molecules reach their new equilibrium concentrations in less than 10 s, except for the
points at ∼700 km in both semi-empirical models. Since the granular and intergranular
models represent only the photospheric conditions of the solar atmosphere, no high relaxation
times are found.
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tion and obtain the CO abundance for each time t:

nCO(t) = nCO(∞) + [nCO(0)− nCO(∞)] e−K′
COt, (3.32)

where nCO(0) is the starting CO abundance and nCO(∞) is the CO abundance
for t→∞, i.e. the CO equilibrium abundance for the given physical conditions.
This equilibrium abundance is given by:

nCO(∞) =
nCnOKCO

K ′
CO

. (3.33)

Note the resemblance of this equation with Eq. (3.2), which states that the
equilibrium constant can be obtained from the reaction rates for this extremely
simple model by the relation:

KCO
p (T ) = kT

K ′
CO

KCO
(3.34)

The simplicity of the model let us define a timescale for the approach to chemical
equilibrium, which will be referred to as the relaxation time, which is given here
by:

τrelax =
1

K ′
CO

. (3.35)

Although the direct association of C and O to form CO is the most simple
reaction one can assume, CO is more efficiently formed through other faster
reaction paths. A similar simple behavior can be obtained if we consider that
the reactions which efficiently form CO are (refer to Ayres & Rabin 1996 for a
discussion about the CO formation reactions):

C + OH
K1−−→ CO + H

CO + H
K2−−→ OH + C.

(3.36)

As a first approximation, we can assume that OH is formed much more faster
than CO and so its abundance can be considered constant during the time
interval in which the CO abundance is changing. This fact is reinforced by the
chemical evolution calculations, as can be seen in Fig. 3.6. We see that OH
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has almost reached its equilibrium abundance when CO starts to change from
its value at t = 0. The evolution equation can be written as:

dnCO

dt
= K1nCnOH −K2nCOnH. (3.37)

Consider now the following simplifying conditions: the hydrogen abundance is
constant; the OH abundance can be written in terms of the hydrogen abundance
as nOH ≈ AOHnH (where AOH is the OH abundance relative to hydrogen),
and the carbon abundance is given by the number density of atomic carbon
itself minus the number density of carbon in the form of CO, so that nC ≈
ACnH − nCO (where AC is the carbon abundance relative to hydrogen). The
first assumption introduces a very small error since the hydrogen abundance is
barely affected by the presence of molecular species unless the temperature is
extremely small (note from Fig. 3.2 that the most abundant molecule is at most
3 orders of magnitude less abundant than hydrogen). The second assumption
can be considered since OH reaches its equilibrium abundances much faster
than CO. The third assumption is applicable because almost all the carbon not
in atomic form is in the form of CO. Therefore, the previous equation can be
rewritten as:

dnCO

dt
= K1 (ACnH − nCO)nOH −K2nCOnH, (3.38)

which is an equation quite similar to Eq. (3.31) and whose solution can be
written as Eq. (3.32) below, but where:

nCO(∞) =
K1AOHACnH

K1AOH +K2
, (3.39)

τrelax =
1

(K1AOH +K2)nH
. (3.40)

These calculations show that, if the behavior of the abundance of a molecule
can be written in a simple way like we have done with CO, its evolution can be
characterized by a timescale which depends on the main reactions which cre-
ate and destroy the molecule and by its abundance in equilibrium (which also
depend on the main reactions). Note that it is not correct to define timescales
to both the formation or destruction processes, but there is only one global
timescale which involves both processes. This is the reason why, even in the
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Figure 3.7: CO abundance relaxation time for a set of physical conditions ranging from 4000
to 10000 K and from 1010 to 1017 cm−3 for the hydrogen number density. Note that there is
a variation of more than 10 orders of magnitude for different physical conditions which can
be found in the solar atmosphere. This plot shows that the relaxation time increases when
the temperature and hydrogen density are reduced, while it decreases when the temperature
and density are increased.

most simple example, one cannot make an idea of how fast a chemical reaction
is going to take place by only taking into account the rate of the individual reac-
tion. However, when the whole system of differential equations which describe
the chemical evolution problem is solved, many non-linearities arise for most of
the molecules which makes a simple relaxation time investigation impossible.

The linear analysis of the CO abundance evolution shows that CO is mainly
driven by itself in a way similar to Eq. (3.31). Therefore, we can perform a fit
of the evolution with a functional form like:

nCO(t) = nCO(∞) + [nCO(0) − nCO(∞)] e−t/τrelax , (3.41)

and obtain the relaxation time τrelax. Since this linear analysis is correct for CO,
we have calculated the relaxation time to perturbations in the temperature for
a range of temperatures and hydrogen densities. The results are shown in Fig.
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3.7. The general trend in this plot is that, for a given density, the relaxation

time is the larger the cooler the medium where the temperature perturbation is

introduced. Similarly, for a given temperature of the unperturbed medium, the

relaxation time increases rapidly with decreasing density. Short relaxation times
are typical of high-temperature and high-density media (e.g. trelax≈ 0.006 s for
nH = 1016 cm−3 and T = 6000 K), while long relaxation times are characteristic
of low-temperature and low-density situations (e.g. trelax≈ 400 s for nH =
1014 cm−3 and T = 4000 K). In the solar atmosphere, one would find a broad
range of relaxation times at a fixed height due to the dynamic atmosphere
which results in density and temperature fluctuations which are continually
changing the atmospheric conditions. Obviously, the situation is highly non-
linear and the relaxation time concept, although useful, loses its meaning in
the real Sun. Therefore, any firm conclusion needs to be achieved via detailed
numerical simulations. This is the only possible solution for the rest of species
which do not behave in the simple way as CO.

3.4 LTE synthesis for molecular lines

In order to investigate whether the ICE approximation or the full chemical
evolution is valid for each environment, we have to compare our calculations
with observables. Since we cannot directly measure the molecular abundances
in the solar atmosphere, we have to calculate the effect of the differences between
the ICE approximation and the chemical evolution results on the spectral lines
emerging from the solar photosphere. Once the abundance of a given molecule
is known for each depth point in the atmosphere, the line absorption due to
molecular transitions can be evaluated. Given an energy level in the molecule,
its population in LTE follows from the Boltzmann equation:

nevJ = Nmol
gevJ

U(T )
exp[−EevJ/kT ], (3.42)

where the quantum numbers e, v and J denote the electronic level (including
the parity of the level), the vibrational level inside each electronic level and
rotational level within each vibrational level, respectively. The other symbols
have the usual meaning: gevJ is the degeneracy of the level (although we have
included the v dependence of the degeneracy, it only depends on the electronic
and rotational quantum numbers), EevJ is the energy of the level and U(T ) is
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the total partition function of the molecule. The temperature dependence of
the total partition function has been tabulated as polynomial fits (see Sauval
& Tatum 1984, Tejero Ordoñez & Cernicharo 1991). These partition functions
were calculated using the available molecular data. In case refined molecular
data is obtained, these polynomial fits must be revised.

Consider a molecular transition between a lower level l and an upper level
u. The line opacity assuming LTE is obtained from (Mihalas 1978):

χLTE
l (ν) =

hν

4π
φν

(

n∗lBlu − n∗uBul

)

=
hν

4π
n∗lBluφν

(

1− e−hν/kT
)

, (3.43)

where n∗u and n∗l are the LTE populations of the upper and lower level of the
transition, respectively, ν is the frequency of the transition in s−1, Blu is the
absorption Einstein coefficient, φν is the line profile and e−hν/kT is the stim-
ulated emission correction. The line profile is normalized to have unit area
∫

dνφν = 1. Is is usual to tabulate f in the linelists, so we can rewrite the pre-
vious expression by using the oscillator strength f . Making use of the relation
between the Einstein coefficients and knowing that the oscillator strength and
the spontaneous emission Einstein coefficient Aul are related through

glf =
mec

8π2e2
λ2guAul, (3.44)

where e, me, gi and λ are the electron charge, electron mass, degeneracy of level
i and wavelength of the transition, respectively, we can finally rewrite the line
opacity as:

χLTE
l (ν) =

πe2

mec

Nmol

U(T )
gfe−Elow

evJ/kT
(

1− e−hν/kT
)

φν , (3.45)

Since many lines are usually contributing to the opacity at a given frequency,
we can calculate the total line opacity contribution at a given frequency by
summing over all these lines:

χl(ν) =
∑

i

χLTE
li (ν), (3.46)

The individual line profile φν is chosen to be a Voigt function with a damping
parameter a.
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3.5 Non-equilibrium CO chemistry in the solar atmosphere

3.5.1 Introduction

Thirty years ago Noyes & Hall (1972) inferred very low brightness tempera-
tures (T≈ 3700 K) from their discovery of strong rovibrational CO lines at
4.7 µm observed close to the edge of the solar disk. Several years later, after
such surprising observational results had been confirmed by Ayres & Tester-
man (1981), it was suggested that the low chromosphere might not be hot
at all but could instead be permeated by CO-cooled ‘clouds’ at altitudes be-
tween 500 and 1000 kilometers above continuum optical depth unity (Ayres
1981). This led to controversy because other (UV and submillimeter) diag-
nostics had suggested the existence of a uniformly hot chromosphere with a
minimum temperature of about 4400 K near 500 km and a temperature rise
above this temperature-minimum region. The controversy over the existence
of cool gas in the low chromosphere continues today (see Kalkofen 2001, Ayres
2002, Avrett 2003), after the publication of an abundance of literature on the
subject with theoretical investigations concluding that the CO lines have LTE
source functions (Ayres & Wiedemann 1989; Uitenbroek 2000a) and with new
observations showing off-limb CO emission protruding hundreds of kilometers
into the chromosphere (Solanki et al. 1994; Clark et al. 1995), but also with
the discovery that far-UV chromospheric lines observed on the solar disk always
remain in emission at all positions and times (Carlsson et al. 1997).

Over the last few years, it has become increasingly evident that the next
crucial step towards a better understanding of the enigmatic thermal struc-
ture of the solar chromosphere is to carefully investigate the reliability of the
assumption of instantaneous chemical equilibrium (ICE), which is currently
used for calculating the molecular number densities in stellar atmospheres (see,
in particular, Uitenbroek 2000a, 2000b; see also Ayres & Rabin 1996; Avrett
et al. 1996; Asensio Ramos & Trujillo Bueno 2003a; Avrett 2003). Actually,
both observations and simulations indicate that the solar chromosphere is a
highly inhomogeneous and dynamic region of low density plasma whose ther-
mal, dynamic and magnetic properties we need to decipher for unlocking new
discoveries. If the ICE approximation turns out to be adequate for modeling
the strongest CO lines close to the edge of the solar disk, then the available CO
observations would really be indicating the existence of cool gas in the solar
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chromosphere. Otherwise, a natural resolution of the current chromospheric
temperature discrepancy could perhaps emerge if the CO concentration turns
out to be sufficiently lower than would be expected on the basis of chemical
equilibrium.

3.5.2 Formulation of the problem

Our strategy consists in performing chemical evolution calculations in the ra-
diation hydrodynamical simulations of solar chromospheric dynamics described
by Carlsson & Stein (1997, 2002), which do not include CO cooling in the en-
ergy equation. Therefore, at each time step of the hydrodynamical simulation,
we have fixed the ensuing thermodynamic conditions and calculated the corre-
sponding CO number density by following the chemical evolution starting from
the molecular concentrations of the previous time step.

Two key ingredients have to be taken into account: the number of chemical
species and the reaction rates for all possible reactions. Concerning the number
of species, after a careful investigation, we found that at least the following set of
13 species, which includes the most abundant diatomic molecules, is needed: H,
C, O, N, He, CH, CO, H2, OH, NH, N2, NO and CN. We have verified that the
inclusion of ionic species does not significantly affect the CO concentration for
the typical atmospheric conditions encountered at heights h≤1000 km, although
they should be ideally taken into account for very strong shocks capable of pro-
ducing sizable changes in the degree of ionization. Concerning the reactions
rates, we have used the reaction database created for the study of combustion
mechanisms (Konnov 2000) which seems to be appropriate for the physical con-
ditions in the solar atmospheric plasma. We have also investigated the possible
influence of CO photodissociations, which are one-body reactions. They are
mainly produced by discrete photon absorptions at wavelengths between the
Lyman cutoff (912

◦

A) and the dissociation threshold (1120
◦

A). By using the
photodissociation rates of Mamon et al. (1988), we have verified, in a similar
way as done in the study of the photodissociation of CH, that the contribution
of photodissociation processes to the total CO concentration is negligible for
the radiation field in the solar atmosphere. In fact, the CO dissociation energy
is very large (11.07 eV), thus making it very difficult to break up the molecules
into their constituents by interactions with solar atmospheric photons. This
possibility is even reduced when self-shielding (absorption of photons by CO
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Figure 3.8: Temporal variation of the brightness temperature in the core of the strong 3-2 R14
line (left) and of the height of line-core optical depth unity (right) for the strongly dynamic
case and for two observing angles: disk center (µ=1, heavy lines) and close to the solar limb
(µ=0.1, light lines), where µ = cos θ (with θ the angle between the solar radius vector through
the observed point and the line of sight.

which avoid these photons to photodissociate other CO molecules) is taken into
account.

3.5.3 Numerical simulations in the 1D hydrodynamical models

We used two time-series of snapshots from the above-mentioned radiation hy-
drodynamical simulations, each one lasting about 3600 seconds and showing the
upward propagation of acoustic wave trains growing in amplitude with height
until eventually producing shocks. The first one corresponds to a relatively
strong photospheric disturbance showing well-developed cool phases and pro-
nounced hot zones at chromospheric heights (see Carlsson & Stein 1997). The
strongest dynamic cycle of this simulation produces a peak-to-peak line-core
brightness temperature of 1000 K, concerning the strong 3-2 R14 CO-line syn-
thesized at disk center with the ICE approximation. However, the brightness
temperature variations in most of the cycles of this simulation are 400 K ap-
proximately, which is similar to the observed values found by Uitenbroek et al.
(1994) under excellent seeing conditions, but larger than those inferred from
the temperature histograms in Ayres & Rabin (1996). We shall refer to this as
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Figure 3.9: Solid line: Height variation of the time-averaged CO concentration obtained
from the chemical evolution calculation in the strongly dynamic simulation case. Dashed line:
Time-averaged CO concentration corresponding to the ICE approximation, but calculating the
CO number densities of the atmospheric models associated to each time step by using the same
chemical evolution code until reaching the ensuing equilibrium concentrations. Dotted line:
Time-averaged CO concentration corresponding to the ICE approximation, but calculating
the CO concentrations directly from the Saha chemical equilibrium equations. A comparison
of the dashed and dotted lines illustrates the reliability of the chosen database for the chemical
evolution calculations. In any case, in order to be fully consistent with our comparisons, all
ICE results refer to “evolution until equilibrium” calculations

the strongly dynamic case.3 The second simulation corresponds to a much less
intense photospheric disturbance (see Carlsson & Stein 2002), which for strong
CO lines synthesized at disk center produces a peak-to-peak line-core brightness
temperature fluctuation which is always smaller than 400 K. We shall refer to
this as the weakly dynamic case.

Starting from the molecular concentration given by the ICE approximation,
we have followed the chemical evolution in order to obtain the temporal vari-

3This is similar to that used by Uitenbroek (2000a) and Ayres (2002) in their ICE modeling,
although they considered only a segment of 190 s corresponding to the most dynamic cycle of
the full simulation.
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ation of the CO number density (NCO) at each height in the simulated solar
atmosphere. As expected, the CO concentration is anticorrelated with the lo-
cal temperature variations, yielding relatively low NCO values in the hot phases
and relatively high NCO values in the cool phases. However, the amplitude of
the local NCO fluctuation is smaller than that given by the ICE approximation.
In relatively low density regions characteristic of the outer atmospheric layers
(e.g. around h = 1000 km) the ICE approximation does a fairly good job during
the hot phases, but it overestimates the CO number density during the cool
phases. In contrast, in relatively high density regions characteristic of photo-
spheric layers (e.g. around h = 400 km) the ICE approximation underestimates
the NCO values during the hot phases. Thus, the CO abundance does not react
instantaneously to the changes in the temperature because of the finite reaction
rates.

Fig. 3.8 refers to the strongly dynamic case. The left panel shows the
temporal variation in the brightness temperatures of the line-core emergent
intensities at µ = 1 and µ = 0.1 in the strong 3-2 R14 CO-line. The right
panel gives the ensuing fluctuations of the atmospheric height where the line-
core optical depth is unity, which we use as an indicator of the ‘representative
height’ where the CO line-core radiation originates. As seen in the figure, the
ICE approximation does a sufficiently good job concerning the synthesis of the
emergent CO spectrum at the solar disk center (µ = 1), but it largely under-
estimates the line-core emergent intensities at µ = 0.1 during the cool phases,
producing brightness temperatures that are typically 500 K lower than those
computed with the non-equilibrium CO concentration. Clearly, this is because
during the cool phases the ICE approximation overestimates the ‘heights of
line formation’ by about 300 km, concerning the synthesis of strong CO lines at
µ = 0.1 in the strongly dynamic simulation case. This happens because during
the cool phases of the hydrodynamical simulations the CO number density in
the outer atmospheric regions is smaller than what is stipulated by the ICE
approximation, resulting in decreased CO opacity in the solar chromosphere.
Interestingly, in the weakly dynamic case which has smaller kinetic tempera-
ture fluctuations (but still larger than the fluctuations of observed brightness
temperatures!) the ICE approximation does a much better job even at µ = 0.1.

Fig. 3.9 contrasts the time-averaged CO concentration obtained assuming
ICE at each time step of the strongly dynamic simulation case with that re-
sulting from the chemical evolution. Note that the ICE approximation leads
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to a significant overabundance of CO in the outer layers of the atmosphere
(i.e. above 700 km). Thus, the CO number density can be relatively low in
such outer layers, in spite of the fact that the temporally averaged temperature
of the Carlsson & Stein (1997) simulations decreases outwards and does not
show any chromospheric temperature rise. As expected from the previously re-
ported results, the ICE approximation does a sufficiently good job concerning
the modeling of the temporally-averaged CO spectrum at the solar disk center
(µ = 1). In contrast, the emergent CO spectrum computed close to the edge of
the solar disk (i.e. at µ = 0.1) shows significantly stronger CO-lines when the
ICE approximation is used, especially concerning strong CO lines like the 3-2
R14 one, for which the line-core brightness temperature is about 100 K lower

than that obtained using the non-equilibrium CO number densities.

Finally, we turn our attention to the modeling issue of the off-limb CO
emissions, which we have carried out by solving the radiative transfer equation
in spherical coordinates at each time step of the hydrodynamical simulation4.
The off-limb distances where (time-averaged) CO emission has been observed
depend on the line (see Ayres 2002, for a summary of the available off-limb
observational results): the off-limb emission extension of strong lines like the
3-2 R14 line lies between 0.55” and 0.7” above the 4.7 µm continuum limb,
while weaker lines like the 7-6 R68 line extend to ∼0.4”. Fig. 3.10 refers
to the strongly dynamic case. It shows that the atmospheric region where
we can have a significant off-limb emission is extremely large when the ICE
approximation is used, i.e. much larger than when the spectral synthesis is
carried out using the non-equilibrium CO number densities. The dashed and
solid lines show the corresponding height variation of the temporally-averaged
off-limb emission at the core of the strong 3-2 R14 CO-line. They show that the
non-equilibrium CO chemistry improves the agreement with the available off-
limb observations. First, as seen in Fig. 3.10, the ICE approximation predicts
that appreciable emission in the 3-2 R14 line should continue to relatively large
off-limb distances, while partial eclipse measurements by Clark et al. (1995)

4This is a suitable strategy for contrasting ICE and non-ICE results, as done also in Fig.
3.8 concerning the on-disk spectral syntheses at µ = 0.1. It is however clear that a truly
realistic modeling of the available observations should take into account not only the finite
spectral resolution and seeing effects, but also the geometrical foreshortening effect resulting
from the fact that the solar chromosphere is a highly inhomogeneous medium in which the
raypath goes through many different structures.
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Figure 3.10: Diagonal shading indicates the relatively large atmospheric region where the
ICE approximation predicts off-limb emission in the core of the 3-2 R14 CO-line, while the
horizontal shading shows that corresponding to the chemical evolution calculation. The figure

also shows the calculated limb profiles for the continua at 4.7 µm and 5000
◦

A. The zero level
of the angular separation scale refers to the 4.7 µm continuum edge calculated as the 50%
point in the intensity drop, as normalized to the ensuing continuum intensity at disk center.
The arrow indicates the continuum edge for the optical continuum. At each angular distance,
the vertical extensions of the shadings indicate the amplitude of the temporal variation of the
line-core CO-emission. The dashed and solid lines give the corresponding temporally averaged
off-limb emissions. The upper horizontal axis gives the height in the atmosphere, z = 0 km

being the location of continuum optical depth unity at 5000
◦

A for a disk center observation
(i.e., the usual depth scale in solar models). Note that at low altitude locations, where the IR
continuum dashed-dotted curve lies above the (temporally-averaged) dashed and solid curves,
the synthesized CO line turns into an absorption line for the ICE and non-equilibrium cases,
respectively.

show a rapid disappearance of CO emission at heights above 700 km, which is
more in line with our chemical evolution calculations. Second, as can also be
inferred from Fig. 3.10, the representative off-limb emission extension where
the normalized intensity falls to 50% of the on-disk value is larger when the non-
equilibrium CO concentration is used, which helps to improve the agreement
with the observations of translimb emission extensions, although they still seem
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to be below the most recently observed values (see Ayres 2002).

3.5.4 Conclusions of our 1D simulations

Our results indicate that the CO line radiation observed close to the edge of
the solar disk comes from atmospheric heights not greater than ∼700 km, and
that the gas in these regions of the low chromosphere must be much cooler than
indicated by the cool phases of the Carlsson & Stein (1997) hydrodynamical
simulations. Lower temperatures will probably increase the relaxation times
needed to reach the molecular equilibrium concentrations. In a next step for-
ward, we will investigate what happens when the hydrodynamical simulations
themselves are carried out taking the CO cooling into account, in a way con-
sistent with the non-equilibrium evolution of the molecular number densities.

3.5.5 Results in 3D hydrodynamical models

Our conclusion that the ICE approximation is suitable for modeling the CO
spectrum at the solar disk center may be found surprising, given that Uiten-
broek (2000b) found that the spatially averaged line cores of weak CO lines
synthesized in the three-dimensional (3D) hydrodynamical model of Stein &
Nordlund (1989) are overly dark compared to the observed ATMOS spectrum
described by Farmer et al. (1989). As an example, the strong 3-2 R14 line
brightness temperature is ∼300 K lower than the observed brightness tempera-
ture. while the brightness temperature of the weak line 7-6 R68 is ∼500 K lower
than the observed brightness temperature. The conclusion reached by Uiten-
broek (2000b) was that either the model was too cold in the CO line-formation
region, which would mean that the granulation simulation overestimated radia-
tive cooling in these layers or that the CO lines were forming too far outward
because CO concentrations were overestimated in the calculations assuming the
ICE approximation. However, we have shown that the ICE approximation is
suitable for modeling the CO spectrum at µ = 1 in the 1D models of Carlsson
& Stein (1997).

As we have pointed out, more improved 3D hydrodynamical models are
available (Asplund et al. 2000) and we are interested in verifying whether
this new simulation is suitable for interpreting the spatially averaged CO solar
spectrum. To this end we have used a snapshot of this 3D radiation hydrody-
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Figure 3.11: Solid line: CO spectrum synthesized at disk center (µ=1) in the model of
Asplund et al. (2000) and averaged over all the surface of the simulation box. Dashed

line: CO spectrum observed by the ATMOS mission. Note the good agreement between
the observation and the synthesis in the width and the depth of most CO lines.

namical simulation of the solar photosphere. These time-dependent simulations
are similar to those of Stein & Nordlund (1989) but with the improvement of
having been performed in a grid with better spatial resolution and using a more
realistic equation of state. The original grid of the hydrodynamic simulation
has 200×200×82 grid points covering the physical dimension corresponding to
6×6×3.8 Mm, of which 1 Mm is located above continuum optical depth unity.
The original snapshots were interpolated to a coarser grid of 50×50×82 points in
order to facilitate the RT calculations. It is interesting to note that these simu-
lations have been successful in reproducing the spatially averaged iron spectrum
by detailed NLTE calculations (see Shchukina & Trujillo Bueno 2001).

We have carried out LTE synthesis of some CO lines in the region 2142.4-
2145 cm−1 where strong and weak CO lines are present (see Fig. 3.11 for line
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identifications). We have not included in the synthesis the extremely weak 13CO
lines which are formed very close to where the continuum at this wavelength is
formed. They can be recognized as the lines appearing in the ATMOS spectrum
and not in the synthetic one. Since we are performing LTE synthesis at disk
center, we can construct 50×50 one-dimensional atmospheric models, each one
giving the variation with height of the relevant physical quantities (temperature,
density, macroscopic velocity, etc.) and perform spectral synthesis using one-
dimensional formal solvers.

The LTE opacities have been calculated according to Eqs. (3.45) and (3.46)
assuming that the CO molecular number density is correctly given by the ICE
approximation. The oscillator strengths of the X 1Σ+ ground state lines of
CO were taken from Goorvitch (1994) and the partition function was taken
from Tejero Ordoñez & Cernicharo (1991). We have verified that the partition
function of CO obtained from the available tabulations (Tejero Ordoñez & Cer-
nicharo 1991; Sauval & Tatum 1984; Kurucz 1985) are extremely similar. The
background continuum opacities were calculated using the same opacity pack-
age used by Shchukina & Trujillo Bueno (2001). In Fig. 3.11 we have plotted
the synthesized spectrum averaged over the 50×50 points of the simulation to-
gether with the observed ATMOS spectrum. Note that the agreement between
both spectra is fairly good. The width of the lines is correctly reproduced taking
into account only the macroscopic motions of the simulations without the ne-
cessity of including an ad-hoc fitting parameter like macro and microturbulent
velocities. The emergent profiles are obtained after averaging the 2500 spec-
tra obtained for each point of the simulation, which have a variety of Doppler
shifts due to the macroscopic motions present in the simulation. Interestingly,
the depth of the strong lines is very well reproduced while that of the weak
lines are slightly overestimated. The fit to the observed CO lines obtained with
this simulations is much better than that obtained by Uitenbroek (2000b) with
the previous simulations by Stein & Nordlund (1989). Although the strong
CO lines are originated close to the upper boundary of the hydrodynamical
simulations, it is striking that the synthesized line is so close to the observed
one, suggesting that the simulation at these altitudes is not so incorrect, as one
would perhaps expect because of the neglect of CO cooling, thus suggesting
that the “cool clouds” are mainly caused by hydrodynamical processes instead
of CO cooling.

Fig. 3.12 shows the temperature distribution in a vertical cut on the sim-
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Figure 3.12: Temperature in a vertical cut of the 3D box of the simulation by Asplund et al.
(2000) at position Y=5. Note the abrupt descent in the temperature in regions above h=0
km. We can find a ∼4000 K reduction in temperature in less than ∼50 km.

ulation box of the Asplund et al. (2000) 3D hydrodynamical models. Material
rises through the upflow regions corresponding to bright granules in optical
continuum images and returns through the downflow regions corresponding to
dark intergranules in optical continuum images. When flowing upwards, the
material rapidly expands to compensate for the drastic decrease of density in
the regions above the photosphere. This expansion leads to cooling, while the
material is heated by compression when returning through the downflows. This
effect is seen in the Fig. 3.12 as the bright plumes (heated material) above the
intergranular regions.

In Fig. 3.13 we show the CO abundance obtained assuming the ICE ap-
proximation for a cut in the three-dimensional box of the simulation. Note that
there is a change in six orders of magnitude in the abundance from the bottom
of the photosphere and the upper regions. Note also that the CO abundance
changes very steeply close to z=0 km, where there is a change of ∼3 orders
of magnitude in less than 50 km. This region is probably produced by the
fall in a factor of 2 of the temperature in these models which is produced at
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Figure 3.13: CO abundance in a vertical cut of the 3D box of the simulation at position
Y=5. We have plotted the logarithm of the CO abundance obtained assuming the ICE
approximation. Note that there is 6 orders of magnitude difference between the CO abundance
at the bottom of the photosphere and in the upper region. We have also shown as a contour
plot the regions where different logarithmic CO abundances are obtained. For knowing the
region of formation of the CO lines we have marked the surfaces of optical depth unity in
vertical incidence as thick lines for the strong 3-2 R14 line (yellow line), the weak 7-6 R67
line (black solid line) and the local continuum (black dashed line). Note that these surfaces
approximately follow the spatial variations of the CO abundance.

regions close to z=0 km, as can be seen from Fig. 3.12. A simple calculation
reinforces this assumption. Assume that the atomic carbon and oxygen density
are almost constant in this small region of ∼50 km. The previous assumption
is close to the reality since the hydrogen density does change very smoothly
in this region and the atomic carbon abundance is much larger than the CO
abundance. Therefore, we can use Eqs. (3.2) and (3.4) to write:

nCO =
nCnO

Kp(T )
kT. (3.47)

A glance at the definition of the equilibrium constant given by Eq. (3.12) let
us state that one of the most important terms in defining the actual value of
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Kp(T ) is the exponential factor depending on the dissociation potential. Ne-
glecting the temperature dependence of the partition function in the definition
of Kp(T ), we can calculate the ratio between the CO abundance at two different
temperatures:

r =
nCO(T1)

nCO(T2)
=

(

T2

T1

)3

exp

[

D0

k

(

1

T2
− 1

T1

)]

. (3.48)

If we select now T1=7000 K and T2=11000 K, we get r ∼3100, which is in good
accordance with the difference observed in Fig. 3.13.

This link between the temperature and the CO abundance is also demon-
strated in another effect. The expansion cooling produced above the upflow
regions leads to CO concentrations 3-4 times higher than over the downflow
regions at the same height. Therefore, the line formation region for weak lines
is higher for the granular regions (at least for vertical incidence) than for the
intergranular regions. To demonstrate this effect, we also show in this figure
the surfaces of optical depth unity at vertical incidence at the core of the strong
3-2 R14 and the weak 7-6 R67 lines and the local continuum. It is interesting
to note that, since the continuum opacity at this wavelength is dominated by
H− and H free-free processes (see Uitenbroek 2000b), the curve of optical depth
unity for the local continuum closely follow the contours of temperature as seen
in Fig. 3.12. Note that the average height of the region of formation of the
weak line is ∼350 km, while that of the strong line is ∼600 km.

In Fig. 3.14 we show the brightness temperature TB of the core of the strong
3-2 R14 line and the weak 7-6 R67 line. This brightness temperature is taken at
the wavelength where the line profile has its minimum and therefore correspond
to different wavelength positions at each spatial point due to the Doppler shifts
produced by the macroscopic motions of the plasma. Note that the core bright-
ness temperature of the strong line is as low as 3500 K for some points in the
surface while the weak line has minimum temperatures of ∼4000 K. Concerning
the highest brightness temperatures, the upper limit for the strong line is at
∼5500 K while that for the weak line is ∼5800 K. The correlation between the
brightness temperature of the weak line and the separation between granules
and intergranules is higher than for the strong line. This can be understood
because the formation zone of the weak line is closer to the continuum forma-
tion zone. The continuum is formed close to the h = 0 region. Therefore, the
contrast obtained in the weak line for the granulation is higher than for the
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Figure 3.14: Brightness temperature at the core of the strong 3-2 R14 line (left panel) and at
the weak 7-6 R67 line (left panel) for every point in the Asplund et al. (2000) 3D snapshot
model of the solar photosphere. We have also plotted the contours of vz = 0 km s−1 at h = 0
km, which can give an idea of the spatial position of the granules (with upward macroscopic
motions at the bottom of the photosphere) and the intergranules (with downward macroscopic
motions at the bottom of the photosphere).

strong line. This behavior qualitatively reproduces the observations of Uiten-
broek (2000b) which shows a higher contrast of the granulation for the weak
line than for the strong one.

We have performed a statistical study of the brightness temperature of the
strong and weak lines. The histograms are shown in Fig. 3.15. The plot
shows the number of times a given temperature with a binsize of 40 K appears
in the synthetic spectrum. Note that the histogram of TB is shifted to lower
temperature for the strong line than for the weak line. As seen in Fig. 3.14, we
do not find TB lower than 3500 K for the strong line and lower than 4000 K for
the weak line. Concerning the highest TB , we find that the limit is at 5000 K for
the strong line and at 5500 K for the weak one. Since we have not normalized
the histograms we can verify that the peak of the strong line distribution is more
populated than that for the weak line, which has a more spread distribution.
We have tried to fit these histograms with a gaussian distribution although
there is a clear overpopulation of high temperature lines. The reason for this
overpopulation could be produced by the perhaps small number of points (only
2500 points are used) or could be physically real. However, we do not see
any clear reason why to obtain a gaussian distribution for the temperatures of
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Figure 3.15: Histograms of the brightness temperature at the core of the strong 3-2 R14 and
the weak 7-6 R67 lines. The peak of each distributions is close to the average brightness
temperature obtained in Fig. 3.11, although the distributions are slightly shifted to higher
temperatures. The width of the distributions is too high if they are compared with the ampli-
tude of variation of the brightness temperature in movies taken with low spectral resolution
(Ayres & Rabin 1996).

the core of the lines unless the temperature distribution is completely random.
Furthermore, the brightness temperature is not a linear function of the kinetic
temperature, so that, even if the distribution of kinetic temperature is gaussian,
the distribution of brightness temperature may be not gaussian. The fitted
gaussian is of the form:

N = A exp

[

− (T − T0)
2

2σ2

]

, (3.49)

where the important quantity is the width of the gaussian given by σ. We
have tabulated the data of the fit in Table 3.2, where we have calculated
the FWHM=

√
8 ln 2σ for comparison with existing data. Note that these

histograms have been calculated assuming that we have a resolution of 120
km (equivalent to 0.′′165), while almost all the observations concerning spec-
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Table 3.2: Parameters inferred from the fit of a gaussian to the histograms obtained from the
simulations of Asplund et al. (2000). The functional form is given by Eq. (3.49).

Line A T0 σ [K] FWHM [K]

3-2 R14 196.73 4296.85 193.956 456.73
7-6 R67 161.91 4646.52 235.092 553.60

troscopy of the CO lines have spatial resolutions worst than 1′′ (see e.g. Ayres
& Rabin 1996, Uitenbroek 2000b). Therefore, we should degrade our synthetic
data to be able to compare with the observations. The problem is that we
would end up with very few points (the number of points would be reduced
in a factor (0.165)−2 ∼ 62) which does not allow performing reliable statistical
studies.

Similar histograms of the temperature of a strong and weak lines have been
obtained by Ayres & Rabin (1996) based on a movie of ∼1 hour taken close
to disk center. The inferred histograms are very close to gaussians with rms
widths of 75 K for the strong 3-2 R14 line and 44 K for the weak 7-6 R68 one.
Although these results are the histograms of a movie, we think that our 3D
snapshot calculations could be representative of the distribution of brightness
temperatures in the whole 3D simulation.

A similar observational study was performed by Uitenbroek (2000b), who
plotted the brightness temperatures of the 3-2 R14 strong line versus that for
the 7-6 R68 weak line. There is a correlation between them, but it is rather
loose with considerable local variation. However, the amplitude of variation
of the brightness temperature of the strong line is around ∼450 K for the
nonmagnetic regions, while the amplitude for the weak line is ∼200 K. These
variations are centered around ∼4400 K and ∼4900 K for the strong and weak
lines, respectively. These observations are not directly comparable to ours, since
they were made at µ=0.5 while our synthesis are at µ = 1.

3.6 Conclusion

We have presented in this chapter two computer codes for the calculation of
the molecular abundances under different assumptions: the first one assumes
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Figure 3.16: Gaussian fits to the brightness temperature in the core of the strong and weak
lines of CO. Note that the gaussian fit does not reproduce the overpopulation of high temper-
atures. Note also that the width of the variation of the weak line is higher than that for the
strong line, which is not in accordance with the observations.

that the molecular abundances are obtained instantaneously and the second one
assumes that molecules are formed via chemical reactions with finite reaction
times. We have shown details about their implementations and we have used
them to investigate molecular formation in the solar atmosphere.

Relaxation times have been calculated for CO and other diatomic species
in the solar atmosphere by using different atmospheric models. The conclusion
is that, for a given density, the relaxation time is the larger the cooler the

medium where the temperature perturbation is introduced. Similarly, for a given

temperature of the unperturbed medium, the relaxation time increases rapidly

with decreasing density.

We have performed calculations of the evolution on time of the CO abun-
dance in the 1D hydrodynamical simulations of the solar atmosphere of Carlsson
& Stein (1997) and the effect this non-equilibrium abundance has on the emerg-
ing spectrum. Recalling the conclusions possed on Section §3.5.4, our results
indicate that the CO line radiation observed close to the edge of the solar disk
comes from atmospheric heights not greater than ∼700 km, and that the gas
in these regions of the low chromosphere must be much cooler than indicated
by the cool phases of the Carlsson & Stein (1997) hydrodynamical simulations.
Lower temperatures will probably increase the relaxation times needed to reach
the molecular equilibrium concentrations. In a next step forward, we will in-
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vestigate what happens when the hydrodynamical simulations themselves are
carried out taking the CO cooling into account, in a way consistent with the
non-equilibrium evolution of the molecular number densities.

Since the 1D simulations show that CO lines are almost not affected by
non-equilibrium chemical effects, we have investigated the CO line formation
in the 3D hydrodynamical simulations of Asplund et al. (2000). We have
found an improved agreement between the CO lines observed by the ATMOS
mission and the synthesis in this snapshot, in comparison with the previous
results obtained by Uitenbroek (2000b). The agreement between synthesis and
observation for the strong CO lines is quite good, while that for the weak CO
lines is worse. Since no CO cooling is included in the simulations, this suggests
that the “cool clouds” are mainly caused by hydrodynamical processes instead
of by CO cooling. The lack of agreement for the weak lines suggests that non-
equilibrium chemical effects are taking place in these deep regions of the 3D
simulations. We are now working on verifying this possibility.



4
Non-LTE Radiative Transfer in

Molecular Lines assuming Spherical

Geometry

This chapter is devoted to the development of a computer code for the
solution of radiative transfer problems in molecular astrophysics assuming

spherical geometry. We formulate the non-LTE radiative transfer problem in
general and we particularize to the plane-parallel and spherical geometries. We
describe how the radiative transfer equation can be efficiently solved in spherical
geometry by means of the short-characteristics formal solver. We stress the non-
linear and non-local character of the non-LTE problem, thus introducing the
iterative methods as the solution techniques for such a problem.

Section §4.3 introduces the iterative methods which have been developed in
spherical geometry. We describe their fundamental properties and how they can
be efficiently implemented for the solution of non-LTE problems in spherical
geometry. Finally, in Section §4.4 we introduce a commonly used approximation
which neglects the non-local character of the non-LTE problem. We investigate
the range of applicability and investigate which are the effects of using this
approximation in situations where the applicability conditions are not fulfilled.

The previous iterative methods are applied to two simple problems in order
to obtain their convergence properties. We verify that the good convergence
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properties of the methods based on the Gauss-Seidel and Successive Overre-
laxation schemes are maintained when solving problems in spherical geome-
try. We then apply these methods to the solution of two real astrophysical
problems: the formation of pure rotation water spectral lines in a hot shell of
the molecular complex SgrB2 in the Galactic Center and the formation of CO
vibration-rotation lines in the envelope of the red supergiant VY CMa.

4.1 Basic equations

The standard multilevel radiative transfer problem requires the joint solution
of the radiative transfer (RT) equation which describes the radiation field and
the kinetic equations (KE) for the atomic or molecular level populations which
describe the excitation state (see, e.g., Mihalas 1978). The numerical solution
of the problem requires to discretize the model atmosphere in NP points.

The physical properties of the atmosphere are assumed to be known at such
i = 1, 2, . . . ,NP points. The RT problem consists on obtaining the population
nj of each of the j = 1, 2, . . . ,NL levels included in the atomic/molecular model
that are consistent with the radiation field within the stellar atmosphere. This
radiation field has contributions from possible background sources and from the
radiative transitions in the given atomic/molecular model.

In the field of stellar atmosphere modeling, it is usual to make the assump-
tion of statistical equilibrium. This assumption is supported by the compar-
ison of the dynamical timescales and the radiative timescales. The radiative
timescale for obtaining the atomic/molecular level populations that are con-
sistent with the radiation field are usually much smaller than the dynamical
timescales (except for some isolated cases like supernovae explosions). This
way, the equilibrium between the radiation field and the matter is reached al-
most instantaneously in comparison with the macroscopic motions. Therefore,
we can assume that the atmosphere is instantaneously static (although taking
into account the Doppler shifts due to the velocities) when calculating the level
populations. To this end, we formulate the rate equations for each level i at
each spatial point as:

dni

dt
=
∂ni

∂t
+ v · ∇ni =

∑

j 6=i

njPji − ni

∑

j 6=i

Pij = 0, (4.1)
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where the statistical equilibrium has been assumed. In this equation, nj is the
population of level j in the atomic or molecular model and the Pij are the
transition rates in s−1 between level i and j. Two different processes contribute
to this transition rate: the collisions between the model atom/molecule and
external abundant species induce collisional transitions between levels i and j
with a rate which is defined as Cij; on the other hand, the radiative processes,
denoted as Rij produce transitions between energy levels following the selection
rules applicable in each case. The total transition rate can then be written as
Pij = Cij +Rij . Note that one of the previous equations can be obtained from
the summation of the rest, so that the previous set is not linearly independent.
Since an independent equation is needed in order to close the system, one of
the equations is replaced by the particle conservation law. This law states that
the sum of the population of all the energy levels must be equal to the total
abundance of the species (ntotal):

∑

i

ni = ntotal. (4.2)

Formally speaking, the system of equations given by Eqs. (4.1) together
with Eq. (4.2) can be written in matrix form as:

A · n = f , (4.3)

where A is a matrix of size NL×NL whose matrix elements contain the tran-
sition rates Pij (except for one of the rows which contains only 1 due to the
conservation law), f is a vector of length NL with zeros except for the ntotal of
the conservation law, and n is a vector containing the population of each level.
The result of grouping all the sets of equations similar to Eq. (4.3) together for
all the NP points in the atmosphere can be symbolically represented by means
of the system (see Socas-Navarro & Trujillo Bueno 1997):

L · n = f , (4.4)

where f is now a known vector of size NP×NL, n is a vector of the same length
with the level populations of the NL levels for the NP points and L is a block-

diagonal matrix such that each of the NP blocks of size NL×NL is given by the
matrix A of Eq. (4.3).
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The collisional rates Cij are assumed to be known once the local physical
conditions of the atmosphere are given. On the other hand, the radiative rates
Rij depend on the radiation field present in the atmosphere:

Rij = Bij J̄ij i < j

Rji = BjiJ̄ji +Aji i < j, (4.5)

where Bij and Bji are the Einstein coefficients for stimulated emission and ab-
sorption, respectively, Aji is the Einstein coefficient for spontaneous emission
and J̄ij (J̄ji) is the mean frequency-averaged intensity weighted by the ab-
sorption (emission) profile. Since we assume complete frequency redistribution

(CRD), J̄ij = J̄ji, which is given by:

J̄ij =
1

4π

∫

dΩ

∫

dνφij(ν,Ω)IνΩ, (4.6)

where φij and IνΩ are, respectively, the normalized line profile and the specific
intensity at frequency ν and direction Ω. We have explicitly indicated the
direction dependence in the line profile to account for directional Doppler shifts
due to macroscopic velocity fields in the medium. The integration has to be
carried out for the full 4π solid angle subtended by the sphere and for the
frequency range of the transition. The specific intensity is governed by the
radiative transfer equation:

d

ds
IνΩ = χνΩ (SνΩ − IνΩ) . (4.7)

which describes the variation of the specific intensity at frequency ν along a
ray of direction Ω, being χνΩ and SνΩ the opacity and the source function,
respectively, and s the geometrical distance along the ray (see, e.g., Mihalas
1978). The opacity describes how the photons are absorbed when being trans-
ported in the atmosphere, while the source function describes the generation
of new photons in the atmosphere. Therefore, the RT equation is nothing but
a conservation law for the specific intensity where we take into account the
sinks and sources of radiation. This equation can be formally solved if we know
the variation of the opacity and the source function along the ray. Once the
atmosphere is discretized, the specific intensity and the mean intensity can be
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written formally as:

IνΩ = ΛνΩ [Sν ] + Tν,Ω

J̄ij = Λ̄ [Sij] + T, (4.8)

where TνΩ is a term which accounts for the contribution of the boundary
conditions to the intensity at a given point and ΛνΩ gives the response of the
radiation field to perturbations in the source function.

The opacity and the source function have two main contributions coming
from the background continuum and from the atomic/molecular model transi-
tions. We will assume that the continuum opacity coming from the background
species can be obtained once the physical conditions at each spatial point are
known. This contribution includes, for example, the free-free and bound-free
absorption processes in hydrogen, the background molecular species which are
treated in LTE, opacity due to metals, absorption due to interstellar dust, etc.
The contribution due to the active atomic/molecular model transitions can be
obtained in terms of the population of the upper and lower levels. Therefore,
the opacity at a given frequency for a bound-bound transition between a lower
level l and an upper level u taking into account the background opacity can be
calculated using the expression (see, e.g., Mihalas 1978):

χνΩ =
hν

4π
φνΩ (nlBlu − nuBul) + χc(ν). (4.9)

The positive term accounts for the direct absorption from the lower to the
upper level and the negative term accounts for the stimulated emission from
the upper to the lower level. It is usual to include this term as a negative
absorption although it effectively represents an emission. As mentioned above,
we have also assumed that the emission line profile is equal to the absorption
line profile. We have also explicitly included the continuum opacity χc which
can be calculated from the physical conditions. The emissivity is given by:

ενΩ =
hν

4π
φνΩnuAlu + εc(ν), (4.10)

which takes into account the spontaneous emission from the upper to the lower
level. εc is the continuum emissivity which is also assumed to be known from
the physical conditions. In some astrophysical systems, the continuum emis-
sivity can be very important at the infrared wavelengths since dust can be an
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extremely efficient emitter (this is the case of dusty circumstellar envelopes).
The source function can be obtained from Eq. (4.9) and (4.10) with the usual
definition:

SνΩ =
ενΩ
χνΩ

. (4.11)

The previous definitions have made clear that, unless the value of J̄ij is
known, the system of Eqs. (4.3) is not linear, because the radiative rates
Rij depend on the population through its dependence on the mean intensity,
and this intensity is governed by the radiative transfer equation, whose terms
(opacity and source function) depend on the level populations themselves. This
nonlinear character of the RT problem makes it necessary to solve it by means
of an iterative scheme. Moreover, the RT equation couples different zones of
the atmosphere, so making the specific intensity a nonlocal function of the
emitting and absorbing conditions throughout the medium. This nonlinear and
nonlocal character of the whole non-LTE RT problem implies that its solution
is a very difficult task, and many efforts have been made in developing fast
and reliable solution methods (see Trujillo Bueno & Fabiani Bendicho 1995 and
more references therein).

4.2 Formal Solution in Spherical Symmetry

The kinetic Eqs. (4.1) can be easily solved at each point in the atmosphere
independently once the radiation field is known. The level populations turn
out to be geometry dependent because of the dependence on the medium’s
radiation field. The solution of the RT equation has to be done accounting for
enough information about the angular variation of the radiation field at each
point in order to calculate the mean intensity as the angular average of the
specific intensity. Any symmetry present in the problem should ideally be used
to reduce the angular information needed for calculating J̄ .

4.2.1 Plane-parallel geometry

The most used geometry is that of a plane-parallel atmosphere. Let L be the
physical size of the atmosphere and R the total radius of the star. When
L/R� 1, we consider that the curvature of the atmosphere is so small that we
can assume it to be plane-parallel. We also consider that the physical conditions
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vary only along the vertical direction z. In the plane-parallel case, the RT Eq.
(4.7) can be written as:

d

µdτν
I(z, µ, ν) = I(z, µ, ν) − S(z, µ, ν), (4.12)

where we have defined the optical depth dτν = −χνdz, z being the vertical
coordinate in the atmosphere and µ = cos θ is the cosine of the angle between
the vertical and the ray. On the other hand, the mean intensity for a given
transition between levels i and j is:

J̄ij =
1

2

∫ 1

−1
dµ

∫

dνφij(ν, µ)I(z, µ, ν). (4.13)

We have explicitly indicated the µ dependence of the line profile to account
for macroscopic velocities in the material. Many numerical methods have been
proposed to solve the linear first order differential equation (4.12). We will de-
scribe below the short-characteristics method which is very efficient and precise
in solving this equation.

4.2.2 Spherical geometry

Consider now an atmosphere with L/R ∼ 1. The curvature makes it necessary
to include the sphericity effects on the problem. Assume that the physical
conditions vary only along the radial direction. When the distance element ds
is expressed in spherical coordinates, one then obtains the corresponding RT
equation:

µ
∂Iν(r, µ)

∂r
+

(

1− µ2
)

r

∂Iν(r, µ)

∂µ
= ην(r, µ)− χν(r, µ)Iν(r, µ), (4.14)

where r is the radial coordinate, and µ is the cosine of the angle between the
radial direction and the ray. Note that the RT equation is not an ordinary
differential equation (ODE) but a partial differential equation (PDE) which
accounts for the curvature effects of the media. As can be seen from Eqs. (4.9)
and (4.10), the angular dependence of the opacity and emissivity comes from
the angular dependence of the line profile, which can be Doppler shifted by
macroscopic velocity fields.
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4.2.3 Boundary conditions

In order to solve Eq. (4.14), we discretize the spherical atmosphere in Nr radial
shells parameterized by their radius ri, where i = 1 . . . Nr. We note that i = 1
and i = Nr refer to the internal and external boundaries, respectively, where
the incident intensity is assumed to be known. Therefore, r1 = Rc is the radius
of the internal core (considered as the surface where the internal boundary
condition is given) and rNr = Ra is the radius of the atmosphere (considered as
the surface where the external boundary condition is given). The usual external
boundary condition is to assume that there is no incident radiation. In some
situations it is necessary to include an external source of radiation which can
affect the radiation field inside the astrophysical system under consideration.
This is the case of a cold molecular cloud in which the Cosmic Microwave
Background Radiation (CMBR) has to be included because it produces an
important excitation of the lowest energy levels of some molecules. Another
case would be coronal radiation which may affect the excitation properties of
some atomic species in the chromosphere of magnetically active stars like the
Sun. Concerning the internal boundary condition, its value depends also on
the type of object one is modeling. We can assume no incident radiation for
a molecular cloud in free-fall, the usual diffusion approximation or even the
photospheric stellar spectrum for a central star embedded in a circumstellar
envelope. The star’s radiation can be even diluted by the presence of absorbing
material or by the geometric dilution. Schematic representations of the three
possible internal boundary conditions are shown in Fig. 4.1

Instead of solving the full partial differential equation (4.14) by appropriate
standard numerical methods, one can always reduce a PDE to a set of ODEs
once the characteristics curves of the equation are found. We parameterize
these curves with the variable t so that the intensity along these curves can be
found by requiring Iν(r, µ) = Iν(r(t), µ(t)), so that:

dI

dt
=
∂I

∂r

∂r

∂t
+
∂I

∂µ

∂µ

∂t
. (4.15)

By comparison with Eq. (4.14), we find:

∂r

∂t
= µ

∂µ

∂t
=

1− µ2

r
. (4.16)
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Figure 4.1: Schematic representations of the three possible internal boundary conditions. The
left panel shows the case without incident radiation from the central point, the middle panel
shows the case in which the boundary condition is constant and given, e.g., by the diffusion
approximation, while the right panel shows the case in which there is a central star whose
radiation is being diluted, either geometrically or by absorption.

The solution to the previous set of equations are straight lines with a constant
value of µ and with r(t) ∝ t, i.e. rays with a constant inclination which are
limited by their intersection with the boundary surfaces. The scheme can be
found in the left panel of Figure 4.2. A more suitable representation can be
found in the right panel of the same figure. This representation makes use of the
symmetry properties of the atmosphere and the characteristics are straight lines
parallel to the central ray (the ray which is perfectly radial) and parameterized
by its distance to this central ray (the so-called impact parameter pj). We
choose these impact parameters to be equal to the radius of the different Nr

shells, so each characteristics is tangent to a shell. In order to correctly sample
the central core, this set is augmented by some rays which intersect the central
core (Nc), so the total number of characteristics is Np = Nr + Nc (see, e.g.,
Mihalas 1978). Therefore,

pj =
r1
Nc

j for j ≤ Nc, (4.17)

pj = rj−Nc for j > Nc. (4.18)

The final geometry used to solve the RT equation is that shown in the right
panel of Fig. 4.2. The intersections between each characteristics and the radial
shells define a grid, parameterized by its depth z. The relation between these
quantities is straightforwardly obtained from geometrical considerations, thus
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z(r, pi) =
(

r2 − p2
i

)1/2
. Therefore, we have made a transformation of variables

from (r, µ) to (p, z) which are geometrically equivalent but simpler to use in
this situation (Mihalas 1978). We have only plotted one quadrant of the whole
atmosphere due to the symmetry properties. Since we have stated that the
physical conditions are only dependent on the radial direction and not on the
angular direction, any position on each shell is equivalent. This leads to a
considerable saving in the total computing time. The only drawback is that
additional boundary conditions have to be included. We apply a reflection
boundary conditions at z = 0 and consider the points with the same value of
|pj | as equivalent.

