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RESUMEN:

Oscilaciones transversales en conjuntos de
tubos magaticos coronales

La corona solar es la parteas externa de la atbsfera solar. En las zonas activas
se encuentran una gran cantidad de bucles coronales quecssnnaagaticos llenos
de plasma ras caliente y denso que la corona circundante, y que conesgames de
polaridad opuesta en la superficie solar. Se han observadadisnes transversales tras
una fulguracdbn solar gracias a los telescopios espaciales TRACE, HINODEBREO.
Estas oscilaciones transversales han sido interpretadas@nos del modo fundamental
“kink” de un tubo magetico recto. La combinaéh de las observaciones con modelos
tedricos da lugar a la sismolagcoronal magnetohidrodamica, y da informaéin sobre
distintas magnitudesdicas de la corona.

La mayor parte de estudios previ@dshan considerado las oscilaciones individuales
de los bucles. Sin embargo, tras una fulguracée suelen excitar varios blucles y su
dinamica podia estar afectada por la intera@msimutua. Por otra parte los bucles coro-
nales podian tener estructura interna y estar formados por hebrasdiralos telescopios
actuales no pueden resolver. Estas hebradaodstar acopladas y afectar al movimiento
global del bucle. Por estos motivos se hace necesario elieste oscilaciones de estruc-
turas compuestas de bucles o hebras con el fin de averiguarlaarolectividad afecta
a la diramica de las oscilaciones. El objetivo de esta Tesis es @ronedelos téricos
para los propsitos de la sismoldg coronal.

En primer lugar se ha estudiado un sistema de dos bud@etiégds con el modelo de
“slabs”. Anaiticamente se han estudiado los dos modos de ogmilapie pueden es-
tar relacionados con las oscilaciones transversales orawas anteriormente. Hemos
hallado dos modos normales de osciteccon unas frecuencias y autofunciones que de-
penden de la separéci entre bucles. El hecho que estos modos normales depeattan d
separadn entre bucles y que aparezcan dos modos normales en vep delsistema
individual indica un acoplamiento de los desplazamientassiversales. Los movimien-
tos de los bucles asociados a uno de estos dos modos son,eniéageas que para el otro
modo son en antifase. Nw@ricamente se ha resuelto el problema de valores iniciaes,
solviendo las ecuaciones linealizadas de la magnetohidrotca y se ha encontrado que
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tras una perturbagn inicial el sistemaapidamente oscila con un combinacide estos
dos modos normales. Esta combir@gchace que la damica del sistema sea compleja.
Por ejemplo, bajo ciertas condiciones los bucles puedercatnbiar su energ por com-
pleto perbdicamente en forma de batidos. Tras este estudio se halecarsd un modelo
mas realista de bucle basado en tubomdiicos. El sistema de dos bucle®idicos
cilindricos tiene cuatro modos normales colectivos de osoilague, como en el caso
del modelo de “slabs”, dependen de la sep@&mentre bucles indicando la naturaleza
colectiva de estos modos. Tarahise ha resuelto el problema de valores iniciales y se ha
hallado que dependiendo de la perturtabadnicial se excitan distintas combinaciones
de modos normales colectivos. Esta superposide modos normales tangi hace que
la evolucbn temporal del sistema de bucles sea compleja. Por ejetapdireccbn de
oscilacbn de los bucles cambia con el tiempo debido a la intebacentre ambos.

A continuacon se ha aplicado el formalismo de l&-matrix” en el estudio de oscila-
ciones transversales. Esta potente herramienta nos h#tideremcontrar an@icamente
los modos normales colectivos de conjuntos arbitrariosidest magéticos. Uno de los
resultados ras interesantes que hemos encontrado es que los movimiearsgersales
de distintos tubos magticos con diferentes propiedadesaestuertemente acoplados si
sus frecuencias individuales de oscitatson parecidas, y sin embargoastiesacopla-
dos si son suficientemente distintas. Este resultado trepkcaciones observacionales
puesto que puede dar correcciones a las estimaciones de caagpetico de los tubos
magreticos ya que hasta ahor@s se ha empleado el modelo de bucle aislado o individ-
ual.

Con esta misma herramienta han sido hallados los modos resxm@loscilagin de
un bucle formado por hebras. Las hebraam$tiertemente acopladas y, en consecuencia,
pueden tener lugar movimientos complejoséséas. Hay una gran cantidad de modos
normales de oscilagh que depende delimero de hebras considerado y cuyas frecuen-
cias se encuentran en una banda ancha. Esto indica querkcaiia entre las hebras
afecta a la oscilabn global del bucle. Un resultado interesante es que no sadume
trado un modo global “kink” en el que todas las hebras se nruemda misma direcon
y en fase, como sucedaren el modelo de bucle individual.
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Chapter 1

Introduction

The Sun is an ordinary star of spectral type G2 V and absotetlaismagnitude 4.8,
but its proximity to the Earth makes it unique and its studgfi€entral importance to
understand the behaviour of stars and plasmas in genersk thain-sequence star, one
of over 100 thousand million stars in the Milky Way Galaxy.tdkes the Sun over 200
million years to complete one orbit of the galaxy. At presims located close to the
Sagittarius-Carina spiral arm, in what is called the Orioarsp

The Sun, like all stars, is such a massive ball of plasma thatheld together and
compressed under its own gravitational attraction. It iasnainly of H, with 73.4% in
mass, and He, with 25%, mostly in an ionised state becausedfigh temperature; the
remaining elements, such as C, N, O, etc. comprise about In@%ra present in roughly
the same proportions as on Earth, which suggests a commgin.oRoughly speaking,
the Sun is structured in concentric layers. The innermaarlaf the Sun is theore,
which extends to 0.2%, (whereR; is the solar radius). Here, H is converted in He by
nuclear fusion, providing the energy which is slowly tramded outward by continuous
absorption and re-emission of photons intaeiative zonewhich extends approximately
up to 0.R,. At this point, the radiative transport of energy isfiieetive and convective
transport begins. This is theonvection zone At the bottom of the convection zone
the magnetic field is generated by the combination of corme&nd solar rotation, by
means of the so-callediynamo processOn top of the solar convection zone lies the solar
atmosphere.

The solar atmosphere is typically divided in four layersarding to its density and
temperature characteristics. The lowest part of the sthaosphere is an extremely thin
layer of plasma of approximately 450 km, callpdotosphergwhich is relatively dense
and opaque. Its temperature is roughly 6000 K and it emits wfohe solar radiation.
Above it lies thechromospherewhich is rarer and more transparent and where the tem-
perature rises from 6000 K to about 20000 K. The thickneskisiayer is approximately
2500 km and comes to an abrupt end in a nartr@ansition regionof only a few hundred
kilometres thick. Here the temperature rises dramatidedipn 20000 K at the top of the

13



14 CHAPTER 1. INTRODUCTION

chromosphere to a few million K in theorona However, the picture of concentric layers
of the solar atmosphere is very simplistic. It is much monaglex and with rapid spatial
and temporal variability.

1.1 The solar corona

The corona is the Sun’s outer atmosphere. It is visible duiatal eclipses of the Sun as
a white crown surrounding the Sun. Currently, it is also segh the SOHO (SOlar and
Heliospheric Observatory), TRACE (Transition Region and Cat&xplorer), HINODE
and STEREO (Solar TErrestrial RElations Observatory) stgglamong others (see Fig-
ure 1.1for a picture taken with the EIT instrument on board SOHOYl\Eabservations
of the visible spectrum of the corona revealed bright emistines at wavelengths that
did not correspond to any known element. This led astronsnegpropose the existence
of “coronium” as the principal gas in the corona. The truaurebf the corona remained
a mystery until it was determined that the coronal gases @persheated to tempera-
tures greater than 1000000 K. At these high temperatures, minor elements like C, N
and O are stripped down to bare nuclei. Only the heavier eésm@ents like Fe and Ca
are able to retain a few of their electrons in this intensd.hias emission from these
highly ionised elements that produces the spectral enmigisies that were so mysterious
to early astronomers. The nature of the processes thatheeabtona and maintain it at
these high temperatures is unknown. Usually temperatatessfyou move away from a
heat source. This is true in the Sun’s interior right up towiséble surface. Then, over a
relatively small distance, the temperature suddenly tsegtremely high values. Several
mechanisms have been suggested as the source of this haatithgre is no consensus
on which one, or combination, is actually responsible.

1.2 Active regions and coronal loops

Several magnetic field structures exist in the solar cororeawide range of spatial scales,
with sizes of a few thousand km, such a bright points, to l@@enal streamers which
extend to several solar radii. We focus our attentioadtive regions(AR) that are areas
of strong magnetic field concentrations where most of tharsattivity takes place (see
Figuresl.land1.2). In visible wavelengths AR are seen as sunspot groups isdlze
surface, i.e. the photosphere.

In AR there are myriads of coronal loops that outline the nedigriield lines. Coronal
loops are filled with hotter and denser plasma than the badkgr corona producing
bright emission in extreme ultraviolet (EUV) and soft X-sayavelengths. Coronal loops
are closed magnetic arches that connect magnetic regiomgpokite magnetic polarity
on the solar surface (see Figute?a). Coronal loops are usually seen formimgndles
or arcades Bundles are disordered sets of relatively close loops (spard-1.2a) and
arcades are relatively ordered configurations of alignegdqsee Figuré.2b). In this
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Figure 1.1: SOHO-EIT image in resonance lines of eight and times ionised iron (Fe
IX/X) at 171 A in the extreme ultraviolet showing the solar c@an a temperature of
about 1 million K. This image was recorded on 11 Septembe? 189s dominated by
two large active regions, composed of numerous magnetgsloo

work we are interested in coronal loops with typical length200 Mm and temperatures
of the order of 1000000 K. Loop densities are roughly-(20) x 1072 kg m™3, i.e. a
density enhancement of-230 times with respect to the surrounding corona.

It is currently debated whether AR coronal loops have anseotved fine structure or
not (see, e.g Aschwanden et 812000 Warren et al.2002 Schmelz et aJ.2005 As-
chwanden and Nightingal2005 Klimchuk, 2006 DeForest2007 Warren et al.2008.
The loop model with fine structure is the so-calladltistrandedor multithreadedoop.

In this model it is suggested that loops are formed by sevensl or hundreds of strands
considered as miniloops (see Figur8) for which the heating plasma properties are ap-
proximately uniform in the transverse direction. This naifand fine structure is below
the spatial resolution of the current telescopes (TRACE amdCHDE). Recent observa-
tions from the EUV Imaging Spectrometer (EIS) on HINODE sapphe multistranded
loop model (e.g.Warren et al.2008.