4.2.4 Angular information

Consider a ray parameterized by its constant value of the impact parameter pi.
The RT equation describing the variation of the specific intensity along this ray
can be written as:

±∂I
±(z, pi, ν)

∂z
= η(z, piν)− χ(z, pi, ν)I

±(z, pi, ν), (4.19)

because these straight lines are the characteristics. The + and − signs refer,
respectively, to radiation flowing toward and away from the external observer.
This equation can then be reduced to one equivalent to Eq. (4.12) by defining
the optical depth as dτν(z, pi) = −χν(pi, z)dz, i.e., by using a different opti-
cal depth mesh for every characteristics. Solving the previous equation along
each characteristics, one can get the value of the intensity at each intersection.
Since the value of the impact parameter and the angle µ are related by the

geometrical relation µ(r, p) =
(

r2 − p2
i

)1/2
/r, the knowledge of the intensity

at the intersections between the characteristics and the shells is equivalent to
the knowledge of the angular distribution of the specific intensity. The pre-
vious technique is only possible when the physical conditions depend only on
the radial distance, and not on the angle. This way, the mean intensity can be
calculated by choosing an appropriate numerical quadrature. Eq. (4.13) has
been numerically integrated using a trapezoidal rule because the number and
particular values of the µ angles depend on the chosen shell (note that each shell
is intersected by a different number of characteristics curves and at different z
positions). This makes impossible to use a Gaussian quadrature.
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P
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Ib

z

p

Figure 4.2: Schematic representations of the geometry used in the RT problem. The left panel
shows the contribution of all the rays to the mean intensity at shell P. “Ob” stands for Outer

boundary and “Ib” for Inner boundary. The right panel shows the chosen reduced geometry
which takes advantage of the symmetry properties of the problem.

4.2.5 Formal solution

In order to solve the RT equation in spherical geometry, we solve each of the
equivalent plane–parallel problems with the short–characteristics (SC) method
(see Kunasz & Auer 1988). It is the same formal solver used by Trujillo Bueno &
Fabiani Bendicho (1995) for cartesian geometries. As shown below, it facilitates
the efficient implementation of the fast iterative methods developed by Trujillo
Bueno & Fabiani Bendicho (1995) and provides a good precision with a reduced
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MOP

Figure 4.3: Schematic representation of how the short-characteristics formal solver is applied
for solving the RT equation for spherical symmetry. We have indicated points M, O and P
which are used in the parabolic SC method.

computational time. In fact, it scales linearly with the number of points in the
atmosphere.

The SC method can be obtained by assuming that the source function varies
as a polynomial between a given number of points along the ray propagating
in the stellar atmosphere. Therefore, the RT equation can be integrated very
easily. We will use the following scheme in our codes. Consider three points,
the upwind point M, point O and the downwind point P, where the value of
the source function are known a priori. Assume that we know the intensity at
point M and we want to calculate its value at O. If we assume that the source
function varies parabolically between M, O and P, we can integrate analytically
the radiative transfer equation and obtain the following formula:

IO = IMe
−∆τMO + ΨMSM + ΨOSO + ΨPSP , (4.20)

where IM is the intensity at the upwind point M. The quantities {Ψi, i =
M,O,P} are functions of the optical distances between the upwind point M
and the given point O (∆τMO) and between the given point O and the down-
wind point P (∆τOP ), while {Si, i = M,O,P} are the values of the source
function at points M, O and P, respectively. We can build a similar formula
assuming that the source function varies linearly between points M and O, so
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that the last term in Eq. (4.20) disappears and ΨM and Ψ0 will only depend
on ∆τMO.

The parabolic short-characteristics formula has been used in all our calcula-
tions for obtaining the required accuracy, although the linear formula has to be
used in the boundaries because a downwind point cannot be defined. Although
useful, it is better to use the linear formula only in these selected points due to
its intrinsic lack of precision.

4.2.6 Computational cost

The previous way of obtaining the angular information of the radiation field
(described in detail in Mihalas 1978) involves an increase in the time needed to
carry out the solution of the RT equation in spherical symmetry with respect
to the plane–parallel case. Consider a plane-parallel atmosphere with Nr shells
and let Nq be the number of angles chosen for the numerical calculation of the
mean intensity. The number of points in the atmosphere in which the specific
intensity has to be calculated is:

Npp = NqNr. (4.21)

In the case of a spherically symmetric atmosphere, we can calculate the number
of points by summing all the points in all the characteristics:

Nspher =

Nc
∑

i=1

Nr +

Nr+Nc−1
∑

i=Nc+1

(Nr +Nc − i) =
N2

r

2
+

(

Nc −
1

2

)

Nr. (4.22)

The increase factor between a formal solution for the spherically symmetric
case and the plane-parallel case is:

f =
Nspher

Npp
=
Nr + 2Nc − 1

2Nq
. (4.23)

For typical cases in which Nq = 3, Nr = 40 and Nc = 6 we have f = 8.5, that
is, each formal solution takes around an order of magnitude more computing
time in the spherical case than in the plane-parallel case.
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4.3 Iterative methods

The nonlinear character of the system of equations given by Eq. (4.3) makes
it necessary to apply iterative methods. The main idea of an iterative method
for the solution of a nonlinear problem is to start from an estimation of the
solution and then to perform successive corrections to this estimation until the
final solution is found. Iterative methods for multilevel transfer problems obey
the same structure. Consider the iterative solution of Eq. (4.3) at each one of
the NP spatial points. We start from an estimate nold of the atomic or molecular
level populations at this point. If this estimate is not the exact solution of the
problem, there exists a nonzero residual

r = f −Aold · nold 6= 0. (4.24)

We have explicitly indicated that the system matrix Aold depends on the pre-
vious estimation of the populations nold. This matrix is built, for every point
in the atmosphere, by using the appropriate collisional rates and the radiative
rates given by Eq. (4.5). The objective is to find the correction δn such that
the estimation:

nnew = nold + δn (4.25)

gives a zero residual and, therefore,

Anew · δn = f −Anew · nold. (4.26)

Note that this equation cannot be directly solved because it is still nonlinear and
similar to the original Eq. (4.3), hence it is impossible to solve the problem in
one step. It is much more efficient to perform approximate corrections instead
of the exact correction and arrive to the solution iteratively.

The different iterative methods applied to the solution of radiative transfer
problems differ in the way one manages to build a linear system in order to
get approximate corrections to the level populations. The scheme one chooses
to carry out this linearization is crucial to end up with a fast iterative method
which additionally accounts for all the radiative couplings in the atomic or
molecular system (see Trujillo Bueno & Fabiani Bendicho 1995; Socas-Navarro
& Trujillo Bueno 1997). We now briefly describe each of the methods developed
so far.



4.3 Iterative methods 103

4.3.1 The Λ-iteration Method

This method is the most direct and simple one. It consists on solving Eq. (4.26)
by calculating the system matrix at each point in the atmosphere using the
populations from the previous iterative step, nold. Therefore, the corrections
to the estimation of the population can be obtained from:

Aold · δn = r (4.27)

Therefore, the value of the mean intensity J̄ij at each spatial point is obtained
by solving the RT equation using the nold values of the populations at this
point. At each iterative step the nonlinear system is transformed into a lin-
ear one, which can be solved easily to obtain the approximate corrections to
the populations. This procedure is iterated until convergence. Although very
simple and easy to code, this method has a main drawback, which is its very
poor convergence rate. This is due to the fact that this method is equivalent
to assuming that the field does not react to the perturbations in the popula-
tions (see Socas-Navarro & Trujillo Bueno 1997), which is a very unrealistic
approximation. Due to the this assumption, the information is transferred in
the atmosphere one photon mean free path per iteration. Hence, if the medium
is optically thick, it takes many iterations to radiatively connect all the points
in the atmosphere. However, it is still useful for optically thin problems (see,
e.g. Uitenbroek 2000b, Dickel & Auer 1994, Bernes 1979, etc.).

4.3.2 The Accelerated Λ-iteration Method (ALI)

Description of the scheme

ALI is a clever modification to the Λ-iteration method which implies a much
better convergence behavior (Cannon 1973; Olson, Auer, & Buchler 1986).
There are several methods to achieve the linearity in the system matrix in
the ALI method. The most powerful ones are linearization (Auer & Mihalas
1969; Scharmer & Carlsson 1985) and preconditioning (Rybicki & Hummer
1991, 1992) schemes. Socas-Navarro & Trujillo Bueno (1997) showed that both
schemes are almost equivalent, although the preconditioning scheme leads to
a more stable behavior of the iterative scheme. The preconditioning scheme
is nowadays the most used due to its simplicity and good performance. It is
usually referred to as the Multilevel-ALI (MALI). This method is based on
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two strategies: the operator splitting formula that Cannon (1973) introduced
into the RT literature and the preconditioning scheme. The operator splitting
strategy rewrites the formal solution of the RT equation given by Eq. (4.8) as:

IνΩ = Λ∗
νΩ[Sν ]

new + (ΛνΩ −Λ∗
νΩ) [Sν ]old + FνΩ, (4.28)

where Λ∗
νΩ is an approximation to the full operator ΛνΩ. Note that the Λ∗

and Λ operators are dependent on the “old” populations. The approximate
operator is usually chosen to be the diagonal of the full operator because it
is easy to obtain and its inversion is trivial. The preconditioning strategy
consists on the evaluation of some selected quantities of the iterative process
using the populations from the previous iterative step, which allows to achieve
linearity. The main advantage of this preconditioning approach is that we
can achieve linearity in the system but we maintain the essential information
on the radiative coupling. The resulting iterative scheme is equivalent to Eq.
(4.27), but now the system matrix Aold is obtained, for each spatial point,
with some small modifications (see Rybicki & Hummer 1991 for details), which
does take into account the response of the radiation field to the source function
perturbations (Socas-Navarro & Trujillo Bueno 1997):

Aold
MALI · δn = r. (4.29)

Since the value of J̄ij is obtained from the value of the populations nold, the
system becomes linear and can be easily solved in order to get the approximate
corrections for the populations at each iterative step. The only difference with
the Λ-iteration scheme lies on the way the matrix for each spatial point is ob-
tained, which includes the calculation of the approximate Λ∗

νΩ operator. When
this approximate operator is equal to the diagonal of the full operator ΛνΩ,
the computational time per iteration is equivalent to the Λ-iteration scheme.
When this procedure is iterated until convergence, we obtain a much better
convergence rate than the Λ-iteration scheme.

The MALI scheme in spherical geometry

In this section we describe how the previous MALI scheme can be implemented
in spherical symmetry. The following notes are applicable to the Λ-iteration
scheme since the calculation of the mean intensity has to be carried out in both
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schemes. For solving the non-LTE problem, we need to evaluate the system
matrix Aold

MALI at each spatial point. In order to calculate this matrix, we
need to calculate the mean intensity in each transition J̄ij and the approximate
operator Λ∗. With the SC formal solver scheme, this operator can be efficiently
obtained (see Olson & Kunasz 1987, Auer & Paletou 1994). The following steps
describe how the mean intensity and the diagonal of the full Λ operator can be
efficiently obtained in spherical symmetry:

1 Incoming part. We start the integration of the RT equation along each
characteristics from the outer boundary surface using the appropriate
boundary condition. If the outer boundary condition has a dependence
with the angle µ, then each characteristics will have a different boundary
condition I(R,µ). The intensity is then propagated inwards using repeat-
edly the formal solution given by the parabolic short-characteristics Eq.
(4.20). This process is carried out in each characteristics until reaching
the inner boundary surface for the Nc rays which intersect the core or
until reaching the surface z = 0 for the Nr rays which do not intersect the
core. At this moment, we have enough information to obtain the angular
dependence of the incoming radiation field and obtain, using a numerical
quadrature, its contribution to the mean intensity using Eq. (4.13):

J̄ij(in, ri) =
1

2

∫ 0

−1
dµ

∫

dνφνI(ri, µ), (4.30)

where we have explicitly indicated that it is the contribution to the mean
intensity of the incoming radiation. Similarly, we calculate the contribu-
tion of the incoming radiation to the approximate operator. Since this
operator is diagonal, it represents the response of the mean intensity to a
unit pulse perturbation in a given point O. Therefore:

Λ∗
ij(in, ri) =

1

2

∫ 0

−1
dµ

∫

dνφνΨO, (4.31)

where ΨO is the coefficient which enters the short-characteristics formula
(4.20).

2 Outgoing part. We apply the boundary condition for all the rays (the
inner boundary condition for the rays which intersect the core and the
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reflection condition to those which do not intersect the core) and continue
integrating the RT equation along the characteristics until reaching the
external boundary surface. The contribution of the outgoing radiation
field to the mean intensity can be obtained by:

J̄ij(out, ri) =
1

2

∫ 1

0
dµ

∫

dνφνI(ri, µ), (4.32)

and similarly for the approximate operator.

When this process is done for all the spectral lines in the model, the mean
intensity J̄ij and the diagonal of the Λ operator is obtained at each spatial
point. We can then build the system matrix Aold

MALI for each point and obtain
the approximate corrections to the populations. Note that such a matrix can
be obtained independently for each spatial point once the value of the mean
intensity is known.

Parallelization

Finally, let’s comment something about the possibilities of parallelization of the
previous schemes. Note that in MALI, the formal solution of the RT equation
and the level population correction process are totally uncoupled. This allows
an immediate parallelization scheme which separates the solution of the RT
equation along each characteristic in different processing units. The ideal case
would be that in which we have Nr + Nc processors, one for solving the RT
equation along each characteristics. Each processor has to carry out the solution
for all the line frequencies included in the model to take advantage of the
vectorization properties of the modern processors and compilers, although the
formal solution can be performed frequency by frequency. Once the radiation
field is known, the population correction can be performed for all the shells
simultaneously.

4.3.3 The Multilevel Gauss–Seidel Method (MUGA)

Description of the scheme

This method was developed by Trujillo Bueno & Fabiani Bendicho (1995). Sec-
tion 2.1 in the paper by Fabiani Bendicho, Trujillo Bueno, & Auer (1997) gives
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a suitable summary of its application to the multilevel problem in cartesian
coordinates. Although maintaining a computational time per iteration com-
parable to MALI, it has a much better convergence behavior. For MALI, the
system matrix Aold is built, for each spatial point, from the populations of the
previous iteration. We have used an approximate Λ∗ operator which is the di-
agonal of the full Λ operator. The key idea of the Gauss–Seidel based methods
is that one can obtain the convergence rate of an upper or lower triangular (and
therefore non-linear) approximate Λ∗ operator without the necessity of neither
building nor inverting this triangular operator. To this end, once the radiation
field is known at the atmospheric point being considered, the population cor-
rection can be made directly using Eq. (4.29). Then, if these new populations
are taken into account when calculating the radiation field at the next spatial
point, the resulting scheme turns out to be equivalent to a Gauss-Seidel scheme,
which has a much better convergence rate. The ordering in which the radiation
field is calculated now turns out to be crucial, as we will see below.

Iterative scheme in spherical geometry

Trujillo Bueno & Fabiani Bendicho (1995) developed a novel RT method based
on GS iterations and showed how to implement it efficiently for the plane–
parallel case. The short-characteristics formal solver is suitable for achieving
an efficient solution of the non-LTE RT problem using the Gauss-Seidel iterative
scheme. We describe below how it can be implemented in spherical geometry.
The idea is first to consider the contribution to the radiation field of the incom-

ing rays, i.e., of those rays which enter the atmosphere from above the outer
boundary. When this contribution has been calculated, we consider the prop-
agation of the outgoing rays and we calculate the population corrections point
by point consecutively. To facilitate the description, we divide each iteration in
these two main steps:

1 Incoming part. The formal integration of the RT equation along each
characteristics of constant impact parameter pj is started at the outer
boundary. This process is schematized in the upper left panel of Fig. 4.4.
Note that the intensity can be propagated simultaneously along all the
characteristics because they are independent. The integration along each
ray is done using Eq. (4.20), calculating the intensity at each shell i until
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the ray intersects the central core (if its impact parameter obeys pj < Rc)
or arrives tangent to the shell which fulfills pj = ri. Once the incoming
intensity at every intersection point between the shells and the whole set
of characteristics is known, the contribution to the mean intensity of the
incoming rays (µ < 0) can be calculated by integrating Eq. (4.30) using
the above-mentioned trapezoidal numerical quadrature.

2 Outgoing part. When the contribution to J̄ij from the incoming radia-
tion is known for every shell, the boundary condition at the inner core
can be applied to get the contribution of the outgoing radiation to the
mean intensity, thus allowing us to write the linear system of Eqs. (4.29)
and solving it to get the population correction at the inner core. The
schematic representation of this step is shown in the upper right panel
of Fig. 4.4. With these improved level populations, one can propagate
the intensity outwards until the shell r2 and get the mean intensity at
this shell (J̄old&new

ij ), which then allows us to write again the linear sys-
tem of Eqs. (4.29). The procedure is repeated until arriving to the outer
boundary. This subsequent process is schematized in the lower left and
right panels of Fig. 4.4. The “old&new” label of the mean intensity is
used to clearly show that the value of the mean intensity J̄ij at shell n is
obtained by using the new population at the shells with r < rn, contrarily
to what happens in the Jacobi–based methods, where the mean intensity
is calculated by using the “old” population estimation. Consequently, the
final system to be solved at each shell is:

Aold&new
GS δn = r, (4.33)

where the coefficients of Aold&new
GS are calculated at each spatial point

independently as explained above.

In the plane–parallel case all the rays have both boundary conditions (the
outer and the inner) because all the rays intersect both surfaces. However,
in the spherically symmetric case only the rays with pj < Rc intersect the inner
boundary surface, while the rest of the rays cross the whole atmosphere (see
Fig. 4.4).

As explained in detail by Trujillo Bueno & Fabiani Bendicho (1995) for
the plane–parallel case, the previous scheme will only give a full Gauss-Seidel
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2 correction 3 correction

Figure 4.4: Schematic representation of the Gauss-Seidel iterative scheme in all its phases.

iteration if the linear short-characteristics formal solver is used. Since we are
using the parabolic short-characteristics formal solver, two corrections have to
be performed in order to obtain a true GS iteration. They are graphically
schematized in Figure 4.5.

a) The first one, represented in the left panel, affects the incoming radiation
field after the population correction is performed. Since the parabolic
short-characteristics formal solver has been used, the radiation field at
point i+1 depends on the absorption and emission properties of points i,
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Figure 4.5: Corrections needed for obtaining a true Gauss-Seidel iteration. The left panel
shows the corrections to the incoming radiation field at point i + 1 due to the population
correction at point i. The right panel shows the corrections to the outgoing radiation field at
point i + 1 due to the population correction at point i + 1.

i+1 and i+2. The incoming radiation field at i+1 was calculated using
the “old” populations at point i. Since we have now a new estimation of
the populations at point i, we have to correct the incoming radiation field
as indicated in the plot. We indicate in grey those points for which we
have a “new” estimation of the populations, while those with the “old”
populations are marked in black. The intensity at point i + 1 for the
characteristics with impact parameter pj was calculated according to the
formula:

Iold
i+1(in, pj) = Ii+2(in, pj)e

−∆τi+2,i+1 + Ψi+2S
old
i+2(pj) + Ψi+1S

old
i+1(pj)

+ ΨiS
old
i (pj), (4.34)

which has to be replaced with:

Inew
i+1 (in, pj) = Ii+2(in, pj)e

−∆τi+2,i+1 + Ψi+2S
old
i+2(pj) + Ψi+1S

old
i+1(pj)

+ ΨiS
new
i (pj) =

= Iold
i+1(in, pj) + Ψi

[

Snew
i (pj)− Sold

i (pj)
]

, (4.35)

since the populations at point i has just been corrected. This correction
in the specific intensity is performed in each characteristics and affects
the mean intensity as:

J̄new
ij (in, ri+1) = J̄old

ij (in, ri+1)+
1

2

∫ 0

−1
dµ

∫

dνφνΨi

[

Snew
i (pj)− Sold

i (pj)
]

,

(4.36)
where the relation between pj and µ has to be used.
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b) The second correction, represented in the right panel of the figure, is
necessary once a new estimation of the populations is available for point
i+ 1. Since the outgoing radiation field at point i+ 1 has been obtained
with the “old” populations at this point, they have to be corrected in order
to obtain the correct behavior of the outgoing radiation field. Therefore,
the emerging intensity at point i+ 1, which has been obtained using:

Iold
i+1(out, pj) = Ii(out, pj)e

−∆τi,i+1 + ΨiS
new
i (pj) + Ψi+1S

old
i+1(pj)

+ Ψi+2S
old
i+2(pj), (4.37)

has to be replaced by:

Inew
i+1 (out, pj) = Ii(out, pj)e

−∆τi,i+1 + ΨiS
new
i (pj) + Ψi+1S

new
i+1 (pj)

+ Ψi+2S
old
i+2(pj) =

= Iold
i+1(out, pj) + Ψi+1

[

Snew
i+1 (pj)− Sold

i+1(pj)
]

, (4.38)

since now the populations at point i+ 1 have been corrected. The mean
intensity is changed similarly to Eq. (4.36).

These corrections are applied consecutively when obtaining the outgoing radi-
ation field until reaching the outer boundary surface.

Summarizing, when these two corrections are applied to the iterative scheme,
a true Gauss-Seidel iteration is obtained once the radiation field is propagated
from the outer to the inner boundary, and again to the outer one. A very
exhaustive explanation of these corrections for the case of plane–parallel at-
mospheres can be found in Trujillo Bueno & Fabiani Bendicho (1995). The
differences between their scheme and ours lies in the slightly different treat-
ment of the solution of the RT equation along its characteristics.

The previous scheme leads to convergence rates a factor of 2 faster than
those obtained with the MALI scheme. This increase in the convergence rate
resides in the fact that the convergence rate of this RT method is equivalent
to that of an operator splitting method based on a triangular approximate Λ∗

operator, which contains much more information about the radiative couplings
between all the points in the atmosphere than the diagonal approximate Λ∗

operator. The main advantage of the proposed GS-based iterative scheme is that

neither the construction nor the inversion of this triangular operator has to be
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Figure 4.6: Schematic difference between the Jacobi and the Gauss-Seidel iterative schemes.
The Jacobi or MALI scheme consists on calculating the radiation field for all the points and
then the population correction is carried out. On the other hand, in the Gauss-Seidel or
MUGA scheme, once the radiation field is known at the spatial point under consideration, the
population correction is carried out and then we move to the next point in the atmosphere
taking into account the previously corrected populations.

performed. The main disadvantage is that the two previous corrections have
to applied to every point in the atmosphere in order to end up with a true GS
scheme. These corrections might take an appreciable amount of computational
time. Since they are produced by the use of the parabolic short-characteristics,
it should be desirable to use a formal solver of the same precision of parabolic
SC but which does not suffer from these problems. The first option would be
to use linear SC but they do not present enough accuracy to obtain the correct
result in typical non-LTE RT problems. The second option would be to use non-
centered parabolic SC, but it is known to be unstable when used in iterative
schemes. We are now investigating other options in which only information
on the points M and O are used (and possible other previous points) like the
parabolic or cubic Bezier splines (Auer 2003). The problem is again that non-
centered operations have to be used which may lead to instabilities.

As pointed out by Trujillo Bueno & Fabiani Bendicho (1995) and Trujillo
Bueno (2003c), the increase in convergence rate can be even increased to a
factor of 4 if the previous correction scheme is applied, not only when the field
is being propagated outwards, but also when the field is propagated inwards.
The scheme is now slightly more complicated but can be perfectly obtained. The
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resulting iterative scheme is similar to one in which both the upper triangular
and lower triangular approximate Λ∗ operators are involved, the first one when
the incoming radiation field is being calculated and the second one when the
outgoing radiation field is being calculated.

Parallelization

The case of the parallelization of the MUGA scheme turns out to be more
difficult than for the MALI case since the formal solution and the correction
scheme are coupled. The parallelization philosophy would be similar to that
of MALI, i.e., to assign each processing unit to performing the formal solution
of the RT equation along each characteristic. A barrier on the execution has
to be put at each shell when calculating the outgoing radiation field in order
to recover all the angular information for each shell. One of the processors
recovers all this information and calculates the correction to the populations
at each shell. Another communication has to be performed to carry out the
needed corrections. At this point, the new populations are broadcasted to all
the processing units and they advance the formal solution of the RT equation
to the next shell, where the very same process is executed. Note that each
processing unit has to solve the RT equation for all the frequencies of the lines
included in the problem at the same time. The option of performing the formal
solution frequency by frequency which was available in the MALI scheme cannot
be applied here since we need the full spectral structure of the radiation field
inside the iterative scheme. Schematic representations of the MALI and MUGA
schemes can be found in Fig. 4.6.

4.3.4 The Multilevel SOR Method (MUSOR)

The Successive Overrelaxation method (SOR) has been also introduced for the
solution of the non-LTE RT problem by Trujillo Bueno & Fabiani Bendicho
(1995). It is highly inspired in the Gauss–Seidel scheme and in fact it can
be considered as an improvement of their GS scheme. The solution process is
exactly the same and the only difference lies on the level population correction.
In the SOR method, a parameter ω is introduced to overcorrect the population,
thus allowing for some kind of anticipation of the future corrections. This
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scheme can be written as

Aold&new
GS · δn∗ = r

nnew = nold + ωδn∗, (4.39)

where the ω parameter has a value between 1 and 2 to produce the overcor-
rection. We see that this scheme consists on applying the GS correction and
multiplying the population correction by a constant in the range [1, 2]. Note
that the GS scheme is a particular case of the SOR scheme. There exists an
optimum value for this parameter which minimizes the number of iterations,
although it cannot be known a priori. However, some methods are available to
automatically estimate the optimum value of this parameter ω (see Hageman
& Young 1981) and it has been shown by Trujillo Bueno & Fabiani Bendicho
(1995) that they can be applied to the RT problem with great success. The
optimum value can be obtained with the aid of the formula:

ωopt =
2

1 +
√

1− Rc(itr+1)
Rc(itr)

itr � 1, (4.40)

where Rc(itr) is the maximum relative change at iteration itr, defined as

Rc(itr) = max

∣

∣

∣

∣

n(itr)− n(itr− 1)

n(itr)

∣

∣

∣

∣

. (4.41)

The reason for the previous formulas can be found on Trujillo Bueno & Fabi-
ani Bendicho (1995) and references therein but it is related to the fact that
Rc(itr + 1)/Rc(itr) becomes a very good estimation of the spectral radius ρ
of the iteration when itr � 1. This is produced because, after the first possi-
ble oscillatory behavior of the maximum relative change, we enter a regime in
which Rc(itr) ∝ ρitr.

4.3.5 Computational time

A fundamental consideration of any iterative method is to know how the total
computational time scales with the number of spatial grid points, rays, frequen-
cies and radiative transitions in the atomic or molecular model. We have seen
that the number of spatial grid points in which the specific intensity has to
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be known is larger in the spherically symmetric case than in the plane-parallel
case. Consider Natm to be the number of points in the atmosphere where the
specific intensity has to be calculated, which can be obtained using Eq. (4.21)
or (4.22). Note that this includes the dependence on the number of rays for
the angular quadratures. Let Nν be the number of frequencies at which the RT
equation has to be solved, Niter be the number of iterations needed for reaching
the desired precision and Tcpu be the computational time per iteration. With
the short-characteristics method, the computational time scales linearly with
the number of spatial grid points in the atmosphere, the number of frequency
points and the number of iterations, so that:

Tcpu ∝ NνNatmNiter. (4.42)

The dependence of the total computational time on the number of points
in the atmosphere scales as N 2

atm for MALI, as N 2
atm/2 for MUGA and as√

NatmNatm/2 for MUSOR (Trujillo Bueno & Fabiani Bendicho 1995). This
is a direct consequence of the different number of iterations which have to be
performed for obtaining convergence in each of the methods. It is of the order
of Natm for MALI, Natm/2 for MUGA and

√
Natm for MUSOR, as will be shown

later on.

4.4 LVG approximation

This approximation was first introduced by Sobolev (1958, 1960) for the treat-
ment of the highly nonlinear RT problem and later refined by other authors
(Castor 1970, Lucy 1971). It assumes that there is a large velocity gradient

(LVG) in the atmosphere, which leads to the simplification of the whole prob-
lem. When a large velocity gradient is present, the Doppler shifts suffered by
the spectral lines at each position due to the macroscopic motions are very
high, thus points which are geometrically very close can be radiatively uncou-
pled. Therefore, a photon generated at a given point can only be absorbed in
the vicinity of this point. If it manages to escape from this region, then it will
escape until reaching the exterior boundary because the rest of points in the
atmosphere have line absorptions profiles which are Doppler shifted. The im-
mediate consequence of the previous assumption is that the non-locality of the
RT problem is lost and we can avoid any radiative coupling between different
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zones of the atmosphere. The problem then becomes completely local and the
radiation field can be calculated easily. Although the non-local character of the
problem has been avoided, its non-linear character still remains since the statis-
tical equilibrium equations depend non-linearly on the populations themselves
through the radiative rates.

This method is usually applied to problems where the approximation is not
valid because it is relatively easy to code and much more faster than the full
non-local code. To identify which kind of problems can be solved with this
approximation one has to define the domain of validity of the approximation.
The presence of a macroscopic velocity field produces a shift in the observed
frequency of a transition between levels i and j due to the Doppler effect.
For velocities much smaller than the speed of light, we can write the shifted
frequency as:

νij = ν0

(

1− ~n · ~v(r)
c

)

, (4.43)

where ν0 is the rest frequency of the transition between levels i and j, ~n is a
vector in the direction of the line of sight (LOS), ~v(r) is the velocity field in
the source and c is the speed of light. vl = ~n · ~v(r) is the projection of the
velocity vector on the direction of the LOS. When we move along the LOS, we
can obtain the variation of the shifted frequency by differentiating the previous
expression with respect to a distance l which measures the distance along the
LOS, obtaining:

δνij =
ν0

c

∣

∣

∣

∣

dvl

dl

∣

∣

∣

∣

δl, (4.44)

being δl an elementary distance along the line of sight and dvl/dl the velocity
gradient. With the help of this expression, one can define a length unit L, called
the Sobolev length:

L =
cδνij

ν0

∣

∣

∣

dvl
dl

∣

∣

∣

, (4.45)

which represents the typical distance between two points x and x+L along the
LOS needed for obtaining a considerable Doppler shift in the line profile so that
the profiles at both points have a negligible overlap. For the case of a Doppler
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profile, δνij = ν0vth/c, and the Sobolev length can be written as:

L =
cδνij

ν0

∣

∣

∣

dvl
dl

∣

∣

∣

=
vth
∣

∣

∣

dvl
dl

∣

∣

∣

. (4.46)

Consider now R to be the typical distance in the medium where the phys-
ical conditions change. Therefore, we can estimate the velocity gradient as
|dvl/dl| ≈ v0/R, where v0 is a typical velocity in the medium. The ratio be-
tween the Sobolev length and the typical scale of the medium then depends
on the ratio between the thermal and the typical velocities in the medium,
L/R ≈ vth/v0. Therefore, the Sobolev approximation turns out to be valid for
R � L, since the typical velocities in the medium are larger than the ther-
mal velocities. This way, the possible resonance regions around a point x are
relatively sharp and radiative coupling is only possible in the surroundings of
x. Another possibility in which the LVG approximation turns out to be valid
is that in which we have an optically thin atmosphere. In this case, a pho-
ton generated in any zone can escape from the atmosphere with a very small
probability of absorption and the problem then becomes completely local.

The complete derivation of the LVG equations is out of the scope of this
thesis so that we will only write the final results (see Castor 1970, Lucy 1971
for more details). The LVG approximation leads to a very simple formula for
obtaining the mean intensity at a given point which depends only on local
quantities:

J̄(r) = [1− β(r)]S(r) + β?(r)I? + βbg(r)Ibg(Tbg). (4.47)

In this expression, S(r) is the source function at the radial distance r, I? is
the radiation coming from the star or, equivalently, the radiation at the in-
ner boundary surface, while Ibg(Tbg) is the cosmic background radiation field
(given by a blackbody at the background temperature Tbg) or, equivalently,
the radiation at the outer boundary surface. Note that the Sobolev or LVG
approximation directly gives an expression for the mean intensity without the
necessity of calculating the specific intensity itself. The angular quadrature is
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transferred to the β functions, which are the escape probabilities, defined as:

β(r) =

∫ 1

0
dµ

1− e−τ(r,µ)

τ(r, µ)

β?(r) =

∫ 1

µc

dµ
1− e−τ(r,µ)

τ(r, µ)

βbg(r) = β(r). (4.48)

The escape probability β(r) gives the probability that a photon, generated
at the radial distance r, escapes from its neighborhood without suffering any
absorption or scattering. The probability β?(r) is the probability that a photon,
generated at r, escapes from its neighborhood and strikes the core. Finally, the
probability βbg(r) is the probability that a photon, generated at r, escapes from
its neighborhood and strike the outer boundary surface. Since the definition is
equivalent to β(r), they have the same functional form.

The optical depth τ(r, µ) is defined in the Sobolev theory (see Castor 1970)
as:

τ(r, µ) =
χl(r)c

νij

1
v(r)

r

[

1 + µ2
(

d ln v(r)
d ln r − 1

)] , (4.49)

where χl(r) is the line opacity while d ln v(r)/d ln r is the logarithmic derivative
of the velocity field, which can be written in terms of the velocity field itself
and its gradient as d ln v(r)/d ln r = r/v(r) · dv(r)/dr. Once the atmosphere is
correctly sampled with Nr shells in the radial direction, the β(r) function can
be numerically calculated. We have calculated this function with a 24 points
gaussian quadrature, which provides a very high accuracy. For the calculation

of the escape probability β?(r), one should note that µc =
(

1−R2
?/r

2
)1/2

is the
angle subtended by the star from a point arbitrarily far from the star. Therefore,
the integral can be calculated explicitly using another gaussian quadrature for
the new interval or one can assume, for simplicity, that β?(r) ≈ ωβ(r), where
ω ≈ (1− µc) /2 is a dilution factor. This assumption simplifies the calculation
to obtaining only one integral, leading to a faster algorithm.

4.5 Illustrative examples

This section is aimed at testing the correct behavior of the code we have de-
veloped and at demonstrating the convergence properties of the novel iterative
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schemes on which it is based on. Later on, we will show some applications
to more complicated problems in which complex molecular models are used.
Three indicators have been chosen to describe the behavior of the convergence
properties. The first one is the maximum relative change, which is defined by
Eq. (4.41). This quantity typically shows a monotonically decreasing behavior
which stabilizes when the computer precision has been reached. This is only
an indicator that the process is convergent, that is, the corrections δn become
smaller when the iteration number increases.

However,this is not an indicator of the final precision which can be reached
with the selected grid. To account for this, we have employed the true error,
which is defined as:

Te(itr) = max

∣

∣

∣

∣

n(itr) − n

n

∣

∣

∣

∣

, (4.50)

where n is the exact solution of the problem. As pointed out by Auer, Fabiani
Bendicho, & Trujillo Bueno (1994), although there is no analytic solution (this is
the situation in the majority of the RT problems), for the purpose of evaluating
Te(itr) this exact solution can be taken as the one obtained in a very fine grid
after iterating to convergence. Of course, the previous definition of the true
error makes it impossible to calculate it while the iterative process is being
carried out. One would need to perform a previous run of the same problem
with a grid finer than the one chosen for solving the RT problem. However, the
behavior of Te is much more interesting than Rc since it becomes constant once
the maximum precision the used grid can give is reached. It can be used then as
a very efficient stopping criterion. One can continue the iterative process until
a very small maximum relative change is obtained but the maximum precision
of the grid may have been reached many iterations before. Therefore, as shown
by Auer, Fabiani Bendicho, & Trujillo Bueno (1994) it is of no use to continue
the iterative process above the point in which Te becomes constant. We will
see some examples of that later on.

The last indicator we will use is the convergence error, which is defined as:

Ce(itr) = max

∣

∣

∣

∣

n(itr)− n(∞)

n(∞)

∣

∣

∣

∣

, (4.51)

where n(∞) is the solution obtained in the same grid chosen for solving the
problem but when itr → ∞. Note that this solution is not the “exact” solu-
tion, but the solution at a given resolution level given by the grid being used.
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Although the final solution at the grid under consideration is not known a pri-
ori, it is possible to obtain an estimation of the value of the convergence error
(see Auer, Fabiani Bendicho, & Trujillo Bueno 1994) by using the formula:

Ce(itr) ≈ Rc(itr)
ρ

1− ρ, (4.52)

where ρ = Rc(itr + 1)/Rc(itr) is an estimation of the spectral radius of the
problem, i.e. the maximum eigenvalue of the iteration matrix. Note that, even
if Rc(itr) is very small, if ρ ≈ 1, we will have a large convergence error. As an
example, assume a slowly convergent iterative scheme which leads to a spectral
radius of ρ ≈ 0.98 and assume that the maximum relative change is 0.1 %. The
convergence error would be ∼ 5 %, a factor of ∼50 higher. Since both Rc and ρ
can be obtained during the iterative process, we will use Eq. 4.52 as a reliable
stopping criterion.

We now turn to present some simplified model problems which are of interest
to illustrate the convergence properties of the developed methods. They will
be presented following an increasing order of complexity.

4.5.1 Quasi plane-parallel case

In order to show the convergence properties of these methods in spherical sym-
metry, we have selected the simple problem treated by Avrett & Loeser (1987),
which concerns a simplified three-level hydrogen atom without continuum in an
isothermal semi-infinite medium with T=5000 K. The atmosphere is ∼1500 km
thick and the radius of the internal core is 6.95×1010 cm. This may be con-
sidered as an isothermal representation of the solar atmosphere in spherical
geometry. The collisional rates among the three levels of the model atom are
considered as constant. All the relevant information is shown in Table 4.1.

Transition Aul [s−1] ∆E [cm−1] Cul [cm3 s−1]

2–1 4.68×108 82333.3 105

3–1 5.54×107 97666.7 105

3–2 4.39×107 15333.3 105

Table 4.1: Transitions in the 3-level hydrogen model atom.

We define the curvature q of a given atmosphere as the ratio between its
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Figure 4.7: Convergence properties of the iterative methods showing the evolution of the true
error versus the iteration number. The left panel shows the results for the quasi plane–parallel
case using the spherical geometry code while the right panel shows the same result but using
the plane–parallel code.

extension ∆R and the radius of the star R:

q =
∆R

R
, (4.53)

so that the RT problem must be solved using the spherically symmetric geom-
etry when q ∼> 1 and may be solved using the plane–parallel geometry when
q � 1. The case under study here has ∆R = 1500 km and R=6.95×1010 cm,
so that q ≈ 0.002 and may be solved using the plane–parallel approximation
without any problem unless one is interested in the emerging profiles which
are obtained in extreme-limb or even off-limb observations. However, we have
solved the problem using both geometric approximations in order to investigate
the reliability of our non-LTE RT code in spherical geometry.

The non-LTE problem has been solved with the four available methods:
Λ-iteration, MALI (based on the Jacobi iterative scheme), MUGA (based on
the Gauss-Seidel iterative scheme) and MUSOR (based on the SOR iterative
scheme). The MALI and MUGA options of our RT computer program have
been used with and without acceleration techniques. In the left panel of Fig.
4.7 we show the convergence behavior of all of them for the spherical case. The
exact solution has been obtained by iterating until full convergence in a grid
with 150 radial shells with a grid step of ∆r =10 km, sampling the ∼1500
km thick atmosphere. The problem is then solved using a coarser grid which
only has 80 radial shells (thus ∆r = 19 km). Note that the true error which
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can be reached in this grid is approximately 1 %. The Λ-iteration method,
although converging, is not capable of finding the solution in a suitable number
of iterations. Since this is a problem with optical depth τ > 1000, we would need
around 1000 iterations to radiatively connect all the points in the atmosphere
using the Λ-iteration method. When the other methods have achieved the
maximum precision that the chosen grid can give, the true error of the Λ-
iteration iterative method is still well above 100 %.

On the other hand, the method based on the Jacobi iterative scheme reaches
total convergence in a suitable number of iterations. It is interesting to see the
behavior of the generalization of the GS and SOR based methods (MUGA and
MUSOR) to spherical geometry. The method based on the GS iterative scheme
reaches the total convergence in half the number of iterations required by the
MUGA scheme, which leads to approximately half the total computational time,
since the computational time per iteration is approximately the same in both
methods. Finally, the convergence rate for the SOR method is much better
than for the GS method, which is a direct consequence of the anticipation of
future corrections feature. As can be seen from Eq. (4.39), the time per iter-
ation is virtually the same for SOR and for GS, so that the reduction in the
number of iterations implies a similar reduction factor in the total computa-
tional time. This improvement can make it possible to obtain the solution with
more complicated model atoms or molecules than what it was possible up to
now.

Let TJac and TGS be the time per iteration for the Jacobi and GS schemes,
respectively. Therefore, W = TGS/TJac ∼> 1 takes into account the increase in
the computational time per iteration between both methods. The GS method
appears to converge in WN/2 iterations (where N is the number of iterations
needed by the Jacobi method to reach convergence in the grid) and the SOR
method in

√
WN . Usually, W is of the order of 1.3-1.5 and depends on how

complex the model atom or molecule is. Since it should be ideal to haveW = 1,
we are working on investigating the application of different formal solvers which
do not suffer from the problem the parabolic short-characteristics have.

The convergence behavior when the problem is solved using the plane-
parallel approximation is plotted in the right panel of Fig. 4.7. It is interesting
to note that, due to the low curvature radius of the atmosphere, both results
are very similar, with a reduction in the total computational time for the GS
and SOR methods which are comparable. However, the total computational
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Figure 4.8: Convergence properties of the various iterative methods showing the effect of
including Ng acceleration. Note that, even when the MALI and MUGA schemes are applied
with acceleration techniques, the MUSOR scheme converges faster.

time results much higher for the spherically symmetric case due to the large
number of formal solutions performed along the characteristics.

In order to highly improve the convergence behavior of these methods, pow-
erful acceleration techniques may be applied (see Auer 1987, 1991). One of the
most widely applied acceleration techniques is the one developed by Ng (1974),
which has been included here in the Jacobi-based and the GS-based methods.
The convergence properties are shown in Fig. 4.8 in comparison with the SOR
method.

One of the main problems of these techniques is that the acceleration in
the convergence process, that is, the reduction on the number of iterations
highly depend on the step the acceleration is turned on and on the number
of iterations between successive acceleration steps. We have verified that the
acceleration cannot be turned on very soon to obtain a remarkable reduction.
On the other hand, the starting of the acceleration cannot be delayed much,
since the iterative methods may have obtained the desired level of convergence.
One of the main drawbacks is that every acceleration technique requires an
additional memory storage and and extra computing time per iteration, which
does not apply to the SOR method. However, some tests with more compli-
cated atomic/molecular models show that the SOR method with the optimal
ω–parameter may sometimes lead to instabilities in the convergence process.
The SOR overcorrections may be too big so that the method may become un-
stable. This behavior is specially critical when population inversions are found.
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Transition Aul [s−1] ∆E [cm−1] Cul [cm3 s−1]

5–1 1.40×108 25433.3 5.1×104

4–1 1.40×108 25200.0 5.1×104

5–3 7.20×106 11700.0 1.4×105

5–2 8.10×105 11766.7 1.6×104

4–2 7.80×106 11533.3 1.6×105

3–1 – 13733.3 8.2×103

2–1 – 13666.7 8.2×103

5–4 – 233.3 4.8×106

3–2 – 66.7 1.0×107

4–3 – 11466.7 1.0×103

Table 4.2: Transitions in the 5-level Ca ii model atom. Lines with no value of Aul are pure
collisional transitions.

In this case, it is a better option to use an iterative method which produces a
smooth convergence (e.g., MALI or MUGA) so that the population corrections
turn out to be small, even being necessary to use the Λ-iteration in the most
delicate problems (e.g., maser transitions).

By examining Fig. 4.8, one can see that the SOR method is always better
than the rest of the methods, even when acceleration schemes are used. On
the other hand, one must note that the convergence behavior for the SOR
calculation shown in this figure has been obtained using the optimum value of
the SOR parameter (ωopt). However, this is not the case in practical situations
so that the number of iterations for the SOR method is somewhat larger. The
value of this parameter can be obtained by using Eq. (4.40) during the iterative
process, which always requires to “loose” a few iterations.

4.5.2 Spherical case

The previous problem served as a first test for the spherical geometry general-
ization of the methods developed by Trujillo Bueno & Fabiani Bendicho (1995).
Let us consider now a problem which is very similar to the previous one, but
having a more extended atmosphere. The core radius is still 6.95×1010 cm, but
the total thickness of the atmosphere is now increased to 6.3×106 km, which
implies a curvature of q ∼ 9. With this q–value, sphericity effects have a great
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Figure 4.9: Convergence properties of the various iterative methods showing the true error
versus the iteration number. The left panel shows the results for the pure iterative meth-
ods, while the right panel shows what happens when applying acceleration techniques to the
methods based on Jacobi and GS.

influence in the final result because there are now directions in the atmosphere
where the photons can escape more easily. The temperature of the atmosphere
is still T=5000 K. We have chosen a slightly more complicated model represent-
ing a simplified 5–level Ca ii model atom with constant collisional rates. The
relevant information about this model atom can be found in Table 4.2. The
optical thickness of the atmosphere is well beyond 106 in every transition, so
the problem converges extremely slow when using the Λ-iteration method.

In order to use the true error as indicative of the convergence properties, the
fully converged solution has been obtained in an atmosphere sampled at 300
radial shells. The atmosphere is now ∼ 4000 times more extended. Therefore,
in order to obtain a reasonable precision, the number of radial shells have to be
greater than in the quasi plane–parallel case of the previous section. In the left
panel of Fig. 4.9 we show the true error for the four iterative schemes studied in
this thesis. The calculations have been performed using a grid of only 150 radial
shells. The convergence behavior is very similar to the previous case, but the
true error is 3 % due to the larger distance between grid points. As expected,
the Λ-iteration method does not reach convergence in a suitable number of it-
erations, although it is a converging scheme. When the rest of methods have
reached the 3 % precision of the grid, the true error is still higher than 100 %.
On the other hand, the convergence properties of the rest of methods closely
resembles that of the previous calculation. Following a procedure similar than
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Figure 4.10: Spectral radius of the different iterative schemes versus the number of points in
the atmosphere for the quasi plane–parallel case in the left panel and for the spherical case in
the right panel. Both calculations have been carried out using our spherical formal solvers.

for the previous test, the GS methods reaches convergence in WN/2 iterations
and the SOR method in

√
WN . Therefore, the good convergence properties

of the SOR method studied in Trujillo Bueno & Fabiani Bendicho (1995) for
cartesian coordinates appear to be similar when going to spherical symmetry.
Therefore, these iterative schemes are very efficient methods to solve non-LTE
RT problems in spherical symmetry. We have applied the Ng’s acceleration
technique. The results are shown in the right panel of Fig. 4.9. Note that the
SOR method with the optimum ω–parameter is still the best in comparison
with the accelerated versions of the rest of methods. Note also that the accel-
erated version of the GS method gives a substantial improvement in the total
computational time with respect to the Jacobi–based methods.

In order to investigate the dependence of the convergence properties of these
iterative methods on the number of points in a spatial grid of fixed dimensions,
we show in Fig. 4.10 the value of the spectral radius ρ of the iterative scheme
versus the number of grid points. We show Rc(itr + 1)/Rc(itr) for itr�1,
for both the Jacobi and the Gauss–Seidel based iterative schemes. Following
Trujillo Bueno & Fabiani Bendicho (1995), we have fitted a functional form to
the variation of the spectral radius with the number of points in the grid:

ρ = 1− a

nb
, (4.54)

where ρ is the spectral radius of the iteration, n is the number of spatial grid
points and a and b are two free parameters. In Trujillo Bueno & Fabiani
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Bendicho (1995), n is the number of grid points per decade in optical depth
while we are using directly the number of grid points. This is because our
grid is built with the points equidistant in geometrical distance. Trujillo Bueno
& Fabiani Bendicho (1995) have shown that this formula gives a very good
representation of how the spectral radius varies with the fineness of the grid.
Similarly, we have verified that the same applies to our case as can be seen in
Fig. 4.10, although n is not defined in the same manner. This simple formula
for the spectral radius relation can be used to estimate the number of iterations
one would require to solve the RT problem for any other grid.

For completeness, we have also shown the curve which results from squaring
the fit of the Jacobi–based method. Note that it fits very well the curve of the
Gauss–Seidel method, showing that the maximum eigenvalue of the iteration
operator for the GS method is approximately the square of that of Jacobi’s
method. This is the reason why the GS method is around two times faster than
Jacobi’s method.

These figures clearly show one of the main drawbacks of all these operator
splitting methods. They suffer from a deterioration of the convergence proper-
ties when the spatial resolution of the grid is refined. In the limit of an infinitely
fine grid, all these methods will converge infinitely slow, as can be seen from
Fig. 4.10. The limit value of the spectral radius for n → ∞ is ρ → 1. This
intrinsic “deficiency” can be circumvented by using more powerful techniques
like the multigrid method. Steiner (1991) first applied this technique to linear
radiative transfer problems, while Fabiani Bendicho, Trujillo Bueno, & Auer
(1997) developed the generalization of the multigrid method to the full non-
linear radiative transfer multilevel problem. This method does not suffer from
this deterioration and rapidly converges irrespective of the grid resolution. Fur-
thermore, their convergence rate is much faster than the previous methods and
is of the order O(n). The following table summarizes the dependence of the
computational work W on the number of grid points for the previous methods:

• Jacobi-based methods →W ∼ n2

• GS-based methods →W ∼ n2/2

• GS-up-down-based methods →W ∼ n2/4

• SOR method →W ∼ n√n
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• Multigrid →W ∼ n

4.5.3 Population inversion

We have shown the convergence properties of the iterative methods when deal-
ing with simple atomic/molecular models which present relatively large energy
differences between the levels. It is instructive to consider now the case of a
molecular model in which the energy levels are so close in energy that they all
have comparable populations and the phenomenon of population inversion can
occur. The previous examples have shown the ability of the selected iterative
methods for drastically reducing the number of iterations necessary to solve
RT problems. The following example shows the ability of these fast iterative
methods for dealing with typical molecular models which present difficulties in
the convergence due to the appearance of population inversions. Consider a
transition between an upper level u and a lower level l. There is a population
inversion in this transition when:

nlBlu − nuBul < 0, (4.55)

where nu and nl are the populations of the levels and Blu and Bul are the
absorption and stimulated emission Einstein coefficients. Under these circum-
stances, the line opacity becomes negative as can be seen from Eq. (4.9) because
the stimulated emission term becomes more important than the pure absorp-
tion term. Using the relation between the Einstein coefficients, the previous
condition can be rewritten as

nu

nl
>
gu

gl
, (4.56)

where gu and gl are the statistical weights of the upper and lower levels, re-
spectively. Therefore, if the ratio between the upper level population and the
lower level population is higher than the ratio of their statistical weights, the
line opacity becomes negative. The previous condition cannot hold in LTE, so
it can only be obtained under non-LTE conditions. When the total opacity
becomes negative, that is, when the line opacity becomes negative and larger in
absolute value than the background opacity, the optical depth ∆τ of the tran-
sition becomes negative. Since the specific intensity attenuates as e−∆τ , the
population inversion produces an exponential increase of the specific intensity,
thus producing a maser. This is the very same process produced in a standard
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laser. The population inversion is produced by the thermodynamical conditions
and the radiation field present in the plasma. An energy conservation reasoning
leads to the conclusion that the radiation in the zone where a maser appears
must be beamed thus reducing the solid angle. From a phenomenological point
of view, the radiation is beamed in the direction where the macroscopic veloc-
ity field in the atmosphere maintains the necessary resonance to produce the
maser. There is a wide bibliography for the study of astronomical masers but
Elitzur (1992, 2002) represents a useful starting point.

From the numerical point of view, the appearance of population inversions
produce instabilities in the radiative transfer codes, which are mainly due to the
exponential increase of the specific intensity due to the negative opacities. These
numerical problems must be avoided in order to obtain the correct answer to
the problem. The straightforward way to solve the previous issue is to generate
additional grid points in the regions where the population inversions appear, so
that the radiation transfer correctly obtains the intensity behavior. Our code
does not include these grid refinement techniques. Note that when the optical
distance between two grid points is ∆τ = −10, the intensity increases in a
factor 2.2×104. For the moment our code is limited to the case of very weak
masers.

As an example, we have considered the solution of the water radiative trans-
fer problem in a hot molecular cloud. H2O is a planar molecule with an axis
of symmetry. Since its three moments of inertia are different, it is an asym-
metric top with a rather complex level structure. We will only consider the
fundamental vibrational level inside the fundamental electronic state. The ro-
tational levels are labeled JK+K−

, where J is the total angular momentum and
K− and K+ are its projection on two molecular axes. The selection rules are
that ∆J = 0,±1 and that K− and K+ must change their evenness, that is, the
allowed transitions are odd ↔even. The result of these selection rules is two
distinct species that are radiatively uncoupled: ortho-H2O with nuclear spin
1 and (K−,K+)=(odd, even) or (even, odd) and para-H2O with nuclear spin
0 and (K−,K+)=(odd, odd) or (even, even). It is usual to give the value of
τ = K−−K+ instead of the individual K− and K+. The energy level structure
of ortho-H2O and para-H2O obtained from Chandra et al. (1984) is shown in
Fig. 4.11. Note that the lowest energy level of ortho-H2O has no zero energy,
but is situated 23.7943 cm−1 above the fundamental level of para-H2O.

We show here the convergence details of one of the astrophysical problems
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Figure 4.11: Rotational levels of ortho-H2O and para-H2O with energies below 1500 cm−1.

discussed in Section §4.7. This problem consists on obtaining the excitation
state of water in a geometrically thin but optically thick hot shell surrounding
a molecular cloud. The inner surface of the shell is situated at 1.472×1018 cm
from the symmetry center, while the outer surface is situated at 1.837×1018

cm. Therefore, the total angular diameter of the shell, assuming a distance
of 8500 pc, is 28.9”. The temperature is fixed at 500 K (although we will
present results for a range of temperatures), the ortho-H2O column density is
chosen to be 1.8×1017 cm−2 while the hydrogen density is 6.4×105 cm−3. The
microturbulent velocity in the shell is 8 km/s. The inner boundary condition
has been chosen to be a grey body. A grey body is defined as a blackbody
affected by a simple wavelength dependent absorption. In our case, we have
used the following simple relation:

IGB(λ) = Bλ(Tc) (1− eτGB) τGB = τref

(

λref

λ

)β

, (4.57)

where λref and τref are the reference wavelength and optical depth, respectively,
and β is the spectral index of the law. In our case, we have chosen β = 1 and
τref = 2.5 for λref =80 µm. Tc is the central temperature with a value of Tc = 30
K. The reference opacity is chosen so that the molecular hydrogen column
density is N(H2) ∼4×1023 cm−2. Note that the visual extinction in magnitudes
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Av can be expressed with the following expressions (see, e.g., Emerson 1996):

Av = 2.5 log(e−τvis)

Av = 1021N(H2), (4.58)

where τvis is the opacity of the grey body at λ ∼5000
◦

A. From the previous two
expressions, we can obtain an estimation of the reference opacity.

The molecular model includes the first 14 rotational levels of ortho- and
para-H2O, which must be solved independently. The ortho-H2O abundance is
typically three times higher than that of para-H2O. The included levels are
enough to investigate the excitation properties of water for temperatures as
low as 500 K. The energy levels and Einstein coefficients have been obtained
from Chandra et al. (1984), while the collisional rates stem from Green et al.
(1993). The collisional rates have been obtained for collisions between H2O and
He. We have corrected them to account for collisions between H2O and H2, the
correction factor being

√

µH2/µHe, where µH2 and µHe are the reduced weight
of the H2O-H2 and H2O-He systems, respectively.

The reference solution to this problem has been obtained by solving it until
convergence is reached in a grid with 300 points. It is then solved in two coarser
grids with only 150 and 40 points in the radial direction. It is expected then
that the accuracy of the solution obtained in these grids is degraded. The
results are shown in Fig. 4.12. We have only shown the convergence properties
of the MALI and MUGA schemes. We find that the MUSOR scheme does not
converge in this case. This lack of convergence seems to be produced by the
delicate behavior of the maser transitions. When the overrelaxation coefficient
is applied, we produce oscillations in the populations which do not converge or
converge very slowly to the correct solution.

The precision obtained with the grid containing 150 shells (∼20%) is better
than that obtained with the grid with only 40 shells (∼45%). However, both
grids are insufficient to obtain the solution with a true error below 20%. This
is quite astonishing since this is the typical number of shells used to solve
such kind of problems. However, we have to note that the true error gives the
maximum difference between the converged solution and the “exact” solution.
It may happen that the levels which we are interested in or the regions where
the lines are formed may present a smaller difference with respect to this exact
solution. In this situation, converging the problem in such a grid may still be
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Figure 4.12: Convergence properties of the iterative methods when solving the water problem
with two different radial grids. The upper panel shows the true error taking into account
all the points in the atmosphere. The lower panel shows the relative difference between the
converged populations and the populations obtained on the atmosphere discretized with 300
grid points versus the grid point. The inner and outer boundary conditions are at the extremes
of each plot. The accuracy obtained with 150 shells is better than that obtained with only
40 although both are quite inaccurate. The time to reach the final precision is half for the
scheme based on Gauss-Seidel than for that based on Jacobi.

of utility. In fact, this is what happens if we plot the relative error between the
converged solution in each grid and the exact solution. We find that, when the
grid of 40 shells is used, all the levels are below 20% for all the points except
for the more external ones, while if we use the grid of 150 shells, all the levels
are below 10% except for the more external ones. Since the spectral lines are
typically formed in the inner regions of the atmosphere and not close to the
outer surface, we can remove these points from the calculation of the true error
since they do not significantly influence the final emergent spectrum. In view
of the previous results, we can state that the results which will be shown in
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Section §4.7 have an error of ∼20% since the grid with 40 points will be used.

Finally, we have to take into account that the effect of reducing the number
of shells is not exactly equivalent in the spherically symmetric case and in the
plane–parallel case. This reduction in the number of spatial grid points affects
the number of angles available for performing the mean intensity quadrature in
the spherically symmetric case. Therefore, it is expected that the degradation of
the final true error is more severe in the spherical case than in the plane–parallel
case when the number of points in the atmosphere is reduced.

4.6 Comparison with LVG

The LVG approximation is frequently used to obtain the excitation state of
molecular energy levels in many situations of astrophysical interest since it
is relatively fast. However, it is important to keep in mind the conditions
under which the LVG approximation is expected to be valid. In this section
we show some comparisons by solving different problems using both the LVG
approximation and the full non-local problem.

4.6.1 Bad approximation

The first example is the cloud model used by Bernes (1979) to illustrate the
performance of his radiative transfer code based on the Monte Carlo technique.
It consists on a spherical cloud of external radius 3×1018 cm (∼ 1 pc) and inter-
nal radius 5×1017 cm, with a constant temperature profile of 20 K, a constant
molecular hydrogen density of 2×103 cm−3 and a microturbulent velocity of
1 km s−1. The cloud is collapsing following a linear velocity law, being v =-1
km s−1 at the outer surface. The problem is to find the excitation state of
the first six rotational energy levels of CO. The CO abundance is taken to be
constant and equal to [CO]= n(CO)/n(H2) =5×10−5. The low energy of these
rotational levels (the highest level of the six is only at 83 K) makes it necessary
to account for the influence of the CMBR radiation illuminating the outer sur-
face of the cloud, since it has a significant impact on the excitation state in the
cloud. The CMBR radiation is modeled via a blackbody radiation at 2.7 K.
Although more recent collisional excitation rates for CO are available, we have
decided to use the same rates used by Bernes (see Green & Thaddeus 1976) in
order to be able to obtain comparable results. By substituting a linear veloc-
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Figure 4.13: Population of the J=0 and J=1 rotational levels of CO in the cool cloud model
of Bernes (1979). Note that the results given by the LTE and LVG approximations are not in
agreement with the results we have obtained with the full non-LTE code.

ity field law into the Eqs. (4.48) and (4.49), one can verify that τ(r, µ) does
not depend on the angle µ, so that the escape probability can be immediately
integrated. Moreover, if the physical conditions (temperature and molecular
abundance) are constant throughout the medium, the escape probability does
not depend on the radius. For this reason, the mean intensity given by the LVG
approximation is independent of the radius for a cloud which has no illumina-
tion in the inner surface by the presence of, for example, a star being formed.
Of course, this radially constant mean intensity is not physically correct since
the presence of an outer surface permits the photons to escape from the cloud
and the radiation field in the outer parts of the cloud tend to be weaker. There-
fore, this is a situation in which radiative trapping effects are important and
the full non-local radiative transfer problem has to be solved.

This effect is not correctly accounted for by the LVG approximation. This
can be explained using the following reasoning. The velocity gradient in the
cloud is approximately 4×10−19 km s−1 cm−1. Considering a thermal velocity
of the order of the microturbulent velocity, Eq. (4.46) gives L ≈2.5×1018 cm.
Therefore, the Sobolev length is of the order of the radius of the cloud and the
condition of validity of the LVG approximation L� R is not fulfilled. In Fig.
4.13 we show the level population for the rotational levels J=0 and J=1 calcu-
lated with the LTE and LVG approximation and the exact solution obtained
with the Gauss–Seidel option of our non-LTE code. The level populations are
constant throughout the cloud in both the LTE and LVG approximations. The
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reason for that in the LTE approximation is that the temperature is constant
all over the cloud. In the LVG case, the constancy is produced by the constant
temperature and the presence of a linear velocity field. On the other hand, the
full non-LTE RT solution gives level populations which change with the radial
distance. The populations in the inner regions of the cloud are similar to those
obtained under the LTE approximation because in such regions the levels tend
to become thermalized.

4.6.2 Good approximation

The following problem has been obtained from a set of test cases which became
available after the workshop Radiative Transfer in Molecular Lines held at the
Lorentz Center of Leiden University1. We have chosen one of these RT problems
to show a situation in which the LVG approximation leads to acceptable results.

The model considers a collapsing cloud similar to that described by Shu
(1977) in which the excitation state of the first 21 rotational levels of HCO+ have
to be obtained. The radiative transitions among these levels follow the selection
rule ∆J=±1. The molecular abundance is very low (n(HCO+)/n(H2) =10−9),
so the lines are only slightly optically thick (τ < 20). The CMB radiation
has to be included in order to account for all the excitation mechanisms in
the cloud since the lowest rotational levels of HCO+ have energies comparable
to the temperature of the CMB. In Fig. 4.14 we show the level population
throughout the atmosphere for three different rotational levels of HCO+. We
show also the results obtained using the LTE and the LVG approximations. The
LTE approximation does not describe correctly the behavior of the populations.
This is because radiative excitation is a very important source of pumping in the
molecular model. Radiative pumping transfer population from the low energy
levels to the high energy levels. This approximation gets worse when going to
higher levels because the effect of the radiative pumping is larger for the higher
levels of the model.

On the other hand, the LVG approximation leads to results which are in
good accordance with the correct solution obtained using the methods based
on the Gauss-Seidel iterative scheme. Furthermore, the LVG solution becomes
closer to the exact solution for high J levels. This can be explained if the

1http://www.strw.leidenuniv.nl/∼radtrans
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Figure 4.14: Population of the J=0 and J=1 and J=5 rotational levels of HCO+ in the cloud
model of Shu (1977). Except for the level J=0, the result given by the LVG approximation is
in good agreement with that obtained using the full non-LTE code.

radiative trapping of the photons which pump these high J is less important
than for the low J levels. In fact, the transitions among high J levels are
optically thin and only the transitions between the lowest four rotational levels
have opacities τ > 1. A photon emitted in any of these optically-thin transitions
will almost surely escape from the cloud without being absorbed. Therefore,
the requisites for the LVG approximation to be valid are fulfilled and it gives a
solution very close to the exact one.

In view of the previous results, it is important to note that the LVG approx-
imation can be used as a technique for initializing the full non-LTE solution of
a given radiative transfer problem. It cannot give the correct solution, but it
usually gives a better approximation to the correct solution than the LTE ap-
proximation. In this way, the time to reach convergence with the full non-LTE
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code will be significantly reduced. In fact, for some RT problems it is difficult to
obtain convergence unless the initialization is done via the LVG approximation.
Many of the problems concerning the convergence of H2O models which have
been investigated in the previous section and which will be investigated in the
following one have been initialized using the LVG approximation. Population
inversions are very easily obtained in H2O and an approximation to this maser
solution is obtained with the LVG approximation, so that the subsequent itera-
tive scheme only makes small corrections to this solution, thus making it much
more stable.

4.7 Applications to Sgr B2

4.7.1 Description of the object

Around 100 pc apart from the Galactic Center (GC) we find the giant molecular
complex Sgr B2. This region appears as the most brilliant emission in the GC
region when observed from the centimeter wavelengths to the far infrared. Its
angular size is ∼15’ which gives a diameter of ∼40 pc observed at a distance
of 8.5 kpc and has a mass of ∼107 M�. Although it shares almost all the
fundamental properties of the GC clouds, it is one of the most active formation
regions of massive stars on the galaxy, with rates similar to those found on the
disk star formation regions. All the star formation tracers are present in this
complex: hot and dense cores (HC) where the evolution of proto-stars occurs
surrounded by dust envelopes; ultra and hypercompact Hii regions generated
by the strong UV field produced by young massive stars; maser emission from
different species like H2O, OH, CH3OH, SiO and H2CO. This fragmented and
clumpy medium is surrounded by a giant molecular cloud which often makes it
difficult to interpret the astronomical observations.

4.7.2 Observations

Many molecular species have been identified in Sgr B2. Almost all of them
present spectral features which appear in absorption. Identifications so far
include: HF (Neufeld et al. 1997), H2O (Cernicharo et al. 1997), C3 and
NH (Cernicharo et al. 2000), H3O

+ and NH2 (Goicochea & Cernicharo 2001)
and NH3 (Ceccarelli et al. 2002). The lines of these species have been always
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found in absorption. The only molecule which shows lines in emission is OH
(Goicochea & Cernicharo 2002).

In Fig. 4.15 we show the observations of ortho- and para-H2O lines obtained
with the Long-Wavelength Spectrometer (LWS) onboard the Infrared Space
Observatory (ISO) in its Fabry-Perot mode. The resolution of this instrument
is R = 7500, equivalent to ∼40 km s−1, which allows to resolve the line profiles.
The observations are shown together with the molecular model of ortho-H2O.
Note that all the lines are in absorption except for the maser transition at 183
GHz. This maser line has been observed with the 30-m telescope at Pico Veleta
(Spain) (Cernicharo et al. 2004). All the lines have been shown against the
LSR (local standard of rest) velocity so that the center of the lines indicate the
velocity of the source. Using the 183 GHz maser which presents a narrower
profile, we have obtained a velocity of 60 km s−1. This shift is present in all
the lines except that at 121.72 µm which appears to be a blend of HF. The
lines among the lowest energy levels present quite strong absorptions, specially
the 212− 101 line at 179.5 µm which is completely saturated. Furthermore, the
absorption is not situated shifted to 60 km s−1, which may indicate that the
absorption in this line is not coming from the same regions as the rest of lines.
Since the fundamental level takes part in this transition, this line is probably
absorbed by all the cold water vapor present between Sgr B2 and the Earth.
This water vapor may have a velocity which is not the same as Sgr B2.

The general tendency in the observations is that the lines get weaker when
going to transitions between higher energy levels. Apparently, there is an effec-
tive pumping of population only up to the lowest energy levels. The IR photons
generated in the inner core due to the dust emission are not able to produce an
efficient pumping to the upper levels.

We have also shown additional lines whose carrier is the isotopic water H18
2 O

(see panels at 179.527 µm and 100.983 µm in Fig. 4.15). Its abundance is much
lower and their lines are extremely weak. Note that we have scaled the line in
the panel at 100.983 µm in order to make the absorption visible.

4.7.3 Modeling

In Section §4.5.3, we have previously advanced the model we are going to use
in section. We discuss now the reasons that led us to choose such a model.
The inner regions of the cloud (which are very efficient star forming regions)
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Figure 4.15: Ortho- and para-H2O lines observed with the LWS spectrograph in its Fabry-
Perot mode. We have also plotted the maser transition of para-H2O at 183 GHz (Cernicharo
et al. 2004).
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are dominated by the dust radiation. Due to the large dust opacity in the
inner regions, the innermost regions are completely hidden in the mid and far
infrared. We can then assume that all the molecular transitions in the core are
thermalized to the dust temperature. If we move out of the inner core, we find
a region where molecular species are formed. However, this region is assumed
to be not very thick since the strong UV field generated by the massive stars
which are being formed in the environment tends to destroy the molecules.

In fact, the formation of water vapor in these clouds is not completely
understood. If we assume that H2O is formed through radiative dissociation
of H3O

+ we find that the predicted water abundance is not enough to explain
the observed absorptions. Therefore, other mechanisms have to be found which
can produce a significant abundance of water vapor. It has been shown recently
that there exists a high amount of solid water on the surface of the dust grains
(Moneti et al. 2001). This water could be transferred to the gas phase through
the action of the radiation field coming from the GC or directly through the
kinetic energy produced by shock fronts. These two processes are specially
efficient for the formation of H2O close to the dusty inner cores. The water
present on the external regions of the clouds and the gas between us and the
GC may be produced only by radiative dissociation of H3O

+ since the action
of the radiation field or the formation of shock fronts are thought to be not
efficient in these weakly irradiated regions (see Goicoechea 2003).

We have to take into account that the external UV field is also very efficient
in photodissociating H2O so that the region where the water vapor lines are
coming from may be quite thin. In these regions where the UV fields pho-
todissociates H2O there is a zone of high OH abundance which produces the
absorption/emission lines observed towards Sgr B2 (Goicochea & Cernicharo
2002).

All the previous facts give us an idea of the physical dimensions and proper-
ties of the zone where the H2O lines are being formed. As explained in Section
§4.5.3, we have adopted a spherical geometry for a cloud made of two regions:
an inner region consisting of a dust core with a constant temperature of Td = 30
K and an opacity law with β = 1 and τref = 2.5 for λref =80 µm. This shell
arrives to 1.472×1018 cm from the center of symmetry which gives an angular
diameter of 23.5” at the distance of Sgr B2. The outer shell is between the
outer surface of the inner shell and the region where the H2O photodissociation
starts to be efficient, which is situated at 1.837×1018 cm, giving a diameter of
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28.9” for a distance of 8.5 kpc. We will solve the non-LTE RT problem in this
outer thin shell. We can compare this region with the one chosen in Goicochea
& Cernicharo (2002) for their modeling of OH in Sgr B2. They chose an inner
core of 25”, equivalent to ours and the outer surface was put at 42”, equivalent
to 5.3×1018 cm. The outer surface of the OH emission region is chosen to be
much further away because OH is the product of the radiative dissociation of
H2O with the aid of the interstellar UV field. OH is then much more stable
than H2O against the UV field and it can be found at much larger distances
from the center.

We take temperatures for this thin shell of only 0.12 pc between 40 K and
500 K. There are observational indications that the gas surrounding the inner
dusty core may be at high kinetic temperature (Ceccarelli et al. 2002). This
is the reason why we have performed calculations with temperatures as high
as 500 K. The hydrogen density is varied from 5×103 cm−3 to 6.4×105 cm−3

in steps of 2. The column densities of ortho-H2O are chosen to be 1.8×1016,
9×1016 and 1.8×1017 cm−2. The ratio between ortho- and para-H2O are chosen
to be 3. The turbulent velocity has been chosen to be 8 km s−1 in order to
reproduce the observed width of the lines. The problem is solved by using a
grid of 40 radial shells. We have shown in Section §4.5.3 that we could obtain
a final true error below 20% for such a grid in the populations, except for those
at the outer surface. However, they marginally influence the observed spectrum
since the opacity at the outer regions is very small.

Concerning the numerical convergence scheme, we have used the MALI
scheme without any acceleration for solving the majority of the physical situ-
ations. Since we have not done any previous run using a finer grid in order to
use the true error, we have converged the models until reaching a value of the
convergence error of the order of 1%. This guarantees that the minimum true
error which can be obtained in the grid has been obtained. We have not made
use of the fast methods based on the Gauss-Seidel iterative scheme because the
water models are slightly difficult and delicate to converge. We have mentioned
before that many of the levels of H2O may produce population inversions which
lead to maser transitions. The corrections to the populations calculated under
the GS approach are usually very large and lead to instabilities in the code.
Despite these problems, we have been able to use the MUGA scheme for solv-
ing the problem in many of the combinations of physical conditions with great
success, using half of the iterations than those needed using the MALI scheme.
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Moreover, it has been necessary to use a combination of the Λ-iteration followed
by a transition to MALI in some of the most difficult cases in order to obtain
convergence. We are currently working on trying to solve these problems using
different approaches. One of them would be to limit the change on the popula-
tion calculated under the MALI or MUGA schemes in order to finish up with
an iterative scheme which may be used for all the problems. The first tests
show that this approach may be of use, although the convergence properties of
the methods is highly deteriorated.

We show in Figs. 4.16, 4.17 and 4.18 the emerging spectrum for all the
models. Each line is plotted in a small box and the position of the lines are not
representative of their wavelength. For each temperature we show the spectrum
obtained when varying the hydrogen density. We show in the upper part of each
plot the identification of each line, showing whether the line is a transition of
ortho- or para-H2O. The wavelength is also indicated in µm for the lines with
wavelength below the ortho-H2O line at 273.22 µm. The wavelength of the lines
to the left of this one are indicated in GHz. This is the case of the well-known
183 GHz line of para-H2O which very easily turns into a maser line.

The modeling shows that emission lines appear for almost all the combi-
nation of physical conditions. However, the lines below 60 µm only appear
in emission for high temperature and high density cases. For temperatures
between 300 K and 500 K and hydrogen densities above 2×104 cm−3, the ex-
citation temperature of the lines is larger than the dust temperature of the
background. This way, they appear in emission with respect to the dust emis-
sion background. Since the observed H2O lines are in absorption, it is expected
that these physical conditions are not representative of those in the shell where
the H2O lines are being formed. The equivalent dust temperature at a wave-
length λ can be obtained from the dust temperature Td and the dust opacity
τd by:

T equiv
d =

hc

λk

[

ln

(

1 +
2hc2

λ5B′

)]−1

B′ =
2hc2

λ5

[

ehc/λkTd − 1
]−1

(

1− e−τd
)

. (4.59)

For wavelengths below 60 µm this optical depth correction has no effect, and the
equivalent dust temperature is equal to the true dust temperature. However,
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the lines situated at higher wavelengths are affected. For example, the line at
179.5 µm has an equivalent dust temperature of ∼26 K, 4 K lower than the true
temperature of the background. This effect is important because the lines may
appear in emission for lower kinetic temperature. Summarizing, we need all the

lines to have excitation temperatures lower than the equivalent dust temperature

in order to see them all in absorption.

Another conclusion from the modeling is that the predicted lines are almost
insensitive to the temperature for densities below 2×104 cm−3. Hence, the
ISO data alone cannot be used to put a value on the temperature, but only
an upper limit. Additional observations, perhaps in the near infrared on the
vibration-rotation bands of water are needed. Other observations which may
be of interest are the lines in the GHz region which may show variation with
the temperature.

In order to give a graphical idea of the combination of physical conditions
which give emission or absorption in some lines, we show Fig. 4.19, 4.20 and
4.21 the ratio between the flux at the line center and the continuum flux. If
this ratio is larger than 1, the line is in emission. However, note that the wings
of the lines are often in emission while the core is not. Therefore, when this
ratio is lower than 1, the line could be producing a net emission while the core
is still in absorption with respect to the background. We have plotted the ratio
for the 212 − 101, 303 − 212, 221 − 110 and 330 − 221 ortho-H2O lines, which are
representative of the excitation properties of the lowest energy levels. We have
also indicated with horizontal dotted lines the values of the hydrogen densities
chosen for the modeling in order to make it easier the identification of the ranges
in which the physical conditions give results comparable to the observations.

The general behavior is that the lines are sensitive to the physical conditions
only for hydrogen densities above 4×104 cm−3. Below this density, the variation
of the core of the lines is negligible. Above this density, the emission of the
lines among the lowest energy levels is increased when the temperature and the
density are increased. Note that the fundamental line at 179.5 µm is almost
always in absorption for these combinations of physical conditions. Note also
that the variation of the ratio Fl/Fc is negligible in the zone where it is lower
than 1.

Finally, it would be of great interest to verify wether an inversion code would
be of any use in obtaining information from these observations.
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Figure 4.16: Emergent water spectrum for N(ortho-H2O)=1.8×1016 cm−2 for the whole set of
chosen temperatures and hydrogen densities. The wavelength and species of each transition
are indicated. Note that the wavelengths are in µm starting from the right of the plots until
arriving to the transition at 273.22 µm. The rest of the transitions are given in GHz.
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Figure 4.17: Emergent water spectrum for N(ortho-H2O)=9×1016 cm−2 for the whole set of
chosen temperatures and hydrogen densities. The wavelength and species of each transition
are indicated. Note that the wavelengths are in µm starting from the right of the plots until
arriving to the transition at 273.22 µm. The rest of the transitions are given in GHz.
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Figure 4.18: Emergent water spectrum for N(ortho-H2O)=1.8×1017 cm−2 for the whole set of
chosen temperatures and hydrogen densities. The wavelength and species of each transition
are indicated. Note that the wavelengths are in µm starting from the right of the plots until
arriving to the transition at 273.22 µm. The rest of the transitions are given in GHz.
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Figure 4.19: Ratio between the flux at the center of the line and at the continuum for all the
combinations of kinetic temperature and hydrogen density for a column density of ortho-H2O
of 1.8×1017 cm−2. If this ratio is larger than 1, the line is in emission. However, note that it
may be lower than 1 and the wings of the line may be in emission.
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Figure 4.20: Same as Fig. 4.19 but for a column density of ortho-H2O of 9×1016 cm−2.
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Figure 4.21: Same as Fig. 4.19 but for a column density of ortho-H2O of 1.8×1016 cm−2.
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4.8 Applications to VY CMa

4.8.1 Description of the object

VY CMa is a massive red supergiant star of spectral type M5 Iae quite unusual
which is supposed to be in a late evolutionary stage. It is characterized by a
strong maser radio emission produced by a large set of molecules (Cernicharo
et al. 1993, Benson & Mutel 1992, Wu Zheng et al. 1998), high infrared
emission coming from dust grains, high polarization signal in the near infrared
and a large variability in the optical. Lada & Reid (1978) estimated a distance
of ∼1.5 kpc by associating the star to a well-known group of molecular clouds.
This distance has been confirmed by the study of the H2O maser emission in the
star’s envelope (Richards et al. 1998), and it implies that VY CMa is one of the
most intrinsically brilliant stars in our galaxy because its bolometric luminosity
is ∼5×105 L�. It is expected to have a high mass, at least ∼25 M� and a very
low effective temperature of Teff ≈ 2800 K. With these properties, an estimation
of the time needed for its explosion as a supernova may be ∼104 years (Brunish
& Truran 1992). The mass loss is extraordinarily high, exceeding 10−4 M�
year−1 (Danchi et al. 1994). Its envelope is very asymmetric (Monnier et al.
1999), which motivates us to investigate this star in detail by using polarimetric
techniques once the instrumental tools become available.

4.8.2 Observations

General description

We have a complete infrared spectrum of VY CMa. The spectral region between
2.38 and 45 µm has been observed with the spectrograph Short-Wavelength
Spectrometer (SWS; de Graauw et al. 1996) onboard the Infrared Space Ob-
servatory (ISO) satellite. The spectral region between 40 and 200 µm has been
observed with the Long-Wavelength Spectrometer (LWS) also onboard ISO.
The SWS observations were performed on the grating mode with a spectral
resolution of λ/∆λ ∼1000-2500. Additionally, three pure rotational lines of
ortho-H2O were observed in the Fabry-Perot mode of this instrument, with a
resolution of λ/∆λ ∼3×104, equivalent to a resolution of ∼10 km s−1. The
observations between 29.5 and 45 µm have been presented by Neufeld et al.
(1999) with the detection of many water vapor emission lines in the far in-
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Figure 4.22: LWS spectrum of VY CMa between 40 and 200 µm. The left panel shows a
comparison between the observation in black and different models including different species
only for line identification purposes. Blue indicates CO lines, red indicates H2O in the funda-
mental vibrational level ν=0 and green indicates H2O in the ν2=1 excited vibrational level.
The right panel shows a fit of the spectrum using a LVG model.

frared. In the grating mode of the SWS they found at least 41 spectral features
which are associated with water vapor emission in pure rotational lines, either
coming from the fundamental vibrational level or from the first excited ν2 = 1
vibrational bending mode. The total luminosity in these water lines accounts
for 25 L�. Due to its high resolution, the Fabry-Perot observations of these
water vapor lines show conspicuous P-Cygni profiles indicating that the lines
are being formed in an expanding envelope.

We have centered our investigation on the spectral region below 30 µm, to-
gether with the far infrared observations taken with the LWS instrument. Both
spectral regions trace different regions in the envelope with different physical
conditions and will help us to obtain the physical conditions in the envelope.
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Far infrared

We start with the identification of the spectral features in the far infrared
between 40 and 200 µm. In this zone we can find pure rotational transitions
of H2O and pure rotational transitions of CO between high J levels (starting
from the J=14-13). The left panel of Fig. 4.22 shows the complete LWS
spectrum of VY CMa where the continuum has been extracted. All the spectral
features appear in emission after the continuum substraction. We have made
a comparison of this spectrum with the result obtained from a LVG code in
order to identify different species. We have identified CO pure rotational lines
(solid blue line), together with pure rotational lines of H2O in its fundamental
level ν=0 (solid red line) and some of the pure rotational lines of the ν2=1
excited vibrational level of H2O (solid green line). We also show in the figure
the angular momentum J of some of the CO transitions. Note that the lines
with J ∼>23–25 cannot be yet assigned to any feature in the observed spectrum
thus indicating that the temperature where the CO is formed may not be very
high. We will see that this characteristics is reinforced by the structure of the
fundamental vibration-rotation band of CO at 4.6 µm.

Including several shells with different physical conditions, we can obtain a
quite good fit to the LWS observed spectrum. The emergent spectrum has has
been obtained using the LVG approximation. The fit in the region between 60
µm and 150 µm is quite satisfying as shown in the right panel of Fig. 4.22. The
region below 60 µm may be affected by the presence of dust in the envelope.
The excess of emission obtained in this region which cannot be reproduced with
the LVG code may be due to dust absorption and re-emission mechanisms on
the envelope of the star.

Near infrared

The vibration-rotation bands of many of the most conspicuous molecules in
this star are located in the near infrared. We will analyze the most important
feature we have found.

• CO. After the detection of some weak CO lines in the LWS spectrum,
we have investigated the CO band in the near infrared at 4.6 µm. Since
the fundamental electronic level of CO is X1Σ+ the rotational structure
of the vibrational bands are extremely simple. The fundamental band
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Figure 4.23: Identification of the lines of the v=1-0 vibration-rotation band of CO at 4.6 µm.
The left panel shows the lines from the R branch, while the right panel shows the lines from
the P branch. Note that only low J transitions allow a secure identification, while high J
transitions seem to be absent.

is centered at ∼4.65 µm and is composed of a P branch which extends
to larger wavelengths than the center of the band and a R branch which
extends to shorter wavelengths. Since the molecule does not rotate as
a rigid body, the lines of the P branch start to drift apart when the
wavelength increases and those of the R branch move closer when the
wavelength decreases, forming the bandhead. In Fig. 4.23 we show the
SWS spectrum of the CO band in Janskys2. We have also plotted vertical
lines at the position of the CO lines to facilitate an easy identification.
All the lines which can be easily identified appear to be in emission. We
have even detected some of the spectral features which can be associated
with the lines of the v=2-1 band. Note that in accordance with what has
been obtained in the far infrared, we only observe CO lines up to J ∼23-
25. Additionally, we show in the right panel of Fig. 4.24 the comparison
between two different modes of operation of the SWS spectrograph. The
SWS01 mode has a resolution of 120 km s−1 and the SWS06 mode has
a resolution of 300 km s−1. We can verify then that both spectra look
very similar giving us the idea that all the oscillations which might be
interpreted as pure noise are spectral lines. In fact, almost every observed
line that cannot be assigned to a CO transition can be associated to a line
belonging to a water vapor band, specially for wavelengths larger than 4.9

21 Jansky is equal to 10−23 erg cm−2 s−1 Hz−1
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Figure 4.24: The left panel shows the difference between the observation taken with the SWS
instrument in two different modes of operation with different resolutions. The right panel
shows the identification of H2O pure rotational lines in the VY CMa spectrum.

µm.

• H2O. The CO lines disappear for wavelengths larger than 4.9 µm and
quite conspicuous water vapor lines start to be observed, either in ab-
sorption or emission. In the right panel of Fig. 4.24 we show a region
between 4.9 and 5.3 µm where we have identified the individual water va-
por transitions. Note that almost all the lines which appear in absorption
belong to the R branch, that is, those with ∆J = 1, while the lines which
appear in emission belong to the P branch, that is, those with ∆J = −1.
The same behavior appears at longer wavelengths when going closer to
the center of the band. This behavior has been investigated in detail by
González-Alfonso & Cernicharo (1999) and is a consequence of the radia-
tive pumping. Although exceptions exist, the strongest transitions are
those with ∆K+ = ∆K− = ±1.

4.8.3 Modeling

In order to investigate the observed bands of CO and H2O, we have generated
atmospheric models which approximately describe the physical conditions on
the envelope of such a supergiant star. The radius of the star is chosen to be
R? = 6×1013 cm and our model starts at 4×1014 cm, leaving a region between
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the star’s surface and the zone where the formation of molecules is efficient. The
model extends out to 1000 R?. The density structure of the envelope critically
depends on the mass loss Ṁ = dM(r)/dt of the star since:

dM(r)

dt
= 4πr2µn(r)V (r), (4.60)

where n(r) is the molecular hydrogen density, V (r) is the velocity field and µ
is the mean molecular weight obtained as:

µ =
∑

i

Aimi, (4.61)

with Ai and mi are the relative abundance and the mass in grams of each
element, respectively, while the sum is extended over all the elements present
in the medium. The typical velocity field in this kind of envelope starts from
zero velocity at the stellar surface and it undergoes a fast acceleration at the
point where the dust is formed Rd due to the radiation pressure and then the
velocity rapidly increases until reaching the escape velocity V∞. We model this
behavior with a law like:

V (r) = V∞

(

1− 0.984R?

r

)1/2

. (4.62)

If we assume that the mass loss is constant, we can obtain the variation of the
density through the atmosphere as:

n(r) =
C

r2
V∞
V (r)

, (4.63)

where

C ≈ 3× 1037 Ṁ5

V6
. (4.64)

Ṁ5 is the mass loss in units of 10−5 M� yr−1 and V6 is the escape velocity V∞
in units of 106 cm s−1.

Concerning the temperature, we have decided to use a model which correctly
reproduces radiative equilibrium calculations in the envelope of evolved stars
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taking into account many heating and cooling mechanisms. The temperature
is given as a piecewise fit:

Tk(r) = 2300.0

(

1

r̄

)0.6

r̄ ≤ 3

Tk(r) = 1189.7

(

3

r̄

)0.7

3 ≤ r̄ ≤ 17

Tk(r) = 353.2

(

17

r̄

)1.3

r̄ ≥ 17, (4.65)

where r̄ = r/R?. Furthermore, the dust temperature Td follows a law like:

Td(r) = 1300

(

3

r̄

)0.6

, (4.66)

so that the temperature at 3R? is 1300 K, 600 K at 10R? and 300 K at 40R?.
The CO abundance is chosen to be [CO] = 10−4, which is of the order of
magnitude of the CO abundance in an oxygen-rich envelope.

The CO energy levels and the Einstein coefficients of the radiative transi-
tions have been obtained from the linelist of Goorvitch (1994). They tabulated
the energy levels of the fundamental X1Σ+ electronic level of CO for the vi-
brational levels from v = 0 to v = 20 and rotational levels from J = 0 to
J = 149. Collisional rates between individual rotational levels of different vi-
brational levels are not available. In fact, this state-to-state collisional rates
are only available for SiO. In order to introduce in the model these collisional
rates, we have made use of the analytic formulas for the SiO state-to-state col-
lisional rates given by Langer & Watson (1984). They produced analytic fits to
the collisional rates of Bieniek & Green (1983a) and Bieniek & Green (1983b).
They give the collisional rates between any level J and the level J = 0 for
every combination of vibrational quantum numbers fulfilling ∆v = 0, 1. The
rate between any pair of levels Ju and Jl is obtained with the aid of the Infinite
Order Sudden approximation (IOS) (see Watson et al. 1980):

k(vu, Ju; vl, Jl) =
E0

EJu

gJl

∑

l

(

Ju l Jl

0 0 0

)2

k(vu, 0; vl, l), (4.67)

where EJ is the energy of the level.
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The previous collisional rates are only available for vibrational levels up to
v = 4 which has been used as a limit in our calculations. On the other hand,
they can be extrapolated to very high J with the aid of the formulas given
by Langer & Watson (1984). Of course, this kind of extrapolation has to be
taken with care. The model molecule we have used for obtaining the emergent
spectrum in VY CMa is composed of the first 5 vibrational levels between v = 0
and v = 4 including 26 rotational levels in each vibrational level from J = 0 to
J = 25. The model includes 130 levels, with 325 radiative transitions among
them, including the vibration-rotational and the pure rotational transitions.
Including the collisional transitions which do not have selection rules, the total
amount of transitions is 4329.

In order to verify that the collisional rates are representative of the true col-
lisional rate for CO, we have solved the problem of CO in the solar atmosphere.
The CO abundance has been calculated using the ICE approximation in the
semi-empirical FAL-C model. A model molecule including 40 rotational levels
in each of the 5 vibrational level has been used and the problem is solved using
the plane–parallel approximation. We recover the fact that both the vibrational
levels and the rotational levels inside a vibrational level are in LTE in the lower
part of the atmosphere below 500 km, where the CO lines are formed. This re-
sult has been obtained without the assumption that the rotational levels of CO
are in LTE but solving the complete non-LTE CO problem in a semi-empirical
model of the solar atmosphere.

We have made calculations of the emerging spectrum for VY CMa using
different mass losses in M� year−1, from log Ṁ = −4 to log Ṁ = −9.5, in
steps of 0.5 in the logarithm scale. The problems have been solved using the
MALI and MUGA schemes initialized using the LVG approximation. Assuming
a thermal velocity of ∼1 km s−1 and the velocity field given by Eq. (4.62), the
Sobolev length varies from 1014 cm in the inner regions of the envelope to 1018

cm in the outer parts. In view of that, the LVG approximation could perhaps
be valid in the inner parts of the envelope. However, since the CO lines are
optically thin in the outer parts of the envelope, the approximation may result
valid in these regions too. Even though the LVG approximation may result
invalid for almost all the envelope, we have used it as an initialization, giving
populations which are closer to the correct solution than if we initialize in LTE.
Almost all the models converged to the desired precision (maximum relative
change of 10−3) in less than ∼10 iterations, each iteration taking ∼75 seconds.
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Figure 4.25: Calculated CO vibration-rotation (upper panel) and pure rotation (lower panel)
bands for each of the considered mass loss values. The results for mass losses below 10−5

M� yr−1 are plotted in the same scale in order to show the relative differences. Note how
the near-IR band suffers from a transition from absorption to emission when the mass loss is
decreased.



4.8 Applications to VY CMa 159

Absorption

Emission

Shade

Emission

To observer

Figure 4.26: Schematic representation of a circumstellar envelope. The region between the
star and the observer produces absorption, the region behind the star is completely shaded by
the star’s radiation and the rest of the envelope produces emission lines since no background
is present.

Only the models with mass losses larger than 10−5 M� yr−1 needed between
10 and 20 iterations to converge.

The results are presented in Fig. 4.25. Here we have plotted the IR
vibration-rotation band at 4.6 µm using the resolution of the SWS instrument
together with the pure rotation lines which arise between 100 and 200 µm as
observed with the grating mode of the LWS instrument.

Near IR

The P and R branches of CO are perfectly distinguished with the center of the
band at 4.67 µm. The most obvious conclusion of these results is that the band
turns from being in emission to being in absorption when the mass loss is incre-
mented. This is easily understood since the CO column density proportionally
increases as the mass loss increases. Three important regions can be identified
in a circumstellar envelope as indicated in the scheme of Fig. 4.26. The region
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between the star and the observer produces absorption of the star’s radiation.
We have assumed that the star emits as a blackbody but, in order to be consis-
tent, we should have assumed that the star has a photospheric spectrum which
is modified by the presence of the envelope producing absorption lines. Because
the envelope is in expansion, the absorption lines are blue-shifted with respect
to the rest wavelength. The region behind the star is completely shaded by the
star’s radiation and produces no signature in the spectrum. Finally, the rest
of the envelope produces emission lines since there is no background to absorb.
The expansion produces that the emission lines have a widespread distribu-
tion of velocities thus being blue-shifted, red-shifted or at the rest frequency
depending on the zone they are formed.

Unless the mass loss is very high, the column densities in the circumstellar
envelopes are not very high and the emission produced by these regions is not
very important. The cases with low Ṁ do not produce enough opacity in the
band to give a significant absorption or emission but, since the emission region
is much larger, the average line profile shows the emission feature. For a higher
mass loss, the CO column density increases and the emission and absorption
also increases. The whole absorption region contributes to the same wavelength
since the blue-shift is almost the same, thus giving a strong absorption compo-
nent. On the other hand, the widespread distribution of the emission regions
produces a broad emission feature which is not enough to cancel the absorption
and the whole line turns out to be in absorption when the envelope is observed
with the resolution of the SWS instrument.

It is difficult to compare the modeling results we have obtained with the
observations of VY CMa. The observations seem to indicate that almost all the
lines are in emission with respect to an underlying continuum in the P and R
branches. The modeling predicts an absorption band for a value of the mass loss
of VY CMa, which is supposed to be of the order or larger than 10−4 M� yr−1.
On the other hand, our RT modeling predicts a more or less smooth variation
of the strength of the lines in each branch which is not observed. Contrarily,
the observation shows a variation of the strength of the lines for very close lines.

The wavelength where the P and R branches have their maximum emission is
related to the temperature. The observations show that the maximum emission
is at ∼4.6 µm for the R branch and below 4.8 µm for the P branch, which is
approximately equivalent to what the models predict.
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Far IR

We have also presented the results obtained for the far-IR lines starting at 100
µm since no emission is found below this wavelength. The lines above 100 µm
do not show an important emission, even for transitions as low as J = 14−13 at
186 µm. We see a behavior similar to what happens in the near-IR region but
with some differences. For very low and very high mass losses, the far-IR lines
are not seen, while they are conspicuous for intermediate mass losses, between
10−5 and 3×10−8 M� yr−1. The fact that we have very weak emission lines in
the far-IR as can be seen in Fig. 4.22 is compatible with a very high mass loss
rate.

4.9 Conclusion

We have solved the non-LTE problem in spherical symmetry for molecular
lines using fast iterative methods based on the Gauss-Seidel and Successive
Overrelaxation schemes. We have presented the basic equations to solve in
order to obtain the solution to the problem. The characteristics technique
has been applied in order to solve the radiative transfer equation in spherical
geometry. The fast iterative methods developed by Trujillo Bueno & Fabiani
Bendicho (1995) have been implemented in spherical symmetry and we have
verified that they lead to an increase in the convergence rate similar to that
obtained for Cartesian geometries.

We have investigated in detail the convergence properties of these iterative
methods with the aid of two simple problems, namely the quasi plane-parallel
case and the spherical case. We have also investigated the behavior of these
methods when dealing with unstable problems like maser transitions. With
the aid of the developed code, we have made a comparison between the results
obtained with the LVG approximation and the full non-LTE solution. We point
out that the LVG approximation has to be carefully applied and only when the
applicability conditions are fulfilled. We show some wrong results which may
arise with the LVG approximation when these applicability conditions are not
fulfilled.

Finally, we have applied the code for the solution of the non-LTE problem in
two selected astrophysical situations. The first one is the excitation state of the
water energy levels in a hot shell in the SgrB2 cloud in the Galactic Center. The
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second one refers to the formation of the CO fundamental vibration-rotation
band in the envelope of the red supergiant VY CMa.



5
Molecular Spectropolarimetry

We investigate in this chapter the Zeeman effect in diatomic molecules.
We start with the definition of some important elements on angular mo-

mentum theory which will be of utility for the rest of the chapter. We introduce
the Zeeman Hamiltonian and discuss the formulas for the Landé factors in some
simple cases. In Section §5.3, we introduce a general description of the Zeeman
effect for diatomic molecules based on an effective Hamiltonian. We give the
expressions for the matrix elements of the Hamiltonian matrix and describe
the diagonalization technique. In Section §5.4, we give a brief introduction to
the equations which describe the phenomena of scattering polarization and its
modification due to the presence of a magnetic field, the so-called Hanle effect.

5.1 Elements of Angular Momentum Theory for Diatomic

Molecules

Angular momentum theory provides a robust framework for describing the com-
plex dynamical processes going on in a molecule. As early as 1927, Hund showed
how molecular kinetics could be represented by the successive coupling of the
angular momenta coming from the orbital motions and the spins of the con-
stituents particles (Hund 1926; Hund 1927; Herzberg 1950). Racah’s work on
tensor algebra in the 1940s has led to powerful techniques for the study of
molecular spectroscopy (Racah 1942; Judd 1975). In this section, we will show
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how these techniques can be applied to the calculation of the matrix elements
of angular momentum operators which will be of importance for the calculation
of the Zeeman effect in diatomic molecules.

The Born-Oppenheimer approximation leads to an effective separation of
the energies due to the electronic, vibrational and rotational motions. The same
happens with the eigenfunctions associated with each motion. We will usually
work using the case (a) eigenfunctions since the eigenvalues of the angular
momentum operators are very easy to obtain, thus simplifying the calculation
of the matrix elements of the total Hamiltonian. The case (a) eigenfunctions
can be written as (Judd 1975):

|αΛΣ; v; ΩJM〉 ≡ |αΛΣ〉|v〉|ΩJM〉, (5.1)

where we have explicitly indicated the separation of the eigenfunctions following
the Born-Oppenheimer approximation. |αΛΣ〉 is the electronic eigenfunction,
being α a collection of quantum numbers which indicate the electronic con-
figuration of the molecule, Λ and Σ are the projections of the total orbital
electronic angular momentum and the total spin on the internuclear axis, re-
spectively (see Chapter 2). |v〉 is the vibrational eigenfunction which depends
on the vibrational quantum number v. Finally, |ΩJM〉 is the rotational eigen-
function which depends on the total angular momentum J , its projection on
a quantization axis M (typically the axis along the magnetic field) and the
quantum number Ω = |Λ + Σ|.

Due to the difference in mass between the electrons and the nuclei of a
molecule, it is appropriate to refer the motion of the electrons to a frame fixed
to the nuclei (F ′) whose center is the center of mass of the molecule, rather to
an external laboratory frame. The coordinates of an electron in the laboratory
frame F (with its center also at the center of mass of the molecule) are (x, y, z),
while the coordinates on the frame fixed to the molecule are (ξ, η, ζ). It is
convenient to consider the ζ axis parallel to the internuclear axis and the z axis
along the quantization axis. The angle between both frames can be represented
by the three Euler angles (α, β, γ). Once the coordinates of an electron are
known in one of the frames, a geometrical transformation between both frames
using the Euler angles can be applied to obtain the coordinates in the other
frame. As usual, once the ζ axis is fixed, there is freedom in the choice of the
direction of the ξ and η axis, which results in an indetermination on the value
of γ. It is usual to assign the value γ = π/2.
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The explicit expression for the normalized rotational eigenfunction, which
depends explicitly on the Euler angles, is obtained by solving the Schrödinger
equation for a symmetric top and is given by (Judd 1975):

|ΩJM〉 =

√

2J + 1

8π2
DJ

MΩ(α, β, γ)∗, (5.2)

where D is the rotation matrix (e.g., Edmonds 1960, Judd 1975). The repre-
sentation of the rotational eigenfunctions in terms of the rotational matrices is
very convenient due to some relevant properties. The conjugation property for
the rotation matrices can be written as (Edmonds 1960)

DJ
MΩ(α, β, γ)∗ = (−1)M−ΩDJ

−M−Ω(α, β, γ). (5.3)

One of the most useful properties of the rotation matrices for calculating matrix
elements of a given operator is the Weyl theorem of the Racah’s algebra, which
states that the integral of the product of rotational matrices over the Euler
angles can be easily calculated as follows (Edmonds 1960):

∫ 2π

0
dα

∫ π

0
dγ

∫ 2π

0
dβ sinβDJ1

M1Ω1
(α, β, γ)DJ2

M2Ω2
(α, β, γ)DJ3

M3Ω3
(α, β, γ) =

= 8π2

(

J1 J2 J3

M1 M2 M3

)(

J1 J2 J3

Ω1 Ω2 Ω3

)

,(5.4)

where the (
...
... ) are the 3-j symbols, which are highly symmetric representa-

tions of the Clebsch-Gordan (CG) coefficients (e.g., Edmonds 1960). Another
property which can be of interest is

∫ 2π

0
dα

∫ π

0
dγ

∫ 2π

0
dβ sinβDJ1

M1Ω1
(α, β, γ)∗DJ2

M2Ω2
(α, β, γ) =

=
8π2

2J + 1
δJ1J2δM1M2δΩ1Ω2 , (5.5)

where δab is the Kronecker’s delta, which is 1 for a = b and zero otherwise.
With the aid of the rotation matrices, it is very easy to transform vectors

from one frame to another once the Euler angles between both frames are
known. Let’s assume that ~r is a vector in R

3, whose spherical components on
the laboratory frame are given by rq, where q = 0,±1 (see Edmonds 1960 for the
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definition of the spherical components of a tensor). The spherical components
of the same vector on the frame fixed to the molecule are denoted by r̄q. The
relationship between both components can be written as:

rq =
∑

q′=0,±1

r̄qD1
q′q(−α,−β,−γ) =

∑

q′=0,±1

r̄qD1
qq′(α, β, γ)

∗, (5.6)

which is of great help in the evaluation of matrix elements of some operators
(e.g., the problem of calculating the energy levels for diatomic molecules). We
have used the fact that the rotation to carry the molecular fixed frame to the
laboratory frame is expressed by the inverse rotation (−α,−β,−γ).

Finally, the central theorem of angular momentum theory is the Wigner-
Eckart (WE) theorem, which allows to calculate the matrix elements of any
tensor operator (Edmonds 1960, Brink & Satchler 1968. The WE theorem
shows up and takes full advantage of any symmetry that may be inherent in a
problem. In other words, it allows us to isolate those parts of a problem that
are essentially geometric in character from those which depend explicitly on the
physics of the problem. The theorem establishes that, for the q component of
a given tensor of order k:

〈JM |T (k)
q |J ′M ′〉 = (−1)J−M

(

J k J ′

−M q M ′

)

〈J‖T (k)‖J ′〉. (5.7)

The quantity 〈J‖T (k)‖J ′〉 is called the reduced matrix element. It is important
to recognize that it is merely a number, and the fact that it appears as a matrix
element is only for notational convenience. A particularly common reduced ma-
trix element involves an angular momentum J between its own eigenfunctions.
Therefore:

〈J‖J‖J〉 =
√

J(J + 1)(2J + 1) (5.8)

5.2 The Molecular Zeeman effect

When a diatomic molecule is in the presence of a magnetic field, the total
angular momentum J of the molecule can have only certain orientations such
that the projection of J on an axis along the field direction takes the 2J + 1
possible values:

M = J, J − 1, . . . ,−J. (5.9)
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Note that, in the absence of a magnetic field, the previous condition holds for
the quantization axis. If the molecule has a magnetic moment, that is, if an
interaction between the field and the molecule exists, a precession of J takes
place at the corresponding angle compatible with its projection M. Therefore,
J looses its meaning as a good quantum number, and only M is a constant of
motion. Levels with different values of M have slightly different energies if there
is a coupling of the magnetic field with the total angular momentum. There
are three contributions to the magnetic moment of a diatomic molecule: i) the
magnetic moment associated with the orbital and spin angular momenta of the
electrons, ii) the magnetic moment produced by the rotational motion of the
molecule and iii) the magnetic moments associated with the nuclear spins. The
first contribution is of the order of the Bohr magneton (µ0 = eh/4πmec), the
second and the third are of the order of the nuclear magneton (µn = eh/4πmpc),
that is, of the order of mp/me ' 1836 times smaller than the first. Therefore,
whenever the orbital or spin angular momenta of the electrons are different
from zero (that is, all electronic states except 1Σ states) the second and third
contributions may in general be neglected.

As for atoms, the selection rule

∆M = 0,±1 (5.10)

holds for dipole radiation, where ∆M = 0 gives rise to spectral line radiation
polarized parallel to the field (π components) and ∆M = ±1 to polarization
perpendicular to the field (σ components), assuming observation perpendicular
to the field. The transition M = 0 → M = 0 is forbidden for ∆J = 0. Note
that the selection rule ∆J = 0,±1 still holds.

The Zeeman Hamiltonian for a molecule in the presence of a magnetic field
assuming that the main contribution is that coming from the electronic orbital
and spin angular momenta can be written as:

HZ = µ0

(

~L + 2~S
)

· ~B, (5.11)

where ~B is the magnetic field vector, ~L is the total electronic orbital angular
momentum and ~S is the total electronic spin.
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5.2.1 Zeeman Effect in Hund’s case (a) coupling

For simplicity, we choose the z axis of the laboratory frame as that pointing
along the magnetic field vector. Because the spherical component of a vector
along this z axis is the one with q = 0, we can reduce the Zeeman Hamiltonian
to:

HZ = µ0

(

~L + 2~S
)

· ~B = µ0 (L0 + 2S0)B, (5.12)

where L0 and S0 are the components of the total electronic and spin angular
momenta along the z axis, respectively. This Zeeman Hamiltonian can be
transformed to use the spherical components of the vectors in the molecular
fixed frame by using Eq. (5.6):

HZ = µ0 (L0 + 2S0)B = µ0B
∑

q=0,±1

(

L̄q + 2S̄q

)

D1
0q(α, β, γ)

∗. (5.13)

The diagonal matrix element of the Zeeman Hamiltonian can be obtained with
the use of the WE theorem (Eq. 5.7) and the property given by Eq. (5.4).
Therefore, the energy difference between the magnetic and the non-magnetic
case (the magnetic splitting) is obtained by (Herzberg 1950):

∆EM = 〈αΛΣ; v; ΩJM |HZ |αΛΣ; v; ΩJM〉 = µ0BM
(Λ + 2Σ) (Λ + Σ)

J (J + 1)
, (5.14)

for a given magnetic field and a given electronic state (defined by the quantum
numbers) in Hund’s (a) coupling case. In similarity with the atomic case, the
splitting of a given level is parameterized in terms of the Landé factor gL, defined
as ∆EM = µ0BMgL. Therefore, for electronic levels which are in Hund’s case
(a), the Landé factor is:

gL =
(Λ + 2Σ) (Λ + Σ)

J (J + 1)
. (5.15)

The maximum splitting due to the magnetic field (for M = ±J) decreases
inversely proportional to J + 1. Since the number of sublevels increases as
2J + 1, sublevels start to be very close in energy for moderately low J . Given
that the total angular momentum in a molecule is a contribution from the
total electronic angular momentum and the rotational angular momentum, J is
usually higher for molecules than for atoms. Therefore, the Landé factor of the
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levels of the transitions which are observed are usually smaller for molecules
than for atoms. Concerning the sign of the effective Landé factor, it can be
shown that gL < 0 provided that −Λ < Σ < −Λ/2 when Λ > 0.