1.3 Waves and loop oscillations. Magnetohydrodynamic
coronal seismology

On 14 July 1998, the imaging telescope on board TRACE registerdoth 171 A and
195 A lines, spatially resolved decaying oscillating disi@ments of coronal loops in the
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(b)

Figure 1.2: In §) the structure of coronal loops is seen perfectly. They isb$ curved

flux tubes with their feet anchored in the photosphere. Laspdound forming bundles

(a) or arcadesl). In (b) we see an arcade from the top (over the disk). These images
were taken with TRACE in EUV light.

active region AR 8270 (see Figuted). This direct detection of loop oscillation was first
published inAschwanden et a[1999. These oscillations had periods of approximately
5 min with a strong damping. Evidences of oscillations haghlbeported previously by
Schrijver et al.(1999 in an overview of TRACE first resultsNakariakov et al(1999
studied the damping of the transverse loop oscillationsfandd a damping time close
to 15 min. Schrijver and Browr(2000Q analysed an event that occurred on 4 July 1999
and found an oscillations with approximately 5 min periodl andamping time of 15
min. The authors reported oscillations in phase or antplras bundle of closer loops.
Since their first direct observation, transverse osaifetihave been routinely observed
with TRACE and recently with HINODE (see, e.an Doorsselaere et ak008h and
STEREO Werwichte et al.2009.

A detailed and extensive study of the geometric paramefel@ops and the trans-
verse oscillations was made B¢hrijver et al (2002 andAschwanden et a{2002. In
Table1.1a range of physical parameters of 26 oscillating loops aeseguted, extracted
from 17 events taken with TRACE during 1998-20@k¢hwanden et gl2002. These
oscillations took place shortly after a solar flare and, nposbably, were generated by
the flare. The mechanism of the excitation is not well undexdstbut it can be connected
with a blast wave generated in the flare epicentre. Some dbtps seem to be more
responsive to the oscillation than others and this factctdkély to be connected with
the magnetic topology of the active region. The loop feetarehored in the photo-
sphere due to the enormous density contrast between thegpihetric and coronal media
(the photosphere is $@imes denser than corona): this is the so-called line tyifiece
The loop oscillations are interpreted in terms of a staneage. The largest oscillation
amplitudes were seen near the loop apices in the transvecdtations indicating that
oscillations are mainly a fundamental mode (see Figuse Aschwanden et a(1999),
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(a)

(b)

Figure 1.3: Multistranded or multithreaded loop model.His figure the loop is a bundle
of 100 fine strands with a width ofU’. (a) shows the simulated image, wh{le) renders
the loop system with the TRACE telescope of approximateby @esolution. We see
that the loop fine structure is not well resolved and remaidddn to the observer. From
Aschwanden et a(2000.

Nakariakov et al(1999 andNakariakov and Ofmaf200J) interpreted these transverse
oscillations in terms of lineafundamental fast magnetohydrodynamic kink maufes
straight and cylindrical flux tube. In the fundamental stagdransverse oscillation of a
cylinder, the longitudinal component of the wave-vectdiixed tok, = /L, whereL is

the length of the loop. The loop width, is very small compared with the loop length, so
thata/L < 0.05 (see Tabld..1). In coronal loops, it is a good approximation to consider
a/L < 1 (or equivalentlyk,a < 1), in the so-called thin tube (TT) approximation. The
TT approximation allows to make considerable simplificasiin the theoretical models.
Transverse coronal loop oscillations are strongly dampédavmean exponential decay
time of three oscillation periods. There are several péssibmping mechanisms: non-
ideal magnetohydrodynamidfects, lateral wave leakage, footpoint wave leakage, phase
mixing and resonant absorption. However, it is the last rapidm,resonant absorption
that dfers a consistent explanation of the rapid damping of thestense oscillations
(Goossens et al2002. Resonant absorption consists in the transfer of energy the
magnetohydrodynamic oscillation of the whole loop to thealaesonant Alfén waves.

On the other hand, travelling slow magnetohydrodynamicesavere observed in
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Figure 1.4:(a) Time difference image from TRACE 171 A showing the AR 8270 &t
ence images are created by subtracting two image#fateit times. White areas indicate
flux increase, while black areas indicate flux decreaséb)ithe detrended oscillation of
the loop outlined with a thin white curve (&) is shown. The dots are the measured dis-
placements with respect to the equilibrium position andttiler curve is an exponentially
decaying sinusoid fit. Extracted froAschwanden et a(2002).

Parameters Range

Loop half length /2) 37-291 Mm
Loop width @) 55-16.8 Mm
a/L 0.01-0.05
Oscillation period 137694 s
Decay time 191 1246 s
Oscillation duration 400 5388 s
Oscillation amplitude 106 8800 km
Number of periods B-87

Maximum transverse speed .63- 229 kms*

Table 1.1: Ranges of physical parameters of 26 oscillatingdmbserved with TRACE;
extracted fromAschwanden et a(2002).

coronal loops with TRACENightingale et al.1999 Schrijver et al. 1999 De Moortel
et al, 2000 and EITSOHO Berghmans and Clettd999. These quasi-periodic dis-
turbances were observed, generally, in the lower partsrgé)ajuiescent coronal loops,
placed at the edges of AR or situated above sunspot umbradl.the cases, only prop-
agating waves away from the loop footpoints were observed am average speed of
122+ 43 kms?!. The observed periodicities were of the order of 5 nfriShea et al.
2001, De Moortel et al. 2000. A detailed study carried out dye Moortel et al(2002
shows a distinct separation between periods of those Idopgeasunspot umbrae of ap-
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Footpoint Footpoint

Figure 1.5: Scheme of transverse loop oscillations. Itémghat the maximum displace-
ment happens at the apex. The foot-points are fixed in theppbere. FrorNakariakov
et al.(1999.

proximately 3 min and those away from with periods of 5 mine &luthors argue that loop
footpoints can be coupled to the lower layers of the solabaphere. The oscillations of
the underlying layers drive the observed slow propagatiages.

In addition, observations of hot coronal loops from SUMMER&trometer onboard
SOHO satellite, revealed large Doppler shift velocitigs {@ 200 km st), which exhibit
damped oscillations//ang et al. 2002 2003ab). The observed oscillation periods are in
the range 11-31 min and the damping time is in the range2® min. These oscillations
were interpreted in terms atanding slowmagnetosonic modes. However, the source
of the dissipation was established@fman and Wang2002. The authors found that
for the typical observational solar parameters of thespdpthe dominant wave damping
mechanism is most probably thermal conduction.

Recently, spatially and temporally ubiquitous waves hawnliscovered in the so-
lar corona in the Doppler images from the COMP instrum@&ioin{czyk et al. 2007).
Propagating waves have been reported with periods of 5 nimphiase speed of approx-
imately 1000 kms!. These waves have been interpretegrapagating Alfvén wavesy
the authors. IMfomczyk and MciIntosi{2009 a detailed study of the wave propagation
direction with respect to the magnetic field has been caoigd They separate outward
propagation waves and inward propagation waves and hawel fihat the energy of out-
ward is larger than that of inward waves. This fact indicaited the travelling waves are
damped as they travel into the corona. The damping time neust e order of the travel
time along the loop, which amounts to just a few wave peridtie authors also conclude
that the ubiquitous waves are driven by sgtamodes.VVan Doorsselaere et gR0083
andHindman and Jaiif2008 disagree with the interpretation in terms of Adfv waves
and suggest that the observed propagating disturbancdasammagnetohydrodynamic
waves.

The detection of oscillations and waves in magnetic strestof the solar corona pro-
vides us with a tool for the determination of physical parteree(Uchidg 1970 Roberts
et al, 1984. Measurement of the properties of magnetohydrodynanailatons (pe-
riods, wavelengths, amplitudes, temporal and spatialesigas, characteristic scenarios
of the wave evolution), combined with a theoretical modejlof the wave phenomena
(dispersion relations, evolutionary equations, etcgdseto a determination of the mean
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parameters of the corona, such as the magnetic field strandttiensity. This is themag-
netohydrodynamic coronal seismolo@ge Figurel.6for an outline of the seismological
method). Magnetohydrodynamic coronal seismology is bagea three dferent wave
modes, namely, Alfgn, slow and fast magnetoacoustic modes. These magnetehydr
dynamic modes have quiteftrent dispersive, polarisation and propagation propertie
which makes this approach even more powerful. However,ahaenditions the coronal
seismology is more complicated because the three modesapted and have mixed
properties Goossens et al2009.

Wave
properties

Physical MHD wave
parameters theory
q MHD coronal .
‘ seismology e
R v

Physical
parameters

@.g. mognefic field,
fransport cosfficients,

Figure 1.6: Outline of the magnetohydrodynamic coronadreeiogy method which is
based on relating the theoretical models with the obsematnd thus allows us to extract
physical parameters. Observations provide us with wavpesties (periods, damping
times, etc.) and physical parameters (loop length, radies). These data permit us to
select appropriate models and to extract non-observalderored magnitudes. This is a
feedback process of mutual improvement in which the ex@chpairameters are included
in the new observations and in the new models. Figure elafitbom Nakariakov and
Verwichte(2005.

1.4 Motivation and Thesis outline

In many cases the observed coronal loops belong to comptie aegions and are not
isolated but forming bundles or arcades. The collectivetjdynamics of the system can
be diferent from the individual loop oscillation. For example,Sohrijver and Brown
(2000 antiphase transverse oscillations of adjacent loops wagrerted. In addition, in
Verwichte et al(2004 phase and antiphase motions were observed in a post-ftadear
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(see Figurel.7). These motions could indicate collective oscillationstaf loop system.
Unfortunately, additional observations are needed forraptete observational study. In
addition, as we have seen in Sectibh@ coronal loops could be a composite structure of
strands. These strands can be coupled &iegtathe whole motion of the loop.

(b)

0 5 10 15 20 25
time {min)

Verwichte et al. (2004)

Figure 1.7:(a) A frame from a movie recorded by TRACE on April 15th, 2001, of atpo
flare loop arcade with nine outstanding loops called A3). Transverse displacement of
loop G near the apex. To produce this figure an 8 Mm-long segp&pendicular to loop
G has been considered and its intensity has been plotteduast@oh of time. Extracted
from Verwichte et al(2004).

Most analytical studies about transverse loop oscillatibave only considered the
properties of individual loops. Only a few works have coesatl composite structures.
Berton and Heyvaertfl987) studied the magnetohydrodynamic normal modes of a pe-
riodic magnetic mediumMurawski (1993 and Murawski and Robert§1994) studied
numerically the propagation of fast waves in two slabs uned in the longitudinal di-
rection. InDiaz et al.(2005 the oscillations of the prominence thread structure were
investigated. These authors found that in a system of edqudkfthe only non-leaky
mode is the symmetric one, which means that all the fibrildlasein spatial phase with
the same frequencyArregui et al.(2007), have studied thefiects on the dynamics of
the possibly unresolved internal structure of a corongb loomposed of two very close,
parallel, identical coronal slabs in Cartesian geometrywibn-uniform density in the
transverse direction. They found smalffdrences in the period and damping time, with
respect to a single slab with the same density contrast oigéesslab with the same total
mass.

With these considerations, it is thus necessary a preaisly sif the oscillations of
composite structures of several loops or strands and hodyti@mics can be influenced
by the collectivity. The motivation of this Thesis is to prde magnetohydrodynamic
coronal seismology with theoretical models in order to carewith and to extract infor-
mation from the observations. The outline of the Thesis i®bows:
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CHAPTER 1. INTRODUCTION

¢ In Chapter2 we introduce the plasma definition, i.e. we describe the staivhich
the gas of the Sun is found and particularly the corona. We ialgoduce the
ideal magnetohydrodynamic equations, valid in the solaoa. In addition, the
propagation of waves in a homogeneous plasma is studiedinBae theory, based
on a first order approximation of the magnetohydrodynami@é&qgns with respect
to an equilibrium configuration, is presented.

¢ In Chapter3 we study the loop oscillations of the slab model. Firstly,coasider
the cases of a single slab and two slabs and the main prapeftseich systems are
discussed. The normal modes are analytically calculated.dispersion relation is
derived and the eigenfunctions are obtained. Secondlyethporal analysis is also
investigated by means of numerical simulations in the casgwmslabs. This study
covers two parts. In the first part, we perturb the system antimitial condition in
order to excite the normal modes separately. In the secand/paxcite the system
with an arbitrary pulse. The results shown in this Chapteehzen published in
Luna et al.(2006.

¢ In Chapterd we consider a system of two identical cylindrical flux tubEsst, the
normal modes of the system are found numerically. Secondtwey the temporal
evolution of the system after an initial disturbance andnwestigate its dependence
with the angle of the initial pulse with respect to the twoda®ystem. The results
of this investigation have been published-una et al.(2008.

¢ In Chapter5 arbitrary flux tube systems are investigated. First, weoahice theT -
matrix theory, needed to find the collective normal modesnaduditrary flux tube
system analytically. Second, we investigate the deperdehthe coupling with
respect to the tube parameters in systems of two and thretifies. Observational
implications of these results are discussed. The resulthisfwork have been
published inLuna et al.(2009.

¢ In Chapter6 we use thél -matrix theory to study analytically the collective normal
modes of a multistranded loop system. We first consider &sysf ten identical
strands and classify the collective normal modes accortditigeir frequencies and
spatial structure. Second, we study a multistranded loogeincomposed by ten
non-identical strands. Finally a much more complex systérfordy strands is
considered.

¢ Finally, in Chapter7 the results of the work are summarised and the main conclu-
sions are drawn. A brief discussion about future work is plesented.



Chapter 2

The plasma and the
magnetohydrodynamic equations.
Waves in plasmas

2.1 Plasma definition and magnetohydrodynamic descrip-
tion

A plasma is formed by neutral and charged particles, ionsed@ctrons. In general a
plasma iselectrically neutraloverall, but the presence of charged particles means that
a plasma can support electric currents and interact witttredeand magnetic fields. A
useful plasma definition is (see, e §hen 1984 Goossen2003 Goedbloed and Poedts
2004:

A plasma is a quasi-neutral gas (macroscopically neutrdlytvarged particles and
neutrals that exhibits a collective behaviour.

The meaning of “collective behaviour” is as follows. Theseai fundamental dif-
ference between a neutral gas and a plasma, coming fromftieeedit nature of the in-
teraction between particles. In a neutral gas, the interact strong and of short-range.
Hence, the dynamics is governed by the contact collisiona.plasma, which has charged
particles, the situation is fierent. These charges and their motion produce electric and
magnetic fields. These fields exert a force afida the motion of other charged particles
far away. Then, by “collective behaviour” we mean motioret thepend not only on the
local conditions but on the state of the plasma in remoteoregas well. The dynamics
of a plasma interacting with magnetic and electric fieldsdasadibed by quite dierent
theoretical models. Which one is to be chosen depends onnidiekphenomenon one is
interested in. In this work we ughe magnetohydrodynamic (MHD) mogdi@ which we
postulate a hypothetical medium called “plasma” governgthe MHD equations. The
validity of such equations is justified by physical and math#@cal arguments.

23
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The MHD modelis a macroscopic, classical and non-relativistic theogy treats the
global phenomena of a plasma considered as a single fluichatieg with a magnetic
field. In addition we consider the fluid as inviscid and adtabaMaxwell’'s equations
describe the electromagnetic field and the gas dynamicsesiged by the fluid equations.
However, these equations are not a closed set and we needliéinrad equation. This
equation is thegeneralised Ohm’s lawhat links the electrical density currepto the
fieldsE, B andv in the MHD approximation,

j=0(E+vxB) (2.1)

whereo is the electrical conductivity of the fluid. Combining thisuagion with the
Faraday’s and the modified Ampere’s law, thduction equations obtained,

oB

E:VX(VXB)+77VZB, (2.2)
wheren = 1/uo is the magnetic diusivity, which has been taken constant. The induction
equation governs the temporal evolution of the magnetid.fiehere are two contributions
on the right-hand side of the previous equation. The firstisribe advection termand
the second one is thdiffusive term The magnetic Reynolds numbigy, determines the
relative importance of both terms,
_IVx(vxB)| _VvB/l

~ = 2.3
n|V2B| nB/12 n 23)

Rm

In this Thesis we consider magnetic structures in the saesma where the magnetic
Reynolds number iB,, ~ 18- 10'? (see, e.gAschwanden et 312004. Hence, the solar
corona is in the limitR,, > 1 and the diusive term of Equation.2) can be neglected
and the advection term dominates in the magnetic field eeoluT he induction equation

takes the form

@ZVX(VXB). (2.4)
ot

Under these conditions magnetic field lines move with therpk a result which is known
as Alfven’s frozen-flux theorem (see, e.®riest 1987. The limit of large Reynolds
number R, >> 1) is equivalent to considering a perfectly conducting flwith o — oo.
In this limit the model is the so-calladeal MHD. If the conductivity is not large and the

full induction equation is valid the model is callegsistiveMHD.

2.2 The ideal magnetohydrodynamic model

The magnetised plasma of the solar corona is well descripgtdideal MHD model.
Thus, the governing equations are
dp

oV V) =0, (2.5)
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1
p(;—\t/ +p(vV-V)v=-Vp+—-(VxB)xB, (2.6)
u
?9—f+v-Vp:—ypV-v, @2.7)
B
(Z—t:Vx(va), V-B=0. (2.8)

These are a set of nine non-linear partidfetiential equations for eight variable§, t),
v(r,t), p(r,t) andB(r, t).

The Lorentz force terngV x B) x B/u of Equation R.6), can be decomposed in the
following manner
1 B B?
—(VxB)xB:(B-V)——V(—), (2.9)
H H 2u
where the first term on the right-hand side represents ftieete of a tension due to the
magnetic field line curvature and the second term is a magpetssure force acting from
regions of high to low magnetic pressure and with magni@é2u). We define the total
pressure as the sum of the fluid pressure and the magnetsupees

(2.10)

2
p'r:p+z.

With this decomposition of the Lorentz force, we obtain tee/iversion of Equatiorn?.6)
p(;—\t/ +p(v-V)v:—VpT+(B-V)§. (2.112)
M

From this equation we see that the forces acting on a plassmeeet are the total pressure
and the magnetic tension, while other contributions likavdy, viscosity, etc. are not
considered here.

Zero-B plasma limit

In many applications, specially in the solar corona, theran important simplification
that can be done in the MHD equations. In the rearranged mé&tation .11 there is

a gradient of the total pressure. The total pressure is tmeafuhe gas pressure and the
magnetic pressure and the relative importance of the twost@an be estimated by the
plasmas parameter, defined as

4= gaspressure _ p
~ magnetic pressure B2/2u

(2.12)

In the corona this parameter is very small.(ona < 1) and, therefore, in coronal plasmas
we assumg ~ 0. This is called theeros plasma limitor cold plasma approximation, in
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which the plasma is completely dominated by the magnetid &ald thegas pressure is
negligible In this limit Equations 2.5-(2.8) can be written as

dp

— +V-(pv) =0, (2.13)
ot
pa—v +p(v-V) = }(VxB)xB, (2.14)
ot u
%:Vx(va), V-B=0. (2.15)

These are thedeal MHD equations in the zegg-approximation The energy Equation
(2.7) is not needed in this approximation.

2.3 Fast magnetohydrodynamic waves in homogeneous
plasma

Ina gas, a disturbance produces compressions and rapeftiat are propagated isotrop-
ically at the sound speed of the medium and that produceyrneesgensity and tempera-
ture variations. In a magnetised plasma the situation ismomplicated. The charged
particles of the plasma interact with the magnetic field aadations in the gas pressure
will generally lead to magnetic field disturbances. In a ety conducting fluid con-
sidered in this work, the magnetic field lines and the fluid faoeen together, so any
disturbance in the fluid produces changes in the magnetit fieladdition, the magnetic
field exerts a restoring force on the fluid through the magmegssure and tension. Then,
the interaction of the fluid and magnetic disturbances preda rich variety of waves. A
convenient way to find the response of a system to excitaisoiasconsider small pertur-
bations with respect to an equilibrium situation. Matheoaly this means that we can
linearise the governing equations of the system, assurhatgite are only interested in
the dynamics caused by small distortions (linear termsh@flasma equilibrium.

2.3.1 Linear waves

Consider a uniform and static equilibrium configurationat = 0, v = 0), that satisfies
the MHD equations in theerof plasma limit(Equations2.13to 2.15). Since the plasma
is homogeneous the equilibrium variables, which are hexekbelled with the subscript
“0”, do not depend on the position. Next, the physical vaddalare assumed to fSer a
small displacement (see, e.Brjest 1987

B(r,t) = Bo+ By(r,t), (2.16)
v(r,t) = 0+ vy(r,t), (2.17)
p(r,t) = po+palr.t). (2.18)
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Notice that the equilibrium velocity has been set to zerg attiough this is not strictly
necessary, in the models of coronal structures studieddwpréibrium flows are not in-
cluded. Now Equation2(13—(2.15 are linearised and squares and products of the small
guantities (second order terms) are neglected, giving astdtr

0,
P oooVv =0 (2.19)
1
poa—v - = (V X B) X Bo = 0, (220)
ot u
% -Vx(vxBg = 0, (2.21)
V-B = 0, (2.22)

where the subscript “1” in the perturbed quantities has ligepped. The spatial deriva-
tives of the equilibrium configuration are taken zero beeaus have assumed a homoge-
neous medium. Notice that the continuity Equati@rilg is no longer necessary except
for the calculation of the density perturbation.

The magnetic field is uniform and theaxis is placed along it, theBy = Bge,. It
is easy to see from Equatio2.R0 that the time derivative of the velocitgv/at, is
perpendicular to the equilibrium magnetic fiddg. Then, we havév,/ot = 0 orv, =
const, but here constant flows are not taken into accountdgeation2.17), so we just
take

V, = 0. (2.23)

This result implies that the velocity is always perpendicib the equilibrium magnetic
field, i.e.v L By. In the following development, the symbalstands for the components
of the perturbed quantities perpendiculaBig i.e. in thexy-plane. Then the velocity is
v = v,. When the gas pressure is included the component of the tyebdongBy is not
zero because an extra term associated to the perturbedegsuipr gradient appears in
Equation 2.6).