The effect of the magnetic field on the observable spectrum is produced by
the appearance of components for each rotational line that, for the zero-field
case, have no substructure. This substructure is produced by the permitted
transitions (following the selection rules) between the magnetic sublevels of each
rotational level. The relative strength of each component SJJ ′

q (M,M ′) can be
calculated by evaluating the matrix elements of the electric dipole between the
eigenfunctions of the upper and lower level of the transition and taking only
the part of the matrix element which depends on the M quantum number:

SJJ ′

q (M,M ′) = 3

(

J ′ 1 J
M ′ −q −M

)2

, (5.16)

where q = 0,±1 and SJJ ′

q (M,M ′) is normalized to unity:

∑

MM ′

SJJ ′

q (M,M ′) = 1. (5.17)

5.2.2 Zeeman Effect in Hund’s case (b) coupling

In this case, it is obviously more convenient to use the eigenfunctions of the
Hund’s coupling case (b). These eigenfunctions are labeled by the good quan-
tum numbers of this case (Judd 1975):

|αΛ; v;NSJM〉 ≡ |αΛ〉|v〉|NSJM〉. (5.18)

If we calculate the diagonal matrix element of the Zeeman Hamiltonian, we
obtain a formula similar to that obtained in case (a), but where the Landé
factor is now:

gL =
J(J + 1) + S(S + 1)−N(N + 1)

J(J + 1)
+

Λ2 [J(J + 1) +N(N + 1)− S(S + 1)]

2J(J + 1)N(N + 1)
.

(5.19)
It is clear that the Landé factor can take negative values depending on the
combination of quantum numbers of the level. For example, for a doublet state
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S = 1/2 in which J can take values J = N ± 1/2, the Landé factor is positive
for J = N + 1/2 and negative for J = N − 1/2 (as long as N > Λ).

The relative strength of each Zeeman component is obtained, as in case (a),
by evaluating the matrix elements of the electric dipole operator and retaining
the term which depends on the M quantum number. The result is again:

SJJ ′

q (M,M ′) = 3

(

J ′ 1 J
M ′ −q −M

)2

, (5.20)

where the strength is normalized to unity, as indicated in Eq. (5.17).

5.2.3 Zeeman Effect in Hund’s (a)-(b) intermediate coupling for
doublets

As we have seen in Section §2.5.2, a transition between Hund’s cases (a) and
(b) occurs when rotation increases (spin-uncoupling) because the spin uncouples
from the internuclear axis and couples to the rotation. A simple Hamiltonian in
this case includes the rotational Hamiltonian and the spin-orbit coupling term,
together with the Zeeman Hamiltonian:

H = HSO +Hrot +HZ . (5.21)

The first two terms constitute the Hamiltonian of a molecule in the interme-
diate state between Hund’s cases (a) and (b). The strength of the spin-orbit
interaction is included in the spin-orbit constant A which is introduced in Eq.
(5.23). The last term is included as a perturbation to the first two terms. This
study was done first by Hill (1929) for doublet terms. However, it was difficult
to obtain analytical expressions for the strength of the Zeeman components due
to Hill’s choice of Hund’s case (b) basis functions. Much later, Schadee (1978)
repeated Hill’s calculations for doublet states for arbitrary spin-orbit and spin-
rotation interactions (spin-rotation is included for those states with Λ = 0 for
which the spin-orbit coupling is zero), but using Hund’s case (a) basis functions.
The formulas for the calculation of the splittings and the strength of each of the
Zeeman components are all given in Schadee (1978) and we will not reproduce
them here. Since the matrix elements of the electric dipole operator are quite
simple to obtain using the eigenfunctions of case (a) (given by Eq. 5.16), the
strength of the Zeeman components can be obtained in a much easier way.
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Recently, Berdyugina & Solanki (2002) have described the perturbation
calculation of the molecular Zeeman effect for the intermediate case (a)-(b) for
terms of any multiplicity. The Zeeman splittings and strengths of the compo-
nents are obtained by numerical diagonalization of a 2×2 Hamiltonian.

5.3 General Description of the Zeeman Effect for Diatomic

Molecules

All the cases we have described so far are simplifications of the motion of a
molecule in order to obtain closed analytical formulas for the energy of the
molecular levels. To give a better description of the motion of the molecule
one has to include more terms in the Hamiltonian. Therefore, it turns out
impossible to find out closed and simple analytical formulas for the energy
levels, including the splittings and the strength of the Zeeman components. In
this section, we describe the work we have done for developing a very general
scheme for obtaining the splittings and strengths of the Zeeman components
for a given molecular level including many of the possible couplings which can
take place in a molecule. The advantage of this approach is that it allows a
very accurate description of the energy levels. Furthermore, any of the terms in
the Hamiltonian can be neglected to see how the energy levels are affected by
its inclusion. Another important advantage is that the eigenfunctions of each
molecular level are obtained self-consistently, therefore the expected value of
any operator can be evaluated quite easily for each level or transition between
levels.

5.3.1 Molecular Hamiltonian

Consider a diatomic molecule in a given electronic, vibrational and rotational
state. We work within the framework of the Born-Oppenheimer approximation,
so the rotational energy is considered as an additive energy to the electronic and
vibrational energies. However, we consider the coupling between the electronic
state and the rotational motion. A very general effective Hamiltonian for such
a diatomic molecule in a magnetic field can be written as (see, e.g., Brown &
Carrington 2003):

Heff = HSO +Hrot +Hcd +Hsr +HLD +HcdLD +Hhfs +Hcdhfs +HZ . (5.22)
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HSO represents the spin-orbit coupling, Hrot and Hcd represent the rotational
kinetic energy and centrifugal distortion, respectively, Hsr represents the spin-
rotation interaction, HLD and HcdLD represent the Λ-doubling interactions and
the appropriate centrifugal distortion corrections, respectively. Hhfs represents
the magnetic hyperfine interactions and Hcdhfs the centrifugal distortion of the
hyperfine interactions as the molecule rotates. Finally, HZ represents the Zee-
man hamiltonian which includes the coupling between the magnetic field and
the rotation angular momentum, the total spin and the total angular momenta.

Each of the terms of the Hamiltonian can be written in terms of the different
angular momenta of the molecule. These terms are written using the tensorial
notation (see, for example, Edmonds 1960 or Brink & Satchler 1968) with a
slight variation. The symbol T k

q (A) is used to indicate that we are referring to
the q spherical component of the tensor A of order k on the molecular fixed
frame. For the spherical component of the tensor on the laboratory frame, we
will use T k

p (A). Since we are only dealing with the angular momenta vectors,
k = 1 is the only value for k we will use. The explicit forms of the most
important terms which are appropriate for a later calculation of the matrix
elements on the Hund’s case (a) basis set are as follows:

HSO = AT 1
q=0(L)T 1

q=0(S) +
1

2
AD

[

R2T 1
q=0(L)T 1

q=0(S) + T 1
q=0(L)T 1

q=0(S)R2
]

,

(5.23)
where A and AD are the spin-orbit coupling constant and the centrifugal cor-
rection to A, respectively. The rotational Hamiltonian can be written as:

Hrot = BT 1(R) · T 1(R) ≡ BR2, (5.24)

where B is the rotational constant. The centrifugal distortion term can be
written:

Hcd = −D(R2)2 +H(R2)3, (5.25)

where D and H are the quartic and sextic distortion constants. Finally, the
spin-rotation Hamiltonian can be written as the dot product between the rota-
tional angular momentum and the spin:

Hsr = γT 1(J− S) · T 1(S), (5.26)

where γ is the spin-rotation coupling constant. The rest of terms of the effective
Hamiltonian can be obtained in the same manner. See Brown et al. (1978) and
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Brown & Carrington (2003) for the exact analytical expressions for each of
the terms included in the effective Hamiltonian. The eigenvalues of a linear
molecule are obtained by diagonalization of the effective Hamiltonian assuming
that T 1

q=0(R) = 0, i.e., that there is no rotation about the internuclear axis.
This leads to helpful simplification of the matrix elements of the Hamiltonian,
especially those in which the rotational angular momentum R appears.

When the molecule is under the action of a magnetic field B, a splitting
occurs due to the precession of the total angular momentum J about the quan-
tization axis (which is selected as the z axis in the laboratory frame, equivalent
to the direction on the magnetic field). The effective Hamiltonian for a diatomic
molecule can be written as:

HZ = gSµ0T
1(B)·T 1(S)+gLµ0T

1(B)·T 1(L)−grµ0T
1(B)·T 1(J−L−S), (5.27)

where µ0 is the Bohr magneton, B is the magnetic field strength, gS is the
electron spin g-factor, gL is the electron orbital g-factor and gr is the rotational
g-factor (including the nuclear and electronic contribution gr = gnuclear

r − ge
r).

As pointed out, the last term is only relevant when the molecule is in a 1Σ
state, because then there is no contribution from the electronic motion to the
Zeeman effect (e.g. the ground state of CO). More terms can be included in the
Zeeman Hamiltonian which take into account several higher order corrections
(anisotropic corrections to the electron spin g-factor, nuclear spin, . . . ). Since
we have selected the z quantization axis as the field direction, the dot product
between the magnetic field vector and the angular momenta give their projec-
tion over this axis. Therefore, we end up with the spherical components of the
vectors along the z axis of the laboratory frame:

HZ = gSµ0BT
1
p=0(S) + gLµ0BT

1
p=0(L)− grµ0BT

1
p=0(J− L− S). (5.28)

The value of the g-factors have to be determined by fitting this effective
Hamiltonian to the laboratory observed molecular spectra under the presence
of a magnetic field. However, it is a very good approximation to consider gS = 2
and gL = 1. The nuclear contribution to the rotational g-factor for a diatomic
molecule formed by two nuclei A and B can be very roughly estimated by the
following formula (Judd 1975):

gnuclear
r ' µ0

µn

(

ZAM
2
B + ZBM

2
A

)

MAMB (MA +MB)
, (5.29)
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where MA and MB are the masses of each nuclei in atomic mass units and
ZA and ZB are the atomic number of each nuclei. It is usual that high order
effects are important, and this estimation of gnuclear

r is not very suitable. For
example, for the OH molecule, gnuclear

r ' 5.25 × 10−4 while the exact value is
gr = −6.33×10−4 (Brown et al. 1978). Therefore, we see that the contribution
of the electrons to the rotational g-factor is extremely important, being ge

r =
1.16 × 10−3.

5.3.2 Matrix Elements

In order to obtain the energy levels of a diatomic molecule, the effective Hamil-
tonian matrix (Heff) has to be built and then numerically diagonalized. We
have chosen to express the matrix elements of the molecular Hamiltonian in
Hund’s case (a) basis set because it makes it easier to calculate the effect of the
various operators which appear in Heff .

The basis set of Hund’s case (a) is given by Eq. (5.1). In order to calculate
the matrix elements of the Hamiltonian, we express the rotational eigenfunc-
tions with their explicit form given by Eq. (5.2) which contains the rotation
matrix. The bras of the matrix elements are obtained by complex conjugation
of the rotation matrices and transformed with the help of the conjugation prop-
erty Eq. (5.3). All the tensors should be evaluated on the molecular fixed frame
because their eigenvalues are known in case (a). If the components of a tensor
on the laboratory frame appear on the Hamiltonian (as happens in the Zee-
man Hamiltonian), a transformation to the molecular fixed frame is performed
through Eq. (5.6). We often end up with a product of three rotation matri-
ces for the evaluation of the matrix element, which is easily calculated using
Weyl’s theorem given by Eq. (5.4). Some matrix elements can be calculated
with the aid of the Wigner-Eckart theorem given by Eq. (5.7). Therefore, we
can give simple analytical expressions for the matrix elements of each term of
the Hamiltonian 1.

1A rigorous explanation of the techniques for obtaining the matrix elements of the effective
Hamiltonian can be found on Brown & Carrington (2003)
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Spin-orbit coupling

〈ΛSΣΩJM |HSO|ΛSΣΩJM〉 = AΛΣ+ADΛΣ
[

J(J + 1)− Ω2 + S(S + 1)− Σ2
]

,
(5.30)

Rotational Hamiltonian

〈ΛSΣ′Ω′JM |Hrot|ΛSΣΩJM〉 =
BδΣ′ΣδΩ′Ω

[

J(J + 1)− Ω2 + S(S + 1)− Σ2 + 〈L2
x + L2

y〉
]

− 2B
∑

q=±1

(−1)J−Ω′+S−Σ′

(

J 1 J
−Ω′ q Ω

)(

S 1 S
−Σ′ q Σ

)

×
√

J(J + 1)(2J + 1)S(S + 1)(2S + 1).

(5.31)

Centrifugal distortion of order 4 in the rotation

〈ΛSΣ′Ω′JM |H(4)
cd |ΛSΣΩJM〉 =

−DδΣ′ΣδΩ′Ω

[

J(J + 1)− Ω2 + S(S + 1)− Σ2
]2

+ 4DδΣ′ΣδΩ′Ω

∑

q=±1

∑

Ω′′Σ′′

(

J 1 J
−Ω q Ω′′

)2(
S 1 S
−Σ q Σ′′

)2

× J(J + 1)(2J + 1)S(S + 1)(2S + 1)− 2D
∑

q=±1

(−1)J−Ω′+S−Σ′

×
(

J 1 J
−Ω′ q Ω

)(

S 1 S
−Σ′ q Σ

)

×
√

J(J + 1)(2J + 1)S(S + 1)(2S + 1)

×
[

2J(J + 1)− Ω2 − (Ω′)2 + 2S(S + 1)− Σ2 − (Σ′)2
]

.

(5.32)
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Centrifugal distortion of order 6 in the rotation

〈ΛSΣ′Ω′JM |H(6)
cd |ΛSΣΩJM〉 =

HδΣ′ΣδΩ′Ω

[

J(J + 1)−Ω2 + S(S + 1)− Σ2
]3

+ 4HδΣ′ΣδΩ′Ω

∑

q=±1

∑

Ω′′Σ′′

(

J 1 J
−Ω q Ω′′

)2(
S 1 S
−Σ q Σ′′

)2

×

× J(J + 1)(2J + 1)S(S + 1)(2S + 1)

×
[

3J(J + 1)− 2Ω2 − (Ω′′)2 + 3S(S + 1)− 2Σ2 − (Σ′′)2
]

− 2H
∑

q=±1

(−1)J−Ω′+S−Σ′

(

J 1 J
−Ω′ q Ω

)(

S 1 S
−Σ′ q Σ

)

×
√

J(J + 1)(2J + 1)S(S + 1)(2S + 1)

[

[

J(J + 1)− Ω2 + S(S + 1)− Σ2
]2

+
[

J(J + 1)− (Ω′)2 + S(S + 1)− (Σ′)2
]2

+
[

J(J + 1)− Ω2 + S(S + 1)− Σ2
] [

J(J + 1)− (Ω′)2 + S(S + 1)− (Σ′)2
]

+ 4

(

J 1 J
−Ω′ q Ω

)2(
S 1 S
−Σ′ q Σ

)2

J(J + 1)(2J + 1)S(S + 1)(2S + 1)

]

(5.33)

Spin-rotation interaction

〈ΛSΣ′Ω′JM |Hsr|ΛSΣΩJM〉 =

γδΣ′ΣδΩ′Ω [ΩΣ− S(S + 1)] +
∑

q=±1

(−1)J−Ω′+S−Σ′

×
(

J 1 J
−Ω′ q Ω

)(

S 1 S
−Σ′ q Σ

)

√

J(J + 1)(2J + 1)S(S + 1)(2S + 1)

(5.34)
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Zeeman Hamiltonian

〈ΛSΣ′J ′MJΩ′|HZ|ΛSΣJMJΩ〉 =
µBB0

∑

q=0,±1

(−1)2J ′−M−Ω′ [

(2J ′ + 1)(2J + 1)
]1/2

(

J ′ 1 J
−M 0 M

)(

J ′ 1 J
−Ω′ q Ω

)

[

(gL + gr)ΛδΣΣ′ + (gS + gr)(−1)S−Σ′

×
(

S 1 S
−Σ′ q Σ

)

[S(S + 1)(2S + 1)]1/2

]

− grµBB0MδJJ ′δΣΣ′δΩΩ′

(5.35)

5.3.3 Diagonalization

We have explicitly indicated that the matrix elements are diagonal in some of
the eigenvalues which are included in the case (a) eigenfunctions. For example,
the spin-orbit coupling is completely diagonal in the case (a) basis set, the
molecular rotation is diagonal in Λ, S, J and M , but not in Σ and Ω, while
the Zeeman interaction is diagonal only in Λ, S and M (J looses its meaning
as a good quantum number and only M is still a good quantum number). Our
basis set is built using the following rules:

• We include eigenfunctions with the two possible values of the projection
of the orbital angular momentum on the internuclear axis Λ, i.e., ±Λ.
Since we do not include any Λ-doubling interaction, the eigenvalues cor-
responding to both values of Λ are degenerated.

• We include eigenfunctions with the two possible values of the projection
of the spin on the internuclear axis Σ, i.e., ±Σ.

• For a given value of J , we include eigenfunctions from the level J and
from the levels with surrounding values of J , i.e., J − 1 and J + 1. This
rule is only applied when a magnetic field is present since the Zeeman
Hamiltonian is the only term included in the effective Hamiltonian which
is non-diagonal in the quantum number J (therefore J is no more a good
quantum number). If no magnetic field is present, all the terms are di-
agonal in J and no coupling between levels with different value of J is
possible.
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• For each value of J , we include all the possible values of M from −J to
J . We pointed out that the Hamiltonian is always diagonal in M unless
the hyperfine structure is taken into account.

The total number of eigenfunctions is obtained by summing all the possible
values of the quantum numbers: 2 possible values of Λ, 2S + 1 possible values
of Σ and the 2J + 1 values of M for each value of J . Therefore,

N = 2(2S+1)

[

[

2J+1]+
[

2(J+1)+1
]

+
[

2(J−1)+1
]

]

= 6(2S+1)(2J+1) (5.36)

As an example, the eigenfunctions we use for the calculation of the energies
of a rotational level J of a 2Π electronic state are |1, 1/2, 1/2; 3/2, J ′ ,M〉,
|1, 1/2,−1/2; 1/2, J ′ ,M〉, | − 1, 1/2,−1/2; 3/2, J ′ ,M〉 and
|− 1, 1/2,−1/2;−3/2, J ′ ,M〉. This subset of four eigenfunctions is included for
each value of J ′ in J ′ = J − 1, J, J + 1 and the values of M for each value of
J . The total number of eigenfunctions is N = 24J + 12, which is quite a big
number for high values of J .

With the help of these eigenfunctions, the Hamiltonian can be built. It
is a N × N matrix which must be numerically diagonalized using any of the
available numerical procedures (see, e.g., Press et al. 1986). The size of the
matrix increases linearly with the value of J and it represents a very hard
numerical work even for low values of J . However, we can use the fact that the
Hamiltonian is diagonal in M to perform the diagonalizations in boxes with the
same value of M . The problem is transformed from the diagonalization of the
whole matrix to diagonalizing 2J + 1 submatrices of size 6(2S + 1). For the
example case of a 2Π level, we should diagonalize 2J + 1 boxes of 12× 12.

5.4 Scattering polarization and the Hanle effect

The Zeeman effect requires the presence of a magnetic field, which causes the
atomic energy levels to split into different magnetic sublevels characterized
by their magnetic quantum number M . The Zeeman splitting produces local
sources and sinks of light polarization because of the wavelength shift between
the π and σ components.

In contrast, the spectral line polarization that is induced by scattering pro-
cesses in the outer layers of stellar atmospheres is directly related with the
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〉
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〉
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〉
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〉
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1
〉

|2
0
〉

|2
−

1
〉

|2
−

2
〉

|1
1
〉

|1
0
〉

|1
−

1
〉

|3 3〉 × 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|3 2〉 0 × 0 0 0 0 0 × 0 0 0 0 0 0 0
|3 1〉 0 0 × 0 0 0 0 0 × 0 0 0 × 0 0
|3 0〉 0 0 0 × 0 0 0 0 0 × 0 0 0 × 0
|3 − 1〉 0 0 0 0 × 0 0 0 0 0 × 0 0 0 ×
|3 − 2〉 0 0 0 0 0 × 0 0 0 0 0 × 0 0 0
|3 − 3〉 0 0 0 0 0 0 × 0 0 0 0 0 0 0 0
|2 2〉 0 × 0 0 0 0 0 × 0 0 0 0 0 0 0
|2 1〉 0 0 × 0 0 0 0 0 × 0 0 0 × 0 0
|2 0〉 0 0 0 × 0 0 0 0 0 × 0 0 0 × 0
|2 − 1〉 0 0 0 0 × 0 0 0 0 0 × 0 0 0 ×
|2 − 2〉 0 0 0 0 0 × 0 0 0 0 0 × 0 0 0
|1 1〉 0 0 × 0 0 0 0 0 × 0 0 0 × 0 0
|1 0〉 0 0 0 × 0 0 0 0 0 × 0 0 0 × 0
|1 − 1〉 0 0 0 0 × 0 0 0 0 0 × 0 0 0 ×

Table 5.1: Part of the Hamiltonian matrix for a level with J = 2 indicating with the symbol
× the elements which can be non-zero. The eigenfunctions are of the form |JM〉. The basis
set is ordered by the value of J and the resulting matrix is extremely non-diagonal.

|3
3
〉

|3
2
〉

|2
2
〉

|3
1
〉

|2
1
〉

|1
1
〉

|3
0
〉

|2
0
〉

|1
0
〉

|3
−

1
〉

|2
−

1
〉

|1
−

1
〉

|3
−

2
〉

|2
−

2
〉

|3
−

3
〉

|3 3〉 × 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|3 2〉 0 × × 0 0 0 0 0 0 0 0 0 0 0 0
|2 2〉 0 × × 0 0 0 0 0 0 0 0 0 0 0 0
|3 1〉 0 0 0 × × × 0 0 0 0 0 0 0 0 0
|2 1〉 0 0 0 × × × 0 0 0 0 0 0 0 0 0
|1 1〉 0 0 0 × × × 0 0 0 0 0 0 0 0 0
|3 0〉 0 0 0 0 0 0 × × × 0 0 0 0 0 0
|2 0〉 0 0 0 0 0 0 × × × 0 0 0 0 0 0
|1 0〉 0 0 0 0 0 0 × × × 0 0 0 0 0 0
|3 − 1〉 0 0 0 0 0 0 0 0 0 × × × 0 0 0
|2 − 1〉 0 0 0 0 0 0 0 0 0 × × × 0 0 0
|1 − 1〉 0 0 0 0 0 0 0 0 0 × × × 0 0 0
|3 − 2〉 0 0 0 0 0 0 0 0 0 0 0 0 × × 0
|2 − 2〉 0 0 0 0 0 0 0 0 0 0 0 0 × × 0
|3 − 3〉 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ×

Table 5.2: Part of the Hamiltonian matrix for a level with J = 2 indicating with the symbol
× the elements which can be non-zero. The basis set is ordered by the value of M and the
resulting matrix is block-diagonal, therefore allowing a block diagonalization in each of the
subspaces spanned by the eigenfunctions with the same value of M .
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anisotropic illumination of the atoms or molecules (see the review by Trujillo
Bueno 2001). Anisotropic radiation pumping produces atomic level polarization
(i.e. population imbalances and quantum interferences between the sublevels
of degenerate energy levels). For example, upper-level population pumping oc-
curs when some upper state sublevels have more chance of being populated
than others. On the contrary, lower level population pumping occurs when
some lower state sublevels absorb light more strongly than others. As a result,
an excess population tends to build up in the weakly absorbing sublevels. It
is also important to note that atomic polarization can be transferred between
energy levels via a process called repopulation pumping.

The presence of a magnetic field is not necessary for the operation of such
optical pumping processes, which can create atomic polarization if the depo-
larization rates due to elastic collisions are sufficiently low. The Hanle effect
(Hanle 1924; Moruzzi & Strumia 1991; Trujillo Bueno 2001) is the modification
of the atomic level polarization (and of the ensuing observable Stokes param-
eters) caused by the action of a magnetic field such that the corresponding
Zeeman splitting is comparable to the inverse lifetime of the degenerate level
under consideration. For the Hanle effect to operate, the magnetic field vec-
tor must be significantly inclined with respect to the axis of symmetry of the
radiation field.

A useful formula to estimate the magnetic field intensity BH (in gauss) to
which the Hanle effect can, in principle, be sensitive is

2πνLgL = 8.79 × 106BHgL ' 1/tlife, (5.37)

where νL is the Larmor frequency (the frequency associated with the magnetic
field), while gL and tlife are the Landé factor and the lifetime (in seconds) of
the level under consideration, respectively. As a very good approximation, the
inverse of the lifetime of a level is similar to the spontaneous emission Einstein
coefficient Aul for the upper level of a transition and to the absorption Einstein
coefficient times the radiation field ,BluJ̄ , for the lower level of a transition.
Therefore, for typical values of the Einstein coefficient for spontaneous emission
(i.e., between 104− 108 s−1), we can diagnose, in principle, fields between 10−3

and 100 gauss, assuming gL for the Landé factor.
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5.4.1 Radiative Transfer Equation

In the polarized case, instead of the standard scalar radiative transfer equation
for the specific intensity Iν(Ω), one has to solve, in general, the following vec-

torial transfer equation for the Stokes vector Iν(Ω) = (I,Q,U, V )† (where †
means the transpose):

d

ds
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. (5.38)

This equation, whose Quantum Electrodynamics (QED) derivation can be found
in Landi Degl’Innocenti (1983), can be written in more compact notation as fol-
lows:

d

ds
I = j−KI, (5.39)

where s measures the geometrical distance along the ray of direction Ω, K
is the absorption matrix and j is the emission vector. Trujillo Bueno (2003c)
discusses efficient numerical methods for the formal solution of this Stokes-
vector equation.

5.4.2 The rate equations for the elements of the atomic density
matrix

The concept of overall population of each level of total angular momentum J is
not enough to describe the excitation state of a polarized atomic or molecular
system. In general, one has to use the density operator ρA of quantum mechan-
ics (e.g. Fano 1957). This operator is represented in the basis of eigenfunctions
of the total angular momentum as a matrix called the atomic density matrix
whose (2J + 1)2 elements are:

ρA
αJ(M,M ′) = 〈αJM |ρA|αJM ′〉, (5.40)

where ρA
αJ(M,M) is the population of the sublevel with magnetic quantum

number M , while ρA
αJ(M,M ′) represents the degree of quantum interference

(or coherence) between the sublevels M and M ′.
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Figure 5.1: Radiative processes included in the statistical equilibrium equations of a given
level i given by Eq. (5.42). j and k are generic upper and lower levels, respectively. In solid
lines we represent the spontaneous emissions, in dashed lines the absorption processes and in
dotted line the stimulated emission processes.

In the context of scattering polarization and the Hanle effect it is more
convenient to quantify the atomic polarization of a given level by means of the
spherical statistical tensor components:

ρK
Q (α, J) =

∑

MM ′

(−1)J−M
√

2K + 1

(

J J K
M −M ′ Q

)

ρA
αJ(M,M ′), (5.41)

where the sum is extended over the possible values of M according to the value
of the total angular momentum J . It is important to note that 0≤K≤2J and
−K≤Q≤K. The ρK

Q with Q = 0 are real numbers given by linear combinations
of the populations of the Zeeman sublevels. The total population of the level
is quantified by

√
2J + 1ρ0

0, while the population imbalances among the Zee-
man sublevels are quantified by ρK

0 (e.g. ρ2
0(J = 1) = (N1 − 2N0 +N−1)/

√
6).

However, the ρK
Q elements with Q6=0 are, in general, complex numbers given by

linear combinations of the coherences between the Zeeman sublevels whose mag-
netic quantum numbers differ by Q. Since the density operator is Hermitian,
we have that for each spherical statistical tensor component ρK

Q with Q > 0,

there exists another component with Q < 0 which fulfill ρK
−Q = (−1)Q[ρK

Q ]∗.
As a matter of notation, the ρ2

Q are usually called the alignment components

while the ρ1
Q are usually called the orientation components.

For the case of a multilevel atom without hyperfine structure and taking
into account quantum coherences only between the sublevels with the same J ,
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the rate of change of the density matrix element ρK
Q (J) in the magnetic field

reference frame2 reads (Landi Degl’Innocenti 1983):

d

dt
ρK

Q (J) = −2πiνLgLQρ
K
Q (J) +

∑

Jl

∑

KlQl

ρKl
Ql

(Jl)TA(Jl;KlQl → J ;KQ)

+
∑

Ju

∑

KuQu

ρKu
Qu

(Ju)TE(Ju;KuQu → J ;KQ)

+
∑

Ju

∑

KuQu

ρKu
Qu

(Ju)TS(Ju;KuQu → J ;KQ)

−
∑

K′Q′

ρK′

Q′ (J)RA(J ;KQ,K ′Q′ → Ju)−
∑

K′Q′

ρK′

Q′ (J)RE(J ;KQ,K ′Q′ → Jl)

−
∑

K′Q′

ρK′

Q′ (J)RS(J ;KQ,K ′Q′ → Jl)−D(K)(J)ρK
Q (J).

This equation indicates that, in the magnetic field reference frame, the popu-
lation imbalances (i.e. the ρK

0 ) are insensitive to the magnetic field, while the
coherences (i.e. the ρK

Q with Q 6= 0) are changed and dephased as the magnetic
field increases.

The last term of the equation is the contribution of elastic collisions to the
rate of change of ρK

Q (J) since D(K) is the depolarizing collisional rate for the
density matrix element of rank K. This equation does not include the inelastic
collisional rates (we are assuming that the problem is radiation-dominated),
although, if available, they can be included (see, e.g., Manso Sainz & Trujillo
Bueno 2003). A representation of the radiative rates which must be considered
for obtaining the density matrix elements of a level i is shown in Fig. 5.1:
transfer rates due to absorption (TA), spontaneous emission (TE) and stimulated
emission (TS) from other levels and relaxation rates due to absorption (RA),
spontaneous emission (RE) and stimulated emission (RS) towards other levels.
The explicit expressions of these rates can be found in Landi Degl’Innocenti
(1983, 1984, 1985). For example, the transfer rate TA due to absorption from

2This frame is similar to the laboratory frame used for the description of the molecular
structure, in which the z axis (quantization axis) is oriented parallel to the magnetic field
vector
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lower levels is:

TA(Jl;KlQl → J ;KQ) = (2Jl + 1)B(Jl → J)
∑

KrQr

√

3(2K + 1)(2Kl + 1)(2Kr + 1)

× (−1)Kl+Ql







J Jl 1
J Jl 1
K Kl Kr







(

K Kl Kr

−Q Ql −Qr

)

J̄Kr
Qr
,

(5.42)

where the object between brackets is the 9-j symbol (e.g., Edmonds 1960) and
B(Jl → J) is the absorption Einstein coefficient of the transition between levels
Jl and J . J̄Kr

Qr
with Kr = 0, 1, 2 and Qr = −Kr, . . . ,Kr are radiation field ten-

sors given by integrals over frequency and solid angle of the Stokes parameters,
weighted by suitable frequency and angular functions (see their explicit expres-
sions in Landi Degl’Innocenti (1983)). When the radiation field has cylindrical
symmetry around the direction chosen to evaluate the J̄K

Q tensors (e.g., the
stellar radius vector through the observed point), only the tensors

J̄0
0 =

∫

dν

∮

dΩ

4π
φ(ν)Iν(Ω) (5.43)

J̄2
0 =

1

2
√

2

∫

dν

∮

dΩ

4π
φ(ν)

[

(

3 cos2 θ − 1
)

Iν(Ω) + 3(cos2 θ − 1)Qν(Ω)
]

are nonzero. θ is the angle between the axis of symmetry of the radiation field
and the direction of propagation of the radiation given by the unit vector Ω
and φ(ν) is the line profile. J̄0

0 is the well-known line integrated mean intensity
and J̄2

0 provides information on the ‘degree of anisotropy’ of the radiation field.
It is dominated by the contribution of Stokes I and becomes zero if I is angle
independent. As reviewed by Trujillo Bueno (2001), a fundamental quantity in
scattering polarization is the anisotropy factor w =

√
2J̄2

0 /J̄
0
0 , whose possible

values are bounded by the following expression:

−1

2
≤ w ≤ 1. (5.44)

Assuming a reference frame with the z axis parallel to the axis of symmetry of
the cylindrically symmetric radiation field, the largest value correspond to illu-
mination coming from a purely vertical radiation field while the lowest limit is
related to a purely horizontal radiation field without any azimuthal dependence.
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As another example, the transfer rate TE due to spontaneous emissions from
upper levels can be written as (Landi Degl’Innocenti 1983):

TE(Ju;KuQu → J ;KQ) = δKKuδQQu(2Ju + 1)A(Ju → J)×

× (−1)1+J+Ju+K

{

Ju Ju K
J J 1

}

,
(5.45)

where A(Ju → J) is the spontaneous emission Einstein coefficient for the
Ju → J transition. The term between the brackets is the 6-j symbol (see,
e.g. Edmonds 1960).

5.4.3 Emission and Absorption Coefficients

The general expressions of the components of the emission vector and the ab-
sorption matrix are very involved (see Landi Degl’Innocenti 1983). They are
given in terms of the ρK

Q elements of the upper and lower levels of a transi-
tion and on line profiles whose dependence on the magnetic quantum numbers
cannot be neglected when the Zeeman splittings are a significant fraction of
the spectral line width. However, for the case of scattering polarization in
weakly magnetized atmospheres, we have for the I, Q and U components of the
emission vector (Trujillo Bueno 2003c):

εI = ε0ρ
0
0(u)

+ ε0w
(2)
JuJl

{ 1

2
√

2
(3µ2 − 1)ρ2

0(u)−
√

3µ
√

1− µ2
(

cosχRe[ρ2
1(u)]− sinχIm[ρ2

1(u)]
)

+

√
3

2
(1− µ2)

(

cos 2χRe[ρ2
2(u)]− sin 2χIm[ρ2

1(u)]
)

}

(5.46)

εQ = ε0w
(2)
JuJl

{ 3

2
√

2
(µ2 − 1)ρ2

0(u)−
√

3µ
√

1− µ2
(

cosχRe[ρ2
1(u)] − sinχIm[ρ2

1(u)]
)

−
√

3

2
(1 + µ2)

(

cos 2χRe[ρ2
2(u)] − sin 2χIm[ρ2

1(u)]
)

}

(5.47)
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εU = ε0w
(2)
JuJl

√
3
[

√

1− µ2
(

sinχRe[ρ2
1(u)] + cosχIm[ρ2

1(u)]
)

+

+ µ
(

sin 2χRe[ρ2
2(u)] + cos 2χIm[ρ2

1(u)]
)

]

,
(5.48)

where we have explicitly indicated that the ρK
Q are those of the upper level.

w
(2)
JuJl

is the quantity introduced by Landi Degl’Innocenti (1984) which depends

only on Ju and Jl and ε0 = (hν/4π)AulφνN
√

2Ju + 1 (with N the total number
of atoms or molecules per unit volume). The orientation of the ray is specified
by the polar angle µ = cos θ and the azimuth χ. The η elements of the absorp-
tion matrix have identical expressions but with η0 = (hν/4π)BluφνN

√
2Jl + 1

instead of ε0, w
(2)
JlJu

instead of w
(2)
JuJl

and the values of ρK
Q (l) of the lower level

instead of ρK
Q (u) (stimulated emission has been neglected).



6
Observation and modeling of the

Zeeman effect in molecular lines

This chapter is devoted to the investigation of the molecular Zeeman effect
and how it can be applied to spectro-polarimetric observations in order

to obtain information about the magnetic properties of solar magnetic regions.
We start in Section §6.2 by showing that the numerical diagonalization of the
total molecular Hamiltonian leads to results which are in accordance with the
results obtained from the theory of Schadee (1978) when the same molecular
constants are used. We also show results in which only the numerical diagonal-
ization technique can be applied since Schadee’s (1978) theory is only devoted
to doublet states.

As an application of the previous techniques, we investigate in Section §6.3
the anomalous CN linear polarization profiles observed in sunspots. We show
that this anomalous behavior can be correctly explained by the especial Zeeman
patterns of the CN lines produced by a transition to the Paschen-Back regime
for very weak fields. We also describe in Section §6.4 an inversion code of Stokes
profiles induced by the molecular Zeeman effect. We apply this code to obtain
information about the thermodynamical and magnetic properties of the umbra
in which we observed several OH lines and the CN lines showing the anomalous
linear polarization profiles.

In Section §6.5, we investigate with detail the polarization properties of the
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CH lines in the G-band. We show that Hund’s case (b) can be approximately
applied for calculating the Landé factors of the rotational levels of the CH
molecule. We perform a formal solution of the vector RT equation for the
Stokes profile in a typical semi-empirical model of quiet regions in the solar
atmosphere for obtaining the emergent Stokes profiles. We discuss several of
the most interesting regions in which CH lines not blended with atomic lines
can be found. We finally describe recent observations which confirm many of
the predicted line profiles.

In Section §6.6 we describe the detection of polarization from the E4Π −
A4Π system of FeH in sunspot spectra. Due to the strong polarization signals
produced by the rotational lines of this system, we emphasize their potential
as diagnostic tools for empirical investigations on the physical conditions in the
lower atmosphere of sunspots and on the magnetism of late-type dwarfs. Since
nor the rotational constants neither the coupling constants are known for these
electronic states of FeH, this diagnostic potential cannot be used yet. However,
we have detected lines with negative effective Landé factors, which clearly show
that the lines from this system are in an intermediate coupling between Hund’s
case (a) and (b).

6.1 LTE synthesis of molecular Stokes profiles

The Zeeman patterns and strengths calculated by the numerical diagonaliza-
tion of the molecular Hamiltonian of Section 5.3 or with Schadee’s (1978) theory
of the Zeeman effect for diatomic molecules in doublet states can be used to
theoretically calculate the emergent Stokes profiles in magnetized stellar atmo-
spheres. To this end, we have developed a very general synthesis code which
is able to calculate, either using the 1D plane-parallel or the 1D spherically
symmetric approximation, the emergent Stokes profiles induced by the Zeeman
effect in atomic and/or molecular lines under the assumption of LTE. In this
section we briefly explain our computer program.

We solve the RT Eq. (5.38) by means of the quasi-parabolic DELOPAR
method proposed by Trujillo Bueno (2003c), which is a improvement of the
DELO method of Rees et al. (1989). The scheme used for a spherically sym-
metric atmosphere is similar to the one discussed in Chapter 4 for the solution
of the RT equation for unpolarized light.

Consider a ray propagating along direction ~Ω and with frequency ν. The
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elements of the propagation matrix with i=I,Q,U ,V for a given transition are
obtained from:

ηi = κlφi(ν, ~Ω)

ρi = κlψi(ν, ~Ω),
(6.1)

where ηi are the absorption coefficients and ρi are the magneto-optical coeffi-
cients. The profiles φi and ψi are given by (Landi Degl’Innocenti 1992):

φI(ν, ~Ω) =
1

2

[

φ0 sin2 θ +
φ−1 + φ1

2
(1 + cos2 θ)

]

φQ(ν, ~Ω) =
1

2

[

φ0 +
φ−1 + φ1

2

]

sin2 θ cos 2χ

φU (ν, ~Ω) =
1

2

[

φ0 +
φ−1 + φ1

2

]

sin2 θ sin 2χ

φV (ν, ~Ω) =
1

2
[φ1 − φ−1] cos θ

ψQ(ν, ~Ω) =
1

2

[

ψ0 +
ψ−1 + ψ1

2

]

sin2 θ cos 2χ

ψU (ν, ~Ω) =
1

2

[

ψ0 +
ψ−1 + ψ1

2

]

sin2 θ sin 2χ

ψV (ν, ~Ω) =
1

2
[ψ1 − ψ−1] cos θ,

(6.2)

where θ and χ describe the relative orientation of the magnetic field vector
and the line-of-sight (see, e.g., Landi Degl’Innocenti 1992). φq and ψq (with
q = 0,±1) are the normalized line profiles, defined as

φq =
∑

MlMu

SJlJu
q (Ml,Mu)

1√
π

1

∆νD
H(v − vA + vB(guMu − glMl), a)

ψq =
∑

MlMu

SJlJu
q (Ml,Mu)

1√
π

1

∆νD
L(v − vA + vB(guMu − glMl), a).

(6.3)

Sq(Ml,Mu) is the strength of each individual Zeeman component between Mu

and Ml, H(v, a) and L(v, a) are the Voigt and anomalous dispersion profiles,
respectively, while v = (ν0 − ν)/∆νD, vA = ν0ωA/c∆νD and vB = νL/∆νD,
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being ωA the projection of the macroscopic velocities in the medium along the
line-of-sight and νL the Larmor frequency. a is the damping parameter, while
gu and gl are the Landé factors of the upper and lower levels, respectively,
calculated from Hund’s coupling cases formulas or from Schadee’s (1978) theory
or from the numerical diagonalization of the molecular Hamiltonian. ∆νD is
the Doppler width of the line, which includes thermal as well as microturbulent
contributions, while ν0 is the central wavelength of the line. We note that
q = −1, 0,+1 correspond to the σblue, π and σred components, respectively.
It is important to note that, for many molecular lines, the σblue and σred are
not blue- and red-shifted with respect to the central wavelength of the line,
respectively.

A quantity of great importance in Zeeman diagnostics is the effective Landé
factor ḡ, which represents the wavelength shift from the line center of the “center
of gravity” of the σred components in units of ∆λB = λ2eB/4πmec

2:

ḡ =
∑

MuMl

SJlJu
1 (Ml,Mu) (guMu − glMl) . (6.4)

The line opacity kl is obtained under the assumption of LTE, so that:

kl =
hν0

4π
(NlBlu −NuBul) =

πe2

mec

Nmol

Umol(T )
gf e−El/kT

(

1− ehν0/kT
)

, (6.5)

where Nmol is the molecular abundance, Umol(T ) is the temperature dependent
partition function of the molecule, El is the energy of the lower level of the
molecular transition, while gf is the oscillator strength of the transition times
the degeneracy of the lower level. The line source function Sl is assumed to
be the Planck function. Therefore, the emission vector is obtained from the
absorption coefficients as:

εi = ηiSl = ηiBν , i = I,Q,U, V (6.6)

The atomic lines are treated in exactly the same way. We have used the
atomic linelist of Kurucz (1993a). Two differences from the molecular lines
arise. First, the Landé factors of the levels are taken from the linelist which
appear to be calculated not using simplifications like the L−S coupling (al-
though they can be also calculated using the L−S coupling as an option in
the program). Second, the atomic abundances and atomic partition functions
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are calculated according to the population distribution given by the Saha and
Boltzmann equations.

When the absorption and emission properties of each individual line are ob-
tained, we perform the formal solution of the RT equation using the DELOPAR
method frequency by frequency. We take into account the contribution at each
frequency of all the blended lines, so that we solve the problem including all the
blends which can affect the polarization signal of the individual lines. We shall
see an example of this massive blending in the CH G-band circular polarization
spectrum in Section §6.5. Therefore, for each frequency:

η̄(ν) =
∑

k

η̄k(ν)

ε̄(ν) =
∑

k

ε̄k(ν) =
∑

k

η̄k(ν)Bv = η̄(ν)Bν ,
(6.7)

where the k runs over all the included transitions (although it effectively runs
over all the transitions which produce a non negligible contribution to the fre-
quency ν), η̄ and ε̄ are the propagation matrix and emission vector, respectively,
and Bν = (Bν , 0, 0, 0)

†.

6.2 Comparing Schadee’s versus the Hamiltonian

Diagonalization Approaches

In this section we show that the numerical diagonalization of the total molecular
Hamiltonian leads to results which are in accordance with the results obtained
from the theory developed by Schadee (1978) when the same molecular con-
stants are used. The strength of the numerical diagonalization approach is that
it allows us to handle problems which cannot be treated under the theory de-
veloped by Schadee because it is limited to doublet electronic states (S = 1/2).
Furthermore, we can easily include additional angular momentum coupling by
adding the term to the total Hamiltonian. The technique of reordering the
Hamiltonian to build a block-diagonal matrix, developed in Section §5.3, leads
to a fast numerical diagonalization algorithm which can compete in speed with
the analytical formulas of Schadee (1978), with the obvious advantage of the
generality.

In order to verify that the results are correct when performing the numerical
diagonalization, we have calculated the Zeeman patterns for different values of
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Molecule Transition Line Nu Ju Nl Jl B
up
rot Blow

rot Aup/γup Alow/γlow

MgH A2Π − X2Σ+ P1(5.5) 5 5.5 6 6.5 6.09 5.83 34.99 (Λ-S) 0.025 (S-R)

MgH A2Π − X2Σ+ P2(5.5) 6 5.5 7 6.5 6.09 5.83 34.99 (Λ-S) 0.025 (S-R)

MgH A2Π − X2Σ+ Q1(5.5) 5 5.5 5 5.5 6.09 5.83 34.99 (Λ-S) 0.025 (S-R)

MgH A2Π − X2Σ+ Q2(5.5) 6 5.5 6 5.5 6.09 5.83 34.99 (Λ-S) 0.025 (S-R)

OH X2Π − X2Π P1(10.5) 9 9.5 10 10.5 17.10 18.55 -139.75 (Λ-S) -139.21 (Λ-S)

OH X2Π − X2Π P2(9.5) 9 8.5 10 9.5 17.10 18.55 -139.75 (Λ-S) -139.21 (Λ-S)

OH A2Σ+
− X2Π Q1(9.5) 9 9.5 9 9.5 17.36 18.55 0.201 (S-R) -139.21 (Λ-S)

OH A2Σ+
− X2Π Q2(9.5) 10 9.5 10 9.5 17.36 18.55 0.201 (S-R) -139.21 (Λ-S)

C2 d3Π − a3Π P1(7) 5 6 6 7 1.75 1.63 -16.90 (Λ-S) -15.25 (Λ-S)

C2 d3Π − a3Π P2(6) 5 5 6 6 1.75 1.63 -16.90 (Λ-S) -15.25 (Λ-S)

C2 d3Π − a3Π P3(5) 5 4 6 5 1.75 1.63 -16.90 (Λ-S) -15.25 (Λ-S)

Table 6.1: Spectroscopic data of the transitions for which the Zeeman patterns have been
calculated. The data have been compiled from Huber & Herzberg (2003). The last two
columns represent the spin-orbit (indicated with (Λ-S)) or spin-rotation (indicated with (R-
S)) coupling constants of the upper and lower levels, depending on wether Λ 6= 0 or Λ = 0,
respectively.

the field strength for a wide range of electronic transitions, including many of
the observed molecular transitions in the solar spectrum. Zeeman pattern plots
show the splitting in wavelength units of each Zeeman component of a given
transition and the relative strength of each component. In the following figures,
we separate the transitions depending on the value of q = Mu −Ml. q = −1
corresponds to the typical σred components, which are plotted in the upper part
of the figures. q = 0 corresponds to the π components, which are plotted in the
lower part of the figures. Finally, q = 1 corresponds to the σblue components,
which are plotted in the middle part of the figures.

The rotational constants used in all the subsequent calculations have been
obtained from Huber & Herzberg (2003) and they are shown in Table 6.2. It
constitutes an actualized database of molecular constants of great usefulness.

6.2.1 MgH

We have calculated the Zeeman patterns of some rotational lines of the A2Π−
X2Σ+ electronic transition of MgH, whose rotational structure is observed
around 5150

◦

A. The lower level of these transitions has Λ = 0 so that no
coupling between the orbital angular momentum and the rotation is possible.
The spin-rotation coupling constant of the lower level has a value of γ = 0.025
cm−1 so that the splitting due to this coupling is extremely small and the mag-
netic field necessary to produce a magnetic splitting similar to the spin-rotation
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splitting is very small (see Berdyugina & Solanki 2002). An estimation of this
Paschen-Back transition field can be obtained by equating both the multiplet
and Zeeman splitting, thus obtaining the following formula:

H ∼ ∆σ

µ0gL
, (6.8)

where µ0 = 4.6686 × 10−5 cm−1 G−1 is the Bohr’s magneton, ∆σ is the level
separation in cm−1 and gL is the Landé factor of the level. The transition to
the Paschen-Back regime then starts at very small fields for these particular
rotational levels, of the order of 300 G.

On the other hand, the upper level has Λ = 1 and the spin-orbit coupling
constant is A = 34.99 cm−1. The transition to the Paschen-Back regime for
this level occurs at very high fields, of the order of 1.7×105 G, and we only
have to take into account that the lowest rotational levels are described in an
intermediate (a)-(b) case. For high J , this level can be correctly described
under Hund’s case (b) coupling in the Zeeman regime.

We show in Figs. 6.1 and 6.2 the Zeeman patterns of the P1(5.5) and P2(5.5)
lines. On the left panels we have plotted the Zeeman patterns obtained using
Schadee’s (1978) theory and in the right panel we show the results obtained via
the numerical diagonalization of the full Hamiltonian matrix. The quantum
numbers of the transitions can be seen in Table 6.2. First of all, note that
the Zeeman patterns obtained using the two techniques are extremely similar
(provided that we use the same molecular constants), even in the highly asym-
metric patterns obtained for 3000 G. For very small magnetic field strengths,
the obtained Zeeman pattern is that of a transition in which both levels are in
the Zeeman regime, being the upper rotational level in an intermediate state
(a)-(b) and the lower in pure Hund’s case (b). The σ and π components are
completely symmetric with respect to ∆λ = 0. Recalling the previous equations
for the absorption coefficients in a magnetized atmosphere and, for example,
the simple Milne-Eddington solution of the polarized RT equation (Unno 1956;
see also Landi Degl’Innocenti & Landi Degl’Innocenti 1973), we can see that
Stokes V profile is proportional to ηV , while Stokes Q is proportional to ηQ. Let
φp, φr and φb be the absorption profiles centered in the center of gravity of the
π, σred and σblue components, respectively. We can assume, for simplicity, that
the line profiles are gaussians with a width given by the thermal broadening.
Then, we can assume that ηV is roughly proportional to φr − φb, while ηQ is
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roughly proportional to φp − (φb + φr)/2. Following this scheme, the Stokes
V signal for the very weak fields (below 100 G) has the typical antisymmetric
shape of V with two lobes and the symmetric shape of Q with three lobes.
However, it is usually difficult to directly relate the Zeeman patterns to the
emergent Stokes profiles because the fine details of the Zeeman patterns are
sometimes crucial. This is produced by the dangerous assumption (which we
do not make) that ηV and ηQ can be described by means of the line profiles
centered at the center of gravity of the σ and π components.

When the field increases to 500 G, the center of gravity of one of the σ
components (depending on wether the line is P1 or P2) remains in the same
relative position, while the other σ component starts to be perturbed. The
shape of Stokes V remains antisymmetric as a first approximation, although the
amplitude is reduced. Concerning Stokes Q, it slightly becomes asymmetric.

When the field is increased up to 3000 G, the π components of the P1 line is
again symmetric while that of the P2 is not. Both of them are no more centered
at ∆λ = 0. The center of gravity of the σred remains almost in the same relative
place for the P1 line (of course, taking into account that the splitting is the larger
the larger the magnetic field strength) while all σblue components loose strength
except the one centered in ∆λ = 0. Therefore, it is expected that the Stokes
V signal will be weaker due to the apparent cancelation of the σ components,
whose center of gravity are very close to each other. The Stokes Q signal will
become completely symmetric with only one important lobe. Concerning the
P2 line, the center of gravity of both σ components are almost at the same
location so that a very weak Stokes V signal is expected. On the other hand, a
weak one-lobed Stokes Q is also expected.

The P and R branches of MgH are quite weak while the lines from the Q
branch are much more important. To this end, we have obtained the Zeeman
patterns of some lines of the Q branch. The behavior of the these lines can be
seen in Figs. 6.4 and 6.5. A similar discussion can be done with these lines. The
general behavior is that, starting from a very symmetric pattern characteristic
of an intermediate coupling case between (a) and (b) for very low fields, a quick
transition to a Paschen-Back regime occurs for quite low field strengths. This
transition leads to very distorted Zeeman patterns for intermediate values of
the field, while they gain some symmetry in the limit of high field. We will see
later the effect of a very high magnetic field in the Zeeman pattern of CN lines
(see Section §6.3.2).



6.2 Comparing Schadee’s vs the Hamiltonian Diagonalization Approaches195

As mentioned above, all these results must be verified with the complete
solution of the polarized RT equation. To this end, we have performed formal
solutions of the RT equation in the hot umbra model of Collados et al. (1994).
We have assumed that the umbra is placed at µ=0.7, in order to be able to see
the effect of the Zeeman pattern in the linear polarization spectrum due to the
transverse Zeeman effect. We have introduced an ad-hoc magnetic field vector
constant with height in the radial direction and pointing upwards. Although
the model provides the value of the magnetic field at each height, we find it more
interesting to use a constant magnetic field in order to easily verify the effect of
the Zeeman pattern in the emerging Stokes profiles. Although the presence of a
temperature gradient in the model affects the emergent Stokes profiles, we can
compare the emergent Stokes profiles with the Zeeman patterns by making use
of the approximation ηV ∼ φr − φb and ηQ ∼ φp − (φb + φr)/2. The synthetic
Stokes V and Q are plotted in Figs. 6.3 and 6.6. Concerning the lines from
the P branch, we see that Stokes V for low fields has the typical antisymmetric
shape, with an amplitude which is proportional to the field strength. However,
when the field is increased, this proportionality is lost, not because we enter into
the strong-field regime of the Zeeman effect, but because of the special deformed
Zeeman pattern, characteristic of the Paschen-Back regime. The positions of
the centers of gravity of the σ components get closer so that the Stokes V signal
gets weaker. Note also that the emergent Stokes V for a field of 3000 G for the
P1 line is extremely deformed, turning into an almost symmetric shape with
two positive peaks. Concerning Stokes Q, the Zeeman patterns produce the
interesting effect of giving an antisymmetric linear polarization signal, similar
to the typical Stokes V signal. Furthermore, the linear polarization signal is
larger for Stokes Q than for Stokes V for the P1 line. The Q peak is ∼2.5 times
larger the V peak. Finally, since the effective Landé factor of the P1 and P2

lines have opposite sign, the circular polarization signal has opposite polarity.
This effect is common to molecular lines.