The Lorentz force perturbation in Equation.Z0 can be decomposed in the gradi-
ent of the perturbed magnetic pressure and the perturbedetiagension (see Equation
2.1D),

Po o

where the magnetic pressure perturbation is

@:—V(BO'B)HBO-V);, (2.24)

Bo-B
Prm = Oﬂ , (2.25)

that coincides with the total pressure perturbation in #r®@# limit (see Equatior?.10),

Pr = Pm- (2.26)
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The second term of Equatio.@4) is the magnetic tension perturbation,

r=(Bo-V) 2. (2.27)
u

The set of Equation2(20—(2.22 can be reduced to a single equation for the velocity
alone by eliminating the magnetic field. Then, after someimdation awave equation
is derived

v, 1
PG " [(V x (Vx (v xBg))) xBo] =0, (2.28)

On the other hand, Equatiora20—(2.22 are expressions for the perturbed magnetic
field and velocity field. Depending on the considered probteaaimore useful to rewrite
the equations in terms of other quantities. Particularky,are interested in the magnetic
pressure perturbatiomp{) and fluid velocity ¢) fields. After some algebra these equations
are

62
(ﬁ - V}in) pT = 0 N (229)
0? 0? 0
Po (@ - Vi@)VJ_ + VJ_a_F::T = 0, (2.30)

where thev, is the Alfvén velocity of the magnetised medium defined as

Bo
Va = : (2.312)
8 VHPo
Equation 2.29 is a wave equation for the magnetic pressure perturbat@irpropagates
isotropically in a homogeneous plasma. From Equatiddj we see that disturbances in
the velocity produce disturbances in the magnetic pressutevice versa.

2.3.2 Plane-wave solutions and dispersion relation

In order to gain insight into the properties of MHD waves, welsplane-wave and har-
monic time dependence solutions of the previous equatibtedorm

a(r, t) = a dlkr-o (2.32)

wherea represent®r, p or the components of the B fields, k is the wavevector that is
k = keex + kg, + k&, in Cartesian coordinates andis the angular frequency. We intro-
duce these assumptions in our equations. This is equiviguarforming the following
transformations

(2.33)
V - ik . (2.34)
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Then EquationZ.28 can be written as
powzv—}[(kx(kx(OxBo)))xBo]:O,k-é:O. (2.35)
M

The resultk - B = 0 means that the magnetic field perturbations are transverte
propagation direction. After some manipulation and usiggdion .23, i.e. v, = 0,
we find the followingdispersion relation

(w? - KoV3) 0. — (k- O)vak, =0, (2.36)

where we see that the parallel component to the equilibritagmatic field of Equation
(2.39 is identically zero. Assuming a wave-vectolin the xzplane, i.e.k, = 0, thex-
andy-component of Equatior2(36) become
(w? - KV2) % = 0, (2.37)
(w? - KVA)% = O, (2.38)
wherek? = kZ + kZ + k2. Equations 2.37) and .38 are a homogeneous linear system of

equations. In order to have a solutioftdrent fromvy = 0 andy;, = 0, the determinant of
the codficients must be zero,

(0 - KV3) (- KV3) = 0, (2.39)
which yields two solutions. The first root is tfest-wave dispersion relation
w? = K3, (2.40)

and from EquationZ.38 we havey; = 0, indicating that’, || k, and that fluid motions
are in the plane containing andBy. The second root of Equatio2.39 is the Alfvén-
wave dispersion relatign

w? = K2 | (2.41)

and from EquationZ.37) we havevy = 0 orv, 1 k,, so that fluid displacements are in
the direction perpendicular to the plane contairkrendBy.

We expand Equation2 (29 and .30 in terms of plane-waves (Equati@i32 and
obtain the magnetic pressure perturbation

N PoVa .

pr=— "Lk, 7.). (2.42)
In addition, we can find the density perturbation from Equa®.19 as

p=-Pwk, -9, (2.43)

w

and together Equatior2(42 we find
pr=\a5. (2.44)
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indicating that the density and magnetic pressure petiorigare proportional. Equa-
tions 2.42 and @.43 relate the magnetic pressure perturbation and densitstiars,
respectively, withk , - v, . Thus, thdastandAlfvénwaves produce lierent perturbations
in the magnetic pressure and density fielBastwaves produce the maximum perturba-
tions of those fields becauge || V.. HoweverAlfvénwaves do produce no disturbance
in the magnetic pressure and density fields beckuse v, .

As we have seen in the previous analysis there are two kindseés in the zer@-
plasma limit, whose main properties are summarised here:

¢ Alfvén wavesDriven by tension forces with no magnetic pressure or dgnsii-
ations (incompressible). Plasma motion is transverse tio the applied magnetic
field and the direction of propagation. Highly anisotropiodr, unable to prop-
agate across the field, with energy flowing along field linethatAlfvén speed
Va.

e Fast waves Driven by tension and magnetic pressure forces, with magpees-
sure and density variations. Isotropic, although propagdaster across the field
in theg # 0 case.

If the zerog plasma limit is not assumeg ¢ 0) there is a third kind of wave:

¢ Slow wavesDriven by tension and pressure forces, with pressure ansitgteari-
ations too. Anisotropic, unable to propagate across fielkeksli the energy flow is
confined to the vicinity of certain magnetic field lines.

2.3.3 Boundary conditions

The equilibrium systems considered in this Thesis cons$iséeeral uniform media hav-
ing different equilibrium features and the waves in each media aeibed by the equa-
tions seen in the previous Sections. We must impose bourwbagitions (or “jump”
conditions) on the perturbed plasma parameters at the aosiaface of the dierent
media. The ideal MHD model includes the set of Equatidhd9—(2.22 but also the
boundary conditions. We shall use the conventioh £ m, — my for the jump of the
magnitudam at the interface between two plasmas, labelled “1” and “2ieSe boundary
conditions includen, the vector normal to the interface. In our systemd$B, = 0, then
the boundary conditions are (see, e(@pedbloed and Poed@004)

n-[vl]=n-[B] =0, [pr] =0. (2.45)

We see that the normal component of velocity and magnetid Ae¢ continuous
whereas the other components may have discontinuities.b®@hedary conditions take
different expressions according to the considered loop gepifsete Chapter8, 4 and
5).



Chapter 3

Two slab modet

In this Chapter we consider the oscillations of a system of itkemtical coronal loops
modelled as slabs. We do not consider gravity, neither asrieg force nor its &ect on
plasma stratification. The dynamics of a curved magnetigeel &re too complex and it is
customary to consider a simplified model consisting of a #labextends infinitely in one
direction (they-direction in our case) and is bounded by two parallel plaepsesenting
the photosphere. The influence of the photospheric linggtig incorporated by imposing
the vanishing of velocity perturbations at the ends of tladsl We assume that their
oscillations are linear and can be described by the line@MdHD equations of Chapter
2.

This Chapter is organised as follows. In Sectia the loop model and the basic
MHD equations describing fast waves are presented in amyst®ne slab and the nor-
mal modes are described. In Sect®h@the system of two identical slabs is presented and
in Section3.3the normal modes are computed. The features of trapped akyl ieodes
are analysed in detail. In Secti@¥ the time-dependent problem is considered and the
resulting velocity profiles are studied for several iniparturbations. An analytical anal-
ysis of the beating that takes place when a combination df hotmal modes of the
system are excited, is given in Secti®r. Finally, in Section3.6 the main conclusions
are drawn.

3.1 Single slab model

In this Section we show the results for the single slab systemch was first studied by
Edwin and Robert§1982. The magnetic field is homogeneous everywhere and parallel

1The novel results in this Chapter have been publishédiima et al (2006

31
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Figure 3.1: Equilibrium configuration of a system of one skgtresenting a coronal loop.
The shaded region is the density enhancement in the slabniéneal (or slab) density is
pi and the external (or coronal) densityis The equilibrium magnetic field,, is along
the slab g-axis). The slab is anchored in the photosphere (hatched,dtet fixes the
feet and produces the line-tyingfect. The slab length is and its width is 2.

to thez-axis By = Bpe,). The density profile is (see Figugel)

pi, X <a,
_ ! 3.1
P {pelﬂm>& (31)

wherea is the half-width of the slab. From Equatior.Z8 we obtain twodecoupled
wave equations for the fast and Atfw waves, respectively. The fast wave equation is for
the v, component that propagates isotropically in theand z-direction and the Alfen
wave equation is for thg, component that propagates mainly along the magnetic field
(z-axis) as we have seen in Secti®3.2 We do not consider wave propagation along the
y-axis, so thak, = O or equivalentlyd/dy = O (see Sectio2.3.2. This means that we
only consider perturbations in theaxis and the Alfén waves are avoided. We propose
solutions of the fornv,(x, z t) = U (x, t)e”*?, i. e. we Fourier analyse in thedirection.
From EquationZ.28 and the previous assumptions the wave equation can bemvas

0%V 0%V
aﬁ:ﬁaﬁ_dw’ (3.2)

where the symbol " has been dropped agds the cut-df frequency defined as; = k;Va.
Equation 8.2) is a Klein-Gordon equation for fast waves. Selecting arrappate value
of k, we include the ffect of photospheric line-tying, i.e. we consider standirayes
in the z-direction. We concentrate in the fundamental standingewsith k, = 2r/2L
where the maximum amplitude is in the loop apex as in the ntgjof observations of
transverse loop oscillations (see Sectiog).
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3.1.1 Normal mode analysis

We consider that the time anddependence are of the foren'“* ande*, respectively.
Then, from Equation3.2) we obtain

2
kZ_w_
X_V2

A

-k, (3.3)

that links the oscillating frequeneay with k, (see Equatior2.40).

Equation 8.2) is valid in both regions (internal or external) with its »&n velocity
Vai = Bo/ vupi andvae = Bo/ vupe. The solution of the perturbed velocity is

V(X) =4 Brekx 4+ B ek, if —a<x<a, (3.4)
C el if x> a,

where incoming waves are not considered. Hgrandk; are the external and internal

wavenumbers. The internal wavenumber is given by

k= |= — k2. (3.5)

Depending on the character kfandw there are two types of solution$rapped modes
confine energy within the slab and are characterised bykgealdw, with

ke = o [K2— 2, (3.6)

Leaky modedo not confine energy, which is radiated in the environmerd,aae charac-
terised by complek. andw, where

2
ke = =4[ - =, (3.7)
VAe
(see, e.g.Terradas et al.2005g. With the velocity profile of Equation3(4) and the
boundary conditions Equation®.45), we can obtain the dispersion relation and the veloc-
ity profile, i.e. the constants, B,, B,, C. From EquationsZ.20 and @.21) the boundary
conditions Equations2(45 are

OVy

—Z21=0,atx=+ 3.8
X , atx = za. (3.8)

[Vx] = [

We impose both boundary conditions at the two interfaceatémtatx = +a, thus ob-
taining two equations for the velocity and two equations iferx-derivative. These
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eqguations form a homogeneous linear system of four equatiath four unknowns, i.e.
A, B, B,, C. For this system of equations to have a non-trivial solytittndeterminant
must be zero. This gives the dispersion relation,

tan@k) — kf tan@k) + kﬁe =0, (3.9)
which produces
ki
t ) =——, 3.10
anf@k) ke (3.10)
that is, thesausagemode dispersion relation, and
tan@k) = % (3.11)

that is, thekink mode dispersion relatiorffausagenodes have an antisymmetric velocity
profile with respect tox = O (the slab axis) an#tink modes have a symmetric profile.
Moreover, the solutions of the homogeneous set of equati@ghe constants in Equa-
tion (3.4), are the kernel of the matrix of the system. With this praredhe velocity
profiles of Figure3.2 are found.

Transcendental Equatiorn3.{0 and @.11) are solved and is calculated for dierent
values of the slab half-widtla/L, finding two types of curves (Figui®3). Figures3.3a
and3.3b correspond to the real and imaginary part of the frequehayhas been written
asw = wr + iw,. Here we only represent the fundamental and first harmonticeokink
and sausage modes. The frequency of trapped modes is reahafidr than the external
cut-of frequency,wee = we = KVae. Sincew, = 0 for trapped modes, these solutions
correspond to standing oscillations of the system and tbhidlaigon is confined near the
slab (see Figure3.2a and3.2b). Leaky modes have complex frequency with> 0, so
that they represent damped oscillations, the origin of #raming being that perturbations
carry the energy away from the slab. The leaky modes als@prapatial oscillations
growing in amplitude ax — *oo (see Figures.2c and3.2d). Figure3.3a shows that
the fundamental kink mode (solid line) is trapped foralL. On the other hand, the
fundamental sausage mode (dashed line) starts as leakyn&drwlues ofa/L and, as
a/L is increased, its curve crosses the external dutrequency, bifurcates and gives rise
to two branches. At the bifurcation point the imaginary pErthe frequency becomes
zero (Figure3.3b) and the two branches hawg = 0. Both branches are physically
meaningless because they have = 0 andk. is real and negative, which implies an
oscillatory solution in time with an exponential growth ipage. For even larger slab
half-widths the upper branch reaches the external fiuaral the mode becomes trapped
(thick dashed line), becoming a physically relevant solutiAll the harmonics (both kink
and sausage) have the same behaviour as the fundamentgesausde, although in the
range of half-widths plotted in Figu®@3they are leaky. From Figui&3b we see that the
damping timez = w;?, increases witk. Following Terradas et a(20058), it is possible
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Figure 3.2: Plot of the eigenfunctios for (a) and(b) the trapped modes (thick curves)
and(c) and(d) some leaky modes (thin curveggfradas et al20059. Continuous line
for the fundamental kink mode, dashed line for the sausagkerand dot-dashed line for
the first kink harmonic.(a) and(c) correspond to a slab with/L = 0.05 while for (b)
and(d) a/L = 0.5. Note that the sausage mode, that is trapped in a thick lsteiomes
leaky in a thin one; also note thefldirent spatial scale for the plot of the leaky modes
with a/L = 0.05. The grey area represents the slab.

to find an analytical expression for this damping time in thatlof thin slabs & <« L)
valid in coronal loops
_2a ( 1+ Vai/Vae

T~
Vai 1 — Vai/Vae

)_1 . (3.12)

Note that the damping time is independent of the normal marhsidered, so that in
the limit a/L <« 1 all leaky harmonics have the same damping time (see Fi§Gbg.
Moreover, wherv, < Vae the damping time reduces to

T aV—Ae. (3.13)

From these equations we see that the leaky modes radiatestiezgy very rapidly. In
coronal loop conditions it is of the order of several seconds
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Figure 3.3: Dispersion diagram calculated from the nuna¢solution of the dispersion
relations, Equations3(10 and @.11), for a slab model with density contrast/pe = 3
(Terradas et al.20053. Line styles follow from Figure3.2 (a) variation of the real
part of the normalised frequencyg, versus the normalised half loop widé#) for the
fundamental kink mode (solid line), the fundamental saesagde (dashed line) and
the first kink harmonic (dot-dashed line). The ctifdfoequencywc, is represented by a
horizontal dotted line(b) Variation of the imaginary part of the normalised frequency
wy, versus the normalised loop half-width.
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3.2 Two slab model

The situation is similar to that of a single slab, but now wesider a system of two slabs
whose centres are separated by a distalhee the distance between their inner edges is
d — 2a. The density profile is (see Figuged)

o, if x+d/2 < a, (3.14)

pe, IFO<|X<d/2-a,
p(X) =
pe, IfIX>d/2+a

i

L/2;
Bo
Pi Pi
Pe 2a pe§ 2a Pe
-L/2
%

Figure 3.4. Sketch of the two slab system. The shaded areases the density
enhancement of the two slabs while the hatched area repse¢lerphotospheric medium,
that fixes the feet of the slabs and produces the line-tyfifege

The wave equation is given by Equatidhd), where the Alfen velocity is

Vae= 22, ifO<|X<d/2-a,
VA = vai = 22, if [x+d/2 < 2a, (3.15)
, if|x>d/2+a.

3
o

55

Vae =
Ae o

@

3.3 Normal mode analysis

Normal mode solutions to Equatio8.p) in a uniform medium have a dependence of the
form @kt with k2 = w?/v4 - kZ as in the previous Section (EquatiBrB). In the
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present structure, the eigenfunctions have the figix t) = v, (xX) €', with

Adex if x<-d/2-a,
B,e x4+ B,dX  if —d/2-a<x<-d/2+a,
Ww(X) ={ Cie +Cre  if|x <d/2-a, (3.16)
Dle_ikiX+DzeikiX, ifd/2-a<x<d/2+a,
E ekeX, if x>d/2+a

Herek, andk; are the external and internal wavenumbers, defined by Emsa@.5),
(3.6) and B.7).

We impose the boundary conditions given by Equat®g)(and apply the same pro-
cedure as for the single slab model discussed before. Nowdhedary conditions are
applied on the four interfaces locatedxat —d/2 + a andx = d/2 + a, thus obtain-
ing four equations for the velocity and four equations fendderivative. These equa-
tions form a homogeneous linear system of eight equatiotiseight unknowns, namely
A, Bi, By, Cy, C,, Dy, D, E. For this system of equations to have a non-trivial solytion
its determinant must be zero. This gives the dispersiotioelavhich appears as a prod-
uct of two factors. One of these factors must vanish, whielkids us with the following
expressions,

(kG + K?) tan(2a k) — 2t _tan(a k) — % -tan(a k) + kﬁ; =0, (3.17)
or _ o i}
(K + K?) tan(2a k) + e*2% tan@a k) - % tan@k) + E = 0. (3.18)

As in Section3.1.1we display some velocity profiles, FiguBe5, and a dispersion
diagram, Figure3.6. There are two kinds of normal modes: solutions to Equatioh?j
are symmetric with respect to= 0 and so both slabs move in phase (see Figares
and3.90). On the other hand, solutions to Equati8rilg are antisymmetric with respect
to x = 0 and, both slabs move in antiphase (see FigGrés and3.5d). In addition,
Figure 3.5 shows that normal modes can either be trapped (as in panklarad d) or
leaky (as in panel c). Trapped modes attain their maximunliardp in or near the slabs,
but leaky modes present oscillations growing in amplitugbe & +oo (see Sectio.1.]).

We reproduce the analysis of Secti®i.1for the solutions of the dispersion relations,
Equations 8.17) and @.18. We solve these equations and calcutafer different values
of the slab separatiord, for the fundamental and first harmonic of the symmetric and
antisymmetric modes (see Figusega for the real part of the frequency and Fig3réb
for the imaginary part). The frequency of trapped modes a aad smaller than the
external cut-& frequency. The symmetric mode (solid line in Figlg®) is trapped
for all distances. On the other hand, the fundamental antisgtric mode (dashed line)
is leaky for small values ofi/L and, asd/L is increased, it crosses the external cfiit-o
frequency and bifurcates in two branches. For larger dtetsifl/L > 1) the upper branch
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Figure 3.5: \elocity profileyy(x), for the fundamental symmetric mode (upper row) and
the fundamental antisymmetric mode (lower row) for a slal-walth a = 0.05L and

a density enhancemept/p. = 3. The left and right columns correspond to a distance
between slabd = 0.5L andd = 2L, respectively.(a) and(b) show that the symmetric
mode is trapped for the two separations, @tand(d) indicate that the antisymmetric
mode becomes leaky for small separations or distances betsi@bs. The shaded surface
corresponds to the density enhancement of the slabs.

reaches the external cuff@nd the mode becomes trapped (thick dashed line). The other
harmonics (symmetric and antisymmetric) have the samevimirabut in the domain
plotted in Figure3.6they do not cross the cutfdine and are leaky. The imaginary part

of the frequency decreases for increasing distances. ifibkds that the damping time
increases with the slabs separation,

The behaviour of solutions for small and large separati@ia/éen slabs can be de-
rived from Equations3.17) and @.18. Ford slightly larger than & (d > 2a), we have
gld-2k ~ 1 and from Equation3.17) we recover the sausage mode dispersion relation
for one slab,

tan(2ak) = _k%’ (3.19)
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Figure 3.6: Equivalent to Figurg 3 for two slabs.(a) Real partwg and(b) imaginary
part, w,, of the frequency as functions of the separatidnfor a density enhancement
pi/pe = 3 and a half-widtha = 0.05L. The line styles correspond to the fundamental
symmetric mode (solid line), the fundamental antisymmoetrode (dashed line), the first
symmetric harmonic (dot-dashed line) and the first antisgtnicr harmonic (three-dot-
dashed line). The dotted line is the external cfiittr@quencywc.. Thick curves represent
trapped modes while thin lines correspond to leaky modesl./vae and w,L/vae are
normalised frequencies. [j&) the calculated frequency from the time-dependent results
for the symmetric (triangles) and antisymmetric (diamQmdedes is also represented.
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and from Equation3.18) the kink mode dispersion relation for one slab,

tan(2ak) = kf (3.20)
These expressions are identical to Equati@sd and (3.11), although nowa s replaced
by 2a. Therefore, for the minimum separation between sldbs,2a, the system of two
slabs is equivalent to a single slab but with half-widéh ®/e also see that the symmetric
mode tends to the kink mode fdr— 2a and the antisymmetric mode tends to the sausage
mode. Hence, we expect a gradual transition from the solsitid one slab to those of a
system of two slabs as the separation is increased.

For very large separation between slabs( a), we havee®2d% — « and Equations
(3.17 and 3.18 lead to

ke

tan@k) — —||tan@k) + —

@k) ” @k) ke

This is the dispersion relation of one slab (see Equadi®h This is the expected be-

haviour, too, since for large separations the interactiemvben both slabs is negligible
and they behave as independent loops.

Kl_o. (3.21)

3.4 Time-dependent analysis: numerical simulations

Normal modes provide with information about the oscillststate and parameters of
the system, but coronal oscillations are often producedrbymgpulsive event and time
dependent simulations are more appropriate to describeviblation of the system. In
the case of a single slafdrradas et al.20053 an impulsive disturbance leads, after a
time of the order of the Alfén transit time across the slab, to a distribution of its gyer
into one or more normal modes. The question that arises isthmapicture will be
modified for a two slab structure: after an impulsive evenggthe system oscillate in a
normal mode (or a sum of some normal modes) or do the modesijle slab appear?

To study the &ect of an arbitrary initial perturbation we consider theteys of two
slabs with a typical density enhancement/ 6. = 3) and a typical slab half-widtha(=
0.05L). Perturbations with diierent velocity profiles are excited.