Concerning the lines of the Q branch, we find antisymmetric Stokes V and Q
profiles, irrespective of the field strength, at least up to 3000 G. An effect similar
to the transition to the strong-field regime is also found for these lines. The
circular polarization amplitudes are proportional to the magnetic field except
for B = 3000 G. This is again produced by the characteristics of the Zeeman
patterns. We also find, for high field strengths, linear polarization signals which
are comparable to the circular polarization signal.
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Figure 6.1: Zeeman patterns of the MgH P1(5.5) rotational transition of the A2Π − X2Σ+

electronic transition. The left panels show the results obtained from Schadee’s (1978) theory,
while the right panels show the results obtained via our numerical diagonalization of the total
Hamiltonian using the very same rotational and coupling constants. The transition to the
Paschen-Back regime can be perfectly seen.
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Figure 6.2: Zeeman patterns of the MgH P2(5.5) rotational transition of the A2Π − X2Σ+

electronic transition. The left panels show the results obtained from Schadee’s (1978) theory,
while the right panels show the results obtained via our numerical diagonalization of the total
Hamiltonian using the very same rotational and coupling constants.
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Figure 6.3: Emergent Stokes profiles from the Collados et al. (1994) sunspot atmospheric
model at µ=0.7. We show Stokes V and Q for different values of the magnetic field strength.
The magnetic field vector is always in the radial direction and pointing outwards. The refer-
ence direction for Q > 0 is that with χ = 0.
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Figure 6.4: Zeeman patterns of the MgH Q1(5.5) rotational transition of the A2Π − X2Σ+

electronic transition. The left panels show the results obtained from Schadee’s (1978) theory,
while the right panels show the results obtained via our numerical diagonalization of the total
Hamiltonian using the very same rotational and coupling constants. The transition to the
Paschen-Back regime can be perfectly seen.
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Figure 6.5: Zeeman patterns of the MgH Q2(5.5) rotational transition of the A2Π − X2Σ+

electronic transition. The left panels show the results obtained from Schadee’s (1978) theory,
while the right panels show the results obtained via our numerical diagonalization of the total
Hamiltonian using the very same rotational and coupling constants.
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Figure 6.6: Emergent Stokes profiles from the Collados et al. (1994) sunspot atmospheric
model at µ=0.7. We show Stokes V and Q for different values of the magnetic field strength.
The magnetic field vector is always in the radial direction and pointing outwards. The refer-
ence direction for Q > 0 is that with χ = 0.
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6.2.2 OH

We have calculated the Zeeman patterns of two different bands of OH which
are observed in the solar spectrum. The first one are the vibration-rotation
transitions inside the fundamental X2Π electronic state observed in the infrared
around 1.5 µm. The other one is the electronic transition A2Σ+−X2Π observed
in the UV. We show in Figs. 6.7 and 6.8 the Zeeman patterns of the P1(10.5)
and P2(9.5) rotational transitions of the v=2-0 vibrational band. These lines
are those observed by Harvey (1985) which present opposite polarity in the
polarized spectrum of an umbra. As we will see below, the explanation for this
change of polarity is that their respective effective Landé factors have opposite
signs (see also Berdyugina & Solanki 2001). The center of gravity of the P1

line is shifted to ∆λ > 0, so that ḡ > 0, while that of the P2 lines is shifted to
∆λ < 0, so that ḡ < 0. Since the transition to the Paschen-Back regime occurs
for this electronic state at fields larger than 106 G, this change of sign is only
produced by the specific properties of the pattern in the Zeeman regime. In
fact, this change of sign appears also when the levels are described under the
Hund’s case (b) coupling.

The OH electronic transition in the UV is much more interesting from the
point of view of the Zeeman structure since the transition to the Paschen-Back
regime occurs at lower fields. It arises from the A2Σ+−X2Π transition, which
is opposite to the investigated electronic transition of MgH. Those electronic
transitions in which the electronic states have Λ = 0 are interesting because they
usually present a transition to the Paschen-Back regime at low fields. This
is produced because the spin-rotation coupling is usually much smaller than
the spin-orbit coupling thus leading to extremely small multiplet splittings.
The magnetic field necessary for obtaining an equivalent Zeeman splitting is
unusually weak. This leads to interferences between the rotational levels and
the transition from the Zeeman to the Paschen-Back regime occurs. In this
case, this transition occurs due to the low spin-coupling constant of the upper
level, while the lower level is always in the Zeeman regime. Figs. 6.9 and 6.10
show the Zeeman patterns of the Q1(9.5) and Q2(8.5), respectively, for fields
up to 3000 G. They all seem symmetric up to fields around 1000 G, showing
the typical change of sign of the effective Landé factor for transitions between
J = N + 1/2 and J = N − 1/2 levels, respectively. For higher fields, the
asymmetries become important, even leading to a convergence effect similar to



6.2 Comparing Schadee’s vs the Hamiltonian Diagonalization Approaches203

the band-head effect in the molecular bands. When the field increases, there is a
return in the σ and π components which is more clearly seen in the Q1(9.5) line.
This leads to an effective Landé factor which changes when the field increases.

6.2.3 C2

The observed electronic transition of C2 in the visible around 5100
◦

A belongs
to the d3Π − a3Π transition. Since S = 1 in this case, the calculation of the
splittings and strengths of the components cannot be accomplished with the
theory of Schadee (1978). Berdyugina & Solanki (2002) show that both levels
are in the Zeeman regime up to fields as strong as 70000 G, but they are in
an intermediate Hund’s case between (a) and (b) for lower fields. Because the
Zeeman patterns would be very similar independently of the value of the field,
we have plotted in Fig. 6.11 the Zeeman pattern for the P1(7) and P2(6) lines
for a field strength of 3000 G. These patterns clearly show the very symmetric
patterns typical of the Zeeman regime and can be used to verify an interesting
behavior of these lines. The Landé factor (obtained as the center of gravity of
the σred component) of the J = N transitions is much smaller than that of the
J = N ± 1. Therefore, the lines between levels J = N have a very reduced
magnetic sensitivity with respect to the lines between J = N ± 1 levels. This
differential effect between the lines of C2 can be suitably used for obtaining
information about the weak solar magnetic field via the Hanle effect. The
lines between J = N levels then become reference lines which are relatively
insensitive (at least for moderate fields) to the effect of the magnetic field.

6.2.4 Conclusion

With the previous calculations, we have shown that the transition to the Paschen-
Back regime leads to anomalous Stokes profiles induced by the Zeeman effect
in molecular lines. We have shown that the most sensitive transitions to this
Paschen-Back transition are those where one of the electronic states has Λ = 0
because the spin-rotation coupling is usually very weak and the ensuing splitting
is very small, comparable with the Zeeman splitting for very low fields. Apart
from the examples in solar physics, many examples from radio observations can
be found in the literature (Bourke & Goodman 2003). However, the transition
to the Paschen-Back regime in transitions with other electronic states could, in
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Figure 6.7: Zeeman patterns of the OH P1(10.5) rotational transition of the v=2-0 vibrational
transition. The left panels show the results obtained from Schadee’s (1978) theory, while
the right panels show the results obtained via our numerical diagonalization of the total
Hamiltonian using the very same rotational and coupling constants.
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Figure 6.8: Zeeman patterns of the OH P2(9.5) rotational transition of the v=2-0 vibrational
transition. The left panels show the results obtained from Schadee’s (1978) theory, while
the right panels show the results obtained via our numerical diagonalization of the total
Hamiltonian using the very same rotational and coupling constants.
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Figure 6.9: Zeeman patterns of the OH Q1(9.5) rotational transition of the A2Σ+ − X2Π
electronic transition. The left panels show the results obtained from Schadee’s (1978) theory,
while the right panels show the results obtained via our numerical diagonalization of the total
Hamiltonian using the very same rotational and coupling constants.
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Figure 6.10: Zeeman patterns of the OH Q2(8.5) rotational transition of the A2Σ+ − X2Π
electronic transition. The left panels show the results obtained from Schadee’s (1978), while
the right panels show the results obtained via our numerical diagonalization of the total
Hamiltonian using the very same rotational and coupling constants.
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Figure 6.11: Zeeman patterns of the C2 P1(7) and P2(6) rotational transitions of the d3Π−a3Π
electronic transition. In this case, since S = 1, the theory of Schadee (1978) cannot be applied
and these results have been obtained with the numerical diagonalization of the Hamiltonian.

principle, be observed in cool stars with very high magnetic fields.

In the Paschen-Back regime, the effective Landé factor of a transition varies
depending on the field strength. We are now investigating the possibility of
a change of sign in the value of ḡ when the field strength is increased. The
previous calculations do not show neither this change of sign nor the possibility
of it, since the Zeeman patterns of the σred components always remain in the
same positive or negative region of the ∆λ axis. However, this change of sign
would lead to a field strength in which there is no Stokes V signal even when
the field is pointing towards the observer (at least in a first approximation) due
to the longitudinal Zeeman effect, although a strong linear polarization signal
can appear if the field is not directly pointing towards the observer.

6.3 Spectro-polarimetric observations with the Tenerife

Infrared Polarimeter: discovery of anomalous CN linear

polarization profiles

We have performed observations of some spectral regions in the near-IR with
the aid of the Tenerife Infrared Polarimeter (TIP) mounted on the German
Vacuum Tower Telescope (VTT) at the Observatorio del Teide (Izaña, Spain).
We were looking for the Zeeman signal produced by OH in the infrared around
1.5 µm. Many OH lines show prominent circular polarization Stokes V signals
in the umbra of sunspots, even showing different polarities in lines which appear
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completely similar in the intensity spectrum. Additionally, CN lines are also
present in this spectral region showing very weak absorptions in the intensity
spectrum. This can be seen from the observed spectra shown in Fig. 6.12.
The strong absorptions in the umbra are the OH lines first observed by Harvey
(1985). They present conspicuous circular polarization signals which show the
opposite polarity found by Harvey (1985). Other lines can be detected in the
intensity spectrum showing very weak Stokes V signals and apparently coincid-
ing with the CN weak absorptions in Stokes I. However, some of them present
a quite important linear polarization signal, even at the center of the umbra.
This turns out to be an enigmatic behavior because the OH lines, having a high
value of the Landé factor (as seen from the Stokes V signal) do not show any
appreciable Stokes Q or U signal. On the other hand, the linear polarization
signal produced by these CN lines extend outside the umbra, well inside the
penumbral region.

After comparing the exact wavelength of these lines with the CN linelist of
Kurucz (1993b), we have found that these linear polarization signals correspond
to rotational transitions of CN. We will indicate the exact quantum numbers of
the transitions on Section §6.3.2. We have observationally found that the CN
polarization signal is more conspicuous close to the umbra-penumbra transition,
while it becomes very small at the center of the umbra. Furthermore, the closer
to the disk center the sunspot is, the weaker the polarization signal produced by
these CN transitions. On the other hand, the fact that the linear polarization
signal is more important than the circular polarization in the CN lines is a
common feature to all the observations. Another very interesting property
of these CN lines is that the linear polarization signal closely resembles the
classical antisymmetric shape of the Stokes V profiles.

6.3.1 Physical Interpretation: OH lines

Obviously, the explanation of the opposite polarity of the OH lines is that
the effective Landé factor of both pairs of OH lines have different sign (see
Berdyugina & Solanki 2001). Investigating the spectroscopic details of the
transitions, we find that two lines are the P1e(21/2) and P1f (21/2) and the
other two are the P2e(19/2) and P2f (19/2). Both the upper and lower levels
belong to the fundamental electronic state X2Π, the transitions belonging to
the ∆v = 2 vibrational band. Therefore, they are lines between different spin-
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Figure 6.12: Observed Stokes profiles in a sunspot at µ=0.75. The lines showing conspicuous
circular polarization Stokes V signals belong to OH. Note that the two most important OH
lines at lower wavelengths have opposite polarity as compared with the two most prominent
OH lines at longer wavelengths. The lines showing weak antisymmetric linear polarization
U -signals belong to CN. These spectropolarimetric observations were carried out in June 2000
by J. Trujillo Bueno and M. Collados.

orbit components of a given rotational level. We have four lines instead of only
two because the electronic state, having Λ = 1 has Λ-doubling. Each transition
indicates the parity e or f of the lower level (see Brown et al. 1975 for an
explanation of the notation).
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Rotational levels of the X2Π electronic state are in the Zeeman regime
for fields below 1.2 × 106 G, although they are described in an intermediate
coupling scheme between Hund’s case (a) and (b). Although the explanation
of the change of sign has been pointed out before in Section §6.2.2 with the aid
of the Zeeman patterns, we give here a simplified explanation in terms of the
Hund’s case (b) coupling, which is a very good approximation for levels above
J = 11/2. By calculating the Landé factor in this coupling using Eq. (5.19),
we obtain:

gL(J = N + 1/2) =
2J + 3

J(2J + 1)

gL(J = N − 1/2) = − 2J − 1

(J + 1)(2J + 1)
,

(6.9)

which have different signs for J > 1/2. Using the formula for the effective
Landé factor, we end up with a change of sign for transitions between levels
with J = N + 1/2 (P1) and those between levels with J = N − 1/2 (P2):

ḡ = ± 4J2 + 8J + 1

2(J + 1)(2J + 1)(2J + 3)
, (6.10)

where + corresponds to transitions between levels J = N + 1/2 and − to
transitions between levels J = N − 1/2. Additional information can be found
in Berdyugina & Solanki (2001), although the previous results represent the
fundamental explanation of this problem. See also the Zeeman patterns shown
in Figs. 6.7 and 6.8 for an explanation of why the effective Landé factor changes
its sign using the complete intermediate treatment.

6.3.2 Physical Interpretation: CN lines

More striking is the case of the CN lines. The CN lines observed around 1.54
µm belong to the A2Π − X2Σ+ electronic transition. This transition is the
same that will be included in the modeling of the CN scattering polarization in
Section §7.3. The rotational levels of the lower electronic state can be correctly
described under the Hund’s case (b) coupling when we are in the Zeeman regime.
Since the transition to the Paschen-Back regime occurs for very weak fields (∼77
G for the lowest J rotational levels), these lines are always in the Paschen-Back
regime under the magnetic fields present in sunspots. Concerning the rotational
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levels of the upper electronic state, they are always in the Zeeman regime (the
field strength at which the transition to Paschen-Back occurs is ∼560000 G),
although, being a 2Π level, they cannot be described using any simple coupling
scheme. The coupling scheme is intermediate between Hund’s case (a) and (b).
In view of the results shown by Berdyugina & Solanki (2002), no simple coupling
case can be used for determining the magnetic properties of the CN lines around
1.54 µm. Therefore, the numerical diagonalization of the Hamiltonian or the
theory of Schadee (1978) has to be used.

The observed lines are located at 15418.29
◦

A and 15423.39
◦

A surrounding
the OH lines discussed in Section §6.3.1. These are CN lines between levels with
very high values of the angular momentum J . The first one is the Q1(27.5) line
and the other is the Q1(46.5). For the first line we have Ju = Jl = 55/2
and Nu = Nl = 27, while for the second one we have Ju = Jl = 93/2 and
Nu = Nl = 46. Using the molecular constants from Huber & Herzberg (2003),
we have obtained the Zeeman patterns for the Q1(46.5) line for 50 G, 500 G,
2500 G and 30000 G. They are shown in Fig. 6.13. This electronic transition
is the opposite to that of the UV band of OH. Although being a different
transition (even different values of the angular momentum J), their Zeeman
patterns have some common properties. For fields as low as 50 G, the Zeeman
patterns are very similar. The main difference is that the two σ components for
the case of OH do not overlap (see Fig. 6.9). Although the Zeeman patterns
of the CN lines resemble that of the Zeeman regime in which one level is in
an intermediate coupling between case (a) and (b), some deviations from the
Zeeman regime are already found for such a weak field. On the other hand, the
π component has the same structure. When the field is increased, the center
of gravity of the σ components converge to the same structure until arriving
to the extreme case obtained for 30000 G in which both σ components are in
the same place and with the same structure. The deformations of the Zeeman
pattern are larger in CN than in OH because the rotational constants and the
spin-rotation coupling constant are smaller for CN. The rotational constant
and the spin-rotation coupling constant of the CN states are around an order
of magnitude smaller than for the OH states, thus leading to multiplet levels
very close in energy. Therefore, strong coupling between consecutive rotational
levels appear. We have included in the Hamiltonian the coupling between the
rotational level J under study and the levels J ± 1 (see Chapter 5 in Section
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Figure 6.13: Zeeman patterns for 50, 500, 2500 and 30000 G of the Q1(46.5) CN line. Note
that the σ and π components are symmetric for low fields and become deformed due to the
transition to the Paschen-Back regime. At very high fields, the symmetry is again recovered.

§5.3). We are now investigating the effect of including a coupling between more
separated levels J ± 2, 3, . . .. In account of Eq. (6.8), the field necessary to
obtain any interference between those levels would be as large as ∼80000 G. At
least in the solar atmosphere, it is not expected to have such an influence.

The following argument based on the shape of the Zeeman patterns for a
field of 2500 G can be used to show why the linear polarization signal can be
stronger than the circular polarization one, while also explaining the antisym-
metric shape of Q and U in such CN lines. Let us recall the dependence of ηV

and ηQ on the the absorption profiles φr, φp and φb. Because the center of grav-
ity of the two σ components are almost at the same position as shown in Fig.
6.13, a cancelation between the profiles is produced in ηV , yielding a very small
circular polarization signal. On the other hand, because the center of gravity of
the π component is completely displaced from the two σ components, ηQ will
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have an antisymmetric shape. To the best of our knowledge, this antisymmetry
produced by the structure of the Zeeman pattern itself has not been observed
in atomic lines. In fact, this effect cannot be obtained in molecular lines unless
the line is in the Paschen-Back regime. If the line is in the Zeeman regime, the
Landé factor is well defined and independent on M and the field strength. In
this case, the two σ components are symmetric with respect to ∆λ = 0 and the
π component has its center of gravity at ∆λ = 0.

For small field strengths, we recover the typical symmetric shape of Q and U
and the antisymmetric shape of V . For higher field strengths, we obtain an even
lower V signal than for intermediate fields and Q and U signals which tend to
be antisymmetric. If the magnetic field vector lies along the line-of-sight (LOS),
the polarization signal in these CN lines is only circular. However, when the
magnetic field is inclined with respect to the LOS, the linear polarization signal
increases and rapidly becomes more important than the circular polarization
signal.

6.4 An inversion code of Stokes profiles induced by the

molecular Zeeman effect

6.4.1 Description of the code

In order to obtain as much information as possible from spectropolarimetric
observations, we have decided to develop an inversion code for the Stokes profiles
induced by the Zeeman effect in atomic and molecular lines. This inversion code
makes use of the inversion algorithm of the LILIA inversion code (Socas-Navarro
2001), while the synthesis part is the one developed before in Section §6.1. Our
LTE synthesis code allows the synthesis of atomic and molecular lines, so that
the inversion code would be able to perform inversions including both kind of
lines. Such an inversion code is nothing but a nonlinear minimization of a merit
function which takes into account the difference between the observed and the
synthesized profiles. The parameters of this function are the parameters which
describe the atmospheric model. Consider the Stokes parameters at a given
frequency denoted by the four-component vector I(λ). It is usual to choose the



6.4 An inversion code for the molecular Zeeman effect 215

χ2 as the merit function:

χ2 =
1

ν

4
∑

k=1

Nλ
∑

i=1

[

Isyn
k (λi)− Iobs

k (λi)
]2

σk(λi)2
, (6.11)

where Nλ is the number of frequency points, “obs” and “syn” refer to the ob-
served and the synthetic profiles, respectively, while ν is the number of degrees
of freedom (difference between the number of observables and the number of
free parameters of the model). σk are appropriate weights that can be used to
fine-tune the inversion.

This minimization is performed using a Levenberg-Marquardt (LM) algo-
rithm (Press et al. 1986). An explanation of the techniques to solve this
inversion problem can be found in Ruiz Cobo & del Toro Iniesta (1992). The
inversion algorithm of the LILIA code is based on the same approach but the
response functions1 are calculated numerically (see below). We give here a very
brief idea on how the inversion algorithm works. The problem is to obtain
the depth variation of the physical parameters which define the atmosphere:
temperature, density, macroscopic velocity, magnetic field strength, magnetic
field orientation and microturbulence. In order to reduce the number of free
parameters of the problem, only the parameters at a given amount of nodes
along the atmosphere enter the problem, while the physical conditions between
these points are interpolated using either linear, parabolic polynomials or cubic
splines. This drastically reduces the dimensionality of the problem so that the
minimization of the χ2 function can be correctly performed. It is a fundamen-
tal step because the information obtained from the observations is not usually
enough to infer the physical conditions at each point in the atmosphere due
to the noise. Therefore, the previous procedure is nothing but a regularization
technique, usually applied in the general theory of inversion methods. The LM
algorithm needs the evaluation of the derivatives of the merit function with
respect to the parameters of the model at the nodes. For the moment, our
inversion code evaluates the response functions numerically. The main disad-
vantage of this approach is that many formal solutions have to be performed in
order to build the curvature matrix needed in the LM algorithm, thus making
it intrinsically slow. Our next step is to study the feasibility of including a

1The response functions are the derivatives of χ2 with respect to the physical parameters
that define the atmosphere.
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suitable response function technique in our inversion code in order to improve
its efficiency, like in the SIR code (Ruiz Cobo & del Toro Iniesta 1992). The
main difficulty would be to calculate the response function to the temperature
and the density, since the molecular abundances depend highly nonlinearly in
these variables through the ICE equations.

6.4.2 Details of the inversion

We have applied this inversion code to the observed molecular lines of OH
and CN coming from a point in the sunspot umbra observed at µ=0.76. The
four OH lines observed in the umbra (see Section §6.3.1) produce almost the
same absorption in the spectrum, thus they are “formed” at equivalent regions.
Since we do not obtain more information on the thermodynamical and mag-
netic properties of the atmosphere by including these four lines in the inversion
process, we have decided to include only two of them. More precisely, we have
applied the inversion process to the spectral region from 15416.7 to 15423.7

◦

A,
exactly the same range as the observation. In practice, not all the observed
spectral region is taken because of the presence of telluric absorptions. We are
able to synthesize a complete region with all the blends present in it, so that
our inversion code can be applied to highly blended lines also. In this region
we have 5 OH lines and 7 CN lines. However, only two OH lines and two CN
lines produce measurable signals. We have included all of them in the synthesis
process, even though they are very weak. Furthermore, since we are dealing
with sunspot observations, we have included the possibility of having stray-light
contamination from the surrounding quiet Sun. To this end, we add to the the
synthetic spectrum a quantity proportional to the quiet Sun spectrum obtained
from the observations.

Our inversion problem is not straightforward, since the molecular lines do
not have much information about the upper atmospheric regions. To this end,
we have limited the extension of the atmospheric model to the region between
continuum optical depth at 5000

◦

A log τ = 2 and log τ = −4. The inversion
procedure is initialized with the hot umbra model of Collados et al. (1994)
(hereafter HUM from “hot umbra model”). We can see in Fig. 6.14 the observed
profiles together with the Stokes profiles emerging from the inferred model. We
have performed calculations with different number of nodes as can be seen in
Fig. 6.15, but the emergent Stokes profiles are very similar and we have also
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Figure 6.14: Observed profiles (dotted line) and those resulting from the inferred models (solid
line), either when the number of nodes in the magnetic field strength, inclination and azimuth
are NB = 2, Nθ = Nχ = 3 or when they are NB = 3, Nθ = Nχ = 2. Since both give the same
indistinguishable profiles, we only plot one of them. The Stokes profiles are normalized to the
continuum intensity calculated in the Harvard-Smithsonian Reference Atmosphere (HSRA;
Gingerich et al. 1971).

plotted them for one case. The number of nodes used for the magnetic field
strength, inclination and azimuth can be obtained from Fig. 6.15 where we
show the calculated error at each node. They both share the same 3 nodes in
the temperature and macroscopic velocity.

6.4.3 Stokes profiles

Concerning Stokes I, we can recover with good accuracy the depth and width
of the OH and CN lines. The stray-light contribution arrives to 14 % in both
calculations with different number of nodes in the magnetic field strength, in-
clination and azimuth. This is the reason why the telluric CO line between the
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OH lines appears in the synthetic spectrum. Concerning Stokes V , we obtain a
quite good behavior, with slightly asymmetric profiles for OH. The very small
Stokes V signal produced by the CN signal is also recovered. The inferred
model is such that, when it is used to synthesize the other two OH lines, we
obtain a good fit also, including the polarity reversal.

The most interesting results are those corresponding to the linear polariza-
tion signals (Stokes Q and U , depending on the azimuth), because they present
the strong antisymmetric signals produced by the CN lines. The antisymmetric
shapes due to the especial Zeeman patterns are correctly obtained and perfectly
fit the observed signals. The feature at 15419.5

◦

A is produced by the blend be-
tween OH and CN. The profile coming from the inferred model does not fit very
well the observed profile. In fact, many CN lines are blended with the OH line
and the misfit may be produced by not very correct values of the line strength.
This is reinforced by the fact that the general shape of the profile seems to be
recovered in the synthetic profile. In order to avoid these uncertainties, we have
focused on the other two CN lines which appear quite clean. Although clean,
they represent the contribution of some weak CN lines surrounding the strong
component which produces the main signal.

Fig. 6.14 shows the strikingly good fit of the Stokes Q signal of the 15423.39
◦

A CN line. This line presents two lobes of about the same strength, which is
correctly recovered using the corresponding Zeeman patterns. Stokes U shows
again an almost completely antisymmetric profile with two lobes of the same
strength. This regularity is produced because of the high value of J for this
line. The deviations from the Zeeman regime are less important for high J than
for low J levels (the spin-rotation splitting in the 2Σ state increases when J

increases). Concerning the line at 15418.29
◦

A we find a good fitting in Stokes
U and Q in spite of the fact that the line shows quite asymmetric profiles.

6.4.4 Inferred model

The temperature stratification obtained after the convergence of the inversion
procedure is shown in the upper panel of Fig. 6.15, together with the tem-
perature stratification of the HUM model used as initialization. The model
recovered in the inner parts of the atmosphere is slightly cooler than the HUM
model, perhaps indicating that the observed umbra was slightly larger than
that observed by Collados et al. (1994) because of the relation between the
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Figure 6.15: Atmospheric model obtained via the application of our inversion code. The upper
panel shows the temperature profile. The lower left panel shows the magnetic field strength,
inclination and azimuth when NB = 3, Nθ = Nχ = 2, while the lower right panel shows the
case when NB = 2, Nθ = Nχ = 3. Solid lines represent the inferred model while dotted lines
represent the initialization for each property. The vertical bars represent the error bars.
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size of the spot and its temperature. However, above log τ = −1, both models
yield approximately the same temperature (at least inside the error bars). The
error bars associated with the temperature are slightly large. We have to take
into account that the exposure time was only 0.25 seconds. The signal-to-noise
ratio is thus not very large and this transforms into the error bars of the inferred
model.

The rest of variables shown in Fig. 6.15 are related to the magnetic field
and differ in the number of nodes Ni of each variable i. The left panel shows
the inferred model when NB = 3, Nθ = Nχ = 2 while the right panel shows the
inferred model when NB = 2, Nθ = Nχ = 3. The error bars are relatively larger
than those of the temperature due to the lower signal-to-noise ratio obtained
for Stokes Q, U and V , from where the information for B, θ and χ is obtained.
These molecular lines have small effective Landé factors and the polarization
signal due to the Zeeman effect is small. For this reason, it is difficult to
obtain reliable magnetic information of the umbra only with molecular lines2.
However, the magnetic field strength, inclination and azimuth obtained from
the inversion look quite interesting. The magnetic field is weaker in the deep
regions of the atmosphere than that from the HUM model, although the error
bars indicate that the HUM model could also give a good representation of the
polarized spectrum in this region. Above log τ between −1 and −1.5, we get
an inversion of the behavior, with a magnetic field larger than that obtained in
the HUM model. However, the error bars are so large that this result remains
unclear.

The inferred inclination and azimuth present much smaller error bars. In
both cases, the inclination is very close to 180◦, indicating a field which mainly
points downwards in the whole atmosphere. We plan to apply our inversion
technique to future 2D spectropolarimetric observations of sunspots in order
to obtain a mapping of the magnetic and thermodynamic conditions via the
inversion of Stokes profiles in both molecular and atomic lines.

6.4.5 Conclusion

With this experiment, we wanted to show that an inversion with only molecular
lines can give us information about the temperature and magnetic structure of

2We expect to obtain more reliable information by combining both atomic and molecular
lines.
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an umbra. Ideally, it would be necessary to jointly use atomic and molecular
lines in the inversion procedure. In this way, the thermodynamical and mag-
netic information obtained via the high effective Landé factor atomic lines will
be complemented to the great sensitivity of the molecular lines to the tempera-
ture. Furthermore, the strength, inclination and azimuth of the magnetic field
inversion would benefit from the additional constraints given by the molecular
lines which may serve to reduce the error bars.

6.5 Polarization properties of the CH molecule on the G-band

6.5.1 Introduction

Most of the features observed in the solar surface, except for the granulation
produced by convective phenomena, are produced by the presence of magnetic
fields. Although magnetic field concentrations are easily observed when they
are produced at large scale, small scale magnetic field concentrations are very
difficult to observe. Among these small-scale features we can include microp-
ores, network bright points and internetwork fields (Stenflo 1994).

Due to the small size of these small-scale magnetic features, it is extremely
difficult to perform good and detailed observations of them The angular reso-
lution of the telescopes is not enough for resolving these structures so that the
net magnetic flux which remains when integrating over the resolution element
(spatial and temporal) is very small. In spite of that, indirect method have
been developed which allow the use of high spatial and temporal resolution
techniques. These methods involve obtaining images of the solar surface in
wideband filters centered on molecular bands towards the blue and ultraviolet
part of the spectrum. As examples, we have the band head at 3883

◦

A due
to B2Σ − X2Σ electronic transitions of CN (Sheeley 1971), and the so-called

G band around 4305
◦

A due to CH (Muller, Hulot, & Roudier 1989; Berger
et al. 1995). In these molecular wideband images the magnetic elements ap-
pear as bright points with contrasts of typically 30 %, compared to the average
photosphere (Berger et al. 1995).

Several efforts have been performed towards understanding why these bright
points in these molecular bands are bright. Model calculations of G-band
brightness in semi-empirical fluxtube atmospheres provide reasonable values
for the bright point contrast (Sánchez Almeida et al. 2001; Rutten et al. 2001;
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Steiner et al. 2001). Flux-tube models are hotter than the quiet Sun in the lay-
ers producing the observed light. They are evacuated owing to the presence of a
magnetic field, thus allowing us to observe deep and therefore hot photospheric
layers. For this very reason, Sánchez Almeida et al. (2001) concluded that
G-band contrast in the bright points is enhanced compared to the surrounding
photosphere because the opacity in the CH lines is less affected by the higher
temperatures present in magnetic elements than the continuum opacity, which
is mostly due to H−. In the continuum a rise in temperature leads to a higher
formation height of intensity at consequently lower temperatures. On the other
hand, in the G band the formation height remains more or less constant (be-
cause of the increase in H− opacity and decrease in CH line opacity through
dissociation) so that the emergent intensity reflects the higher temperatures.

6.5.2 Theoretical prediction of the polarization properties of the
G-band

The optical band of CH at 4305
◦

A has been investigated up to now considering
only the intensity spectrum. With the theory of Schadee (1978) or the numerical
diagonalization of the Hamiltonian presented in this Thesis, we can now predict
the polarized spectrum of CH in the solar atmosphere.

The CH band at 4305
◦

A is produced by the rotational structure of bands
between the first four electronic states. These transitions are the A2∆−X2Π,
B2Σ− − X2Π and C2Σ+ − X2Π. The G-band is dominated by transitions
of the A2∆ − X2Π band, representing ∼90 % of the total number of lines
in the band. According to the coupling constants of each state and using
Eq. (6.8), we can estimate the field at which the transition to the Paschen-
Back regime occurs. The coupling and rotational constants are again obtained
from Huber & Herzberg (2003). The field at which the states of the most
abundant transition in the band (the X2Π and A2∆ states) enter the Paschen-
Back regime is 6 × 105 G and 104 G, respectively. Moreover, their rotational
levels are extremely well represented using the Hund’s case (b) coupling (see
Berdyugina & Solanki 2002). For the field strengths present in the quiet Sun or
in sunspots, we can safely use the Hund’s case (b) for calculating the Zeeman
splitting for this band. Concerning the other two states, and since Λ = 0, spin-
rotation coupling becomes important. Using the values γ(B2Σ−) ≈ −0.0285
cm−1 and γ(C2Σ+) ≈ 0.05 cm−1, we obtain fields for the lowest rotational levels
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of 600 G and 1100 G, respectively. Since the Landé factor rapidly decreases
with increasing J , we can assume that all the electronic states can be correctly
described under the Zeeman regime for the magnetic fields present in the quiet
Sun, except for lines with small value of J . In highly magnetized regions, it will
be necessary to take into account the transition to the Paschen-Back regime for
the few lines of the B2Σ− −X2Π and C2Σ+ −X2Π transitions present in the
band.

To investigate the intensity and polarization spectra in the G-band we solved
the full Stokes radiative transfer equations over a wavelength range of 30

◦

A

centered around 4305
◦

A through the one-dimensional hydrostatic model of the
average quiet solar atmosphere FAL-C with an imposed vertical magnetic field
of 1000 G pointing outwards. We have assumed that the inclusion of the mag-
netic field does not perturb the thermodynamical properties of the model. The
synthetic Stokes I and V profiles are shown in Figs. 6.17 , 6.18, 6.19, 6.20, 6.21
and 6.22 for observation at disk-center. We have performed two different calcu-
lations: one including only the CH lines and the other including the CH lines
and the possible atomic lines in the spectral region. We can then investigate
which lines of CH are clean enough to be considered as potentially interesting
for investigating the magnetic properties of the bright points. We have also
overplotted the Liège disk center spectrum of Delbouille et al. (1973) as refer-
ence observed spectrum. The Liège atlas is normalized to its local continuum,
which we transform to absolute units by setting the atlas continuum to the
synthetic continuum at 4295.5

◦

A. In this region the observed spectrum shows
a quite clean region where the continuum can be correctly obtained.

First, note that the fit between the observation and the synthesis is notable,
similar to the one we obtained with the VAL-C model in Sánchez Almeida
et al. (2001). Some features are not correctly recovered due to gaps in the
atomic and/or molecular linelists, to not very accurate values of the oscillator
strengths, to deviations from the LTE approximation or to the assumption of
a 1D atmospheric model. The comparison between the spectrum including the
atomic and molecular lines and that including only the molecular lines shows
that some regions of the spectrum are almost free of atomic lines while CH lines
are present. This is the case of the region from 4303.5 to 4304.5

◦

A. On the
other hand, other regions are completely dominated by atomic lines, like the
deep absorption at 4308

◦

A produced by the combined effect of Fe i and Ti ii

(with a small contribution of CH) and the regions at the extremes of the band,
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where the CH lines almost disappear.

Concerning the circular polarization spectrum, the strongest signal in the
whole band reaches ∼20 % in V/Ic and is produced by atomic lines. Typical
circular polarization signals at the wavelengths where CH lines alone dominate
the spectrum are 2-5 % for the 1000 G constant vertical field. The carriers of
the stronger signals are discussed below. The rest of CH lines produce very
weak V signals, mainly due to the small effective Landé factor of the high J
transitions (note that ḡ in Hund’s case (b) typically varies as J−1). Only the
transitions between small J levels produce an important signal in V/Ic.

We have investigated in detail some of the CH lines which produce strong
circular polarization signal. None of the regions is dominated by a single CH
line, rather the spectrum in each is the result of overlapping lines of varying
degrees of magnetic sensitivity. As a result, none of the profiles in Stokes V has
a regular double-lobed antisymmetric shape.

• 4298
◦

A. This region results from the blend of two CH lines and some
atomic lines. The Stokes V profile obtained when no atomic lines are
included is completely antisymmetric. On the other hand, when atomic
opacity is included, the red lobe of the profile completely disappears due to
the blend. The CH lines are the R1e(2.5) and the R1f (2.5) of the v = 0−0
band, thus representing a Λ-doublet similar to the one observed in OH
(see Section §6.3.1). Since the value of J is low, their effective Landé
factor (ḡ ≈ 0.62) is high enough to give an important signal. This region
may be of interest because it gives a non-zero polarization signal when
an integration in wavelength is performed in the surroundings of 4298

◦

A

thus representing, in principle, a candidate for doing filter-polarimetry.

• 4303.3-4304.4
◦

A. This region has two Stokes V features belonging to CH
only. The one at 4303.6

◦

A is produced by the blend between the lines
Q12ef (1.5) and the Q12fe(1.5) of the v = 0 − 0 band, forming again a

Λ-doublet. The other at 4303.9
◦

A is produced by the blend between the
R1e(1.5) and the R1f (1.5) of the v = 0 − 0 band, forming again a Λ-
doublet with ḡ = 0.8833. These lines overlap with lines that are much
less magnetically sensitive. This is a particular notable example of a
single-lobed Stokes V profile. This blend raises the interesting possibility
of recovering the bright point magnetic field with narrowband imaging



6.5 Polarization properties of the CH molecule on the G-band 225

in only one polarization, avoiding the difficulties of reconstructing the
polarization map from two different exposures (Uitenbroek et al. 2004).

• 4311.9
◦

A. This region is produced by a massive blend between CH lines.
There are many lines contributing in this feature, but the most important
are the P12ff (5.5), R21ff (4.5), Q22fe(4.5) and P12ee(4.5) from the v = 0−0
band and the R21ff (1.5), P12ff (4.5), R21ee(1.5) and R21ff (2.5) from the
v = 1 − 1 band. Other weaker lines are also contributing to this profile.
Due to the high number of lines in the blend, it may be difficult to obtain
any information from this profile.

• 4313.6
◦

A. This region is produced by the blend of the Q11fe(3.5) and the
Q11ef (3.5) lines. The separation of the two lines and the Zeeman patterns
produce a V profile which is completely antisymmetric. This profile could
be used, in principle, as a diagnostic tool for the field in the line formation
region of CH.

Summarizing, all the lines which produce strong signals in the circular po-
larization spectrum are produced by transitions between levels with small J ,
in fact, J < 5.5 for all these lines. Other CH features present even stronger
signals than the previous, but they are blended with atomic lines which highly
distort their V profiles. This is the case of the features at 4303.1

◦

A or 4314.2
◦

A.
We have shown in Fig. 6.16 the effective Landé factors for the lines of the

main and satellite branches. As is well known, the value of ḡ for the lines of
the main branches fall when increasing J . Interestingly, the value of ḡ for the P
and R lines of the satellite branches increase when increasing J until reaching
the value ḡ = ±1, respectively. It is expected that at least some of the stronger
lines of the satellite branches may produce an important V signal. This is the
case as we have seen in the massive blend in 4311.9

◦

A. Note, however, that
the satellite lines have much smaller oscillator strengths and they generally are
weak lines (between 1 and 2 orders of magnitude lower than for the lines of the
main branches).

For a prediction of the amount of Zeeman induced polarization under more
realistic conditions in the solar photosphere we solved the Stokes transfer equa-
tions in a two-dimensional cross section through a simulation of magneto-
convection (Stein et al. 2003). As shown in Uitenbroek et al. (2004), we
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Figure 6.16: Effective Landé factor ḡ for the lines of the main branches (left panel) and for the
lines of the satellite branches (right panel). Note that the ḡ factor for the P and R satellite
lines approach unity when J increases, while for the main branch they always go to zero when
J increases.

detect several positions along the slit in which the polarization on the CH lines
arrives to 1 % of the local continuum intensity. Given that the size of these
magnetic elements is ∼100 km, and if the element is isolated without oppo-
site magnetic polarities within the resolution element, they should produce a
polarization signal of order at least 10−4 even when the seeing induced tele-
scope resolution is only of order 1 Mm (corresponding to slightly more than
1). In any case, it seems to be within the capabilities of current polarimetric
instrumentation.

6.5.3 Integrated signal

As the spectro-polarimetric measurement of the CH signals seems to be very
difficult, filter-polarimetry turns out to be an option in the quiet Sun. The
ideal procedure would be to build a narrow filter centered at one of the three
interesting regions and carry out imaging with this filter. To prevent cancela-
tions in an antisymmetric profile, it would be ideal to build the filter centered
in one of the one-lobed V profiles, like the lines at 4298

◦

A (being careful with

the blend with the atomic lines) or at 4304
◦

A. The one-lobed signals do not
suffer from this problem since there is never a cancelation when integrating on
wavelength. The main advantage of these lines is that, since the Landé factor is
relatively small (at least smaller than the highly sensitive lines with ḡ = 2− 3),
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Figure 6.17: Synthetic Stokes I and V profiles of the G-band using the FAL-C model with a

constant magnetic field of 1000 G pointing outwards. We show in black the complete spectrum

including CH and atomic lines, in green the spectrum produced only by CH and in red the

observed Stokes I spectrum from the Liège atlas. Here we show the region between 4290 and

4295
◦

A.
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Figure 6.18: Same as Fig. 6.17 but between 4295 and 4300
◦

A.
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Figure 6.19: Same as Fig. 6.17 but between 4300 and 4305
◦

A.
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Figure 6.20: Same as Fig. 6.17 but between 4305 and 4310
◦

A.
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Figure 6.21: Same as Fig. 6.17 but between 4310 and 4315
◦

A.
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Figure 6.22: Same as Fig. 6.17 but between 4315 and 4320
◦

A.
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Figure 6.23: Filtered circular polarization signal in the G-band with a filter centered at 4305
◦

A and with different widths. Note that we show the absolute value of the V/Ic signal.

they are in the weak-field regime of the Zeeman effect up to very high fields.
Therefore, the observed signal in the image is directly proportional to the field
strength and to the filling factor (size of the magnetic element with respect to
the resolution element).

The development of such a narrow filter (of the order of 200 m
◦

A) may allow
the measurement of bright-point line-of-sight magnetic field strength. Such a
method would have the full benefit of image quality improving techniques like
adaptive optics and phase diversity restoration for optical spatial resolution.
Another possibility would be to use the available wideband filters. To this end,
we have calculated the integrated circular polarization signal obtained using a
filter centered at 4305

◦

A with different widths. The filter is defined as:

fG(λ) = f0 exp
[

−(λ− λ0)
2/σ2

]

, (6.12)

where λ0=4305
◦

A and f0 is a normalization constant such that
∫ λmax

λmin

fG(λ)dλ = 1. (6.13)

λmin and λmax are 4295
◦

A and 4315
◦

A, respectively. In Fig. 6.23 we show
the circular polarization integrated signal obtained with different filters, all
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centered at 4305
◦

A, but with different widths σ. We have drawn a vertical
line at the position of the G-band filter used by Berger et al. (1995) in their
observations and by Sánchez Almeida et al. (2001) in their theoretical modeling.

The width is 7.2
◦

A, equivalent to 12
◦

A of FWHM. The integrated or filtered
circular polarization signal decreases when the filter width increases, except for
very narrow filters. In this case, the signal locally increases for widths between
0.5 and 1

◦

A due to the local variation of the V/Ic signal. More precisely, this

enhancement is produced by the atomic line at 4304.5
◦

A. When the width of
the filter is 7.2

◦

A, the filtered signal is around 10−4, i.e. 0.01 % for a filling
factor of 1. The main disadvantage of this technique is that this very weak
signal is mainly produced by atomic lines, which may not show the extreme
behavior of the CH lines between the magnetic and non-magnetic regions.

6.5.4 Observational confirmation

The main aim of this section is to report on our observational confirmation of the
above-mentioned theoretical prediction. To this end, we first show some selected
examples of our theoretical modeling of the Zeeman effect in the G band, but
considering the predicted fractional polarization in a sunspot model. We then
focus on describing our observational confirmation, which we have achieved via
sunspot spectropolarimetry in the G band using the Zürich Imaging Polarimeter
(ZIMPOL; see Povel 2001) attached to the Gregory Coudé Telescope of IRSOL
(Locarno; Switzerland).

Modeling the G band polarization in sunspots

Prior to showing the fractional polarization profiles we have observed in sunspots
it is convenient to show some selected examples of our theoretical modeling of
the G band polarization in a semi-empirical sunspot model. To this end, we
have used the cool semi-empirical model of Collados et al. (1994), but assum-
ing a vertical magnetic field of constant strength. This is sufficient for our
demonstrative purposes, that is, for showing that the shapes of the computed
V/I profiles agree with those we have observed in sunspots. The vector radia-
tive transfer equation for the Stokes profiles is solved using the quasi-parabolic
DELO method (Trujillo Bueno 2003b) in a way similar to that described by
Uitenbroek et al. (2004).
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Figure 6.24: Calculated emergent V (λ)/I(λ) in the cool umbra model of Collados et al. (1994)
with a constant vertical magnetic field of 2000 G. The solid line represents the emergent
fractional circular polarization taking into account both atomic and CH molecular lines, while
the dashed line represents the emergent V/I taking into account only CH lines. The left

panel shows the region around 4304
◦

A in which we find the single-lobed profile produced by
CH alone. The other conspicuous signal is produced by an atomic line of Fe i. The right

panel shows the region around 4313
◦

A, where we can find the profiles at 4312
◦

A and 4313.7
◦

A
which are produced exclusively by CH lines. The signals between both are produced mainly
by atomic lines. The strongest signal is due to Ti ii.

Fig. 6.24 shows the calculated V (λ)/I(λ) profiles in two spectral regions of
the G band for a vertical magnetic field of 2000 G. The chosen line of sight is
given by µ = cos θ = 0.95, where θ is the heliocentric angle. The upper and
lower panels correspond to the 4304

◦

A and 4312
◦

A spectral regions, respectively.
The solid line represents the emergent Stokes profiles obtained by including both
the atomic and CH lines, while the dashed line represents the emergent Stokes
profiles obtained by including only the CH lines. The wavelengths and oscillator
strengths for the CH lines have been obtained from the linelist of Jorgensen et al.
(1996) while those for the atomic lines have been obtained from CD-ROM 1
by Kurucz3. In both instances we have V/I features dominated by CH lines

only. For example, the one-lobe V/I profile at 4304
◦

A results from the blend
between the R1e(1.5) and R1f (1.5) lines of the v = 0 − 0 band, which gives a
Λ-doublet with effective Landé factor ḡ = 0.8833. The conspicuous V/I profile

at 4313.7
◦

A is produced by the blend of the CH lines Q11fe(3.5) and Q11ef (3.5).

3http://kurucz.harvard.edu
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Finally, the V/I feature at 4312
◦

A is produced by many overlapping CH lines,
but mainly by the P12ff (5.5), R21ff (4.5), Q22fe(4.5) and P12ee(4.5) from the
v = 0 − 0 band and by the R21ff (1.5), P12ff (4.5), R21ee(1.5) and R21ff (2.5)
from the v = 1−1 band. As we see, the CH lines that produce clean V/I signals
result from transitions between levels with small J -values (i.e., with J≤5.5).

Spectropolarimetric observations

The spectropolarimetric observations were carried out on 2003 August 30 in
collaboration with Drs. Bianda (IRSOL) and Trujillo Bueno (IAC) by using
the UV version of the Zürich Imaging Polarimeter (ZIMPOL; see Povel 2001)
attached to the Gregory Coudé Telescope of IRSOL (Locarno; Switzerland). In
order to facilitate an irrefutable observational proof of the predicted Stokes V/I
profiles we selected a bipolar sunspot group (NOAA 0447), which was located at
µ = 0.95. We observed simultaneously the two sunspots of opposite magnetic
polarity. To this end, a suitable optical device located after the polarimeter
allowed us to rotate the solar image in order to get the image of the umbrae of
the two main spots on that of the spectrograph slit. The direction of the slit
formed an angle of 55◦ with respect to the closest limb. The slit width was 80
µm corresponding to 0.7′′. The spatial and spectral extensions covered by the
ZIMPOL CCD were 160′′and 3.1

◦

A, respectively.

The ZIMPOL version used for these observations has one piezoelastic mod-
ulator (PEM), which allowed us to measure simultaneously Stokes I, Q/I and
V/I. Due to the high modulation rate (42 kHz which is much higher than the
typical seeing frequencies of the order of hundreds of Hertzs) the seeing-induced
crosstalk is insignificant and the noise level in the polarization signals is defined
only by the photons Poisson statistics. ZIMPOL is a one beam system and the
same pixel of the CCD is used to measure all Stokes components. Therefore,
no flatfield technique is needed to correct the polarization images. A calibra-
tion was performed by inserting known amounts of polarization in front of the
polarimeter (PEM + linear polarizer) The data was also corrected for dark
current table. Our measurements were performed adding 60 registrations, each
of them taken with a 5 sec integration time. The reduced data are affected by
instrumental polarization caused by the two folding mirrors inside the Gregory
Coudé Telescope (for details see Gandorfer & Povel 1997). The ensuing effects
are quite small and constant over the day and could be easily corrected. In or-
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Figure 6.25: Observed V/I in the two spectral regions. The upper panels show the circular
polarization profiles in two different sunspots with opposite polarity of the spectral region

around 4304
◦

A. Note the good agreement between the modeling presented in Fig. 6.24

and the observation. The lower panel shows the profiles in the region around 4313
◦

A. The
signatures produced by CH alone are in good agreement with the modeling. On the other
hand, the agreement between the modeling and the observation for the atomic lines between

4312.5
◦

A and 4313.5
◦

A is not very good.

der to increase the signal-to-noise ratio of the V/I profiles shown in the figures
below we averaged over 4 pixel along the spatial direction, which corresponds
to 4.5” inside the sunspot umbrae. No other data reduction procedures like
smoothing or filtering were applied.

The top panels of Fig. 6.25 show examples of the observed Stokes V profiles
around 4304

◦

A, which is the wavelength position of the CH lines that were
predicted to produce a peculiar Stokes V/I profile dominated by its red lobe.
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Figure 6.26: Observed Q/I in the two spectral regions for sunspot 1. Note that the conspicuous
signals are produced by the atomic lines which also show strong V/I signals.

The left panel corresponds to the sunspot with the positive polarity (i.e., with
the magnetic field vector pointing outwards), while the right panel refers to the
sunspot with the negative polarity. In full agreement with the theoretical Stokes
V/I profiles shown in Fig. 6.24 the observed circular polarization at 4304

◦

A is
dominated by a single-lobed Stokes V profile whose sign changes when going to
the sunspot with the other magnetic polarity. The same occurs with the Stokes
V/I profile at 4304.6

◦

A, which is produced by atomic lines alone.

The bottom panels of Fig. 6.25 show the observed V/I profiles for an extra
spectral region that also shows profiles dominated by CH lines alone. Note the
polarity reversal between the two observed sunspots and the good agreement
with the shapes of the theoretical V/I profiles at 4312

◦

A and 4313.7
◦

A shown

in Fig. 6.24. The Stokes V/I profiles around 4313
◦

A are mainly due to atomic
lines alone.

It is also interesting to mention that the observed linear polarization turns
out to be very small at the above-mentioned wavelength locations which show
V/I features dominated by CH lines. However, we have detected sizable Q/I
signals (of the order of 1%) that are produced by atomic lines alone. We find
significant linear polarization in both umbrae and penumbrae, with the signals
in the penumbral regions being slightly larger than in the umbral ones. Figure
6.26 shows an example of the observed fractional linear polarization in the
penumbra of one of the observed sunspots. We think that the conspicuous Q/I
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feature at 4304
◦

A is produced by the same CH lines that are responsible of the
observed V/I profile shown in the left panel of Fig. 6.25.

Conclusions

The polarization profiles we have observed in sunspots confirm our previous
theoretical modeling of the Zeeman effect in the G band. There are at least three
wavelength locations which show measurable V/I profiles that are produced
by CH lines alone. The agreement between the shapes of the calculated and
observed V/I profiles is remarkable. However, the calculated V/I amplitudes in
one-dimensional models of sunspot atmospheres are substantially larger than
the observed ones when the theoretical modeling is carried out assuming a
magnetic filling factor f = 1 and a typical magnetic field strength of 2000
G. We consider this as an indication of spatially unresolved magnetic fields
in the photospheric regions of sunspot umbrae, with a strong and a weaker
field component coexisting within the spatio-temporal resolution element of the
observation. The weak field component might be associated with the multitude
of umbral dots that are seen in high resolution images of sunspots.

In the sunspot group we have observed (located at µ = 0.95) the observed
linear polarization at the wavelength location of such CH lines was very small,
but not negligible (see, e.g., the Q/I feature at 4304

◦

A). However, we have found
sizable circular and linear polarization signals in many of the atomic lines that
are contained in the spectral region of the G band. Such polarization signals
in molecular and atomic lines contain valuable information about the physical
conditions in the solar atmosphere. In particular, the theoretical interpretation
of the observed polarization in the (weak) CH lines we have investigated offers
a new diagnostic window for exploring the thermal and magnetic structuring of
the solar plasma in relatively deep regions of sunspot photospheres. This type
of investigations could help us to choose among competing MHD models on
the three-dimensional structure of sunspot umbrae. In a future paper we will
address the issue of the inversion of spectropolarimetric observations in the G
band, since this promises to be of great interest for improving our knowledge
on solar and stellar magnetism.
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6.6 Detection of polarization from the E
4Π− A

4Π system of

FeH in sunspot spectra

6.6.1 Introduction

FeH constitutes one of the most important opacity contributors in late-type
dwarfs, in the red and near-infrared between 0.7 µm and 1.3 µm. It was however
detected in the atmospheres of late M dwarfs much later than many of the other
hydrides formed with less abundant atomic species. This is probably due to the
fact that the FeH spectrum is very complicated, arising from quartet and sextet
terms (Langhoff & Bauschlicher 1990). Although some bands are in the optical
and blue part of the spectrum, the crowding of atomic lines makes it difficult to
distinguish FeH bands. For this reason, the most studied FeH electronic system
is that produced by the transition F 4∆−X4∆. This band system, widely used
in studies of late-type dwarfs, produces a conspicuous absorption near 1 µm.
Theoretical analysis of this band system has been performed by Phillips et al.
(1987) with the assignation of quantum numbers to many of the observed lines
of the v = 0− 0 band.