To solve Equation3.2) numerically, the code PDE2L5€wel|l 2005 based on finite
elements, has been used. This code, which gives a numepigad>xamation tovy(x, t),
makes use of a second order implicit Crank-Nicholson methitidl adaptive time step
control. Since we consider a finite numerical domain, rafiestat the domain bound-
aries may #fect the dynamics of the system of slabs. We have solved thidgm by
locating the edges of the numerical domain far from the tvabsl Given that the size
of the domain is much larger than the loop thickness, a nafowum grid with 4000 grid
points in the full domain, 45 of them located inside each ¢lak d/2| < a), has been
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used. In addition, we have made sure that the artificfélision introduced by the numer-
ical scheme is small enough. This is a critical point sineeaftificial damping can be
larger than the physical damping, in our case arising froerggnleakage, and may lead
to the wrong interpretation of the results. We have perfardierent simulations by
increasing the number of grid points and have found thatdhgisns converge, which is
an indication that numerical flusion does notféect considerably the results. In addition,
we have checked that the same results are obtained by sohagrigitial-value problem
with a standard explicit method based on finit&eatiences.

The initial condition is the sum of two Gaussian profiles cetiin each of the slabs,

T [

whereA is the width of the Gaussian function aAdndB are the amplitudes of the right
and left Gaussian pulses, respectively. Firstly, we geadwa types of initial conditions,
namely a symmetric initial pulseA(= B = 1) and an antisymmetric initial pulsé (=
—B = 1). Later, we excite the system with an individual pulse WAtk 1 andB = 0. In
all the performed numerical simulations, the width of thidahpulses isA = 0.1L.

Vy(X,t=0) = {Aexp

3.4.1 Symmetric or antisymmetric excitation

Let us start with the symmetric initial condition and a segpian between slald = 0.5L.

To see which normal modes can be excited, we only need to bang ¢he symmetric
ones, since the antisymmetric modes are not excited betagissymmetry is opposite
to that of the initial perturbation. So we inspect the disper diagram (Figur&.6) and
see that fod = 0.5L there is only a symmetric trapped mode (the fundamental sstncn
mode) and infinite leaky symmetric modes (of which only onghiswn in this plot). The
results of the simulation are displayed in Fig@& where we have plotted the velocity,
Vy, as a function ok for different timesft(is given in units of the external Alen transit
time, Tae = L/Vag). The initial perturbation produces travelling disturbas to the left
and right and these disturbances show some dispersion yaprhgagate: short wave-
lengths are at the front and long wavelengths at the backeofrdvelling disturbances
(Figures3.7c and3.7d). A comparison of Figure3.5a and3.7d in the range-5 < x <5
indicates that, for long times, the system settles down tidotrapped mode. To gain
more insight into the time evolution we plot the velocity e tcentre of the right slab
(i,e. atx = d/2) in Figure3.8a. In this figure we see clearly two phases, a transient
(for 0 < t/7ae < 3) and an oscillatory phase (fofrae > 3). The transient is produced
by two dfects: firstly, perturbations reflect and refract at the tvadsluntil the energy
contained in the initial impulse is transferred into themal modes. This phase has a
duration, which we call the relaxation time, of the order déa times the Alf\en travel
time between the two slabs, i.e. a few timeS3,; secondly, the excited leaky modes
carry their energy towards — +oco and so decay in a time of the orderof In Terradas
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Figure 3.7: Time-evolution of the velocityy, for a distance between slabds= 0.5L and
a symmetric initial impulse wittA = B = 1. The dashed areas show the location of the
two slabs.

et al. (20053 this phase was called the impulsive leaky phase. From EigGb we see
thatt,/Tae = 1 for the first leaky harmonic, which means that this mode damy in
a time comparable to the relaxation time. The very shortteuraof this and all other
leaky modes makes them practically undetectable in Figus®e Further confirmation of
this interpretation of Figur8.8a is given by its power spectrum (Figusegb), which dis-
plays a single power peak whose frequency exactly matchéstkhe trapped symmetric
mode, while the power at the frequencies of leaky modes iBgilelg. As a conclusion,
the trapped fundamental symmetric mode is excited in thisisition and there is a good
agreement in the frequency and velocity profile with the redrmode results. If leaky
modes are excited, they cannot be detected because of éingirapid damping.

Next, we perturb the same system with an antisymmetri@irgndition, so now only
the antisymmetric normal modes are excited. The resultse$imulation, which again
show the propagation of perturbations in both directioms@lthex-axis, are displayed
in Figure 3.9. In this case the amplitude of the oscillations in both sldbsreases in
time because all antisymmetric modes are leaky for the eleeparation between slabs
(d/L = 0.5). In Figure3.1(a the velocity measured in the centre of the right shab,
d/2, is plotted. After the relaxation time, which again is oé thrder of 3¢, the signal
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Figure 3.8: (a) Measured velocity at the centre of the right slabs d/2, for the sym-
metric initial perturbation of Figur&.7. After a short transient the system oscillates in
a trapped mode, with period close to,g and the oscillatory amplitude remains un-
changed.(b) As expected, the periodogram of the signala) features a large power
peak at a period around-Z. There is an excellent agreement between the period of this
peak and the period of the normal mode obtained from EquéBidr) (dotted line). The
periodogram lacks other power peaks.

is an attenuated oscillation, as expected for leaky modeds-igure3.1(b we see the
periodogram of this signal, where the dashed line giveshberttical frequency of the
fundamental leaky antisymmetric mode (from Fig&é) and as in the previous case
coincides with the peak of the power spectrum. Neverthetesg the power peak is broad
due to the exponential attenuation of the signal. Regartliegpatial velocity profile, it is
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Figure 3.9: Time-evolution of the velocityy, for a distance between slabhbs- 0.5L and
an antisymmetric initial impulse with = —B = 1. The dashed areas show the location
of the two slabs.

not easy to compare the results of the simulation with thétleeonormal mode analysis,
but still Figures3.9c and3.9d bear some resemblance with FigBtéc. We conclude that
the considered antisymmetric disturbance mostly exditesundamental antisymmetric
leaky mode.

We next repeat this analysis forfidirent slab separations and obtain an estimation
of the real part of the frequency of the normal mode, from the power spectrum of
the simulations. With these data we have superimposed uré&gj6a, the value otug
calculated from the numerical simulations (see triangles diamonds) on top of the
theoretical dispersion diagram. The agreement is outstgrfdr all values ofd/L, so
we conclude that when the system is excited with a symmetrantisymmetric initial
condition, it later oscillates in a normal mode predictedhsytheory. As a corollary, the
system acquires a collective oscillation, given by a normatle and does not oscillate
with the modes of an individual slab.
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Figure 3.10: (a) Measured velocity at the centre of the right slab; d/2, for the anti-
symmetric initial perturbation of Figur&.9. After a short transient the system oscillates
in a leaky mode and so the perturbation attenuates expaiignfb) The periodogram of
the signal in(a) has a power peak whose period is in excellent agreement htlof the
normal mode obtained from EquatioB.{8 (dotted line). The periodogram lacks other
power peaks.

3.4.2 Arbitrary excitation

Now, the system is excited using an initial condition withparticular symmetry about
x = 0. The initial condition that we consider is a Gaussian pglksetred in the right
slab. This initial pulse is given by Equatio.22 with A = 1, B = 0 and, therefore,
can be decomposed into the sum of a symmetric and an antisyimmecitation. Since
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Equation 8.2) is linear, we expect that this kind of initial disturbanci give rise to a su-
perposition of the solutions arising from the correspogdiymmetric and antisymmetric
excitations. In this Section we consider the slab separatic=- 0.5L andd = 2L.

Firstly, we consider the cask = 0.5L (Figure 3.11), which implies that the initial
condition (Figure3.11a) is half the sum of the symmetric and antisymmetric initiah-
ditions previously seen. During the initial stages of thaperal evolution (Figure8.11b
and3.11c) v, has no definite symmetry with respectte= 0 because the solution is the
sum of the symmetric and antisymmetric modes. Let us releatithese modes are the
fundamental symmetric and the fundamental antisymmetha;h are trapped and leaky,
respectively. As a consequence, after some time (Figuril) the antisymmetric mode
amplitude is negligible in the vicinity of the slabs and tlystem oscillates in a symmet-
ric manner. In Figur&.12the time dependence of the velocity, is plotted in both slab
centres. Because of the superposition of the antisymmetikylmode and the symmetric
trapped mode both slabs oscillate wittifeient phases and amplitudes unt# 10rpe.
Then, according to Figur@ 10a, the antisymmetric perturbation extinguishes and the two
slabs oscillate in phase. The periodogram of the two cunvekis plot coincides with
that of Figure3.8b because the leaky mode is a very short duration signal aitsl son-
tribution to the periodogram is very small. In addition, &ig3.12 gives us a way of
recovering the signals in Figur&s8a and3.10a. By summing the signals in Figug12
the contribution of the antisymmetric modes vanishes bee#hey have the same ampli-
tude and opposite sign in the slab centres, so we are leftthétlsymmetric mode, i.e.
with Figure3.8a. In the same manner, thefférence of the signals in FiguB12leads
to Figure3.10a. We thus conclude that the initial condition excites themsetric and
antisymmetric modes, as expected, and that the systenfatssiin its collective modes
and not in the modes of a single slab.

Secondly, we perturb the system with the same initial camdibut now the distance
between the slab centresds= 2L. As can be appreciated in Figuses, this choice of the
slab separation results in the fundamental antisymmetodenbecoming trapped. The
evolution of the system is again presented fdfedlent times (Figur8.13 and, although
after some time the two slabs seem to move in phase (FRja@), in a later stage the
right slab has given all its energy to the left slab and so iBontess (Figureg.13). At an
even later time (Figur8.13d) the picture is just the opposite, with the left slab fixed an
the right slab in motion. Hence, the two slabs are continlyoesschanging energy and
the transition between the states depicted in Fig8r&% and3.13d takes place through
a situation similar to that in Figur& 13, where both slabs are oscillating. This behaviour
is repeated periodically. This phenomenon is more cleafyeasented in Figurd.14a,
where the velocityyy, is plotted at the centre of both slabs. Contrary to the belawn
the stationary regime for symmetric or antisymmetric aliperturbations (Figure3.8a
and 3.1(a), the oscillations do not attain a constant amplitude they instead display
a sinusoidal modulation. This is a well known collective g phenomenon, like, for
instance, that of two weakly coupled oscillators. It is duthe simultaneous excitation of
the symmetric and antisymmetric modes with alike frequenicThese frequencies are re-
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Figure 3.11: Time-evolution of, for d = 0.5L and a non-symmetric initial excitation
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with A = 1 andB = 0. The dashed areas show the location of the two slabs. Nete th
interchange of energy between the two slabs in the last aods.

covered from the power spectrum of the velocity at the cesftright slab (Figure3.14b),
which shows two power peaks with periods almost identicéhtse of the fundamental
antisymmetric mode (R48r,e) and the fundamental symmetric model(@6r,e). The
corresponding frequencies are(q838vae/L) and (2983vx¢/L), respectively. This match
between the frequency of the normal modes and the oscilgtiothe numerical simula-
tion is also evident in Figurd.6a. Finally, both peaks in the power spectrum have similar
height, which allows us to conclude that the two normal mduese been excited with
similar amplitude.

In fact, from Figure3.6 we see that there exists a range of slab separations for while
both trapped modes, i.e. the fundamental symmetric andyanitnetric, coexist and pos-
sess very close frequencies. In this range of separatidnshwoes fromd ~ 1.04L to
infinity, the beating appears when non-symmetric initiskalibances are applied. Here-
after we refer to this range dfas the band of beating and to the separation where the band
starts as the minimum distance of beatidg;{). Then, our analysis yieldd,, ~ 1.04L
for a/L = 0.05 andp;/pe = 3. In Section3.5.1, we shall study the beating properties for
other density ratios and will show that this band can exterel/en smaller separations.
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3.5 Analytical study of beating

For a slab separation in the beating band the system ossillata superposition of the
trapped symmetric and antisymmetric modes. Then, in thestay state, the system

behaves as
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Vy(X, 1) = asfs(X) COSWst + ¢g) + @y fa(X) COSat), (3.23)

where the subscripts anda refer to the symmetric and antisymmetric modes, respec-
tively. The spatial functionds(x) and f,(x) are the corresponding eigenfunctions, for
instance the velocity profiles of Figur8sih and3.5d (for d/L = 2). The parametergs
anda, are scaling factors that correspond to the amplitude of tnmal modes.

We define

Q, = “’a;“’i (3.24)
o = LY (3.25)
2
and

fi(x) = a@afa(X) + asfs(X), (3.26)
f2(}) = aafa(X) — asfs(X). (3.27)

After some algebra we find
V(X 1) = fi(X) cosQ, t + ¢p/2) coSQ_t — ¢o/2) (3.28)

— fo(X) SIN(@Q, t + ¢o/2)SINQ_t — ¢p/2).

We next consider

fi(X) cosQ, t + ¢o/2)cosQ_t — ¢o/2), (3.29)
—HL(X)sin@Q, t + ¢o/2)SINQ_t — ¢o/2), (3.30)

Vy1(X, t)
Vy2(X, 1)

so that Equation3.28 can be written as

V(X 1) = V1 (X, 1) + Vo (X, 1). (3.31)

We now focus on the situation that led to beating in Sec8e@h2 that is, a system
with d/L = 2 and the two trapped modes excited with identical amplitddeenf,(x) and
f2(x) (see Figure.15 come from the eigenfunctionig(x) and f,(x) of Figures3.5 and
3.5d and the mode amplitudes are identical, so we take a, = 1. In Figure3.15we
see thatf;(x) and f,(x) are peaked functions around the right and left slabs, ctispéy.
Therefore, the functiomy (X, t), for example, is also relevant in the neighbourhood of the
right slab and is negligible in the vicinity of the left on&¢topposite applies (X, t)).
This confers an intrinsic meaning to these functions thi#tpagh not directly measur-
able, reproduce some features of the numerical simulatlemrsexample, at; = 38.97 ¢
in the numerical simulation (Figui@13) the left slab reaches its maximum velocity and
so the main contribution to the analytical approximatioriha velocity (Equatior8.31)
comes throughv,,(X, ty), i.e. through-f,(x). For this reason, the spatial distribution of
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Figure 3.15: (a) and(b) The solid lines are a rescaled close-up view of Fig-dsd
and 3.13, respectively. The dashed lines correspond;{a&) and f,(x), respectively.
The analytical approximation then reproduces the velqmitfile obtained in the time-
dependent simulation when a substantial amount of energgrisentrated in a single
slab. The diference among both curves to the right and left of the slakssfrom the
system not having reached the stationary state. For greaes the diference becomes
smaller.

Vy In Figure 3.1 is very well reproduced by f(x), as can be seen in FiguBel.
Moreover, Figure3.15 shows a similar agreement for the left slaktpat 75.97e.

Given the spatial structure @f; andvy,, the velocity in the centre of the right and
left slabs obtained in the numerical simulations shouldibelar to v4,(x = d/2,t) and
Vyo(X = —=d/2,t), respectively, so we have plotted these two functionsttegewith their
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numerical counterparts (FiguB16). During the transient phase, the analytical approx-
imation difers from the time-dependent results, but once the staticstate is reached
(aroundt = 1271,¢) the fitting is very good. The small fierence between the two solu-
tions in the stationary phase is caused by the slight andditliference of the two normal
modes in the numerical simulation (see Fig8réb).
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Figure 3.16: (a) Superposition o¥, measured at the centre of the right slab from the time-
dependent numerical simulation (solid line) and the air@ytapproximation (dashed
line). (b) The same for the left slab.

The beating oscillatory curve is a sinusoidal function nplittd by a sinusoidal enve-
lope whose period (the beating period) is

2r 45

Tbeatin =5 =
¢} Q :
— U.)a - ws

(3.32)
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In addition, the period of oscillation of the system is

T:E: an

Q, watws

(3.33)

From the agreement found between the numerical simulatiadsthe behaviour of
Vi1 and vy, (see Figure3.16 it is clear that the beating period and oscillation period
calculated from these simulations is in perfect agreeméhtigquations 8.32 and @.33
respectively.

In addition, it is useful to define the number of oscillatiavithin a pulsation period,
or beating factorks),
_ Tbeating _ & _ Wat Wws

by =

T O ooy (3.34)
This factor is the number of peaks in a beating period. Snedktibhg factors indicate
strong beating behaviour. The beating factor is a good patemto assess the beating
phenomenon since itis easily measurable from the time ke results. In our example
of Figure 3.14, the number of peaks in a full beating period is approxihgaté; this
coincides with the theoretical beating factor given by et Expressiorgs = 71.5.

3.5.1 Parameter dependence of the beating

We investigate the beating properties of two identical shalith different separations
and density contrasts (the slabs width is held fixed and dgoyea/L = 0.05). In the
previous Section we have seen that the dispersion reldtawsaus to extract information
about the beating with the help of Equatios3Q), (3.33 and @.34). For this reason we
start plotting the real and imaginary parts of the frequeayunctions ofl for different
values ofp;/pe (see Figure3.17). In these plots we can appreciate that the minimum
distance of beating (i.e. the slab separation for which thmeldmental antisymmetric
mode transforms from leaky into trapped) decreases as timtgeatio increases. This
means that denser slabs can display beating for smalleradiEwes. The oscillatory period
obtained from Equatior3(33 is plotted in Figure3.18. For all the considered values of
0i/pe, the oscillatory period is more or less independent fronstale separation when this
guantity is larger than the length of the loops. NevertreglEs d < L (and for sdficiently
high values of the density contrast, like for examglg. = 8 or 10) the oscillatory period
decreases as the separation is reduced.

Another two parameters worth studying are the beating gefigaing and the beat-
ing factor,b¢, extracted from the dispersion relation data and Equafi®®i®) and 3.34).
These parameters are plotted in FiguBekdh and3.18&:, respectively. We see that the
beating period grows to infinity witd/L, which is the expected behaviour of two slabs
that tend to oscillate independently. On the other hand, eeetlsat for small slab sepa-
rationsby becomes rather small, implying that each beating periodacos only a few
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for which the fundamental antisymmetric mode transforrosifteaky into trapped.

oscillatory periods. In particular, we find that slabs witghhdensity contrast can show
strong beating for small distances in comparison with steiis small density contrasts.
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3.6 Conclusions

In this Chapter we have studied the transverse oscillatibasmgle and two slab struc-
tures. We have found a strong interaction between loopseitvib loops case. We have
investigated the main features of a simple two slabs cordtgur (without gravity and
curvature) and the results of this work can be summarisediiasvt:

1. We have analysed in detail the normal modes of the systeenhaik derived an-
alytical expressions for the dispersion relation and haved, in agreement with
the results oDiaz et al.(2005, that the symmetric mode is the only trapped mode
for any distance between the slabs. On the other hand, tisym@mmetric mode is
leaky for small slab separations, but there exists a widgeaaf slab separations
(larger than the critical distance) for which both trappeddes, i.e. the funda-
mental symmetric and antisymmetric, coexist and posseysclese frequencies.
Thus, trapped aridr leaky modes are excited according to the rdfib, but also
according to the shape of the initial perturbation. It isntexpected that initial
disturbances with odd parity with respect to the centre efdfstem excite anti-
symmetric modes, whereas even disturbances lead to thetxeiof symmetric
modes.

2. We have also studied the temporal evolution of symmedntisymmetric and ar-
bitrary excitations for a typical coronal loop widyL = 0.05 andp;/p. = 3 and
different slab separations. We have found that for symmettigrdsnces and after
a short transient all that remains is the undamped trappetenwaith energy con-
fined to both slabs. On the other hand, since there are noelagptisymmetric
modes for slab separations smaller tbas, an antisymmetric-like initial distur-
bance can only deposit energy in the leaky antisymmetricanoflhe excitation of
the fundamental antisymmetrical trapped mode is only pts$ord > dpipn.

3. An arbitrary excitation in the reginte> d.;, leads to the simultaneous excitation of
the symmetric and antisymmetric modes. Since their fregjesrare quite similar
the oscillations do not attain a constant amplitude and sh@wnusoidal modu-
lation. This is a well known collective beating phenomendtiok is completely
equivalent to the behaviour of two weakly coupled oscillatoThe frequency of
oscillation of the system s~ with an envelope frequency or beating frequency
=522, wherew, andws are the antisymmetric and symmetric normal mode frequen-
cies, respectively. The beating is the result of the cowotisuexchange of energy
between the two slabs. We have also shown that slabs withd@ghity contrast
can show strong beating for small distances in comparistim sl@bs with small
density contrasts.

It is important to remark that for moderate slab separatems$ any type of initial
excitation, the system acquires a collective motion and cha¢ oscillate with the modes
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of an individual slab. For this reason and specially in cat@arcades, formed by en-
sembles of loops, it seems much more appropriate to degbebescillations in terms of
collective motions instead of individual loop oscillat&anNevertheless, since our model
is too simple, it has no sense to perform a quantitative coisgawith the observations
of loop oscillations in coronal arcades. However, it is Wuarbticing that the most clear
example of such kind of oscillations (s@erwichte et al.2004 Sectionl.4) suggests that
initially some loops of the arcade oscillate in phase whillair times the motions are in
antiphase. This can be an indication of a beating phenomasarresult of the collective
oscillation of some of the loops. Unfortunately, it is nospible to extract more conclu-
sions since the amplitude of the oscillations is quickly gachand only a few periods are
observed. Additional observations of oscillations in ec@icarcades will be very useful.

One of the most significant improvements to the model is teictam two cylindrical
loops instead of Cartesian slabs. Since the eigenfunctidnantverse oscillations in
cylindrical tubes is much more confined than in slabs, theradtion between the tubes
will be in general smaller and the beating time will be muahgder. In addition, instead
of the two modes of the Cartesian slab (symmetric and antisstnic, the system of
cylindrical tubes will have four dierent modes of oscillation. Two of these modes will
be symmetric while the other two will be antisymmetric in theandy-directions. The
normal mode analysis and the temporal evolution of two idahtylindrical flux tubes
are the subject of the following Chapter.