In a recent study of the infrared intensity spectrum of sunspots, Wallace &
Hinkle (2001) identified almost 70 lines between 1.58 µm and 1.755 µm common
to both the sunspot spectrum and a furnace laboratory spectrum of FeH .
They tentatively associated these lines to the E4Π−A4Π system based on the
theoretical work of Langhoff & Bauschlicher (1990). These authors predicted
this band system to be around 2 times weaker than the F 4∆ −X4∆ system,
even though the E4Π−A4Π is one of the strongest bands of the quartet system
in FeH. Later, Cushing et al. (2003) compared the near-infrared spectrum of
four late-type dwarfs with the laboratory FeH spectrum, finding 34 features
that dominate in the H-band spectra. They associated some of these features
to the v = 0− 0 E4Π−A4Π band of FeH. They found a very similar behavior
of this band and the other IR bands of FeH when observing stars of different
spectral types, thus reinforcing that these features belong to FeH.

There are almost no studies of the polarization properties of FeH lines. A
first attempt has been carried out by Berdyugina et al. (2001) and by Berdyug-
ina & Solanki (2002) for lines of the F 4∆ − X4∆ system, assuming that the
angular momentum coupling is that given by Hund’s case (a) (see Herzberg
1950). These authors were forced to use Hund’s case (a) coupling because no
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estimation of the spin-orbit coupling constants of the electronic states of the
transition are available. In view of the effective Landé factors, they concluded
that the F 4∆−X4∆ band system of FeH might be of interest for the investi-
gation of the magnetic properties of solar and stellar atmospheres.

We present the first full Stokes observations of FeH in the near infrared,
showing that the E4Π − A4Π band system must be in intermediate coupling
between Hund’s cases (a) and (b). To our knowledge, this is the first time
polarization signals in FeH are observationally detected in a sunspot (Asensio
Ramos et al. 2004).

6.6.2 Observations

The observations were carried out on June 7, 2002 with the Tenerife Infrared
Polarimeter (TIP; see Mart́ınez Pillet et al. 1999) mounted on the German
Vacuum Tower Telescope (VTT) at the Observatorio del Teide (Spain). The
observed sunspot was located out of the solar disk center, at µ = 0.68 (being µ
the cosine of the heliocentric angle), so that linear polarization signals may be
expected.

The total size of the umbra was ∼18”. The presence of a light bridge
crossing the sunspot umbra led us to select only those points within the umbra
whose polarization properties are not contaminated by the presence of the light
bridge. Interestingly, the depth of the observed FeH intensity profiles is reduced
close to the light bridge, possibly due to the dissociation of the FeH molecules
caused by a temperature increase. Similarly, we found a smaller amplitude in
the Stokes V spectrum.

The spectral resolution of the observation was ∼26 m
◦

A with a total wave-
length coverage of ∼7

◦

A. In order to investigate the polarization properties
of FeH lines, we performed three scannings with a step of 0.4” for different
spectral regions and three time series with the slit crossing the center of the
umbra. The integration time for each position in the scanning was 1 second,
while the total integration time for the time series was between 5 and 10 min-
utes. Although the detection of the FeH features is obtained also in the 1 second
integrations, we have used the temporally averaged Stokes profiles which have
a much larger signal-to-noise ratio. The typical noise level is ∼ 10−4 of the
continuum intensity.

As shown below in Fig. 6.30, the observed FeH transitions, apart from
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Figure 6.27: Effective Landé factor of the Q branch of the E4Π − A4Π band system of FeH
calculated using Hund’s case (a) coupling (lines) and Hund’s case (b) coupling (symbols).
The lines between the Λ + Σ = 1/2 levels are completely insensitive to the magnetic field in
Hund’s coupling case (a). Note that while the effective Landé factor is always non-negative
for Hund’s case (a) coupling, it can become negative for Hund’s case (b) coupling.

producing conspicuous antisymmetric V signals, also show perfectly detectable
symmetric Stokes Q and U profiles. However, we will only focus on Stokes V .

6.6.3 The Zeeman effect in FeH

Since no perturbation analysis has been performed for any of the electronic
states of FeH, no spin-orbit coupling constants are available. This makes it
necessary to treat the lines of both the F 4∆−X4∆ and the E4Π−A4Π system in
any of the limiting Hund’s coupling cases. However, according to Berdyugina &
Solanki (2002), the F 4∆−X4∆ system is known to be in intermediate coupling
between (a) and (b) and strong deviations of the effective Landé factor ḡ for
the lines of the P and R branches are expected from that given by Hund’s case
(a). In particular, ḡ for the lines of the P and R branches will increase as J
increases. This increase in the Zeeman sensitivity has been observed by Wallace
et al. (1999) in the intensity spectrum of sunspots associated to an increase in
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the broadening of the high J lines. A similar behavior is expected for the lines
of the E4Π− A4Π band. Wallace & Hinkle (2001) apparently detected such a
behavior from the line splitting in the intensity spectrum. They found many
FeH lines which appear undoubled but a set of seven lines around 15930

◦

A which
present a splitting, probably caused by the Zeeman effect since it increases with
the field strength in sunspots.

For those electronic levels with Λ 6= 0, the spin-orbit coupling constants are
usually large (see Huber & Herzberg 2003). Therefore, the energy separation
associated to the multiplet splitting is expected to be large. We also expect the
spin-orbit coupling to be large enough so that the field at which the Paschen-
Back transition occurs is larger than the typical field strength of sunspots. In
fact, this is the case with all the molecules studied by Berdyugina & Solanki
(2002) presenting Λ 6= 0. If the FeH lines that belong to the E4Π−A4Π system
are indeed in the Zeeman regime, we expect Stokes profiles similar to those of
a normal Zeeman triplet. This is in fact confirmed by the observations.

The value of the effective Landé factor calculated in Hund’s case (a) coupling
for the lines of the Q branch of the E4Π − A4Π band is shown in Fig. 6.27.
Since the lines are between electronic levels of the same quantum numbers, ḡ
can be written as (Herzberg 1950)

ḡ = 2
(Λ + 2Σ)(Λ + Σ)

J(J + 1)
, (6.14)

where Λ = 1 and Σ = 3/2, 1/2,−1/2,−3/2. We have not included ḡ for the
lines of the P and R branches because it is zero. Note that the lines between
levels with Λ + Σ = 1/2 are insensitive to the magnetic field. The rest of
lines belonging to transitions between low J levels seem to be as sensitive to
the magnetic field as those of the F 4∆ −X4∆ system studied by Berdyugina
& Solanki (2002). It is very important to note that all the values of ḡ are
non-negative, contrary to what happens for the F 4∆−X4∆ system.

Although little magnetic field diagnostics can be done at present with these
lines given the lack of precise spectroscopic data, we have used the observed
polarization signals in order to get a first insight into the potential diagnostic
interest of these FeH lines.
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Figure 6.28: Two OH lines close to the studied FeH lines. Since the coupling constants of OH
are known, we have calculated the emergent Stokes profiles from the Collados et al. 1994 hot
umbra model, finding that a constant magnetic field of 1800 G provides a fairly good fit the
observed Stokes profiles. The solid line represents the observation while the dotted line is the
modeling.

6.6.4 Discussion

We have observed three spectral regions. A region around 16605
◦

A, another
one around 16110

◦

A, and a third one around 16575
◦

A. The observation of the
first region was motivated by the presence of two vibration-rotation OH lines
of the X2Π level, similar to those observed by Harvey (1985). Because the
spectroscopic constants of OH are known, these lines can be used to obtain
information about the magnetic field in sunspots. To this end, as shown in
Fig. 2, we have performed LTE syntheses in the hot umbra model of Collados
et al. (1994) finding that a constant vertical magnetic field of 1800 G pointing
radially outwards leads to a fairly good fit to the observed Stokes profiles in
the OH lines4. The Zeeman patterns for the OH lines have been obtained
applying the theory developed by Schadee (1978), thus they do not depend
on any assumption about the coupling. We point out that since the OH lines
are stronger than the FeH lines, a magnetic strength of 1800 G gives only a
lower limit to the strength of the field in the deeper regions of the sunspot
umbra where the FeH polarization is originated. Assuming a typical gradient
of 4 G km−1 (Collados et al. 1994), we estimate that the magnetic field in the

4The LTE synthesis in the cool umbra model of Collados et al. (1994) presents OH line
absorptions much deeper than the observations.
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Figure 6.29: Observed FeH lines together with the fit obtained via the weak-field approxima-

tion for B =2400 G. The two strong lines in the extremes of the spectral interval are telluric

absorption produced by CH4. The solid line represents the observation while the dotted line

the derivative of the intensity spectrum scaled with ḡ = 0.09 in order to fit the line at 16108.3
◦

A.

formation region of the FeH lines may be 400-600 G higher than in the OH
formation region. For this reason, we have assumed B=2400 G in the following
estimations of the effective Landé factors of the observed FeH lines.

In order to obtain information about the approximate value of the effective
Landé factor of the FeH lines, we have applied two different techniques. The first
one assumes that the line is formed under the weak field (WF) approximation
(e.g. Landi Degl’Innocenti 1992). Molecular lines usually have small effective
Landé factors except for lines that arise between levels with very small values
of J (see Herzberg 1950; Landau & Lifshitz 1982). Since the Zeeman splitting
in the IR is relatively large, and assuming typical thermal and microturbulent
velocities, the weak field approximation is valid for ḡB � 1000 G, which is
somewhat restrictive for some of our FeH lines. The second one assumes that
the line is formed in the strong field (SF) regime so that peak separation in
Stokes V is indicative of the separation of the σ components when they are
fully split. Since the lines are not in any of these limiting regimes, the correct
effective Landé factors will be between both.

Fig. 6.29 shows two FeH lines at 16108
◦

A, one of which produces a clear
circular polarization signal, while the other is apparently insensitive to the
Zeeman effect. We show in the same figure the fit obtained to the line at
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Figure 6.30: Region with several FeH lines producing weak absorptions in the intensity spec-
trum but very clear features in the circular polarization spectrum. We show also the derivative

of the intensity spectrum scaled with ḡ = 0.38. Note that the line near 16577
◦

A has negative
effective Landé factor. The two lower panels show the observed linear polarization spectrum.

16108.3
◦

A by plotting the derivative of the intensity spectrum multiplied by
the scaling factor using ḡWF = 0.09, which represents an approximation to the
effective Landé factor of this line. Note that the fit of the magnetic sensitive
line is strikingly good for this combination of field strength and ḡ. From the
previous fit, we can infer that the strong field regime has not been reached,
since the separation of both Stokes V lobes are correctly obtained with the
weak field formula. This is reinforced by the low value obtained for ḡ. In the
strong field regime, we obtain ḡSF ≈ 0.24.

The FeH line at 16107.8
◦

A may be assumed to have ḡ ≈ 0, in principle,
since at first sight there seems to be no significant signal in Fig. 6.29. However,
a closer inspection indicates that a very small V signal with ḡ < 0 seems
to be present in our observations. This may constitute a first indication that
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deviations from Hund’s case (a) are expected for these lines. Another but much
stronger indication will be discussed below.

Fig. 6.30 shows three FeH lines around 16575
◦

A which have been detected
previously in intensity by Wallace & Hinkle (2001). These lines are quite weak
in the sunspot intensity spectrum and it has been difficult to apply the weak-
field approximation since the derivative of the intensity profile turns out to be
very noisy. In any case, we have obtained a value of ḡWF ≈ 0.38 for the line at
16571.5

◦

A and a value of ḡWF ≈ −0.38 for the line at 16576.8
◦

A. According to
the results shown in Fig. 6.27, a negative ḡ is not possible in Hund’s case (a).
This constitutes our strongest proof that this band of FeH is in the intermediate
coupling case between Hund’s cases (a) and (b). The coupling constants and
the line identifications have to be obtained in case the lines of this band are
to be used as tools for diagnosing magnetic properties of the coolest regions
of sunspot atmospheres or magnetic fields on cool dwarfs. The line at 16575
◦

A seems to be a blend of some FeH lines at slightly different wavelengths due
to the intricate structure of Stokes V with apparent cancelations among them.
The linear polarization signal is in the lower panel of Fig. 6.30. Note that all
the FeH lines produce conspicuous Stokes Q and U features with an amplitude
of around 1%. If we assume that the lines are in the strong field regime, we
obtain ḡSF ≈ 0.39 for the line at 16571.5

◦

A and ḡSF ≈ −0.28 for the line at
16576.8

◦

A from the peak separation in Stokes V .

Our previous results can be compared with the effective Landé factor ob-
tained from the fully split FeH lines in the atlas of the umbral spectrum of
Wallace & Livingston (1992). For a field of 3500 G obtained from the fully

split V i line at 16570.5
◦

A whose effective Landé factor is ḡ = 0.7, one obtains
ḡSF ≈ 0.27 and ḡSF ≈ −0.19 for the lines at 16571.5 and 16576.8

◦

A respectively.
Comparing with the results obtained directly from our spectropolarimetric ob-
servations, we verify that in the sunspot we observed we are in the intermediate
field regime.

6.6.5 Conclusions

We have shown observational evidence that the lines of the E4Π−A4Π electronic
system of FeH present circular and linear polarization signals that are produced
by the Zeeman effect. We have estimated the magnetic field with the aid of two
OH lines and inferred the effective Landé factors of the FeH lines using either
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the weak-field or the strong-field approximations. We have shown that the
E4Π − A4Π band of FeH presents lines with negative effective Landé factors,
which is impossible under Hund’s case (a) coupling. Therefore, we conclude
that this molecular band system must be in intermediate angular momentum
coupling between Hund’s cases (a) and (b). The FeH lines studied here are
potentially interesting for empirical investigations on the physical conditions in
the lower atmosphere of sunspots and on the magnetism of late-type dwarfs. To
this end, theoretical and/or laboratory investigations of this molecular system
are urgently needed.

6.7 Applications to other interesting molecules

Other molecular species may present an observable Zeeman signal in the solar,
stellar or interstellar spectrum. We will discuss in this section some examples
and their predicted polarization signal. Some of the synthesis have been ob-
tained using the simplified solution of the RT equation of Unno (1956) (see also
Landi Degl’Innocenti & Landi Degl’Innocenti 1973). This solution is based on
a Milne-Eddington atmosphere. We will use Gaussian profiles with a thermal
width equivalent to the typical temperature in each object.

6.7.1 CO

The fundamental electronic state of CO is X1Σ+ and the energy gap between
this level and the first excited level is 48686.7 cm−1, high enough to make
the fundamental level the most populated. Moreover, the following excited
levels are triplets, instead of singlets, so that transitions between these states
and the fundamental one are very improbable. The energy difference with the
first singlet state is 65075.7 cm−1. The transition between these levels lies in
the extreme UV around 1540

◦

A. The observed transitions in the radio and
infrared spectral regions are pure rotation and vibro-rotation transitions inside
the fundamental level, respectively. Since the fundamental level has S = 0
and Λ = 0, the Zeeman effect is here produced by the coupling between the
rotational angular momentum and the magnetic field. We have included this
possibility in the effective Hamiltonian by a term proportional to the scalar
product of the rotational angular momentum and the magnetic field vector. The
proportionality constant is the rotational gr factor. The effect of this coupling is
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Figure 6.31: Emergent Stokes Q and V in a molecular cloud for the pure rotational J = 2− 1
CO line.

aroundme/mp times smaller than the electronic coupling. Therefore, we expect
a very small splitting for CO and, consequently, an extremely weak V -signal.
Due to this small Zeeman splitting and the value of the rotational constants
Huber & Herzberg (2003), no transition to the Paschen-Back regime can occur
for fields below 107-108 G.

As an example, we show in Fig. 6.31 the Stokes profiles induced by the
Zeeman effect in a molecular cloud for the CO pure rotational line J = 2−1. As
representative of the physical conditions in the cloud, we select a temperature
of 20 K and a magnetic field of 1 mG. The line strength is chosen to be η0 = 0.1.
We assume observation at µ = 1 while the inclination of the field is 45◦ and
the azimuth is 0◦. This pure rotational transition is situated at 230.538 GHz,
equivalent to 1.301×107 ◦

A. Note that the signal is extremely small due to the
low CO effective Landé factor and the low magnetic field strength. Therefore,
the pure rotational CO transitions are not good tracers of the magnetic field
present in a molecular cloud. The same can be stated from the vibro-rotational
transition of CO. The angular momentum coupling scheme is independent on
the vibrational state of the molecule, so that the vibro-rotational band of CO
at 4.7 µm and all its overtones at 2.3 µm, 1.15 µm, . . . can be assumed to
be insensitive to the magnetic field. More sensitive molecules are those having
S 6= 0 and/or Λ 6= 0.
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6.7.2 SH

The mercapto SH radical has been detected in the solar atmosphere by Berdyug-
ina & Livingston (2002). Chemical equilibrium calculations have shown that
SH should be quite abundant in oxygen-rich stellar atmospheres (Tsuji 1973).
However, it has been astronomically detected only recently by Yamamura et al.
(2000). The A2Σ+ − X2Π v = 0 − 0 electronic transition is found in the

UV around 3280
◦

A. The spin-orbit coupling constant of the lower level is
A = −376.9 cm−1, while the spin-rotation coupling constant of the upper level
is γ = 0.313 cm−1. Therefore, the transition to the Paschen-Back regime is
expected for fields above ∼6700 G. Observing polarization signals in this UV
region has not been accomplished yet. Apart from the technological problem,
and remembering that the Zeeman splitting goes as λ2, the peak separation in
the Stokes V signal is very small, around 20 times smaller than for the IR region
of the OH and CN lines. Additionally, the crowding of atomic lines in the UV
region becomes impressive and may result difficult to detect the polarization
signal.

6.8 Conclusion

We have shown in this Chapter that the Zeeman patterns and component
strengths for doublet states obtained with the numerical diagonalization of the
rotational effective Hamiltonian leads to the same results as the formulation of
the Zeeman effect in diatomic molecules given by Schadee (1978). The advan-
tage of our numerical diagonalization is that it allows to include any additional
effect straightforwardly by adding its contribution to the total Hamiltonian.
Another advantage is that electronic states with any multiplicity can be tack-
led.

With the aid of the previous techniques, we have investigated in detail
the generation and transfer of polarized radiation induced by the molecular
Zeeman effect in the solar atmosphere. We have detected anomalous linear
polarization profiles in CN lines. We have shown that these anomalous profiles
are produced by the especial Zeeman patterns of the CN lines. In order to obtain
as much information as possible from the spectropolarimetric observations, we
have developed an inversion code for the Stokes profiles induced by the Zeeman
effect in atomic and molecular lines. We have applied this code to OH and CN
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profiles observed in a sunspot.
We have investigated in detail the polarization properties of the CH lines in

the G band via numerical modeling. We have detected several CH lines which
appear to be not blended with other atomic lines. We have also identified a
set of CH lines which show single-lobed profiles. This line could be used to
obtain high angular resolution images which allow to measure the line-of-sight
magnetic field using narrowband filters. We have also shown that these one-
lobed profiles are indeed found in the solar spectrum.

We have detected for the first time polarization signals in lines of the E4Π−
A4Π system of FeH in sunspot spectra. Since no spectroscopic information
is available for this system, we have only been able to obtain approximate
values for the effective Landé factors using either the weak-field or the strong-
field approximations. The strongest conclusion of this investigation is that the
rotational lines of this system are in an intermediate Hund’s case between (a)
and (b). We show that the FeH lines studied are potentially interesting for
empirical investigations on the physical conditions in the lower atmosphere of
sunspots and on the magnetism of late-type dwarfs. To this end, theoretical
and/or laboratory investigations of this molecular system are urgently needed.

Finally, we have also investigated the polarization signal induced by the
Zeeman effect produced by other molecules.





7
Scattering Polarization and the Hanle

Effect in Molecular Lines

One of the surprises of the second solar spectrum (the linearly polarized Q/I
spectrum produced by scattering processes on the Sun) was the discovery

that molecular lines, although typically faint in the intensity spectrum of the
quiet Sun, usually show sizable scattering polarization peaks, even dominating
the polarized spectrum in some spectral regions. That is the case for MgH, C2

and CN (see Stenflo & Keller 1997, Gandorfer 2000, Stenflo 2003a, Gandor-
fer 2003). In this chapter, we focus on the modeling issue of such scattering
polarization observations in MgH, C2 and CN lines and on the influence of
the magnetic field in the emerging linear polarization signal through the Hanle
effect.

One of the most striking features of the molecular lines is their apparent
magnetic immunity. When scattering polarization observations are performed
on different moments of the solar cycle, the Q/I signals produced by molecular
lines appear to be always the same (compare the Q/I amplitudes reported
by Stenflo & Keller 1997 with those of Gandorfer 2000). Furthermore, the
observations also show an apparently constant Q/I amplitude along the slit,
even when many (strong) atomic lines which produce scattering polarization
do present variation along the slit. However, the magnetic fields at which the
Hanle effect is expected to start to operate on molecular levels is of the same



254 Scattering Polarization and the Hanle Effect in Molecular Lines 7.1

order of magnitude of the Hanle field for atomic lines. The molecular levels
present much smaller Landé factors, but this is counteracted by their higher
lifetimes (Landi Degl’Innocenti 2003; Trujillo Bueno 2003c, 2003b). Therefore,
in principle, the molecular lines should be also as sensitive as atomic lines to
the Hanle effect. The apparent immunity can be explained by two facts. On
the one hand, the linear polarization signal of the molecular lines are coming
mainly from the granular regions, where the magnetic fields are expected to
be weak (see Trujillo Bueno 2003b). On the other hand, as shown below, the
calculated Q/I signal remains practically constant up to the field strength for
which the upper level polarization begins to react. The lower level polarization
does not produce observable effects if dichroism is taken into account.

7.1 Some details on scattering polarization in molecular lines

The study of scattering polarization in molecular lines has seen very little
progress after some pioneering work that dates back to the late 1930’s (see
e.g. Herzberg 1950 and references therein). These studies were mainly devoted
to the interpretation of laboratory experiments and therefore are of reduced
interest to the astrophysical case, as noted by Landi Degl’Innocenti (2003).
When one considers the scattering polarization problem in molecular lines, one
has to take into account that there are two possible situations, depending on
whether the pumping transition or the observed transition is selected:

• The laboratory case. Consider a molecule in a lower rotational level
J ′

l which is excited to a rotational level Ju by the absorption of a photon
(selective pumping). In the decay process to a lower level Jl, due to the
possible selection rules, the molecule may return to the initial rotational
level Jl = J ′

l (Rayleigh scattering produced in a Q transition) or to a
different level Jl 6= J ′

l (Raman scattering produced in a R or P transition).
The situation is schematized in the left panel of Fig. 7.1. This situation
is typical of laboratory conditions in which one excites a given molecule
with a photon of a known frequency and is interested in the re-emission
(scattering) of the photon.

• The astrophysical case. The astrophysical case is somewhat different.
One is interested in knowing the polarization properties of a given line
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Figure 7.1: Scattering phenomena in molecules. On the left panel we show the typical labora-
tory experiment in which the molecule is excited by selective pumping. In the decay process,
the molecule may return to the initial level (Rayleigh scattering) or to a different level (Raman
scattering). On the right panel we show the typical astrophysical situation. A rotational level
is pumped from lower states by several transitions following the selection rules. The decay
process can be considered as a combination of Rayleigh and Raman scattering (from Landi
Degl’Innocenti 2003).

which is produced by the transition between an upper rotational level Ju

and a lower rotational level Jl. However, the upper level can be pumped
by different transitions (R, P or Q lines) and the spectral line one is
interested in is not completely defined by Rayleigh or Raman scattering
(the original lower level J ′

l is different depending on the branch of the
pumping transition). The situation is schematized in the right panel of
Fig. 7.1.

The polarizability factorW2 for the laboratory case can be easily defined (see
Landi Degl’Innocenti 1984 for the definition). The formula has been given in
terms of 6-j symbols by Landi Degl’Innocenti (2003) and both the Rayleigh and
Raman scattering can be described with the following formula, which depends
on the values of Jl, Ju and J ′

l :

W2(J
′
l , Ju, Jl) =

{

1 1 2
Ju Ju J ′

l

}{

1 1 2
Ju Ju Jl

}

{

1 1 0
Ju Ju J ′

l

}{

1 1 0
Ju Ju Jl

} . (7.1)

If analytical expressions for the 6-j symbols are used, one ends up with analytical
expressions of the polarizability factor for Rayleigh and Raman scattering in
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the laboratory case. These formulas are equivalent to those used by Berdyugina
et al. (2002).

On the other hand, when one is interested in the astrophysical case, the pre-
vious polarizability factor has to be generalized. Landi Degl’Innocenti (2003)
has defined an effective polarizability factor W2 provided that the following re-
quirements are fulfilled: a) the radiation field has not spectral structure, at least
in the wavelength range of the transitions which are pumping the upper level
of the transition; b) the lower levels are unpolarized and populated according
to their statistical weight; c) stimulated emission can be neglected. Under such
assumptions, a closed analytical formula for the effective polarizability factor
can be obtained. For the case of a molecule with spin under Hund’s case (b)
coupling without Λ-doubling it can be written as:

W2(Ju, Nu; Jl, Nl) = (−1)S−Jl−Λl+23(2Nu + 1)(2Ju + 1)

×
(

1 1 2
∆Λ −∆Λ 0

)(

Nu Nu 2
Λu −Λu 0

){

Nu Nu 2
Ju Ju S

}{

1 1 2
Ju Ju Jl

}

,

(7.2)

where Λu and Λl are the values of Λ of the upper and lower electronic states, re-
spectively, while ∆Λ = Λl−Λu. For more details, refer to Landi Degl’Innocenti
(2003).

7.2 Scattering polarization in MgH and C2 lines

The first attempt to theoretically understand the observed molecular scattering
polarization for the non-magnetic case was done by Rao & Rangarajan (1999).
They did radiative transfer modeling of two Q branch lines of MgH at 5165.92
and 5168.14

◦

A, by fitting the I and Q/I profiles with the oscillator strength,
inelastic collision rate and depolarizing elastic collision rate as free parameters.
An intrinsic polarizability factor W2 of 0.4, derived from the J quantum number
was used. W2 is the fraction of the scattering processes that occur as dipole-
type scattering (which produces polarized scattered radiation), while 1 −W2

represents isotropic, unpolarized scattering (Stenflo 1994).

Recently, Faurobert & Arnaud (2002) made an empirical determination of
the W2 polarizability factor for nine C2 and two MgH lines. They measured the
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scattering polarization outside the solar limb. Therefore, the radiation is as-
sumed to be coming from an optically thin layer which allows an interpretation
without model-dependent radiative transfer. They found values for W2 between
0.41 and 0.46 for MgH and between 0.13 and 0.26 for C2. However, these results
should be considered as tentative since off-limb observations are extremely sen-
sitive to spurious effects like stray-light and seeing (see, e.g., Keller & Sheeley
1999).

More recently, Berdyugina et al. (2002) have implicitly taken for granted
that the above-mentioned “laboratory case” is valid for the description of molec-
ular scattering in stellar atmospheres and have published tables with the intrin-
sic polarizabilities, line strengths and effective Landé factors for the different
transitions of the P, Q and R branches of MgH and C2 were obtained. They
emphasized that, while the intrinsic polarizabilities remain significant, the ef-
fective Landé factor of the main branches are very close to zero. This is the
reason given by the authors for explaining the apparent magnetic immunity
of the molecular lines. However, as we shall show below, molecular lines are
sensitive to the Hanle effect and the Q/I observed invariance can give us infor-
mation about the magnetic field distribution in the solar atmosphere (see also
Trujillo Bueno 2003b; Asensio Ramos & Trujillo Bueno 2003b).

7.2.1 MgH molecular model

Band structure

The rotational lines of MgH observed around 5170
◦

A belong to the A2Π-X2Σ+

v=0-0 electronic transition. While a 2Σ state always belongs to Hund’s case
(b), a 2Π state may belong either to case (a) or to case (b) or to an intermediate
state between both. The transition from one to the other is smooth when the
rotation increases. Since the total electronic spin of the molecule is S=1/2,
each rotational level splits into two sublevels, which are labeled as F1 (the one
with J=N + 1/2) and F2 (the one with J=N − 1/2). Since the lower level has
Λ = 0, this is the only splitting present in the lower level, while the upper level,
having Λ=1, has an additional splitting due to the Λ-doubling. Therefore, each
upper level Fi is composed of two sublevels with different parity, with a slightly
different energy.

The MgH lines observed in the solar spectrum with significant linear polar-
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Figure 7.2: Section of 23
◦

A of the Atlas of the Second Solar Spectrum (Gandorfer 2000) at
µ = 0.1. The upper panel shows the intensity spectrum normalized to the continuum intensity.
The three strongest absorptions are produced by the Mg b1, b2 and b4 lines. The lower panel
shows the fractional linear polarization spectrum Q/I, where the regular sizable signals are
produced by the polarizing molecular lines of the Q branch of the A2Π-X2Σ+ band of MgH.
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Figure 7.3: Ratio between the Einstein coefficients for MgH lines obtained from the linelist
of Kurucz (1993b) and those calculated using Landi Degl’Innocenti (2003) analytical formula
for Hund’s case (b) adopting the band oscillator strength of Kirby et al. (1979). Note that
the ratio is very close to 1 for all the lines belonging to the Q branch, while those of the P
and R branches present higher deviations from Hund’s case (b). Obviously, the ratio goes
asymptotically to 1 when rotation increases.

ization signals are those of intermediate values of J . Following Berdyugina &
Solanki (2002), we can consider that the upper level can be well described by
Hund’s case (b) for values of J higher than ∼21/2. If Hund’s case (b) applies,
the spectrum is composed of a P, R and Q band, the Q branch being the most
intense, where each line of the band is split into two components since the spin-
doubling splitting is appreciable. This behavior can be verified by looking at the
second solar spectrum in the region between 5165

◦

A and 5185
◦

A, where all the
observed lines belong to the Q branch of MgH. However, as noted by Berdyug-
ina & Solanki (2002), the transition to the Paschen-Back regime is produced
at magnetic field strengths as low as 280 G. Therefore, calculations assuming
a single Landé factor for each rotational level J is correct only up to this field.
For fields larger than ∼ 300 G, interferences between the levels appear and the
Zeeman splitting is no more proportional to the magnetic quantum number M .

Einstein coefficients

We have built realistic molecular models of the MgH molecule using the linelist
of Kurucz (1993b)1. We select a minimum and maximum J -value and the model

1http://kurucz.harvard.edu/linelist/linesmol
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molecule is built by reconstructing the energy levels from the linelist using
the tabulated Einstein coefficients. In order to verify whether these Einstein
coefficients are reliable, we have compared them with theoretically calculated
Einstein coefficients. Landi Degl’Innocenti (2003) has given closed analytical
formulae for the calculation of the Einstein coefficients for a molecule with spin
assuming that the molecule can be described under the Hund’s (b) coupling
case. Consider a transition between an upper rotational level characterized by
the total angular momentum Ju and the rotational angular momentum Nu and
a lower level characterized by Jl and Nl. The upper level belongs to a given
electronic state characterized by Λu and the spin S, while the lower level belongs
to another electronic state characterized by Λl and the same spin (following the
selection rules). The Einstein coefficient for such a transition is given by (Landi
Degl’Innocenti 2003):

A(Ju, Nu → Jl, Nl) = A0(2Jl + 1)(2Nl + 1)(2Nu + 1)

×
(

Nu Nl 1
Λu −Λl ∆Λ

)2{
Jl Ju 1
Nu Nl S

}2

,
(7.3)

where ∆Λ = Λl − Λu. The constant A0 is proportional to the Franck-Condon
factor which contains information about the strength of the individual vibra-
tional transition. The rest of the terms constitute the rotational dependence of
the Einstein coefficient which is usually referred to as the Hönl-London factor.
The value of A0 can be obtained by making use of the band oscillator strength
fvuvl

, which has been empirically determined for many important molecular
bands:

A0 =
8π2e2

mec

gl

gu
fvuvl

ω2, (7.4)

where ω is the wavenumber of the transition. Note that this formula is com-
pletely equivalent to Eq. (3.44) but for the strength of the whole rotational
band. For MgH we have used f00(MgH)=0.161 from Kirby et al. (1979). In
Fig. 7.3 we show the difference between the analytical Einstein coefficients and
the Einstein coefficients tabulated by Kurucz (1993b) for MgH. As seen in the
figure, the values of both types of Einstein coefficients are very similar, although
differences tend to be higher for lower angular momentum values. This effect
is produced because such electronic levels are in an intermediate coupling case.
The intermediate coupling case is taken into account in the Einstein coefficients
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Figure 7.4: Polarizability factors for the P, R and Q branches of MgH. Note the perfect overlap
between the W2 obtained with the analytical formula and that obtained numerically under
the same assumptions.

tabulated by Kurucz (1993b), while the analytical ones are calculated assuming
Hund’s case (b), which leads to accurate results only for high J quantum num-
bers. Note that the ratio is closer to 1 for the lines belonging to the Q branch,
which are those having the highest Einstein coefficients.

Polarizability factors

We have studied the influence of the Einstein coefficients on the polarizability
factor. To this end, we have solved the statistical equilibrium equations (SEE)
for the irreducible tensor components of the atomic density matrix ρK

Q given by
Eq. (5.42) (see Landi Degl’Innocenti 1983). We have carried out two different
calculations: one using the Einstein coefficients tabulated by Kurucz (1993b)
and an extra one using the Einstein coefficients obtained from the analytical
formula given by Eq. (7.3) with the band oscillator strength of Kirby et al.
(1979). Since the effective polarizability factor has been defined under some
assumptions, we have solved the SEE under the very same restrictions in order
to be able to compare the results with the analytical formulae: a) the radiation
field has no spectral structure; b) the lower levels are unpolarized and populated
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according to their statistical weight; c) stimulated emission is neglected.

The molecular model for MgH includes rotational levels of the upper A2Π
and the lower X2Σ+ from J = 1/2 to J = 101/2, all belonging to the funda-
mental vibrational level. The fine structure due to the spin-coupling and the
Λ-doubling is taken into account. The lack of neither pure rotational transitions
nor collisional transitions produce an interesting effect in this molecule. Since
the parity selection rule +↔ − has to be fulfilled, we end up with two indepen-
dent subsystems in the MgH molecule which have to be solved independently.
Therefore, half of the levels of the upper and lower electronic states belong
to one subsystem, while the other half belong to the other subsystem. These
subsystems are not radiatively connected. The total number of rotational lev-
els included in the model is 152 for each subsystem, 51 levels belonging to the
lower level in which there is no Λ-doubling and 101 levels belonging to the up-
per level, in which the Λ-doubling is taken into account (this is the reason why
there is two times more levels in the upper state than in the lower state). The
number of electronic transitions among these levels is 300. We have included
lines belonging to main branches and to satellite branches.

In order to completely define the problem, we need to characterize the “de-
gree of anisotropy” of the radiation field. Since we are interested in comparing
the results between two possible options of the Einstein coefficients, we do
not worry about using a very accurate value of the anisotropy factor w (e.g.,
by means of 3D calculations). Therefore, we have just calculated the radia-
tion field tensors J0

0 (mean intensity) and J 2
0 (anisotropy) using the observed

center-to-limb variation of the solar continuum intensity from Cox (2000), which
completely defines w. The anisotropy in the solar atmosphere is weak, so the
weak anisotropy limit holds (i.e., J 2

0 /J
0
0 � 1). Therefore, we have limited the

calculations to multipoles of the density matrix with K ≤ 2, which leads to
a reduction in the size of the linear system describing the SEE. However, we
have verified that the results do not change in a significant way when using
all the multipoles of the density matrix for each level of total angular momen-
tum J . Once the value of the fractional alignment σ2

0 = ρ2
0/ρ

0
0 is known for

the upper and lower level of a transition, the fractional linear polarization Q/I
for a tangential observation (µ = 0) in a plane-parallel atmosphere including
the effect of a background polarized continuum can be obtained by using the
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formula (Asensio Ramos & Trujillo Bueno 2003b):

Q/I =

rl

[

Sl
ST

(

εl
Q

εl
I

)

− ηl
Q

ηl
I

]

+ Bν
ST

(1− rl)
(

εc
Q

εc
I

)

1− rl
[

Sl
ST

(

εl
Q

εl
I

)

+ Bν
ST

(1− rl)
(

εc
Q

εc
I

)

]

ηl
Q

ηl
I

, (7.5)

where rl = ηl
I/(η

l
I + ηc

I) is the line strength, Sl is the line source function, ST

is the total source function and Bν is the Planck’s function (continuum source
function). A more simplified version of this formula has been obtained also
by Landi Degl’Innocenti (2003). For the limiting case of a strong line (rl ' 1
and ST ' Sl), using the definition of the emission coefficients εI and εQ, given
by Eqs. (5.46) and (5.47), and their corresponding absorption coefficients, one
ends up with:

Q/I =

3
2
√

2

[

ω
(2)
JuJl

σ2
0(u)− ω

(2)
JlJu

σ2
0(l)
]

1− 1
2
√

2

[

ω
(2)
JlJu

σ2
0(l) + ω

(2)
JuJl

σ2
0(u)

]

− ω(2)
JuJl

ω
(2)
JlJu

σ2
0(l)σ

2
0(u)

, (7.6)

which simplifies to Q/I ' 3
2
√

2

[

ω
(2)
JuJl

σ2
0(u)− ω

(2)
JlJu

σ2
0(l)
]

when taking into ac-

count that σ2
0 � 1 in the solar-like atmospheres (Trujillo Bueno 1999, 2001). In

these expressions we have chosen our system of reference for Q > 0 in the plane

formed by the propagation direction and the tangent to the solar limb. ω
(2)
JuJl

is a numerical factor depending on the angular momenta of the levels involved
in the transition (see Landi Degl’Innocenti 1984). The polarizability factor can
be obtained from:

W2 = 4
Q/I

w (3 +Q/I)
'
√

2

w
ω

(2)
JuJl

[

σ2
0(u)

]

u.l.l
. (7.7)

The second equality assumes that the lower level is unpolarized, which is the
assumption made in all analytical derivations of the polarizability factor.

This formula can be used to calculate the effective polarizability factor via
the numerical solution of the SEE and compare it with that resulting from
the analytical formulae. Fig. 7.4 shows the results. Note that there is a
perfect overlap between the W2 obtained with the analytical formula (see Eq.
7.2) and that obtained by solving the SEE under the very same conditions
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necessary for the derivation of the formula. This agreement demonstrates the
reliability of the codes which solve the SEE numerically. On the other hand,
the value of W2 obtained when using the tabulated Einstein coefficients are
also very close to that obtained assuming Hund’s case (b), which shows that
this quantity is not extremely dependent on the exact value of the Einstein
coefficient. We have also plotted the value of W2 obtained by Berdyugina
et al. (2002) using the laboratory formulae for Raman and Rayleigh scattering.
Although the asymptotic value of W2 is correctly obtained with the formulae
used by Berdyugina et al. (2002), the behavior for small and intermediate
J -values is not correctly obtained due to the mixing of Rayleigh and Raman
scattering.

Landé factors

The effect of an external magnetic field on the rotational levels of a given
molecule is dictated by the molecular Landé factor, similar to what happens
in the atomic case. The Landé factor can be obtained quite easily in extreme
coupling cases (Herzberg 1950). Formulae for intermediate coupling cases, valid
for both the Zeeman and Paschen-Back regimes, have been obtained by Schadee
(1978) for doublet states.

Fig. 7.5 shows the Landé factors and the effective Landé factors for the
MgH transitions under study assuming Hund’s (b) coupling case. The absolute
value of the Landé factor decreases as J increases. Typically, in Hund’s case
(b) coupling, the Landé factor of a given rotational level goes as gJ ∝ J−n,
with n = 1, 2 depending on the value of N . Therefore, the Landé factor of the
lines which present a conspicuous linear polarization signal with 10 < J < 40
is very small. A rough estimation of the magnetic field strength at which the
Hanle effect can produce an important effect in the amplitude of the linear
polarization signal can be obtained by the formula (see, e.g., Trujillo Bueno
2001):

2πνLgJ = 8.79 × 106BHgJ ≈
1

τ
, (7.8)

where νL is the Larmor frequency, BH is the critical Hanle field in gauss, while
τ and gJ are the lifetime in seconds and the Landé factor of the level under
consideration. Berdyugina et al. (2002) concluded that molecular lines are
immune to the Hanle effect because the Landé factor of the levels are very small,
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Figure 7.5: Landé factors of the upper and lower levels of the A2Π-X2Σ+ transition of MgH
and the ensuing effective Landé factors for each of the sub-branches. All the Landé factors
have been obtained assuming Hund’s case (b) coupling, which gives a good representation of
the correct Landé and effective Landé factors for high values of J (typically for J > 10).

much smaller than the atomic ones. However, Landi Degl’Innocenti (2003) and
Trujillo Bueno (2003b) have pointed out that one has to take into account that
the lifetime of the molecular levels is usually higher than for atomic levels. One
can prove that the product gJτ is essentially the same for molecular lines and
for atomic resonance lines. Therefore, molecular lines are sensitive to magnetic
fields in the same range as atomic lines are and, as discussed by Trujillo Bueno
(2003b), their “apparent” immunity is telling us something new about solar
surface magnetism. We will consider this point below.

Finally, since the Landé factors of the J = N + 1/2 and J = N − 1/2 levels
have opposite signs, the value of the emerging U/I has opposite sign for lines
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between levels with J = N + 1/2 and lines between levels with J = N − 1/2.

7.2.2 C2 molecular model

Band structure

The rotational lines of C2 observed between 5080
◦

A and 5160
◦

A belong to the
d3Πg-a

3Πu v=0-0 electronic transition. The magnetic properties of this system
of C2 have been investigated by Berdyugina & Solanki (2002). They concluded
that both the upper and lower electronic states belong to intermediate cou-
pling schemes, although they rapidly approach Hund’s case (b) for J ≥10. In
both levels, the transition to the Paschen-Back regime occurs for magnetic field
strengths higher than 70 kG and therefore we can safely treat them in the Zee-
man regime. Since the spin of both levels is S=1, each rotational level splits into
three sublevels, labeled as F1 (the one with J=N + 1), F2 (the one with J=N)
and F3 (the one with J=N−1). Therefore, if both levels belong to Hund’s case
(b), the structure of the band consists of three sub-bands: 3Π0−3Π0,

3Π1−3Π1,
3Π2 −3 Π2. Each sub-band has strong P and R branches and a weak Q branch
(with the possible exception of the 3Π0−3 Π0 sub-band), each one splitted into
three sub-branches due to the spin-doubling. Λ-doubling is not present in this
molecule because it is composed of two identical nuclei. Therefore, since the
total wavefunction has to be symmetric under the exchange of the two nuclei,
only one of the Λ-doubling levels is possible for each state. The allowed levels
have parity − for the lower electronic state and parity + for the upper electronic
state.

The C2 lines observed in the second solar spectrum with non-negligible
linear polarization signal show the band structure mentioned before. Each line
is splitted into three components belonging to transitions between the different
sublevels arising from the spin-orbit coupling. For example, the lines in the P
branch are labeled as P1, P2 and P3 (see e.g., Fig. 128 on Herzberg 1950).

Einstein coefficients

The scattering polarization calculations for C2 have been performed with molec-
ular models built from the linelists of Kurucz (1993b). The band oscillator
strength for the v =0-0 band of C2 has been obtained from Cooper & Nicholls
(1976), with a value of f00(C2)=0.0257. As in the case of MgH, we have plotted
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Figure 7.6: Ratio between the Einstein coefficient for C2 lines obtained from the linelist
of Kurucz (1993b) and that calculated using the formula for Hund’s case (b) given by Landi
Degl’Innocenti (2003) assuming the band oscillator strength of Cooper & Nicholls (1976). Note
that for Jl > 10 the ratio is close to 1 for all the lines belonging to the P and R branches,
while those of the Q branch present higher deviations from Hund’s case (b). However, it is
clear that the ratio goes asymptotically to 1 when rotation increases.

the tabulated Einstein coefficient versus the analytical one calculated assuming
Hund’s case (b) coupling (see Fig. 7.6). Note that, contrary to what happens
for MgH, the best agreement between the tabulated data and the Hund’s case
(b) is obtained for the R and P branches, while that for the Q branch has strong
variations depending on wether the line is Q1, Q2 or Q3. In this case, the lines
with larger Einstein coefficients are the P and R branches. Finally, the ratio
becomes close to 1 when the rotation is increased because Hund’s case (b) turns
out to give a better description.
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Figure 7.7: Polarizability factors for the P, R and Q branches of C2. Note the perfect overlap
between that given by the analytical formula and that numerically obtained under the same
assumptions.

Polarizability factor

We have also calculated the polarizability factors using the same approach as in
MgH. Here, the model includes levels from J=0 to J=120 of the fundamental
vibrational level of both electronic states, including the fine structure due to the
spin coupling. The number of rotational levels is therefore 360 for each level,
giving a total of 720 rotational levels. The number of individual rotational
transitions is 2657. The increase in the number of levels included in the C2

model with respect to the number of levels of the MgH model is motivated by
the value of the Einstein coefficients. While the stronger lines for MgH are
those belonging to the Q branch (∆J = Ju − Jl = 0), for C2 the stronger
lines are those belonging to the P (∆J = −1) and R (∆J = 1) branches.
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This particular radiative structure produces very strong pumping ladders which
couple rotational levels with very different value of J . These ladders introduce
another complication to the problem. Those levels close to the boundary of
the model (having J close to 0 or to 120) are affected by the finite size of the
model. In order to verify the minimum size of the molecular model so that
these boundary effects are minimized for rotational levels with J ∼< 40, we have
performed calculations with some C2 models varying the maximum value of J .
We have verified that the results remain stationary for molecular models with a
maximum value of J = 120. Models with a smaller number of rotational levels
introduce spurious effects in the density matrix values (ρK

Q ) obtained from the
solution of the SEE. Therefore, and by economy reasons, we have decided to use
a model with Jmax = 120 for all the calculations. This effect does not appear in
MgH, because the population and atomic polarization of a given level in MgH
is mainly dominated by the coupling with rotational levels with the same value
of J . This is the reason why simple models of MgH, such a two-level model,
give results very close to those obtained with the full model.

The resulting polarizability factors are shown in Fig. 7.7. Note that we
again obtain a perfect overlap between the polarizability factor given by the
analytical formula and that obtained numerically using the same restrictive
assumptions and the same Einstein coefficients resulting from Hund’s case (b)
formula. Similarly to what happens with MgH, the polarizability factor is not
very sensitive to the exact value of the Einstein coefficient. We have also plotted
the value of the polarizability factor obtained with the formulae of Berdyugina
et al. (2002). Note that these formulae always underestimate the absolute value
of W2 for the lines of the P and Q branches while they always overestimate the
absolute value for the R branch.

Landé factors

Fig. 7.8 shows the Landé factors and effective Landé factors for C2 assuming
Hund’s case (b) coupling. Similarly to what happens in MgH, the Landé factors
quickly go to zero as J increases. However, the Landé factor of the levels with
J = N are much smaller than those for the levels with J = N ± 1. This
has two important consequences: first, the lines between levels with J = N
need relatively large magnetic field strengths to produce appreciable Zeeman
splittings; second, since the Einstein coefficients of the P1, R1, P2, R2, P3
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Figure 7.8: Landé factors of the upper and lower levels of the d3Πg-a
3Πu transition of C2 and

the ensuing effective Landé factors for each of the subbranches. All the Landé factors have
been obtained assuming Hund’s case (b) coupling, which gives a good representation of the
correct Landé and effective Landé factors for high values of J (typically for J > 10).

and R3 lines are very similar, the Hanle field for the J = N lines are much
higher (typically one order of magnitude higher). This makes these C2 lines
very attractive for the study of weak magnetic fields in the solar atmosphere
because they can be used as calibration. Furthermore, the same effect of the
change of sign in U/I appears in C2. The value of the emerging U/I has
different sign for transitions between levels with J = N + 1 and between levels
with J = N − 1.
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Figure 7.9: Anisotropy factor w of the continuum radiation at 5000
◦

A for the FAL-C solar
atmosphere model calculated for the plane-parallel and spherically symmetric cases.

7.2.3 Anisotropy factor

We have seen that the differential population of the sublevels of a given atomic
or molecular J -level is dictated by the anisotropy of the radiation field which in-
duces radiative transitions in the atomic or molecular system. This “anisotropy”
can be quantified in terms of the anisotropy factor

w =
√

2J2
0/J

0
0 . (7.9)

We have calculated this anisotropy factor in the semi-empirical solar atmo-
spheric model FAL-C using either the assumption of a plane-parallel (PP) at-
mosphere or a spherically symmetric (SS) atmosphere. Since the molecular
lines are very weak, we can assume that the relevant radiation field is the con-
tinuum radiation field. We have solved the radiative transfer equation in both
PP and SS geometries for the wavelength region of the MgH and C2 lines. We
have calculated the radiation field tensors given by Eq. (5.43) using suitable
quadrature formulae. The number of quadrature points has been selected in
a trial-and-error scheme. This number was increased until no significant vari-
ation is seen in the value of the radiation field tensors at each height in the
atmosphere. The results are shown in Fig. 7.9. There are some important
properties we can point out from this figure. First, the continuum radiation
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Figure 7.10: Application of the basic formula of the Hanle field (see Eq. 7.8) to the upper and
lower levels of C2 lines that produce scattering polarization on the Sun. Each point refers to
upper/lower level of a given spectral line of the P and R branches.

field in the deep regions of the atmosphere is almost completely isotropic and
therefore the value of w goes rapidly to 0. Second, sphericity effects for the
solar continuum radiation are important only for heights above 300 km. Above
this height, the value of w for the PP calculation remains constant at a value of
∼0.13, while that obtained using the SS formal solver increases almost linearly
with height. This effect is produced because at such heights the influence of the
solid angle subtended by the solar atmosphere starts to be important. Third,
there is a very small region around τ5000 = 1 where the anisotropy factor is
negative. Recalling the meaning of the sign of w, the illumination in this re-
gion is preferentially horizontal, while it becomes preferentially vertical when
going upwards. As shown by Trujillo Bueno (2003c, 2003b), the situation is
much more complicated in 3D models of the solar photosphere, since w shows
important horizontal fluctuations being larger in the upflowing regions than in
the downflowing plasma.
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7.2.4 The critical Hanle field

In order to have an idea of the magnetic fields necessary for producing an
appreciable Hanle depolarization on the molecular lines, we have used Eq. (7.8)
to obtain the critical Hanle field for the upper and lower levels of the rotational
transitions of MgH and C2. The lifetime of each level is calculated taking into
account all the transitions which depopulate the level. For the upper levels
of the transitions, it is obtained as the inverse of the sum of the spontaneous
Einstein coefficients Aul of all the radiatively allowed transitions:

tlife(u) =

(

∑

l

Aul

)−1

. (7.10)

On the other hand, the lifetime of the lower levels is obtained as the inverse of
the sum of the absorption Einstein coefficients (Blu) times the mean intensity
J0

0 :

tlife(l) =

(

∑

u

BluJ
0
0

)−1

. (7.11)

Note that the lower level Hanle field is therefore dependent on the radiation
field present in the medium. We have used the same radiation field we have
used in the calculations, i.e. that obtained from the Cox (2000) tabulation of
the observed center-to-limb variation of the solar continuum radiation.

We show in Figs. 7.10 and 7.11 the critical Hanle fields for the upper and
lower levels of the MgH and C2 transitions. The Hanle field for the lower
levels is typically two orders of magnitude lower than for the upper level, a
direct consequence of the two orders of magnitude difference in the lifetime.
Furthermore, the critical Hanle fields for molecular lines are of the same order
of magnitude as the Hanle fields of atomic lines. As stated above, this is
produced because the quantity g tlife is similar for both kind of transitions: for
atomic lines g is large and tlife is small, while for molecular lines g is small and
tlife is large. When a molecule spends more time in a given rotational level,
there is more time for the magnetic field to affect its atomic polarization via
the Hanle effect. Concerning C2, the Hanle field for the R2 and P2 lines is
much higher than for the rest of line components. This is due to the especial
behavior of the Landé factor of the J = N levels which, behaving as g ∝ J−2,
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Figure 7.11: Application of the basic formula of the Hanle field to the upper and lower
levels of MgH lines that produce scattering polarization on the Sun. Each point refers to the
upper/lower level of a given spectral line of the Q branch.

are extremely small in comparison with the Landé factor of the J = N + 1 and
J = N − 1 (which behave as g ∝ J−1) for a given rotational level J . Since the
critical Hanle fields are inversely proportional to the Landé factor, the behavior
for transitions between J = N levels is parabolic, while the rest are completely
linear. The upper level Hanle field for the observed lines of C2 are around 10
G for the lines corresponding to levels J = N + 1 and J = N − 1, while it is
around 200 G for the lines corresponding to levels J = N . Therefore, we could
only expect Hanle depolarization in the weak field regions for the lines with
lower Hanle fields. As we shall show below, this curious behavior can be used
to extract information on the weak magnetic fields in the granular regions of
the quiet Sun.

7.2.5 Non-magnetic case

The diagnostics of magnetic fields via the Hanle effect requires a correct mod-
eling of the scattering polarization amplitudes for the case of zero magnetic
field. Instead of solving the full non-linear radiative transfer problem, we will
consider the simplified linear problem in which the SEE system given by Eqs.
(5.42) are solved assuming that the radiation field tensors JK

Q are known. Fol-
lowing this approach, the problem is extraordinarily simplified. The SEE for
the irreducible spherical components of the density matrix transform then into
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a linear system of equations which can be solved using any suitable linear solver.
We assume that the radiation field is axially symmetric. Therefore, the only
non-zero components of the radiation field tensor are the J 0

0 and J2
0 . The first

one is the mean intensity, which we have calculated from the angular integration
of the center-to-limb variation of the solar continuum radiation tabulated by
Cox (2000). Instead of giving J 0

0 , we will work with n̄, the solid-angle average
of the number of photons per mode at a given frequency ν, related to J 0

0 by:

n̄ =
c2

2hν3
J0

0 . (7.12)

The value of the degree of anisotropy J 2
0 is given in terms of the anisotropy factor

w. We have verified that the calculated irreducible spherical tensor components
of the density matrix (i.e., the ρK

Q elements) depend much more strongly on
the anisotropy factor w than on the exact value of the mean intensity. As
an example, the fractional alignment of the upper level in a two-level atom
transition with angular momenta Ju and Jl without lower level polarization and
in the absence of depolarizing collisions and of magnetic fields can be written
as (Landi Degl’Innocenti 1984):

σ2
0 =

w
(2)
JuJl√
2
w. (7.13)

Even more striking is the result of the calculation shown in Fig. 1 of Trujillo
Bueno & Manso Sainz (1999) who solved the full polarized radiative problem
self-consistently. It shows that, in the absence of depolarization mechanisms
(e.g. by elastic collisions and/or magnetic fields), σ2

0 is approximately equal to
J2

0/J
0
0 for a transition with Jl = 0 and Ju = 1 at each height in an isothermal

atmosphere.
Since the “degree of anisotropy” in the solar atmosphere is weak, we can

make the additional assumption of neglecting all the multipole moments of the
density matrix with K > 2 and retain only those with K ≤ 2. Because we
are here considering the unmagnetized case and the radiation field is axially
symmetric, the only non-zero irreducible spherical tensor components of the
density matrix are ρ0

0 and ρ2
0. We have solved the SEE for a value of w = 0.145.

We have verified that solving the full problem including all the values of ρK
0

with K = 0, 2, · · · , 2J does not significantly affect the solution because w is
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sufficiently small. The SEE are solved for different values of the depolarizing
rates D(2). As it becomes obvious from the rate equations given by Eq. (5.42),
the multipole moments of the density matrix with K = 2 go to zero when D (2)

increases and the molecular polarization is destroyed, i.e. all the sublevels of
a given level J are equally populated. We have plotted in the upper panels of
Fig. 7.12 the value of σ2

0 for the upper level (solid line) and lower level (dashed
lines) of some interesting transitions of MgH. These transitions are the Q1(17)
and Q2(16) observed by Faurobert & Arnaud (2002) and the additional Q1(6)
as representative of a transition between low J values. Note the extremely
similar behavior of σ2

0 for the different lines. There are small differences in the
value of σ2

0 when the depolarization rates are very small and on the value of
D(2) necessary for obtaining a significant variation of the fractional alignment
with respect to the case with D(2) = 0, which is slightly smaller for the lines
with higher values of J . The curves for the lower levels (dashed lines) tend
to zero faster than those for the upper levels (solid lines) because the lower
level lifetime is usually much longer than that of the upper level. As a result,
the depolarizing collisions can act during a longer time and efficiently reduce
the lower level atomic polarization. On the other hand, note that there is a
feedback effect between the σ2

0 values of the upper and lower levels. When the
value of σ2

0(low) starts to decrease due to the action of collisional processes,
σ2

0(up) changes in a very similar way. This effect is produced by the coupling
between both levels in the SEE. In fact, it can be shown that the fractional
alignment of the upper and lower levels of a Ju = 1→ Jl = 1 transition can be
expressed as (see Trujillo Bueno (2001)):

σ2
0(up) ≈ −1

2(1 + δu)

[

ω√
2

+ σ2
0(low)

]

σ2
0(low) ≈ 1

2(1 + δl)

[

ω√
2
− σ2

0(up)

]

, (7.14)

where δu = D(2)/A and δl = D(2)/BJ̄0
0 . Note the inter-relationship between the

fractional alignments of the upper and lower levels. Interestingly, the atomic
polarization of the upper level of the MgH lines increases in absolute value when
the lower level polarization is destroyed by collisions (see upper panels of Fig.
7.12).

The middle panels of Fig. 7.12 show the fractional linear polarization. The
formula used to obtain Q/I is that given by Eq. (7.6). The most important
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Figure 7.12: Upper panels: fractional alignment σ2
0 of the upper (solid line) and lower (dashed

line) levels of some transitions of the Q branch of MgH for increasing values of the depolarizing
collisional rate. Middle panels: the corresponding fractional linear polarization (Q/I) obtained
under the assumption of single scattering events. The solid line takes into account the effect of
dichroism and the dashed line does not. Lower panels: the corresponding polarizability factor
obtained from the calculated Q/I via Eq. (7.7). The dotted line is the W2-value obtained
from the analytical formula given by Landi Degl’Innocenti (2003).
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term in this formula is the numerator, while the denominator turns out to be
a very small correction due to the small value of the fractional alignment. The
numerator is nothing but the Eddington-Barbier expression obtained by Trujillo
Bueno (1999, 2001). Therefore, the fractional linear polarization Q/I is given by

Q/I ' 3
2
√

2

[

ω
(2)
JuJl

σ2
0(u)− ω

(2)
JlJu

σ2
0(l)
]

, i.e. the difference between the fractional

alignment of the upper and the lower levels, where each σ2
0 value is weighted by

factors which depend on the Jl and Ju values of the considered exact transition.
However, these numerical factors quickly tend to an asymptotic value when J

increases, which are ω
(2)
JJ±1 = 1/

√
10 and ω

(2)
JJ = −

√

2/5. The middle panel
of Fig. 7.12 shows the value of Q/I taking into account the dichroism effect
produced by the lower level polarization. The figure also shows, Q/I(up), i.e.
the Q/I signal observed off-limb where no dichroism effect is operative (to this
end we simply set σ2

0(l) = 0 in Eq. 7.6).
In this case, however, the value of σ2

0(u) contains information on the feed-
back effect of the non-zero σ2

0 value of the lower level. As shown by the solid
lines of the Q/I panels in Fig. 7.12 the result is that Q/I remains insensitive
to the depolarizing collisions until the upper level polarization begins to be
affected. However, Q/I(up) is sensitive to the depolarization of the lower level
as well as to the depolarization of the upper level. Therefore, the lower level
polarization cannot be observationally detected in MgH lines unless an off-limb
observation is made. In an on-disk observation, the feed-back effect produced
in the SEE results in a Q/I signal which is completely insensitive to the lower
level polarization. Note that this effect is more pronounced when J is increased.
A small variation in Q/I is seen for the Q1(6) transition when increasing the
depolarization rate, indicating the presence of lower level polarization. Landi
Degl’Innocenti (2003) has shown that this behavior we had found numerically
can be proved analytically as a theorem which states that, in the absence of

depolarizing mechanisms for the upper level of an electronic state of a molecule,

the difference between the asymptotic value of the atomic polarization of the

rotational levels of the upper electronic state and the corresponding value for

the lower electronic state equals the asymptotic value of the atomic polarization

of the rotational levels of the upper electronic state corresponding to the case of

complete depolarization of the lower levels. Expressed analytically,

lim
Ju→∞

σK
Q (Ju)− lim

Jl→∞
σK

Q (Jl) =

[

lim
Ju→∞

σK
Q (Ju)

]

u.l.l

, (7.15)



7.2 Scattering polarization in MgH and C2 lines 279

where u.l.l means unpolarized lower level.
The calculated values of Q/I(up) are compatible with those observed by

Faurobert & Arnaud (2002) only in a very limited range of depolarizing colli-
sional rates. We have to use Q/I(up) for the comparison because the obser-
vations were made off-limb, where no dichroism effect is present, although the
feed-back effect of σ2

0(low) on σ2
0(up) may be present (in principle). Interest-

ingly, the rate of depolarizing collisions needed to fit the off-limb observations
is enough to completely destroy the lower level polarization. A severe prob-
lem arises here, because no information about how important the depolarizing
collisions may be for molecules is available. Therefore, we cannot reject the
possibility of having an unpolarized lower level until any suitable value for the
order of magnitude of the depolarizing collisions is available.

The lower panels of Fig. 7.12 show the values of the polarizability factor
W2 obtained from Q/I and Q/I(up) using Eq. (7.7). We have also indicated
the value of W2 obtained from the analytical formulae of Landi Degl’Innocenti
(2003), showing that the analytical formulae give very good results for the
polarizability factor in the limit of zero depolarization collisions. Therefore,
and similar to what happens with Q/I, the polarizability factor is completely
insensitive to the lower level polarization.

Fig. 7.13 shows the results obtained for C2 in a similar way as for MgH. We
show two lines with high J and one with small J , where J is the total angular
momentum of the lower level. The results are similar for lines between levels
with J = N + 1, J = N or J = N − 1 so that we plot the results for the
J = N + 1 lines as representative of all the lines. In this case, the molecular
model for C2 includes much more levels because the spin is now S = 1 and
each rotational levels splits into three sublevels with the same value of N and
different value of J .

Furthermore, the above-mentioned complication of the radiative ladders ap-
pears and the molecular model has to be big enough to avoid boundary effects
(i.e. the same problems we had when calculating the polarizability factors).
From a computational viewpoint, the fact that we have low anisotropy and the
ensuing neglect of the multipoles with K > 2 turns out to be fundamental in
this case. The upper panels show the fractional alignment of the upper (solid
line) and lower (dashed line) levels of the transitions. Note that, contrary to
what happens with MgH, the fractional alignment here is always positive. The
definition of the spherical statistical tensor components of the density matrix
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Figure 7.13: Upper panels: fractional alignment σ2
0 of the upper (solid line) and lower (dashed

line) levels of some transitions of the P and R branches of C2 for increasing values of the
depolarizing collisional rate. Middle panels: the corresponding fractional linear polarization
(Q/I) obtained under the assumption of single scattering events. The solid line takes into
account the effect of dichroism and the dashed line does not. Lower panels: the corresponding
polarizability factor obtained from the calculated Q/I via Eq. (7.7). The dotted line is the
W2-value obtained from the analytical formula given by Landi Degl’Innocenti (2003).
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Figure 7.14: Typical population scheme for a given level (in this case J = 5/2) depending
on the sign of σ2

0 . The left panel shows the population scheme when σ2
0 > 0, while the right

panel shows the population scheme when σ2
0 < 0.

elements:

ρK
Q (J) =

∑

MM ′

(−1)J−M
√

2K + 1

(

J J K
M −M ′ −Q

)

ρJ(M,M ′), (7.16)

can give us some information about which sublevels are more populated. If we
are interested in the value of the components with ρ2

0, we can evaluate the 3-j
symbol, perform the summation using the rules of Racah algebra to obtain:

ρ2
0(J) =

∑

M

(−1)2J−2M+1

√
2
(

J2 + J − 3M2
)

√

J(2J − 1)(2J + 1)(2J + 2)(2J + 3)
ρJ(M,M),

(7.17)
where ρJ(M,M) is the population of the sublevel with magnetic quantum num-
ber M . The value of ρ2

0 is given by a sum of the populations of the sublevels
with given weights (except for J = 0 and J = 1/2, for which ρ2

0 = 0). There is a
change of sign in ρ2

0 which is produced at J 2+J−3M2 = 0. Since (−1)2J−2M+1

is always equal to −1 for J integer or half-integer, the sublevels which contribute
to the sum can be divided into:

|M | ≤ 1

3

√

3J2 + 3J ⇒ contribute positively

|M | ≥ 1

3

√

3J2 + 3J ⇒ contribute negatively (7.18)

Therefore, we can calculate which levels are more populated depending on the
sign of σ2

0 taking into account that ρ0
0 is always positive because it is propor-

tional to the total population of a level J . For the case of C2, we have that
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Figure 7.15: Ratio between the continuum mean intensity J0
0 and the Planck function for dif-

ferent heights of the FAL-C and COOL-C semi-empirical models and for different wavelengths.
The ratio increases towards the blue part of the spectrum.

σ2
0 > 0 for all the transitions, meaning that the levels with lower absolute value

of M are less populated than the levels with higher value of M . For MgH,
we have that the upper level has σ2

0 < 0, which means that the sublevels with
higher absolute value of M are less populated (see Figure 7.14).

We have also carried out a similar investigation for the case of the C2 line
transitions that produce scattering polarization in the Sun. The results are
summarized in Fig. 7.13.

7.2.6 Effect of the weakness of the lines

The formulae we have used for calculating Q/I are valid in the limit of an
infinitely strong line. But we know that the molecular lines observed in the
solar atmosphere are usually weak. Therefore, additional terms like Sl/ST and
rl may play a role (see Eq. (7.5). In order to get a feeling of the effect of the
weakness of the lines on the linear polarization signal, we have calculated the
ratio Sl/ST at different continuum wavelengths for the semi-empirical models
FAL-C and COOL-C. The line source function for a two-level atom is given by
(e.g., Mihalas 1978)

Sl = (1− ε)J0
0 + εBν , (7.19)

where ε = Cul/(Aul +Cul) is the non-LTE parameter. If we assume that ε� 1,
the line source function turns out to be dominated by the mean intensity J 0

0 .
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On the other hand, the total source function is given by:

ST =
χlSl + χcBν

χl + χc
= rlSl + (1− rl)Bν . (7.20)

Because the lines are weak, we have χl � χc, and ST ≈ Bν . Therefore,
Sl/ST ≈ J0

0 /Bν . We have solved the RT equation including only the back-
ground continuum opacity to get the relevant mean intensity J 0

0 . The mean
intensity is equal to the Planck function at depths where τc � 1. When going
upwards, J0

0 decreases up to the height where the atmosphere becomes opti-
cally thin for the frequency under consideration and J 0

0 becomes constant. The
ratio J/B is shown in Fig. 7.15 for a wide range of wavelengths, from the ul-
traviolet to the near infrared. Note the extremely different behavior between
semi-empirical models of the solar atmosphere. This is because FAL-C has a
temperature rise above its temperature minimum at ∼500 km, while the tem-
perature stratification for COOL-C is monotonically decreasing and remains
constant above ∼900 km. An interesting thing to note is that at any fixed
height in the solar atmosphere the J/B ratio is monotonically decreasing as
the wavelength is increased, i.e. the ratio Sl/ST is higher for UV wavelengths
than for IR wavelengths. If we focus on what happens around the MgH and
C2 lines (the curve for 5000

◦

A), we see that the ratio is always between 1 and
2 in the zone where the molecular lines are formed (see Section §7.2.8) for the
FAL-C model and between 1 and 3-4 for the COOL-C model. In fact, when
this ratio is calculated using a snapshot of the 3D hydrodynamical simulations
of Asplund et al. (2000), one finds that its average value is ∼1.3 (see Trujillo
Bueno 2003b). If one takes into account that this ratio can be different from 1
and assuming that the continuum is not polarized, the single scattering formula
(see Eq. (7.5)) should be transformed into:

Q/I =

3
2
√

2
rl

[

ω
(2)
JuJl

Sl
Bν
σ2

0(u)− ω
(2)
JlJu

σ2
0(l) + 1

2
√

2

(

1− Sl
Bν

)

ω
(2)
JuJl

ω
(2)
JlJu

σ2
0(l)σ

2
0(u)

]

1− r2
l

1
2
√

2

[

ω
(2)
JlJu

σ2
0(l) + ω

(2)
JuJl

σ2
0(u)

]

+ r2l
1
8

(

1− 9 Sl
Bν

)

ω
(2)
JuJl

ω
(2)
JlJu

σ2
0(l)σ

2
0(u)

.

(7.21)
where we have substituted the value of the emission and absorption coefficients
in terms of the fractional alignments. If the weak anisotropy limit is recalled,
this formula transforms in:

Q/I =
3

2
√

2
rl

[

ω
(2)
JuJl

Sl

Bν
σ2

0(u)− ω(2)
JlJu

σ2
0(l)

]

, (7.22)
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which represents nothing but the usual Eddington-Barbier relation for Q/I
obtained by Trujillo Bueno (1999, 2001) with the modification of multiplying
the fractional alignment of the upper level by the ratio Sl/Bν and a global
rescaling factor given by rl. Therefore, the upper level atomic polarization in a
weak transition has more weight than in a strong line. The effect is shown in
Fig. 7.16 for the P3(28) rotational line when a microturbulent magnetic field
is included (see §7.2.7). The left panel shows the case with Sl/Bν = 1, which
gives the same results of Fig. 7.21. When the J/B ratio is increased, the value
of Q/I increases as can be verified from the previous formula. If we neglect
second order terms in the fractional alignment, neglect the contribution of the
denominator of the formula and assume that rl does not vary (in fact, we are
assuming that rl = 1 because we are interested in off-limb observations, where
there is no continuum), increasing the ratio by a given factor is equivalent to
increasing the fractional alignment of the upper level by the same factor. One
interesting effect is that the flat behavior of Q/I for a very broad values of the
magnetic field is lost and more structure appears, thus leading to an improved
diagnostic capability.

7.2.7 Magnetic case

After having investigated the Q/I signal produced by scattering processes in
MgH and C2 lines and how it is modified when depolarizing collisions are in-
cluded, we now investigate the effect of a magnetic field through the Hanle effect.
The effect of a deterministic magnetic field is incorporated into the statistical
equilibrium equations (5.42) through the term
−2πiνLgLQρ

K
Q (J) when they are written in the magnetic field reference frame.

When the radiation field has a symmetry axis, it is desirable to write the SEE in
a reference system with the quantization axis chosen along this symmetry axis.
Taking advantage of the formal invariance of the radiative rates when a change
of reference frame is performed, the SEE turn out to be similar to those given by
Eq. (5.42) but substituting the magnetic term by −2πiνLgL

∑

Q′ KK
QQ′ρK

Q′(J)

(see Landi Degl’Innocenti et al. 1990), where KK
QQ′ is a magnetic kernel which

couples the density matrix elements of a given rank K among themselves.

Contrary to what happens in the non-magnetic case in which the only non-
zero components of the density matrix are the ρK

0 , when a magnetic field is
present the components with Q 6= 0 can be non-zero. If we limit ourselves to
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Figure 7.16: Upper panels: fractional alignment σ2
0 of the upper (solid line) and lower (dashed

line) levels of the P3(28) rotational transition of C2 for different value of the microturbulent
magnetic field. Middle panels: the corresponding fractional linear polarization (Q/I) obtained
under the assumption of single scattering events. We show the effect of changing the ratio
Sl/Bν on the value of Q/I. The solid line takes into account the effect of dichroism and the
dashed line does not. Lower panels: the corresponding polarizability factor obtained from the
calculated Q/I via Eq. (7.7). The dotted line is the W2-value obtained from the analytical
formula given by Landi Degl’Innocenti (2003).
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the weak-anisotropy limit so that we only retain ρK
Q components with K ≤ 2,

the spherical components of the density matrix which are important for the
problem are ρ0

0, ρ
2
0, ρ

2
1 and ρ2

2. While the components with Q = 0 are real
quantities, the components with Q 6= 0 are complex in general, and we will
need a maximum of 6 components for a given level J when K ≤ 2 in order to
describe its atomic polarization state completely.

The strength of the magnetic field enters the problem through the Larmor
frequency (νL), while the sensitivity of each level to the magnetic field is con-
trolled by the Landé factor. Because the magnetic fields we are interested in
are rather weak, we have assumed that we are always in the Zeeman regime,
where the splitting of the magnetic sublevels M of a rotational level J is well
represented by a unique and constant Landé factor. In the case in which the
magnetic field is strong enough to produce the transition to the Paschen-Back
regime, the equations to apply are much more complicated, because quantum
interferences between levels having different J -values have to be taken into ac-
count. Restricting ourselves to the Zeeman regime, we can easily obtain the
Landé factor for each level J . Hund’s case (b) is often used to represent the
Landé factor for rotational levels with high J . However, the intermediate case
between Hund’s case (a) and (b) can be used, using either Schadee’s (1978)
theory or the numerical diagonalization of the total molecular Hamiltonian de-
veloped in this Thesis (see Section §5.3). For the case of MgH we have used the
intermediate case between Hund’s case (a) and (b) formulas given by Schadee
(1978) and for C2 we have decided to use Hund’s case (b). The theory developed
by Schadee (1978) is not applicable to C2 since it is limited to doublet states.
However, in view of the results obtained by Berdyugina & Solanki (2002) for
the Landé factors, the formulas of Hund’s case (b) are good enough to represent
the Landé factor of the levels of C2 with J > 10.

We consider in this section the effect of a microturbulent and isotropically
distributed magnetic field on the linear polarization signal of molecular lines2.
We obtain the microturbulent magnetic field limit by solving numerically the
SEE for many directions of the magnetic field and then averaging the obtained

2We note that for the case of a two-level model without lower-level polarization the SEE for
the microturbulent limit can be obtained analytically (Trujillo Bueno & Manso Sainz 1999).
The case of a two-level atom model with lower-level polarization in the weak-anisotropy limit
is developed in Appendix A.
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spherical components of the density matrix:

ρK
Q (J) =

1

4π

∫ 2π

0
dχB

∫ π

0
dθB sin θB ρ

K
Q (J, θB , χB), (7.23)

where we have explicitly indicated the dependence of the density matrix com-
ponents on the angle between the magnetic field and the symmetry axis of
the radiation field. This angle is given in terms of the inclination θB and the
azimuth χB. The other Euler angle γB which describes the transformation
between the magnetic field reference system and the radiation field reference
system can be set to 0 without loosing generality. The transformation proper-
ties of the ρK

Q elements can be investigated by writing how they change when
transforming from one frame to the other:

[

ρK
Q (J)

]

rad
=

∑

Q′

DK
Q′Q(0,−θB ,−χB)

[

ρK
Q′(J)

]

mag

= eiQχB
∑

Q′

dK
Q′Q(−θB)

[

ρK
Q′(J)

]

mag
, (7.24)

where dK
Q′Q is the reduced rotation matrix (Brink & Satchler 1968). Due to the

properties of the rotation matrices, one can verify that the multipole moments
ρ0
0 are invariant under the rotation of the magnetic field vector, while the ρ2

0

depend only on the inclination of the magnetic field and not on the azimuth.
Finally, the irreducible components of the density matrix with Q 6= 0 have a
periodical dependence on the azimuth. Unless Q = 0, the irreducible compo-
nents of the density matrix in the new reference system are periodical in the
azimuth and, since

∫ 2π
0 dφeiQχ = 0, their angle average is zero. The only tensor

components which remain not zero are those with Q = 0, i.e. ρ0
0 and ρ2

0.
We have approximated the integral of Eq. (7.23) using a gaussian quadra-

ture of N points so that it can be written as:

ρK
0 (J) =

1

2

∫ 1

−1
dµB ρ

K
0 (J, µB) '

N
∑

i=1

Wiρ
K
0 (J, µBi), (7.25)

where we have made the change µB = cos θB. We have chosen N=12, which
results in a very precise quadrature rule, and the weights Wi have been obtained
using standard techniques (see, e.g., Press et al. 1986).
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Figure 7.17: Hanle diagrams for the Q1(11.5) and Q2(10.5) lines of MgH. In the left panel we
show the Hanle diagram when dichroism effects are taken into account and in the right panel
we show the Hanle diagram when dichroism effects are neglected.

Before showing the results for a microturbulent field, we first show the effect
of a deterministic magnetic field with inclination θB=90◦ (horizontal magnetic
field) and two different azimuths, χB=0◦ and χB=180◦, which correspond to
fields pointing along or away the line of sight, respectively. We have solved
the SEE for these particular orientations of the magnetic field and we have
investigated the influence of an increasing magnetic field strength on the linear
polarization signals Q/I and U/I obtained for tangential observation (µ=0) in
a plane-parallel atmosphere at the core of the spectral line. The value of Q/I
and U/I can be obtained directly from (Manso Sainz 2002):





I
Q
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µ=0

=





ηI ηQ ηU

ηQ ηI 0
ηU 0 ηI





−1



εI
εQ
εU



 , (7.26)
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where all the coefficients must be evaluated at the atmosphere’s surface and for
µ = 0. The obtained diagrams, known as Hanle diagrams, can be seen in Figs.
7.17 and 7.18 for two lines of MgH and C2, respectively. We have shown in the
left panel the Hanle diagrams when dichroism is taken into account (i.e., ηQ

and ηU are used) and in the right panel when dichroism is not included (i.e.,
ηQ and ηU are neglected). The diagrams show the typical 8-shape, where the
two lobes correspond to the upper- and lower-level Hanle effect.

Concerning the MgH lines, note that the lobe corresponding to the lower
level Hanle effect is extremely small when dichroism is taken into account, while
it turns out to be significant when it is neglected. This means that the effect
of the lower level polarization on the observable linear polarization signal when
dichroism is taken into account is extremely small, similar to what happens
for the non-magnetic case. On the other hand, when dichroism is neglected,
the Q/I signal increases when the magnetic field is increased until the lower
level polarization is destroyed by the magnetic field, completely equivalent to
what happens for the non-magnetic case when the depolarizing collisions are
increased. A very interesting property of the MgH lines is that the value of U/I
has different sign for lines with J = N + 1/2 and for lines with J = N − 1/2, a
direct consequence of the change of sign of the Landé factor between the levels
with J = N + 1/2 and those with J = N − 1/2 (see Trujillo Bueno 2003b).

As shown in Fig. 7.18, concerning the C2 lines, the behavior is similar when
dichroism is included, with a very small lobe corresponding to the lower level
Hanle effect. In this case, it turns out very difficult to detect the lower level
polarization by the observables Q/I and U/I because they do not change until
the lower level polarization is completely saturated by the Hanle effect. When
dichroism is neglected, the lobe corresponding to the lower level Hanle effect
appears. In this case, when the magnetic field is increased so that the lower
level polarization is destroyed, the linear polarization signal decreases. Note
the curious shape of the lobe corresponding to the lower level Hanle effect in
the P2(35).

Let us now show the effect of a microturbulent magnetic field. Fig. 7.19
shows the results obtained for the fractional alignment, the fractional linear
polarization signal Q/I and the polarizability factor for three representative
MgH lines and for increasing strengths of the turbulent magnetic field. Since
we are not using the SEE appropriate for treating the Paschen-Back regime
in which quantum interferences between rotational levels belonging to different
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Figure 7.18: Hanle diagrams for the P1(36) and P2(35) lines of C2. In the left panel we show
the Hanle diagram when dichroism effects are taken into account and in the right panel we
show the Hanle diagram when dichroism effects are neglected.

values of J are taken into account, there is a limit for the magnetic field strength
above which the results shown here may not be valid. For MgH, this limit is
given by the field necessary to have a Zeeman splitting similar to the multiplet
splitting due to the spin-rotation coupling. For the low J levels, this happens
for ∼ 280 G (Berdyugina & Solanki 2002). However, note that the saturation
of the Hanle effect is reached for fields of ∼ 100 G, so that the saturation limit
is reached before any Paschen-Back complication appears.

As shown in the Figs. 7.19, 7.20, 7.21 and 7.22, the behavior of σ2
0 when the

microturbulent field is increased is extremely similar to that obtained when the
depolarizing collisions are increased, although there is a fundamental difference.
When the magnetic field is increased, the fractional alignment is not completely
destroyed and a residual remains. This residual is equal to 1/5 the value of σ2

0

for zero-field (Trujillo Bueno & Manso Sainz 1999). As shown by these authors,
the value of σ2

0 for the two-level atom case without lower-level polarization and
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for a microturbulent magnetic field is proportional to:

H(2) =
1

5

(

1 +
2

1 + Γ′2 +
2

1 + 4Γ′2

)

, (7.27)

where Γ′ ∝ νL. Therefore, in the limit of zero magnetic field (Γ′ → 0), H(2) = 1,
while for very high magnetic field (Γ′ →∞), H(2) = 1/5. This result, obtained
for the two-level atom case, is also correct for the multilevel case, even for very
complicated molecular models. The variation of σ2

0 when the microturbulent
magnetic field strength is increased is very similar to that found for the zero-
field case when increasing the rate of depolarizing collisions. In Appendix A
we give the expression for σ2

0 in the microturbulent limit of a two-level atom in
the weak-anisotropy limit when both levels are polarized.

In addition to the previous results, Figs. 7.19 and 7.20 also show the effect
of using Sl/Bν = 2 in the formula for calculating the emergent fractional linear
polarization. Note in Fig. 7.19 that there appears a sensitivity of Q/I to the
lower level polarization Interestingly, for the MgH case (see Fig. 7.19), there
is a region between ∼ 10−2 and ∼1 G where the linear polarization signal is
magnified with respect to the case with Sl/Bν = 1.

On the other hand, we have also shown in Fig. 7.20 the results obtained
when the lower level of each individual rotational line is assumed to be com-
pletely unpolarized. Under such assumption, the fractional alignment of these
levels is zero irrespective of the value of the magnetic field. The result is that
the fractional linear polarization signal produced by the emission processes from
the upper level is almost equal to that obtained when the lower level polariza-
tion and dichroism effects are taken into account. This applies to the Sl/Bν = 1
case.

Similar calculations for some lines of C2 are shown in Fig. 7.21. Parallel
to what happens for MgH, the behavior of σ2

0 with the turbulent magnetic
field strength is similar to the behavior with the depolarizing collisions. The
transition to the Paschen-Back regime for C2 is reached for fields larger than
70000 G and we can therefore consider that we are always in the Zeeman regime.
Note that, since the Landé factor of the levels with J = N are around two
orders of magnitude smaller than those of the J = N + 1 and J = N − 1
levels, the field at which the Hanle depolarization occurs tends to be around
2 orders of magnitude larger. This difference in the field regime at which a
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change in Q/I occurs will be used later to diagnose weak magnetic field in the
solar atmosphere. We have also shown the value of Q/I for the lines of C2 when
the ratio Sl/Bν = 2. In this case, since the feed-back effect of the lower level
polarization on the upper level of the transitions is weaker, the features due to
the lower level polarization in the observed Q/I are less important.

Fig. 7.22 shows also the results obtained when the lower level is completely
unpolarized. The observed Q/I is completely similar to what is obtained when
the lower level polarization and dichroism are taken into account, which applies
to the Sl/Bν = 1 case.

7.2.8 3D models

Spectral synthesis of photospheric lines of atomic species in the recent three-
dimensional (3D) radiation hydrodynamics models of Asplund et al. (2000)
show a notable agreement with the observed spatially averaged spectrum (Shchuk-
ina & Trujillo Bueno 2001). Therefore, it is expected that the thermodynamical
conditions in these 3D models may also be able to explain the observations of
MgH and C2 lines. We have seen that the granular regions are hotter than the
intergranular plasma only in deep regions, while this trend is reversed for higher
photospheric regions. Therefore, we expect that the molecular abundances in
the regions of the solar photosphere where the molecular lines are formed are
higher above the visible granules than above the intergranular lanes. We have
obtained the MgH and C2 abundances for all the 50×50×102 grid points of the
Asplund et al. (2000) 3D simulation. Fig. 7.23 shows the abundances of MgH
and C2 relative to the maximum abundance at two different heights in the 3D
model. We have also plotted the contours of zero vertical velocity at h=0 km
(see the yellow contour curves), which define the regions where the plasma is
moving upwards (the regions inside the contours) and downwards (the regions
outside the contours).

The first conclusion is that the abundance of C2 and MgH is greater in
upflowing regions than in the downflowing plasma. On the other hand, Trujillo
Bueno (2003b) has shown that the anisotropy factor for the solar continuum
radiation is strongly correlated with the upflowing regions (i.e., precisely from
the same regions where we find the largest molecular concentrations). There-
fore, the molecular scattering polarization is coming preferentially from the
upflowing regions of the solar photosphere.
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Figure 7.19: Upper panels: fractional alignment σ2
0 of the upper (solid line) and lower (dashed

line) levels of some transitions of the Q branch of MgH for increasing values of the micro-
turbulent magnetic field. Refer to the text for details on how the microturbulent limit has
been obtained. Middle panels: the corresponding fractional linear polarization (Q/I) obtained
under the assumption of single scattering events. The solid line takes into account the effect
of dichroism and the dashed line does not. The dotted line takes dichroism into account, but
corresponds to the case Sl/Bν = 2. Lower panels: the corresponding polarizability factor
obtained from the calculated Q/I via Eq. (7.7). The dotted line is the W2-value obtained
from the analytical formula given by Landi Degl’Innocenti (2003).
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Figure 7.20: Upper panels: fractional alignment σ2
0 of the upper (solid line) and lower (dashed

line) levels of some transitions of the Q branch of MgH for increasing values of the microtur-
bulent magnetic field when the lower level is unpolarized. Middle panels: the corresponding
fractional linear polarization (Q/I) obtained under the assumption of single scattering events.
Lower panels: the corresponding polarizability factor obtained from the calculated Q/I via
Eq. (7.7). The dotted line is the W2-value obtained from the analytical formula given by
Landi Degl’Innocenti (2003).
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Figure 7.21: Upper panels: fractional alignment σ2
0 of the upper (solid line) and lower (dashed

line) levels of some transitions of the P and R branches of C2 for increasing values of the
microturbulent magnetic field. Refer to the text for details on how the microturbulent limit
has been obtained. Middle panels: the corresponding fractional linear polarization (Q/I)
obtained under the assumption of single scattering events. The solid line takes into account
the effect of dichroism, the dashed line does not and the dotted line is the one obtained taking
dichroism into account and Sl/Bν = 2. Lower panels: the corresponding polarizability factor
obtained from the calculated Q/I via Eq. (7.7). The dotted line is the W2-value obtained
from the analytical formula given by Landi Degl’Innocenti (2003).
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Figure 7.22: Upper panels: fractional alignment σ2
0 of the upper (solid line) and lower (dashed

line) levels of some transitions of the P and R branches of C2 for increasing values of the
microturbulent magnetic field when the lower level is unpolarized. Refer to the text for
details on how the microturbulent limit has been obtained. Middle panels: the corresponding
fractional linear polarization (Q/I) obtained under the assumption of single scattering events.
Lower panels: the corresponding polarizability factor obtained from the calculated Q/I via
Eq. (7.7). The dotted line is the W2-value obtained from the analytical formula given by
Landi Degl’Innocenti (2003).
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Figure 7.23: Number density of MgH and C2 relative to the maximum concentration in the 3D
snapshot model at heights of 145.5 km and 245.5 km. Note that h=0 km is, as usual, the height

where we have optical depth unity in the continuum at 5000
◦

A for vertical incidence. Note
also that the molecular abundance is higher in the upflowing material than in the downflowing
plasma.

We have investigated the correlation factor between the MgH and C2 con-
centrations and the local temperature and hydrogen number density at each
height. The correlation between vectors X and Y can be written as (e.g., Press
et al. 1986):

r(X,Y ) =
1

N − 1

∑N
i=1(Xi − X̄)(Yi − Ȳ )

σXσY
, (7.28)

where the sum is extended up to the number N of elements in each vector, while
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σ is the standard deviation of each vector. This correlation factor lies in the
interval [−1, 1] depending on whether the variables X and Y are completely an-
ticorrelated or completely correlated. The case r = 0 means that both variables
are not correlated at all. We have obtained the correlation factor for the fol-
lowing four combinations: T -n(MgH), T -n(C2), n(H)-n(MgH) and n(H)-n(C2).
This factor is obtained independently for every height in the atmosphere, tak-
ing into account that the ICE approximation gives molecular abundances which
depend only on local values of the thermodynamical conditions. We show in the
left panel of Fig. 7.24 the correlation factor for all the heights in the Asplund
et al. (2000) 3D model. Intuitively, the molecular abundances are anticorre-
lated with the local temperature, as can be understood from the ICE equations.
On the other hand, they are correlated with the local hydrogen number density.
At heights above 200 km, the C2 abundance is strongly correlated with the hy-
drogen density, while this coupling is weaker for MgH. The contrary happens
for the correlation with the temperature, which is much stronger for MgH than
for C2. In fact, the C2 number density gets almost completely uncorrelated
with the local temperature above 400 km. Interestingly, both molecular abun-
dances get almost completely uncorrelated with the hydrogen number density
at heights around 0 km, where the optical depth unity is reached for 5000

◦

A in
vertical incidence.

However, the most conclusive plot is the one shown in the right panel of
Fig. 7.24, where the correlation between the molecular abundances and the
vertical velocity vz is plotted for all the heights of the 3D model. Note that we
are using the convention that vz > 0 for macroscopic motions going downward,
and vz < 0 for macroscopic motions going upward. Therefore, vz > 0 is related
to downflows (which coincide with intergranular material in the deep layers)
and vz < 0 is related to upflows (which coincide with granular material in the
deep layers). The correlation has been obtained between the molecular abun-
dances and the local vertical velocity and between the molecular abundances
and the vertical velocity at h=0 km, which is representative of the granular
pattern observed in the continuum radiation at 5000

◦

A. However, note that
the general trend of this plot remains equal for both calculations. Deep in
the atmosphere, the regions with higher molecular abundances are those corre-
sponding to downflows, since they are positively correlated. Following the same
reasoning, at heights h ∼< 0 km the regions with lower molecular abundance are
those showing upflows. At regions around 0 km, there is a change of sign of
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Figure 7.24: Various correlation factors at each height in the three-dimensional radiation
hydrodynamical simulation.

the correlation factor r, which indicates that the regions with higher molecular
abundance are those corresponding to upflows. This behavior has been also
pointed out for the case of CO. Our Fig. 7.24 shows, in a more conclusive way
and for all the heights of the 3D model what can be also seen in Fig. 7.23 for
two selected heights.

In order to get an estimation of the region where these molecular lines are
formed, we have calculated the position of the τ = 1 surfaces at the wavelengths
where the C2 molecular lines are situated. To this end, we have carried out for-
mal solutions of the RT equation in one-dimensional models of the granular and
intergranular material extracted from the 3D snapshot of the hydrodynamical
simulation. Of course, these 1D models are only representative of what can be
observed in the Sun when a synthesis is done at µ = 1. For µ < 1, the emergent
ray crosses granular and intergranular regions and the distinction between a
granule and intergranule looses its meaning. For an emergent ray at µ = 1,
the depth at which τ = 1 is reached for the granular material at continuum
wavelengths is h ≈ 50 km, while for the intergranular model it is h ≈ −100 km.
Since the considered wavelength is close to 5000

◦

A, we get depths very close
to h = 0 km. If one performs spectral synthesis at µ=0.1 in such 1D models
independently, the continuum optical depth unity is obtained at h ≈ 230 km
for the granular model and at h ≈ 170 km for the intergranular model. On the
other hand, for µ = 1 rays we find that τ = 1 at the line core of the C2 lines is
reached at h ≈ 290 km for the granule and at h ≈ 200 km for the intergranule.
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Note that the position of τ = 1 at the core of the line is very close to that of
the continuum since the lines are weak. Since both models are assumed to be
1D, we find an appreciable difference between the position of the τ = 1 sur-
faces for the granular and intergranular models. We have also performed LTE
spectral synthesis of the C2 lines at µ = 0.1 in the 3D model. The distinction
between granule and intergranule in this calculation looses its meaning because
the ray crosses regions with both granular and intergranular physical condi-
tions. The spectra emerging from all the 50 surface points we have synthesized
are very similar and the above-mentioned sizable variation on the depth of the
line core in the individual granular and intergranular models is lost. In fact, if
we compare these results with the individual 1D spectra, one finds that the 3D
synthesis is dominated by the granular spectra obtained for the 1D case. This
can be easily understood in view of the previous results. We have seen that
the τ = 1 surface is deeper in the atmosphere for the intergranule than for the
granule. Therefore, if the whole atmosphere would be of intergranular type, the
photon is very likely to escape from such deep regions. However, in the real sit-
uation, the photon will cross material with granular physical conditions when
going upwards. Since the τ = 1 surface for the granular material is almost
100 km higher in the atmosphere, the photon will be absorbed with a large
probability and substituted by a photon generated in the granule. Typically,
the probability of absorption could be approximated by P = 1 − e−τ , which,
for τ ∼> 1 gives P ∼> 63 %. A photon generated in an intergranule has a low
probability of escaping to the surface while a photon generated in a granule has
a much higher escape probability.

This idea has led us to try to fit the 3D spectra with the individual 1D
spectra belonging to the granular and intergranular models. The fit is done
with the following formula:

I3D = αIgranule
1D + (1− α) I intergranule

1D , (7.29)

where α plays the role of a filling factor. We get α = 0.55 for a µ = 0.1
observation.

If we calculate the area of the 3D snapshot model which is covered by
upflowing or downflowing material, we find the results presented in Table 7.1.
When going upward in the atmosphere, we find that there is less material going
up and more material going down. It is interesting to see that, although the
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Table 7.1: Surface covered by the granular and intergranular material at some heights of the
3D simulation by Asplund et al. (2000).

Height (km) Upflows Downflows

2 53 % 47 %
100 49 % 51 %
200 44 % 56 %
300 39 % 61 %

area covered by the upflowing regions becomes smaller than the are associated
with downflowing regions when moving upwards in the atmosphere (see Table
7.1), the average spectrum in the spectral region where the MgH and C2 lines
originate has a weight of ∼55 % from the upflowing regions. Let us make the
assumption that the observed Q/I signal can be represented as well with:

(

Q

I

)

≈ αg

(

Q

I

)

g

+ (1− αg)

(

Q

I

)

i

, (7.30)

where αg is given by Table 7.1. Now, assume that there is a magnetic field
present in the granular and the intergranular material, which produces depo-
larization via the Hanle effect, reducing in a factor βg and βi the scattering
polarization of the corresponding zero magnetic field reference case, which we
will assume that is similar in the granule and the intergranule and equal to
(Q/I)0. This last assumption is not correct at all because the anisotropy fac-
tor is completely different in both media (see Trujillo Bueno 2003b). We can
rewrite Eq. (7.30) as:

(

Q

I

)

≈ [αgβg + (1− αg)βi]

(

Q

I

)

0

. (7.31)

Magnetoconvection simulations (e.g., Stein & Nordlund 2003) show that the
magnetic field tends to concentrate in the intergranular lanes. Therefore, we
assume now that the linear polarization signal in the intergranular material is in
the saturation limit in which it is reduced by a factor 1/5, while the signal in the
granular material is not significantly modified via the Hanle effect. Therefore,
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βg ∼ 1 and βi ∼ 1/5. If we select the granular-material surface distribution at
a height of ∼200 km as representative of the formation height of the molecular
lines, we end up with:

(

Q

I

)

≈ 0.55

(

Q

I

)

0

, (7.32)

which states that the observed linear polarization signal emerging from the
whole simulation is approximately equivalent to half the signal with no mag-
netic field. We can now take into account that the anisotropy factor in the
granular and intergranular material is not the same. In this case, and mak-
ing the assumption that the linear polarization signal is proportional to the
anisotropy factor w, we can write a formula similar to the previous ones:

(

Q

I

)

≈
[

αgβg + (1− αg)βi
ωi

ωg

](

Q

I

)g

0

, (7.33)

where now (Q/I)g0 is the one obtained in the granular material. Using the same
numbers as before and typical anisotropy factors of ωi ∼ 0.1 and ωg ∼ 0.17, we
end up with:

(

Q

I

)

≈ 0.51

(

Q

I

)g

0

, (7.34)

a result which is very similar to the one presented before because the inter-
granular material contributes very weakly to the polarization signal due to the
Hanle depolarization. Therefore, we expect, after this order-of-magnitude cal-
culation that the observed linear polarization is approximately equal to half
the signal produced in the absence of magnetic fields in the granular material.
Of course, if the depolarization produced in the intergranular material is not
enough to arrive to the saturation limit, this factor will increase.

7.2.9 Formal solution

Consider the radiative transfer equation given by Eq. (5.39). In the case of
scattering polarization without the presence of a magnetic field, only Stokes I
andQ are relevant and in a weakly anisotropic medium like the solar atmosphere
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the RT equation simplifies to (see Trujillo Bueno 2003c):

dI

ds
= εI − ηII − ηQQ

dQ

ds
= εQ − ηQI − ηIQ. (7.35)

Consider now the very simple case of a plane-parallel slab of width ∆s⊥ with
constant physical properties. In this case, the previous equations can be solved
analytically. Moreover, we can simplify the problem further by assuming that
the Stokes I parameter only suffers absorption when going through the slab
while Stokes Q has contributions from both emission and absorption processes
inside the slab. Therefore, we can safely neglect the terms εI and ηQQ in the
first equation. In this case, the formal solution can be written as:

I(s) = Iphe
−ηI∆s

Q(s) =
εQ
ηI

(

1− e−ηI∆s
)

−∆sηQIphe
−ηI∆s, (7.36)

where ∆s is the physical length of the ray propagating in the medium, which
is equal to ∆s = ∆s⊥/µ for observation at angle µ. Iph is the unpolarized
photospheric radiation which illuminates the molecules. Note that the factor
ηI∆s is the total optical depth of the slab observed at angle µ. The value of
ηI can be obtained from the solution of the SEE. We can factorize the total
molecular population N from ηI and put it explicitly in the above expressions.
Therefore, ηI∆s = Nη′I∆s, where η′I is ηI/N . Therefore, by changing the
factor N∆s, we may try to reproduce the observed absorptions that appear in
the observed intensity spectrum of Gandorfer (2000). The value of this product
which quite nicely represents the absorption in the C2 lines is N∆s ≈ 6.1×1014

cm−2. Assuming a slab of 150 km width, this gives a C2 abundance of ∼ 4×106

cm−3, which is in good accordance with the typical C2 densities at the heights
where the lines are formed.

This approximate formal solution is capable of taking into account the
blends between the P1 and P2 lines on the C2 spectrum. Note that, in the
case of single scattering, the presence of a blend does not change the amount
of fractional linear polarization. In this case, Q/I = εQ/εI .

When magnetic fields are present, sources of Stokes U appear because nei-
ther εU nor ηU are zero. The expression for U(s) is formally identical to the
one obtained for Q(s) but substituting ηQ by ηU and εQ by εU .
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7.2.10 Probability distribution function

It is highly unlikely that the quiet Sun is filled with a “turbulent” magnetic
field with only one value of the field strength. A distribution of field strengths
results much more reliable. In fact, this possibility is supported by simulations
(Cattaneo et al. 2003; Stein & Nordlund 2003) and observations (Lin & Rim-
mele 1999; Khomenko et al. 2003). C2 molecular lines can be used to derive
some information about the distribution of weak fields. The idea is that, since
P2 and R2 lines have different sensitivity to the magnetic field than the P1, P3,
R1 and R3 lines, a differential analysis can be performed. In fact, the regime
at which the lines between levels with J = N can be affected by the magnetic
field through the Hanle effect is around two orders of magnitude larger than
the regime of fields for the lines between levels with J = N ± 1. For low fields,
we can assume that the atomic polarization of the lines between J = N levels
is not affected by the Hanle effect. Therefore, in the absence of blends one can
assume that the Q/I amplitudes in P2 and R2 lines represent the zero-field ref-
erence case. They can be used as reference lines with respect to which relative
behaviors can be calculated. However, we have to take into account that for
most of the observed C2 lines, the P2 (R2) lines are blended with P1 (R1) lines.

The probability distribution function (PDF) is defined such that P (B)dB
is the probability that a given magnetic field B is between B and B+dB. This
distribution is normalized to unity:

∫ ∞

0
P (B)dB = 1. (7.37)

With the aid of this distribution, one can easily calculate the expectation value
of any given quantity that depends on the magnetic field. In particular, the
expectation value of the observed Stokes I and Q profiles are given by:

〈Q〉 =

∫ ∞

0
P (B)Q(B)dB, 〈I〉 =

∫ ∞

0
P (B)I(B)dB. (7.38)

Stokes I is almost insensitive to the magnetic field except when the strong field
Zeeman regime is reached. Because we are here interested in “quiet” regions
dominated by sub-kG fields, we can write the expectation value of the fractional
linear polarization as:

〈

Q

I

〉

=
〈Q〉
〈I〉 =

∫∞
0 P (B)Q(B)dB

I
=

∫ ∞

0
P (B)

(

Q

I

)

(B)dB, (7.39)
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where Stokes I can be inserted into the integral because it does not significantly
depend on the field strength.

The functional form of the PDF is not known and probably its dependence
on the magnetic field is not simple. However, both simulations and observa-
tions (Cattaneo et al. 2003, Khomenko et al. 2003) show that the PDF of the
quiet Sun shows a functional form which decays as the magnetic field strength
increases, so the probability of finding weak fields is higher than the probabil-
ity of finding strong fields when no distinction is made between granular and
intergranular regions. We have selected the following three functional forms:

• A Voigt function characterized by two parameters: the damping con-
stant a and the width ∆B0. The choice of this PDF is motivated by the
histograms obtained from magnetograms, like those of Harvey & White
(1999) and Stenflo & Holzreuter (2002). The PDF obtained from such
magnetograms are well fitted by a Voigt profile whose Gaussian part fits
the region of low magnetic fields and its Lorentzian part fits the extended
wings. The functional form is:

PDF (B) = f0H

(

a,
B

∆B0

)

, (7.40)

where f0 is chosen so that the normalization condition of the PDF is
fulfilled and H(a, v) is the Voigt function.

• An exponential function characterized by only one parameter, which gives
an idea of the average field. This PDF has been chosen in view of the
recent results concerning observations of the Zeeman effect in near-IR
iron lines (Khomenko et al. 2003) and in recent simulations of turbulent
dynamos (Cattaneo 1999). The histograms of the Zeeman splittings ob-
tained from IR observations show an exponential decay for fields higher
than ∼350 G, which suggests the choice of an exponential PDF when no
distiction is made between granular and intergranular points. The simu-
lations show a PDF with a narrow core at low fields which is well fitted
by an exponential. The functional form is:

PDF (B) = f0 exp(−B/B0), (7.41)

where B0 is the mean value of the magnetic field and f0 = 1/B0 is the
normalization constant.
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• A two-exponential profile characterized by two parameters, as that pro-
posed by Socas-Navarro & Sánchez Almeida (2003) in their tentative at-
tempt of reconciling conflicting observations of the Zeeman effect in both
IR and visible Fe i lines. The functional form is:

PDF (B) = ωf1 exp(−B/B1) + (1− ω)f2 exp(−B/B2), (7.42)

where f1 and f2 are chosen so that the PDF is normalized, while ω is
used to parameterize the relative weight of the two exponentials. We have
chosen the constant value ω = 0.05 (Socas-Navarro & Sánchez Almeida
2003) and B1 and B2 remain as free parameters. Note here that the mean
value of the magnetic field is approximately given by ωB1 + (1− ω)B2.

The filling factor for fields between Bmin and Bmax is given by:

C(Bmin, Bmax) =

∫ Bmax

Bmin

P (B)dB. (7.43)

The filling factor of fields lower than a given fieldBmax is calculated as C(0, Bmax).
In order to get information about the magnetic PDF of the quiet Sun, we

will take advantage of the special wavelength position of the C2 lines. We
have realized from the observation of the atlas of the second solar spectrum of
Gandorfer (2000) that the lines between levels with J = N + 1 and J = N are
almost blended for high values of J , while those arising from levels J = N − 1
are well isolated. This effect appears in the P as well as in the R branch.
As we will see, this apparently fortuitous effect turns out to be an important
diagnostic tool. We will focus on the P branch, although it can be extended to
the lines of the R branch as well.

Each triplet of P1, P2 and P3 lines which share a similar wavelength have
almost the same strength. Since all the C2 lines of a given spin multiplet have
the same Einstein coefficients and the value of the ρ0

0 and ρ2
0 of the upper and

lower levels of such transitions are very similar, it can verified, by substitution
in the RT equation, that for on-disk observations Q/I for the blended lines
is approximately twice the value of Q/I for the non-blended lines, at least at
first order (with small corrections for higher orders). When a magnetic field is
present, the Hanle effect for the P1 and P3 lines start to operate at lower fields
than for the P2 lines and ,therefore, a value different from the zero-field case
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Table 7.2: Approximate wavelength region of some rotational lines used for the determination
of the ratio between the blended and non-blended lines and the effect of a turbulent magnetic
field distribution in this ratio.

Wavelength (
◦

A) Blend No-blend

5086 R1(36)+R2(35) R3(34)
5092 R1(34)+R2(33) R3(32)
5098 R1(32)+R2(31) R3(30)
5104 R1(30)+R2(29) R3(28)

is obtained. In order to account for this behavior, we define the ratio between
the blended and the unblended lines as:

r =

(

Q
I

)

blend
(

Q
I

)

no−blend

. (7.44)

In fact, when a magnetic field starts to depolarize the P1 and P3 lines, the
ratio has to increase until reaching the field strength at which the P2 lines start
to be affected. At this moment, the ratio decreases until reaching again the
zero-field value for extremely high fields, when both levels of the transition are
saturated. The procedure which has to be followed to extract some information
about the magnetic field distribution on the quiet Sun is the following. One
solves the SEE for a given degree of anisotropy w including the Hanle effect of
a “turbulent” magnetic field as done before for different values of the magnetic
field strength which covers the range from 0 G to a given cutoff strength Bmax

(i.e., calculating the irreducible spherical components ρK
Q of the density matrix

for different magnetic field vector directions and using a gaussian quadrature
to integrate over the whole sphere). Using the ρK

Q values from the previous
calculation, one can obtain the fractional linear polarization Q/I using one
among several options (e.g., single scattering, plane-parallel slab, etc.) and
the expression of the emission coefficients given by the Eqs. (5.46), (5.47)
and their corresponding absorption coefficients. Once an specific functional
form of the magnetic PDF and the values for the parameters that characterize
each PDF are fixed, one can obtain via Eq. (7.39) the average value of Q/I
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Figure 7.25: Ratio between the blended and the non-blended line when using an exponential
PDF. The variation of the ratio is plotted versus the width of the distribution B0. Note that
this ratio monotonically increases for the range of turbulent magnetic fields included in the
modeling.

which would emerge from an atmosphere with such a magnetic field distribution.
Then, the ratio between the blended and the non-blended lines can be obtained
and compared with the zero-field case. These results can be confronted with
the observations and information about the parameters that characterize each
proposed PDFs can be deduced.

The value of the ratio for four different wavelengths has been obtained using
the previous three PDFs and varying the free parameters in a sufficiently wide
range. We now describe what information have been obtained:

• Exponential PDF. Fig. 7.25 shows the value of the ratio obtained using
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the exponential PDF. We can use this plot together with observations of
the fractional linear polarization amplitudes in C2 lines to calculate what
can be considered as an upper limit for the width of the magnetic PDF of
the stellar region where the molecular lines are being formed. The value
of B at which a given filling factor C is reached can be obtained from
B = −B0 ln(1 − C) by integrating Eq. (7.43). We have not plotted the
value of the ratio in the zero-field case, but we can consider that the width
B0 = 0.01 G can be effectively considered as the zero-field case since 99%
of the fields are below 0.046 G in this case. This value of the magnetic
field is low enough to be sure that there is no magnetic depolarization
due to the Hanle effect, even in the P1 and P3 lines. This can be seen
also from the figures, where a significant change in the ratio between the
blended and the non-blended lines starts above 1 G. If we consider now
that there is a given observational uncertainty in the determination of
the ratio, we can give an upper limit for the width of the distribution of
magnetic fields, which is different for different values of the uncertainty.
We have considered which are the values of the maximum width of the
distribution when the observed ratio is 0.5%, 5%, 10% and 15% higher
than what is predicted to be for the zero-field reference case. We think
that a value 15% higher than the zero-field ratio is high enough to consider
it to be compatible with the presence of a magnetic field, instead of being
produced by any possible observational spurious effect. If we pick the
value of B0 for which the value of the ratio is 15% higher than the zero-
field case, we find that B0 ∼< 10 G for all the lines in Figure 7.25. For this
value of B0, 50% of the fields are below ∼7 G, 90% are below ∼23 G and
99% are below ∼46 G.

• Two-exponential PDF. Fig. 7.26 shows the value of the above-mentioned
ratio obtained using the two-exponential PDF. The situation now is less
direct than the case of a single exponential because we have the widths
of the two exponentials as free parameters. Therefore, the plots of Fig.
7.26 are now surface plots in which we can vary the value of the ratio by
changing any of the widths of the exponentials or both at the same time.
Note that the ratio increases when increasing the width of the exponen-
tials, while it decreases for very high values of the widths This effect is
produced because we are weighting very strong fields which start to de-
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Figure 7.26: Ratio between the blended and the non-blended lines when using the two-
exponentials PDF. The variation of the ratio is plotted versus the width of both distributions
B1 and B2. Note that this ratio monotonically increases up to a certain width and then starts
to decrease.

polarize the lines with J = N and the ratio starts to decrease until all the
lines are saturated. However, this region can only be taken qualitatively
because we are in the strong field regime in which some of the assump-
tions made initially are not fulfilled (the transition to the Zeeman regime
occurs). We have indicated in the figure where the ratio takes values of
0.5%, 5%, 10% and 15% higher than what is predicted to be for the zero-
field case. Note that the curve for a ratio 15% higher than the zero-field
case implies B1 ∼< 50 G and B2 ∼< 7 G. The limiting field for which the
filling factor reaches a value C can also be obtained analytically, although
a non-linear equation has to be solved. The field is given by B = −αB2,



7.2 Scattering polarization in MgH and C2 lines 311

Figure 7.27: Ratio between the blended and the non-blended lines when using a PDF given
by a Voigt function. The variation of the ratio is plotted versus the width of the distribution
B0 and the damping parameter a. Note that this ratio monotonically increases, at least for
the range of turbulent magnetic fields included in the modeling.

where α is the solution of

ω

[

e

“

αB2
B1

”]

+ eα − 1 + C = 0. (7.45)

This equation does not have a general closed solution (unless B1 = B2)
and has to be solved numerically. Solving for the value α with ω=0.05
and the values of B1 and B2 obtained from the plots we get that 50% of
the fields are below ∼5 G, 90% are below ∼19 G and 99% are below ∼80
G.

• Voigt PDF. Fig. 7.27 shows the value of the ratio obtained using the
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Voigt function. The situation here is similar to the previous one, where we
have a two-dimensional surface when varying the width of the Voigt profile
and its damping parameter. We have indicated in the plot where the ratio
takes a value 0.5%, 5%, 10% and 15% higher than what is predicted to be
for the zero-field case. We point out that the width needed to maintain
a given ratio varies when the damping of the Voigt profile is changed.
However, we can see that the width is always between 1 and 10 G for
a = 10 and a = 0, respectively, when we are interested in the curve where
the ratio takes a value 15 % higher than the zero-field value. It is not easy
to obtain the filling factor in a simple way as we did for the previous two
PDFs case. Therefore, solving numerically the integral which establishes
the filling factor for the case with a = 0 and B0 = 10 G we find that 50%
of the fields are below ∼5 G, 90% are below ∼ 12 G and 99% are below
∼18 G. For the case a = 10 and B0 = 1 G, we find that 50% of the fields
are below ∼4 G, 90% are below ∼ 26 G and 99% are below ∼211 G.

In view of the previous results for the three types of magnetic PDFs, the
observed change in the ratio between the blended and the non-blended lines
implies magnetic fields below ∼100 G in all the regimes (except in the very
extreme case of the Voigt function with a damping parameter of a = 10). If the
observations are obtained in extremely good conditions so that any difference
on the ratio can be attributed to physical reasons and not to spurious effects,
we can even reduce the uncertainty in the determination of the difference be-
tween the ratio in zero-field and the observed ratio and put a more restrictive
upper limit for the magnetic field distribution. We have mentioned before that
the linear polarization signal of the molecular lines is coming mainly from the
upflowing regions (Trujillo Bueno 2003b). Therefore, most of the information
about the magnetic PDF we can obtain from the molecular lines is related to
the PDF of such regions. The rather low upper limits we have obtained as-
suming that there is no significant indication of depolarization in the C2 lines
is compatible with the assumption that the magnetic fields in these upflowing
regions are quite weak. This assumption needs more exhaustive verification,
although recent 3D magneto-convection simulations reproduce this behavior
(Stein & Nordlund 2003).

Finally, we show in Fig. 7.28 a scatter plot of the ratio between the blended
lines and the non-blended line obtained from Gandorfer’s (2000) observations
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Figure 7.28: Observed ratio between the Q/I signals of the blended lines and the non-blended
lines versus the theoretically calculated ratio under the assumption of zero magnetic field. We
have plotted the ratio for R and P lines in the C2 band. Note that there is a fairly good
agreement between both. In case any important Hanle depolarization would be present, all
the points should be shifted to higher values of the ratio. We have shown the critical Hanle
field for each line. Note that there is no indication of a systematic behavior for lines with
similar critical Hanle fields.

and those obtained from our modeling for the zero magnetic field case. When
the magnetic field is increased, the ratio increases within a range of “sufficiently
small” magnetic fields (smaller than the Hanle field of the lines between J = N
levels). Note that there is a fairly good correlation between the observed ratio
and the synthetic ratio for zero-field. In fact, the linear Pearson correlation
factor between both sets is 0.67, high enough to conclude that there is a clear
linear trend between them. Furthermore, this linear relation seems to be inde-
pendent on whether the lines belong to the R or P branches. We consider this
result as a clear indication of very weak magnetic fields in the line formation
regions of the C2 lines. Additionally, there is no indication of any systematic
behavior of the lines with similar critical Hanle fields.
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7.3 Scattering polarization in CN lines

7.3.1 The observation

Fig. 7.29 shows the observations carried out to the blue of the band head of
the CN band at 3883

◦

A (Stenflo 2003a; Gandorfer 2003). This observation
was made possible due to advances in instrumentation since the ZIMPOL II
polarimeter is now sensitive to the UV part of the spectrum. The upper panel
shows the intensity spectrum where some of the lines can be identified with
CN lines. The crowding of lines in the UV produces a continuous absorption
which forms a pseudo-continuum. The lower panel shows the linear polarization
spectrum Q/I. Note the conspicuous profiles produced by CN lines.

7.3.2 Band structure

The rotational lines of CN whose band head is placed at 3883
◦

A belong to
the B2Σ+-X2Σ+ electronic transition. These electronic transitions take place
between the second excited state and the fundamental level. The strongest
lines belong to the ∆v = 0 vibrational band. Since both levels have zero total
electronic angular momentum, Λ-doubling is not present and every level with
a given rotational quantum number N is only splitted in two sublevels due to
the spin-rotation coupling.

7.3.3 Molecular models

As we have mentioned, the observed CN band in the UV is produced by tran-
sitions between the second excited electronic state and the fundamental level.
The term energy difference between both levels is Te(B

2Σ+) − Te(X
2Σ+) =

25752 cm−1. The first excited state A2Π is placed at 9245.48 cm−1 above the
ground state. There is another strong electronic transition (see, e.g., Herzberg
1950) among the A2Π and X2Σ+ electronic states which is placed around 1.1
µm. The electronic transition which couples the two excited electronic levels lies
around 6000

◦

A, although it is not seen in the solar spectrum. In principle, no
selection rule forbids a dipolar transition between these two excited electronic
states. It can perhaps have an extremely small electronic oscillator strength.

The electronic oscillator strengths of the UV band is fel(UV) ≈ 0.033 (Huber
& Herzberg 2003). That of the IR band is an order of magnitude smaller
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Figure 7.29: Observations of the CN scattering polarization in the ultraviolet. From Gandorfer
(2003).

(fel(IR) ≈ 0.0045). However, the huge number of transitions connecting the
first excited state with the fundamental state can lead to an efficient transfer of
atomic polarization between them. The typical feedback effect produced when
lower level polarization is present may lead to an efficient modification of the
atomic polarization of the second excited state. The atomic polarization of
the vibro-rotational levels of the B2Σ+ state can be affected by the A2Π state,
not directly, but through the fundamental level X 2Σ. If we focus ourselves
on the electronic structure of the transition, it is similar to the so-called V
transition which is mentioned in Trujillo Bueno’s (2001) review paper on atomic
polarization and the Hanle effect.

In view of the previous description, we have generated molecular models of
CN including the first three electronic states and some vibrational levels inside
each of these electronic states. Although transitions among all the vibrational
levels are included, the strongest transitions are those with ∆v = 0. In order to
generate these models, we have used the linelist of Kurucz (1993b). However,
there is a problem with the wavelengths of the individual rotational lines of the



316 Scattering Polarization and the Hanle Effect in Molecular Lines 7.3

UV band of CN in such a linelist. Although the v = 0−0 lines have the correct
wavelengths (the same as the observed ones), there is a difference between the
v = 1 − 1 observed and tabulated wavelengths. The difference increases for
v = 2− 2,. . ., transitions. This may be the result of an incorrect choice of the
vibration-rotation constant of the molecule when Kurucz generated the linelist.
In order to solve this problem, we have used the following correction scheme,
supported by the fact that our results are not sensibly affected by the shift in
wavelength. We have performed a fit between the wavelengths obtained from
Kurucz’s (1993b) linelist and the CN lines tabulated by Moore et al. (1966).
Then, the obtained corrections to the wavenumber of the lines with v ≤ 2 are:

∆ω0−0 = 14919.549 − 1.1492719ωKur + 2.2132619 × 10−5ω2
Kur

∆ω1−1 = 27419.255 − 2.1179721ωKur + 4.0898518 × 10−5ω2
Kur

∆ω2−2 = 38294.406 − 3.0089444ωKur + 5.9074291 × 10−5ω2
Kur, (7.46)

where ∆ω = ωKur−ωMoore. On the other hand, the wavelengths of the IR lines
correspond to the observed wavelengths, so that no correction is needed for this
band. In view of this, perhaps the rotational constants of the second excited
electronic state B2Σ+ used by Kurucz (1993b) present some minor error.

Landé factors

Since Σ = 0 for the upper and lower levels of the B − X ultraviolet transi-
tion, these levels can be correctly described under Hund’s case (b), at least
for magnetic fields below the transition to the Paschen-Back regime. For CN,
this transition to the Paschen-Back regime takes place for fields as low as 77 G
for the X2Σ+ level and 167 G for the B2Σ+ level (see Berdyugina & Solanki
2002). This is produced because the spin-rotation splitting is very small for
this molecule, being γ(B2Σ+) = 0.00725 cm−1 and even smaller for the X2Σ+

state. However, this transition field strength increases as J increases. In all
the subsequent calculations, we have used the Landé factors using Hund’s case
(b) Eq. (5.19), for simplicity. Therefore, the results for high fields and for low
values of J should be considered as preliminary.
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Figure 7.30: Anisotropy factor w and number of photons per mode n̄ calculated using the
observed center-to-limb variation of the solar continuum radiation tabulated by Cox (2000)
as a function of wavelength.

7.3.4 Non-magnetic case

The molecular model we have built includes the electronic states X 2Σ+, A2Π
and B2Σ+. Inside each electronic state, we have included the first 6 vibrational
levels from v = 0 to v = 5. Inside each vibrational level, we have included
rotational levels from J = 1/2 to J = 241/2. Due to the parity selection rule,
we end up with two independent subsystems which are not radiatively linked
because we are not including pure rotational lines inside each vibrational level.
This effect is similar to the one found in MgH. Therefore we have to solve two
completely independent problems. The number of rotational levels included
in the model is 2898 for each parity. The number of radiative transitions is
30383, ranging from 3035

◦

A to 1 µm, with the two bands B − X and A − X
well separated in wavelength. In order to be able to solve the problem under
different physical conditions (different values

of the depolarizing collisions and magnetic field strengths), we have applied
the weak anisotropy limit. When limiting the spherical tensor components ρK

Q

of the density matrix to K ≤ 2, we end up with “only” 5848 unknowns in
the SEE linear system. On the other hand, if we take into account all the
multipole moments of the density matrix for each level J , the total number of
unknowns would have raised to 177138!. When dealing with such a big number
of variables, special numerical techniques are necessary (Press et al. 1986).
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Figure 7.31: Upper panels: fractional alignment σ2
0 of the upper (solid line) and lower (dashed

line) levels of some transitions of the R branch of CN for different vibrational bands and for
different values of the depolarizing collisional rate. Middle panels: the corresponding fractional
linear polarization (Q/I) obtained under the assumption of single scattering events. The solid
line takes into account the effect of dichroism while the dashed line does not include dichroism.
Lower panels: the corresponding polarizability factor obtained from the calculated Q/I via
Eq. (7.7). The dotted line is the W2-value obtained from the analytical formula given by
Landi Degl’Innocenti (2003).
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If one näıvely tries to generate a matrix of this size in double precision, the
memory requirements would be ∼230 Gb. In order to avoid this, one can take
advantage of the big number of zero entries in the matrix and take advantage
of its sparse form (see, e.g., Press et al. 1986). We have found this unnecessary
for the non-magnetic case since it is enough with the weak anisotropy limit
simplification. However, we will see that it turns out to be fundamental to use
such techniques for the magnetic case.

The molecular model we are using includes transitions in the UV and in
the IR. The anisotropy factor changes for different wavelengths, being much
higher in the blue part of the spectrum than in the red part. This wavelength
dependence has to be taken into account because we are including transitions
which span over a large range in wavelengths. We have used the observed
center-to-limb variation of the solar continuum radiation and its wavelength
dependence (Cox 2000) to calculate the anisotropy factor for each wavelength.
Fig 7.30 shows the anisotropy factor w and the number of photons per mode
n̄ (see Eqs. 7.9 and 7.12). Note that the anisotropy factor reaches a maximum

at ∼2800
◦

A, and decreases when going to longer and shorter wavelengths.

The numerical solution of the SEE gives the alignment (ρ2
0) and the frac-

tional alignment (σ2
0 = ρ2

0/ρ
0
0). when the depolarization collisions are increased.

We have plotted the results for three of the rotational lines observed by Gan-
dorfer (2003) whose CN scattering polarization observations we reproduce in
Fig. (7.29). Fig. 7.31 shows the fractional alignment of the upper and lower
levels, together with the emergent Q/I under the assumption of single scatter-
ing events. We also show the value of the polarizability factor W2 obtained
from Eq. (7.7). Note that the behavior is very similar to that obtained for C2

in Fig. 7.13,

even although the electronic transition is completely different. The main dif-
ference comes from the different value of the anisotropy factor which is larger
at the UV for the CN transitions than at the visible for the C2 lines. Fur-
thermore, the different values of the Einstein coefficients produces a slight shift
in the position of the collisional depolarization of the upper and lower levels,
which is hardly detectable. As in the case of C2, Q/I and W2 remain constant
for a large range of depolarizing collisions when dichroism effects are taken into
account in Q/I.

Fig. 7.32 shows the variation of σ2
0 with J when depolarization collisions
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are not included in the SEE. We have plotted separately σ2
0 for the upper and

lower levels of the A−X IR band and for the B−X UV band. Note that both
transitions share the same lower level. The behavior of σ2

0 does not seem to
depend on whether the line is between levels with J = N+1/2 or between levels
with J = N − 1/2. Something quite important is that the fractional alignment
of the levels in the second excited B2Σ+ state is much higher than in the first
excited A2Π state. Since σ2

0 is roughly proportional to the anisotropy factor (at
least, it is higher the higher the value of w), this fact can be easily explained
because the anisotropy in the UV is higher than in the IR. There is a factor of
∼2 between the value of σ2

0 for both excited states, which is roughly equivalent

to the difference in the anisotropy factor between the regions around 3800
◦

A

and 8000
◦

A, where both electronic bands are situated.

Note that there is a small spread in the value of σ2
0 in Figure 7.32. This

spread is produced because we are plotting the value of σ2
0 for all the vibrational

levels v with a given value of J . However, the spread is very small, telling us
that the atomic polarization is almost independent of the vibrational level we
are considering. Concerning the variation of the fractional alignment with the
rotational level, we can see that it is almost independent of J . However, in Fig.
7.33 we show the value of σ2

0 for all the vibro-rotational levels calculated using
only the fundamental and the first excited electronic states. By comparing
it with Fig. 7.32, we can investigate the effect of including the intermediate
electronic state. The obtained fractional alignment is different for intermediate
J . On the other hand, for small and high J , the results are in good agreement.
Therefore, the inclusion of the A2Π state stabilizes the atomic polarization of
the fundamental and the second excited electronic states. In fact, it increases
the polarization of the upper and lower levels of the B−X transition. Although
σ2

0 turns out to be different when including the first excited electronic state and
when it is not included, the value of Q/I is quite similar for high J , because
it is proportional to the difference σ2

0(up) − σ2
0(low). Therefore, even in the

absence of the A2Π state, one could obtain correct values of Q/I, although the
atomic polarization would not be calculated correctly. As shown by Asensio
Ramos & Trujillo Bueno (2003b), this lack of variation of σ2

0 leads to a natural
explanation of the “ladder” pattern in the 2 − 2, 1 − 1 and 0 − 0 lines of CN
observed by Gandorfer (2003). We will show this in more detail below.
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Figure 7.32: Fractional alignment of the upper and lower levels of the vibro-rotational transi-
tions of the B −X and A−X electronic bands of CN. Note that the X2Σ+ state is common
to both transitions.

7.3.5 Relative strength of the lines

The intensity spectrum of the spectral region around 3883
◦

A shows the presence
of a rather low pseudo-continuum with a relative absorption I/Ic of ∼0.6. The
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Figure 7.33: Fractional alignment of the upper and lower levels of the vibro-rotational transi-
tions of the B−X electronic band of CN. This calculation has been performed including only
the B2Σ+ and the A2Σ+ states.

CN lines, with relative absorptions which rarely arrive to 0.5, can be considered
as weak lines. Therefore, the modeling of scattering polarization in such CN
lines requires using the formula appropriate for weak lines, i.e. that given by
Eq. (7.21). We can consider that we are in the weak anisotropy limit, so that
the second order terms in σ2

0 can be neglected. Furthermore, since the line is
weak, we can also neglect second order terms in rl. The resulting formula is
similar to the one obtained by Landi Degl’Innocenti (2003) and reads:

Q/I =
3

2
√

2
rl

[

Sl

Bν
ω

(2)
JuJl

σ2
0(u)− ω(2)

JlJu
σ2

0(l)

]

. (7.47)

Considering now rotational lines with high values of J (so that we can use

the asymptotic value of the ω
(2)
JuJl

quantities) and since the most conspicuous
observed lines belong to the R branch, we can verify that:

lim
J→∞

ω
(2)
JJ±1 =

1√
10
. (7.48)
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We have verified that the value of σ2
0 is almost independent of the value of

the vibrational level, so that the difference in the emergent Q/I between two
lines resulting from different vibrational levels must come from the difference
on the line strength rl. We can assume that the continuum opacity is the same
for lines belonging to different vibrational levels. This assumption is supported
by the fact that the studied CN lines are very close in wavelength and because
the intensity profiles have almost similar depths (the CN lines are formed in
quite similar heights in the atmosphere). There is a strong line blanketing at
these wavelengths and so the value of I/Ic remains at ∼0.6 forming an intensity
pseudo-continuum. Therefore, the CN lines are formed in a region where there
is an additional opacity coming from many lines (probably lines from metallic
elements) which can be considered as another contribution to the continuum
opacity. We have performed LTE synthesis of this UV region including all
the CN lines. If a standard opacity package is used, we get very strong CN
lines with relative absorptions as deep as ∼0.6. However, as can be verified
from the observations of Gandorfer (2003), the CN lines appear as very weak
in the intensity spectrum. In order to investigate the order of magnitude of
the additional (missing) opacity, we have artificially incremented it by adding a
factor f ≥ 0 to the continuum opacity. Under this assumption, the line strength
is given by:

rl =
ηl

I

ηl
I + ηc

I + ηblank
I

≈ ηl
I

ηl
I + (1 + f)ηc

I

. (7.49)

We have fitted the value of f via a trial-and-error scheme until reaching a
relative absorption of ∼0.6. The value of f obtained is f ∼ 4.

Fig. 7.34 shows the value of the ratio (rl(0 − 0)/rl(2 − 2), at line center)
between the 0 − 0 and 2 − 2 line strengths and between the 1 − 1 and 2 − 2
line strengths (rl(0− 0)/rl(2− 2), also at line center) for the CN lines between

3773 and 3774
◦

A. Such ratios have been obtained for the physical conditions of
the FAL-C atmospheric model. The behavior is similar for the rest of CN lines
situated in a similar spectral region. We show the ratios for f = 0 (no artificial
blanketing added to the LTE synthesis) and for f = 4 (artificial blanketing
added in order to obtain a relative absorption of 0.6 in the pseudo-continuum).
The vertical lines indicate the height at which optical depth unity for µ=0.1 is
reached for the 0− 0 (the shallowest), 1− 1 and 2− 2 (the deepest) lines. The
value of the ratio is very small for f = 0. However, we know that this value
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Figure 7.34: Ratio of absorption coefficients between the v=0-0 and the v=2-2 bands and
between the v=1-1 and v=2-2 bands in the FAL-C model (left panel) for different values of
the enhancement factor f of the continuum opacity. We also show the position of optical depth
unity for a line of sight at µ=0.1 for the three lines (note that h(0−0) > h(1−1) > h(2−2)).
The right panel shows the same ratios but for a typical temperature of 5000 K. This explains
the observed ratios of the CN lines in the UV.

is not correct since the intensity spectrum is not similar to the observed one.
The ratio is increased when f increases, becoming similar to the ratio between
the line opacities for high values of f . The important idea is that, since η l

I and
ηc

I are of the same order of magnitude, an increase in f leads to an appreciable
increase in the line strength ratio.

Table 7.3: Data for three of the rotational lines of CN observed by Gandorfer (2003). We give
the wavelength of the transition, the line identification, the oscillator strength and the energy
of the lower level. This information is enough to verify that the difference in amplitude is only
produced by the differences in the line strength.

Wavelength (
◦

A) Line log gf El [cm−1]

3771.4 R(71)2−2 0.194 13380
3771.8 R(74)1−1 0.290 12245
3772.1 R(78)0−0 0.399 11411

If we compare the value of rl in the atmospheric region where the CN lines
are formed (between 200 and 300 km), we find that rl(1−1)/rl(2−2) ' 1.5 and
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Figure 7.35: Synthetic value of the fractional linear polarization Q/I in the same spectral
region observed by Gandorfer (2003). Note the good agreement between theory and observa-
tion. The triangles are the v = 2 − 2 lines, the black circles are the v = 1 − 1 lines and the
white circles are the v = 0 − 0 lines.

rl(0−0)/rl(2−2) ' 2. The observed ratio can be obtained from the ratio of Q/I
values observed by Gandorfer (2003), yielding a value of [Q/I(1− 1)]/[Q/I(2−
2)] ' 1.6 and [Q/I(0−0)]/[Q/I(2−2)] ' 2.6. The fit is quite good, taking into
account that we are including the blanketing opacity in an ad-hoc way. We can
now go to the limit in which the lines are very weak (they are very weak in the
intensity spectrum, similar to what happens with MgH and C2), and use the
line strength given in the limit of very high f . The line opacity is proportional
to the Einstein absorption coefficient and to the population of the lower level of
the transition. Using the well-known relations between the Einstein coefficients
and assuming LTE populations, we can write the ratio between line strengths
as:

rl(v − v)
rl(v′ − v′)

=
ν2

v′−v′

ν2
v−v

Av−v
ul

Av′−v′

ul

e−(Ev−v
l −Ev′−v′

l )/kT , (7.50)

where ν is the frequency of the transition, Aul its spontaneous Einstein coef-
ficient and El the energy of the lower level of the transition. T is a tempera-
ture representative of the kinetic temperature in the region where the lines are
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Figure 7.36: Hanle field for the upper and lower levels of the B − X electronic transition of
CN.

formed. Using the data of Table 7.3, we obtain, for a temperature of 5000 K,
the ratios rl(1− 1)/rl(2− 2) ' 1.7 and rl(0− 0)/rl(2− 2) ' 2.8. The theoret-
ically obtained values are in very good agreement with the observed ones. We
can extend this calculation to all the wavelengths of the CN band.
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The right panel of Fig. 7.34 shows the ratios rl(1− 1)/rl(2− 2) and rl(0−
0)/rl(2 − 2) for a temperature of 5000 K. The band-head of the 2 − 2 band

is clearly seen at ∼3850
◦

A. The line strength ratio increases towards shorter
wavelengths until reaching a value of ∼ 4.5 for the 0 − 0 versus 2 − 2 ratio at
wavelength around 3700

◦

A. In a more realistic modeling effort, one should take
into account the UV lines blanketing and calculate the full line strength.

We have plotted in Figure 7.35 the value of Q/I obtained with Equation
7.47. We have applied a scaling factor to all the lines in order to fit the observed
amplitude. The calculated relative amplitudes of Q/I are in good accordance
with the observations by Gandorfer (2003).

7.3.6 Hanle fields

In order to have information on the magnetic field strength at which the Hanle
effect starts to modify the atomic polarization of the levels of the B −X tran-
sition of CN, we have calculated the Hanle field obtained with Eq. (7.8). The
Landé factors of the rotational levels belonging to the three electronic states
have been calculated using Hund’s case (b) formula. This assumption is strictly
valid for the levels of the B and X states, independently of the value of J , but
only for the Zeeman regime. For the A state, the assumption becomes valid
for values of J larger than ∼ 30. However, we remind that the Zeeman regime
in CN applies to magnetic field strengths below ∼100 G for low J , becoming
larger for high J levels.

The resulting Hanle fields using such Landé factors are shown in Fig. 7.36
for the upper and lower levels of the CN transitions in the UV. Note that the
Hanle field increases when increasing the rotation because the Landé factor
in Hund’s case (b) varies typically as J−1 (this yields the characteristic linear
behavior of the Hanle field versus J). The critical Hanle field for the upper levels
of the rotational transitions is always smaller than ∼120 G. We emphasize that
we cannot trust the results obtained when the magnetic strength is larger than
that at which the transition to Paschen-Back regime occurs because quantum
interferences between sublevels pertaining to different J -levels can occur. The
Hanle field for the lower levels is between 2 and 3 orders of magnitude lower,
mainly representative of the difference in the lifetime of the upper and lower
levels at these wavelengths. Furthermore, we can see that the value of the Hanle
field is slightly different depending on the vibrational level. This is produced
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Figure 7.37: CN abundance relative to the maximum abundance. Note that the CN abundance
is higher in the upflowing regions than in the downflowing regions.

by the difference in the lifetime of each level. The Einstein coefficients of the
vibro-rotational transitions with ∆v = 0 decrease when v increases, so that,
the lifetime of a level is the higher the higher the value of v. This can lead to
interesting behaviors in the polarization signal of the CN lines. Assume that the
lines are formed in a region where there is a magnetic field of strength B. The
lines with high J and high v would be depolarized if the field is large enough.
On the other hand, the lines with small J and small v would be depolarized for
much smaller fields. Therefore, there is a clear differential behavior between
the CN lines of the band which could (in principle) be used to constrain the
value of the field strength in the line formation region.

7.3.7 3D models

We have also calculated the CN abundance in a snapshot of the 3D hydrody-
namical simulation of Asplund et al. (2000). The CN relative abundances for
the same two heights investigated for MgH and C2 are shown in Fig. 7.37. We
see that the CN abundance is much higher in the upflowing regions. Therefore,
similarly to what happens with the other molecular species, the CN spectrum
is coming mainly from the upflowing regions. The polarized spectrum is then
a tracer of the physical conditions in such regions, where the magnetic field is
expected to be weaker.



7.3 Scattering polarization in CN lines 329

Table 7.4: Sizes of the matrices, number of non-zero elements and computing time to solve
some selected problems with an INTELr XEONTM processor at 2.4 GHz.

Matrix Size Number of non-zero elements Gain factor Time [s]

902×902 9248 88 1.5
3554×3554 53154 238 15.14
6489×6489 135456 311 82.01

17298×17298 570120 525 1594.96

7.3.8 Magnetic case

We have seen that a large molecular model is needed for obtaining reliable
results for CN. The problem of calculating the effect of the magnetic field in the
atomic polarization of the CN rotational levels is that the number of unknowns
increases dramatically. If we invoke the weak anisotropy limit (which implies
that we retain only the ρK

Q with K ≤ 2), the tensor components with Q 6= 0
are different from zero, in general, and the number of unknowns is now 3 times
larger than for the non-magnetic case. In the non-magnetic case we had ∼6000
unknowns, so that in the magnetic case, the number of unknowns is ∼18000.
Such a linear system arising from the SEE is too big to be solved using standard
techniques. A linear solver in which only the non-zero elements of the matrix
are stored has to be used (sparse solvers).

The technique we have applied uses three vectors to build the matrix. One
of them has the value of all the non-zero elements of the matrix, while the
other two have the index in the “virtual” full matrix of each element of the first
vector. The SEE matrix of size N × N has typically αN non-zero elements.
Being α typically much smaller thanN , the storage needs are reduced in a factor
N/α� 1. As an example, the SEE matrix for a CN molecular model including
vibrational levels from v = 0 to v = 5 of the first three electronic states and
including rotational levels from J = 1/2 to J = 241/2 when a magnetic field is
included (limiting the multipoles to K ≤ 2) has dimension 17298×17298. The
number of non-zero elements is 570120, thus the gain in size is ∼525. Other
examples are shown in Table 7.4.

An efficient algorithm has to be developed to fill the three vectors appro-
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priately. The main disadvantage is that searches in these vectors have to be
performed, which obviously take more time the longer they are. In order to ob-
tain some information about the execution time of the code, we have modeled
the time to fill the vector at element i as:

ti = t0 + λi, (7.51)

where we have included all the additional operations (solution of the linear sys-
tem of equations, mathematical calculations, additional loops,· · · ) in a common
time t0. The previous equation states that the time to fill an element of the
vector is proportional to the size of the vector, which is a direct consequence of
the applied search algorithm. λ is a factor with units of time and which gives
the proportionality between the time and the size of the vector. The total time
to fill the n non-zero elements of the SEE matrix can be obtained by simply
summing the previous equation:

T =

n
∑

i=1

ti =
1

2
λn2 +

(

1

2
λ+ t0

)

n. (7.52)

With the aid of this formula and considering the execution times shown in
Table 7.4, we can obtain an approximate value of λ and t0 by performing a
fit, so that we can extrapolate the results to other problems and predict the
execution time. The fit gives values of λ = 10−8 and t0 = −5.8 × 10−5. Note
that the fit gives a negative value for t0 which is not physical. This value is
perhaps produced by limitations on the assumptions in writing formula 7.51.
However, we have also performed a fit by applying the constraints λ > 0 and
t0 > 0 and we have obtained the values λ = 9.81 × 10−9 and t0 = 3.1 × 10−8.
These values are in accordance with the typical speeds of the computer in
which these tests were performed (INTELr XEONTM processor at 2.4 GHz).
The formula gives a very good approximation to the total calculation time. If
we go one step forward and perform a parabolic fit between the matrix size s
and the number of non-zero elements in the matrix n (which turns out to be
a quite good approximation), we can give the calculation time in terms of the
size of the matrix. The final formulas are:

T ≈ 4.91× 10−9n2 + 3.56 × 10−8n

n ≈ 1.1× 10−3s2 + 14.31s − 6707.78. (7.53)
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Figure 7.38: Hanle diagrams for the R1(78)00 and R1(74)11 lines of CN. The left panel shows
the Hanle diagram when dichroism is taken into account, while the right panel shows the
Hanle diagram when dichroism is neglected.

By inverting these equations, we can obtain the size of a matrix which can be
solved in a given amount of time. The result is a fourth order polynomial so
that we take the positive real root. This way, a problem of size ∼56000 can be
solved in 24 hours, one of size ∼94200 can be solved in one week and one of
size ∼230000 can be solved in one month.

With the previous modification, the computer program can now be used
to calculate more complicated models including the effect of the magnetic field
in the atomic polarization. We have calculated the effect of a deterministic
magnetic field on the emergent linear polarization signal in a model which is
simpler than the one used in the non-magnetic calculations. We include the
three electronic states X2Σ+, A2Π and B2Σ+, vibrational levels from v = 0
to v = 2 in each state and rotational levels from J = 1/2 to J = 181/2. The

Hanle diagrams for two of the observed lines in the region around 3772
◦

A are
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shown in Fig. 7.38. The behavior is very similar to that obtained for the
other molecules, with a lower level lobe which appears only when dichroism is
neglected, the contribution of the upper level lobe being much more important.

We have also calculated the influence of a microturbulent magnetic field on
the emergent linear polarization for the same simplified CN model. The results
for three R lines corresponding to ∆v = 0 transitions of the B −X system are
shown in Fig. 7.39. By comparing the value of the fractional alignment for
weak magnetic fields with the results obtained for small collisional rates (see
Fig. 7.31) we can see that the reduced model gives results similar to the big
model. The small differences are due to the limitations of the small molecular
model. These variations of σ2

0 with the size of the molecular model are the
smaller the bigger the molecular model.

The general behavior of the fractional alignment is similar to that obtained
for the C2 lines. The linear polarization signal is maximum for zero magnetic
field, it decreases due to the lower level Hanle effect and decreases again due to
the upper level Hanle effect. The lower level of these transitions is saturated for
fields lower than 10−3 gauss, while the upper level starts its depolarization for
fields larger than 10 G. The upper level Hanle depolarization is consistent with
the critical Hanle field shown in Fig. 7.36 while the lower level is depolarized
for magnetic field strengths lower than expected from the direct application of
Eq. (7.8). This might be produced because the lower levels are also radiatively
linked with the first excited electronic state, which produces higher values of
the lower-level lifetime.

Similarly to what happens with other molecules, theQ/I signal when dichro-
ism is taken into account is completely insensitive to the lower level atomic
polarization. For this reason, Q/I remains constant until the lower level starts
to depolarize. However, we have plotted in the same figure the value of Q/I
obtained for a value of the ratio Sl/Bν = 3. This turns out to be the average
value of this ratio at the heights where the CN lines are formed in the snapshot
model taken from the 3D simulation of Asplund et al. (2000). This is also the
value obtained for the FAL-C and COOL-C semi-empirical models, as can be
seen from Fig. 7.15. In this case, the Q/I signal is essentially proportional to
the upper level fractional alignment (the upper level contribution is now ∼3
times larger). The feedback effect in the upper level produced by the Hanle
depolarization of the lower level produces then a value of Q/I which present a
feature that is associated to the lower level atomic polarization. In this case,
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Figure 7.39: Upper panels: fractional alignment σ2
0 of the upper (solid line) and lower (dashed

line) levels of some transitions of the R branch of CN for different vibrational bands and
for different values of the microturbulent magnetic field. Middle panels: the corresponding
fractional linear polarization (Q/I) obtained under the assumption of single scattering events.
The solid line takes into account the effect of dichroism, the dashed line does not and the dotted
line is the one obtained when Sl/Bν = 3. Lower panels: the corresponding polarizability factor
obtained from the calculated Q/I via Eq. (7.7). The dotted line is the W2-value obtained
from the analytical formula given by Landi Degl’Innocenti (2003).
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Figure 7.40: Upper panels: fractional alignment σ2
0 of the upper (solid line) and lower (dashed

line) levels of some transitions of the R branch of CN for different vibrational bands and for
different values of the microturbulent magnetic field. The lower level is completely depolar-
ized. Middle panels: the corresponding fractional linear polarization (Q/I) obtained under
the assumption of single scattering events. The solid line takes into account the effect of
dichroism while the dashed line does not include dichroism. Lower panels: the corresponding
polarizability factor obtained from the calculated Q/I via Eq. (7.7). The dotted line is the
W2-value obtained from the analytical formula given by Landi Degl’Innocenti (2003).
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it is possible, in principle, to detect the influence of lower level polarization in
the observed value of the linear polarization. However, it turns out to be not
so direct to find a clear diagnostic application of the CN lines as we did for
C2. All the lines belonging to different vibrational bands with ∆v = 0 present
the same amount of linear polarization and no differential study can be done
with these lines as was done in C2. We are now studying whether or not the
comparison of high J lines with low J lines can be considered as a diagnostic
tool. However, we note that the difference between the Hanle field for high J
and low J lines is very reduced.

We have shown in Fig. 7.40 the same type of information but when the lower
level is totally depolarized. Note that the result for the observed Q/I is equal to
that obtained when the lower level polarized but dichroism is included inQ/I. If
the lower level atomic polarization is totally destroyed by collisions, we predict
that the emerging linear polarization is totally independent of the magnetic
field up to ∼10 G. If Sl/Bν ≈ 3, this fact could be used to distinguish if the
depolarization collisions are efficient in destroying the lower level polarization.
If they are, the Q/I signal would be completely independent on the observed
region, at least for weak magnetic regions. If not, the Q/I signal would vary
between differently magnetized regions. The observations show an apparent
immunity of the CN molecular lines to the Hanle effect along the slit (Stenflo
2003b). This could be explained in view of the previous results, because the
variation of Q/I for fields below 102 gauss is very small, even for the ratio
Sl/Bν = 3.

7.4 Conclusion

In this Chapter we have investigated in detail the scattering polarization and
the Hanle effect in molecular lines. After emphasizing the fundamental dif-
ference that exists between the laboratory case and the astrophysical case, we
have carried out a detailed investigation of the band structure, Einstein coeffi-
cients, polarizability factors and Landé factors for the MgH and C2 molecules.
The fractional alignment, fractional linear polarization (Q/I) and polarizabil-
ity factors for the non-magnetic case have been discussed. We have shown
how the molecular polarization varies when increasing the depolarizing colli-
sions. On the other hand, we have also calculated how the molecular level
polarization changes when a microturbulent magnetic field is applied. In order
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to understand the observed linear polarization signals and their apparent im-
munity to the magnetic field, we have made an investigation of the observed
molecular bands in the 3D models of Asplund et al. (2000), emphasizing that
the polarization signals produced by molecular lines are indeed coming from
the upflowing material, as a result of both a larger abundance and a larger
anisotropy of the radiation field.

Following the idea that the magnetic field in the “quiet” solar atmosphere is
described by a magnetic PDF, we have investigated the molecular Hanle effect
for several functional forms of the PDFs. In this way, we have obtained some
constraints to their parameters making use of a line ratio technique between
the P1 + P2 lines and the P3 lines or between the R1 + R2 and R3 lines. We
have concluded that the PDF in the granular upflowing regions must be quite
narrow in order to be able to explain the observed line ratios.

We have considered the scattering polarization in CN lines, concluding also
that the CN polarization signals are coming predominantly from the upflowing
regions. We have investigated the variation of the molecular polarization when
the depolarizing collisions and the magnetic field strength are increased. We
have also solved some technical problems which arise when very big molecular
models are used.



8
Conclusions

The main aim of this Thesis has been to provide a novel contribution to
the development and application of different numerical techniques that are

needed for investigating key problems in Molecular Astrophysics. In particular,
accurate and fast radiative transfer diagnostic tools are of fundamental im-
portance for a rigorous interpretation of spectroscopic and spectropolarimetric
observations of molecular lines.

Chapter 2 has reviewed the theoretical foundations of molecular spectroscopy
for diatomic molecules. It gives a brief introduction to the vibrational and rota-
tional motions of molecules, showing how the energies of molecular energy lev-
els can be obtained. We have also described the electronic motions in diatomic
molecules, presenting the most usual angular momentum couplings cases. For
a quick reference, we have presented useful tables which summarize the funda-
mentals of diatomic molecular spectroscopy.

Prior to solving any radiative transfer problem in molecular astrophysics, it
is necessary to obtain the molecular abundances at each point of the astrophys-
ical plasma under consideration. To this end, in Chapter 3 we have developed a
code which calculates the molecular number densities assuming instantaneous
chemical equilibrium (the ICE approximation). The non-linear dependence of
the molecular abundances on temperature and density allow molecular lines
to be used as good tracers of the thermodynamical conditions in stellar atmo-
spheres. We have thus calculated the abundances of many diatomic molecules



338 Conclusions 8

in several models of the solar atmosphere. In a second step, we have taken into
account the finite molecular formation and destruction times, which has led us
to develop a computer program to simulate the time evolution of the molecular
number densities when the physical conditions of the medium under investiga-
tion are time-dependent. Our first application aimed at solving the enigma of
the CO-cooled ‘clouds’ in the solar chromosphere. To this end, we have cal-
culated the temporal variability of the CO concentration in one-dimensional
radiation hydrodynamical models of the solar atmosphere. Our results indicate
that the CO line radiation observed close to the edge of the solar disk comes
from atmospheric heights not greater than ∼700 km, and that the gas in these
regions of the low chromosphere must be much cooler than indicated by the
cool phases of the Carlsson & Stein (1997) hydrodynamical simulations. We
have pointed out that lower temperatures tend to increase the relaxation times
needed to reach the molecular equilibrium concentrations. We have also investi-
gated the formation of the infrared CO lines in three-dimensional hydrodynami-
cal simulations of the solar photosphere, comparing our spectral synthesis with
spectroscopic observations. Moreover, we have investigated the influence of
photodissociation processes on the abundance of CH on the solar atmosphere.
Our conclusion is that such photodissociation processes produce a negligible
contribution, at least concerning the G-band spectral lines.

In Chapter 4 we have presented our generalization of the accelerated Λ-
iteration (ALI) method of Olson et al. (1986) and of the highly-convergent
radiative transfer methods of Trujillo Bueno & Fabiani Bendicho (1995) to
spherical symmetry, for both atomic and molecular line transfer. We find that
the radiative transfer method of Trujillo Bueno & Fabiani Bendicho (1995)
based on the Gauss-Seidel scheme is at least 2 times faster than the ALI method,
while their SOR method gives an improvement of an order of magnitude. With
these fast methods of solution the computing time per iteration is similar to that
of the simple Λ-iteration, because the very high convergence rate is achieved
via a novel strategy which does not require neither the actual construction nor
the inversion of any non-local Λ-operator. After illustrating the convergence
properties of our multilevel radiative transfer code for molecular lines, we have
applied it to investigate the reliability of the results obtained via the Large
Velocity Gradient (LVG) or escape probability method. We emphasize that
one should be very careful when using the LVG approximation to obtain the
molecular level populations. Our NLTE code for molecular lines has also been
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applied to investigate two problems of interest in today’s molecular astrophysics:
the formation of the warm water spectrum in Sgr B2 and the formation of the
CO fundamental vibration-rotation spectrum in the circumstellar envelope of
VYCMa.

Besides considering the intensity spectrum, we have also investigated some
aspects of the light polarization emitted/absorbed by molecules. For this rea-
son, Chapter 5 has reviewed the fundamentals of the angular momentum theory,
as is needed for a rigorous investigation of polarization phenomena in diatomic
molecules. We have developed a very general method which allows us to calcu-
late the Zeeman patterns for rotational transitions of diatomic molecules. It is
based on the direct numerical diagonalization of the effective molecular hamil-
tonian. This technique allows the inclusion of any additional refinement into
the description of the molecular motion to obtain its influence on the Zeeman
patterns. The second part of Chapter 5 provides a brief discussion on the for-
mulation of the scattering polarization and the Hanle effect in molecular lines
within the framework of the quantum theory for the generation and transfer of
polarized radiation.

We have successfully compared the results obtained via our numerical ap-
proach to the molecular Zeeman effect to those we have obtained via the ap-
plication of the more restricted formulae of Schadee (1978). Thanks to these
developments we have investigated in Chapter 6 the polarization signatures in-
duced by the Zeeman effect in molecular lines of different species. The first
application has been the investigation of the polarization signals produced in
sunspots by OH and CN in the near infrared. To this end, we performed obser-
vations with the Tenerife Infrared Polarimeter (TIP) attached to the Vacuum
Tower Telescope (VTT) of the Observatorio del Teide. We have theoretically
explained the ‘anomalous’ Stokes profiles of CN we have discovered in sunspots.
This has led us to the development of an inversion code of Stokes profiles induced
by the Zeeman effect in both atomic and/or molecular lines. Its application to
spectropolarimetric observations has allowed us to obtain some preliminary in-
formation on the thermodynamical and magnetic properties in relatively deep
regions of sunspot umbrae.

We have also investigated in detail, both theoretically and observationally,
the Zeeman effect in the G-band. This was motivated by the interest of de-
tecting CH spectral lines which may be useful for obtaining information about
the magnetic properties of the so-called G-band bright points observed on the
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solar ‘surface’. We have also investigated polarization signals produced by the
Zeeman effect in many other molecular transitions. A particularly interesting
molecule for diagnostic purposes seems to be FeH. To this end, we have ob-
served with TIP spectral lines of the E4Π − A4Π system of FeH which show
indeed interesting polarization signals. We have investigated the Zeeman effect
in these molecular transitions pointing out that in Hund’s case (a) coupling
the effective Landé factors are never negative. For this reason, the fact that
our spectropolarimetric observations indicate that the Landé factors of pairs
of FeH lines have opposite signs, prompt us to conclude that the E4Π − A4Π
system must be in intermediate angular momentum coupling between Hund’s
cases (a) and (b). We emphasized that theoretical and/or laboratory investiga-
tions of this molecular system are urgently needed for exploiting its promising
diagnostic capabilities.

In Chapter 7 we have investigated in detail the scattering polarization and
the Hanle effect in molecular lines within the framework of the quantum the-
ory of polarization, presenting a detailed discussion on the Einstein coefficients,
Landé factors and polarizability factors. We have solved the statistical equi-
librium equations in order to model the amplitudes of the linear polarization
signals produced by scattering processes in molecular lines of C2 and MgH, and
their modification due to the possible presence of ‘turbulent’ magnetic fields.
This has allowed us to show that the magnetic fields in the granular regions of
solar surface convection have to be very weak.

Finally, we have also investigated the linear polarization signals produced
by scattering processes in CN lines in the near-UV spectral region. Due to
the enormous size of the ensuing mathematical problem, we had to solve first
several technical issues concerning the resolution of the statistical equilibrium
equations. As a result, we have now at our disposal a very powerful tool for
investigating astrophysical magnetic fields via the Hanle effect in molecular
lines.



A

Appendix A

In this appendix we derive the expression for the fractional alignment of a
two-level atom in the weak-anisotropy limit when a microturbulent magnetic

field is present and we let both levels to be polarized. In the weak-anisotropy
limit, we consider that the only non-zero multipole components of the density
matrix are those with K ≤ 2. Consider a two-level atom in which the upper
level has a total angular momentum Ju and the lower level has a total angular
momentum Jl. Consider that both levels are affected by inelastic and elastic
collisions and that there is a deterministic magnetic field with a direction given
by the angles θB and χB . In this case, the fractional alignment for the upper
and lower levels in the magnetic reference frame whose z axis is oriented in
the direction of the magnetic field can be written as (Landi Degl’Innocenti &
Landolfi 2004):
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The previous equations are valid for K ≤ 2 and |Q| ≤ K. They include all the
possible complications which may arise in a two-level atom: elastic and inelastic
collisions, radiative pumping, stimulated emission and deterministic magnetic
field.

The symbols which appear in the previous equations are related to the
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fundamental properties of the two-level atom by:
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In order to express the previous Eqs. (A.2) in a new reference system
which is obtained from the magnetic reference system by the rotation RB ,
the spherical components of the tensors transform according to the usual rules
(Landi Degl’Innocenti et al. 1990):
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whereDK
Q′Q

∗
(RB) are the ordinary rotation matrices (Edmonds 1960). Consider

now a reference system in which the z direction is along the vertical of the
atmosphere which is the symmetry axis of the radiation field. In order to go
from the magnetic reference system to this new system, we have to carry out a
rotation of:

RB = (α,−θB ,−χB), (A.10)

where α is an angle which can be arbitrarily set to zero (it is related to the
relative orientation of the x and y axis in both reference systems). In this new
reference system, the magnetic field vector has polar and azimuthal angles θB

and χB .
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Since we are interested in the limit of a microturbulent magnetic field with
random orientations, which is considered as turbulent below the photon mean
free path, we must do an angle averaging over the whole sphere. Therefore,
performing the previous transformation and averaging over the whole sphere
making use of the property given by Eq. (5.5), we get:
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where the bar above σK
Q indicates that this is a quantity averaged over a distri-

bution of microturbulent magnetic fields with random orientations. The quan-

tities H(K)
JuJl

(J) play the role of the H(K) quantity in Trujillo Bueno & Manso
Sainz (1999) as a Hanle depolarization factor. The explicit expression for these
factors is:
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Note that the sums are extended over all the possible values of Q for a given
K. Also note that the previous expressions reduce to those derived by Trujillo
Bueno & Manso Sainz (1999) when the lower level is depolarized and stimulated

emission is neglected. In fact, when δ
(
lK)→∞ and n̄ = 0,Additionally, in the

limit of very large magnetic field, large enough to produce Hanle saturation in
both the upper and lower levels, we get:
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Asplund, M., & Garćıa Pérez, A. E. 2001, A&A, 372, 601

Asplund, M., Grevesse, N., Sauval, A. J., Allende Prieto, C., & Kiselman,
D. 2004, A&A, in press

Asplund, M., Ludwig, H. G., Nordlund, A., & Stein, R. F. 2000, A&A,
359, 669

Auer, L. 2003, in Stellar Atmosphere Modeling, ed. I. Hubeny, D. Mihalas,
& K. Werner, ASP Conf. Ser. 288 (San Francisco: ASP), 3



348 References

Auer, L., & Mihalas, D. 1969, ApJ, 158, 641

Auer, L. H. 1987, 101

Auer, L. H. 1991, in Stellar Atmospheres: Beyond Classical Models, ed.
L. Crivellari, I. Hubeny, & D. G. Hummer, 9

Auer, L. H., Fabiani Bendicho, P., & Trujillo Bueno, J. 1994, A&A, 292,
599

Auer, L. H., & Paletou, F. 1994, A&A, 285, 675

Avrett, E. H. 2003, in Current Theoretical Models and Future High-
Resolution Solar Observations: Preparing for ATST, ed. A. A. Pevtsov
& H. Uitenbroek, ASP Conf. Ser. 286 (San Francisco: ASP), 105
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Wiesemeyer, H., & Schöier, F. 2002, A&A, 395, 373

Vernazza, J. E., Avrett, E. H., & Loeser, R. 1981, ApJS, 45, 635

Wallace, L., Bernath, P., Livingston, W., Hinkle, K., Busler, J., Guo, B.,
& Zhang, K. 1995, Science, 268, 1155

Wallace, L., & Hinkle, K. 2001, ApJ, 559, 424

Wallace, L., & Livingston, W. 1992, An Atlas of a Dark Sunspot Umbra
Spectrum from 1970 to 8640 cm−1, Vol. NOAO (Tucson: NSO)

Wallace, L., Livingston, W., Bernath, P. F., & Ram, R. S. 1999, An Atlas
of the Sunspot Umbra Spectrum in the Red and Infrared from 8900
to 15050 cm−1, rev., Tech. Repl. 99-001 (Tucson: NSO)

Watson, W. D., Eliztur, M., & Bieniek, R. J. 1980, ApJ, 240, 547

Weinreb, S., Barret, A. H., Meeks, M. L., & Henry, J. C. 1963, Nature,
200, 829

Wilson, R. W., Jefferts, K. B., & Penzias, A. A. 1970, ApJ, 161, L43

Wu Zheng, X., Scalise, E., & Han, F. 1998, ApJ, 507, 384

Yamamura, I., Kawaguchi, K., & Ridgway, S. T. 2000, ApJ, 528, L33