Chapter 4

Two cylinder model*

In the previous Chapter we have studied transverse loodaismils using the slab model.
We have seen that loops interact strongly and their odciliatare &ected by the pres-
ence of another loop. The loops of the system are able tochege all their energy
periodically according to their separation and initial iextton as well. The interaction
between the loops takes place through the intermediate etiagd plasma and therefore
it depends on the geometry of the model. Since the individaalllations of a realistic
curved loop are very similar to those of a straight tube {geeDoorsselaere et aR004
Terradas et al2006, the cylindrical loop geometry provides a very good appr@tion
for comparing with the observations. In this Chapter we ekteur study to cylindrical
geometry and show how two loops interact and how the couptiagifests in the system
dynamics. This is the first investigation in which loop canglin cylindrical geometry is
considered.

The outline of this Chapter is as follows. In Sectibrl we describe the transverse
oscillations of a single cylindrical loop. In Sectidn2 the two loop model is presented.
In Section4.3 the normal modes of such a system are calculated and theefreigs
and spatial distribution of the eigenfunctions are studidte time-dependent problem is
considered in Sectiof.4, where the velocity and pressure field distribution are yse
for different incidence angles of an initial perturbation. In Sec4.5 the loop motions
are studied and the beating is analysed. Finally, in Sedtidthe results are summarised
and the main conclusions are drawn.

4.1 Cylindrical model of a single loop

In order to understand the basic characteristics of trareueop oscillations we first in-
troduce the individual oscillations of a cylindrical fluxo®, whose governing equations
are the zergp, ideal linear MHD equations for the magnetic pressure plestion and

1The novel results in this Section have been publishddiima et al.(2009

59
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velocity field (Equation®.29and2.30). In the zerog limit the slow waves are absent and
only the Alfvén and fast waves exist. In this Thesis we concentrate ireiterMfave oscil-
lations and in particular in the fast kink mode (howeverhibsld be noted that this mode
is highly Alfvénic, since the main restoring force is magnetic tensiorte@adompression
is very small; se€o00ssens et al2009 for detailed discussion). By solving Equations
(2.29 and Q.30 it is possible to find the normal modes of the individual Idspe, e.g.,
Spruit 1982 Edwin and Roberts1983 Cally, 1986. The model considered here is a
cylindrical loop with lengthL and radiusa (see Figuret.1). We assume the following
density profile

pelX.y) = { pe 11> 2. (a.1)

pi, ifr<a,

wherex, y are the Cartesian coordinates in the direction perpendital¢éhe cylinder
axis andr, defined byr = /X2 + 2, is the radial distance from the point= (x,y) to

the loop centre. Nowy; andp. are the internal (loop) and external (coronal) densities
respectively §i > pe). Along this Chapter, we use a density contiagp. = 10. The
tube and the environment are permeated by a uniform madreti@long thez-direction

(B = Boe,). The Alfven speedya = By/ /up, takes the valug,; inside the loop andie

in the surrounding coronaf; < Vae).

el

== e
¥:/

Figure 4.1: Sketch of the model, that consists of a straighhaer immersed in the
coronal medium. Both shaded planes represent the photesphieere the loop feet are
anchored. Hereafter the perturbed total pressure and tbeityefields are plotted in the
Xy-plane, shown as a white slice.
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4.1.1 Normal mode analysis

We are seeking the normal modes of the straight flux tube. Pbeogriate coordinate
system to describe the associated perturbations are timeliegal coordinatesr( ¢, 2),

in which the loop boundary is given by= a. From the governing Equation2.29 and
(2.30 we see that it is enough to solve Equati@r@ for the total pressure perturbation,
pr, and later to obtain the perturbed velociy, from Equation 2.30. In cylindrical
coordinates, the pressure perturbation can be written as

pr = R(r) ©(¢) Z(2) &, (4.2)

where we have assumed a harmonic time dependence with a&fregu. Introducing
these expressions in EquatichZ9 we obtain the following equations for the functions
R(r), ®(¢) andZ(2),

16 (6Ry ([, n?
== -—IrR = 4.
rar(rar)Jr(/l” r2) 0. (4.3)
2
667(12)+mz¢) = 0, (4.4)
0?7  (w?
e (V—Z—/lﬁ)z - o0, (4.5)
A

wherel, andm are two separation constants; the meaning of the subsonpkbe clear
below. The last two equations are easily solvable, yielding

() = €™ (4.6)
and
Zy(2) = sink; 2), 4.7)

wherem, p € Z andk, = pr/L is the longitudinal wave number. We have applied the
line-tying condition in Equation4.7), assuming a zero pressure perturbation at the loop
footpoints, i.e.pr(z= -L/2) = pr(z=L/2) = 0. From Equations4.5) and @.7) we find

the following relation for the radial wave numbgy,

wZ

2 2
A2 = v k2. (4.8)

Equation 4.3 is the well-known Bessel fferential equation of orden. The solution is
written as a combination of Bessel functions,

R(r) = Andm(Anr) + BmYm(Anr), (4.9
or in terms of Hankel functions

R(r) = CoH (A1) + DH P (201), (4.10)
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where the cofficientsA,, andB,, or C,, andD,, are functions ofi,,, k, andw.

In order to find the normal modes of the cylindrical loop of lig4.1, we apply the
boundary conditions (Equatidh45 at the interphase between the internal loop medium
and the external or coronal medium= a). These boundary conditions can be rewritten
as

[Prla = O. (4.11)
[Vil-a = O, (4.12)

wherey; is the radial component of the velocity in cylindrical comates. From Equation
(2.30 we find that the radial component of the velocity is
Il w
v, = — - 4.13
r pVi/ln pT ( )

wherep; = "g&(nﬂr”)’) is the derivative with respect to the argument. In additiee find the

azimuthal component of the velocity,
Mmw
pARVAT

Vg = (4.14)

Inside the loopr( < a), the radial functiorR(r) is
RI() = Andm (201) (4.15)

where we have consider®&}, = 0 because, is singular at = 0. In the coronal medium
(r > a) this function is
RO(r) = CuH P (19r) (4.16)

whereDy, = 0 becausé? represents an incoming wave and we assume that there is no
propagation of energy towards the cylinder. It is interestio note that this condition is

not assumed in case of two or more interacting cylinders (€@nh&pwhere the incoming
wave on a cylinder is the scattered waves of the other. Withakogns ¢.13, (4.14),
(4.19, (4.16 and the boundary conditions (Equaticghd1and4.12 the dispersion rela-

tion is obtained , v
H(0a)  HE (1)
AV In(a0a)  APHS (aPa)
By solving this dispersion relation we find the frequencietheftransverse normal modes
of oscillation of a magnetised cylinder. In general, sans can be of the so-called sur-
face or body type, although in the zegdimit only body waves are allowed (sé&swin
and Roberts1983. Two kinds of body waves exist, theppedandleakynormal modes,

similar to the slab eigenmodes of Secti®d. In the trapped modes the radial wave num-
ber (Equatior.8) is imaginary,

(4.17)

AP =i, fke-—, (4.18)
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wherew is real. Heraw < w¢e andwee = kVae is the external cut4b frequency defined in
Section3.1 Trapped modes are non-damped solutions of the eigenvabidem, their
amplitude being constant in time and their energy being nedfin the tube and its close
environment. Leaky modes are solutions with a complex wawvehber of the form

w?

AQ =
2
VAe

Kz, (4.19)

where the frequenay is a also complex number. Leaky modes radiate away theiggner
and are damped solutions with a decreasing amplitude in td®e, e.g.Spruit 1982
Edwin and Roberts1983 Cally, 1986 2003 and ChapteB).

With Equation 4.17) the trapped and leaky eigenmodes of a cylindrical flux tulee a
found. These normal modes are labelled by three intagersand p associated to their
radial, azimuthal and longitudinal wave structure respelt Solutions withn > 1 are
leaky with a rapid damping. According t@ally (1986 2003, the damping time is

r~ahe (4.20)

wherev, < Vae andk,a < 1 are assumed. In coronal loop conditions, this damping
time is of order of several seconds and so these modes caam#tbcted with present
day instruments. This is the reason why we do not considerl in this work. In ad-
dition, there is a leaky mode with = 1 called principal fundamental leaky mode with a
long damping time. However, this mode is veryhdult to excite after an initial distur-
bance and there is no evidence of its existence in time-akpersolutions (se€erradas
et al, 2007 Terradas2009. With respect to the longitudinal number, we consider 1
because the observations reveal that in many cases the oaxamplitudes of the oscil-
lations are in the loop apex as we have seen in Sedti®nrhe normal mode witim = 0

is the so-called sausage mode and in coronal loops it is ékya very rapid damping.
With the previous considerations, hereafter, we focus appted modes with = p=1
andm > 1. The mode withm = 1 is the so-calledink modeand there are evidences that
this mode is excited in coronal loop oscillations (see ®acti3). Other trapped modes
(m> 1) are the so-called fluting modes but there are no obsenatavidences of these
oscillations. It is possible to find an approximate anajtexpression for the frequency
of them < 1 trapped modes in the thin tube (TT) approximationrml$ 1 andk,a — O,
Equation 4.17) becomes after some algebra

L 2
©-_ r, (4.21)
Vi 1+ %

where we see that aih > 1 modes share their frequencies, that depend exclusivelyson
density contrasyi/pe. Equation 4.2) is the so-called kink frequency, usually denoted by
(O
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Figure 4.2: Normalised frequency of the trapped mod&sy,;, as a function of the loop
radius(a) and density contragb). The solid curves corresponds to the kink maale=(1)
and the dotted and dashed lines corresponds to the flutingsriod> 1). In (a) we have
considered a system wih = 1Qo. and in(b) the loop radius is fixed ta = 0.1L. The
asterisks mark the frequencies computed with Equatda®l) of the TT approximation
(k,a < 1).

In Figure4.2 the frequencies of the trapped normal modes (i.e. thosenwit 1)
computed by numerically solving EquatioA.17) are plotted as a function of the loop
radius (Figured.2a) and density contrast (Figude2b). From Figuret.2a we clearly see
that all the mode frequencies tend to the same valugdor 0 given by the TT frequency
approximation of Equatiord(21). For typical loop radii &/L < 0.1) the kink frequency
of Equation 4.21) is a good approximation (see Sectibrd). In addition, from Figure
4.2a we see that the fluting mode frequencies tend to the kinkifiecy asm — oo. In
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Figure4.2b the dependence of the normal mode frequencies with thetgeostrast is
shown. We see that they have a strong dependence for smadbval this parameter, but
reach a more or less constant value fdfisiently high values of the density contrast. This
asymptotic value is easily computed with Equatidr2(), giving wlL/vai = V2r ~ 4.44.

In the opposite limit4;i/pe — 1), all the frequencies tend to the TT value. pope. = 1
these frequencies are exactlyindicating that the loop oscillates with the external ofit-
frequency (cel/Vai = 7).
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Figure 4.3: Radial dependence of the normalised eigenfumt{a) magnetic pressure
perturbation,pr, (b) radial velocity componenty,, and(c) azimuthal velocity compo-
nent,v,, for thekink mode(solid curves) and then = 2, 3,4 fluting modegdotted and
dashed lines) computed with Equatiods?j, (4.13 and @.14) after solving the disper-
sion relation (Equatiod.17). The loop radius i®/L = 0.1 and the density contrast is

pilpe = 10.

With the frequencies of the normal modes it is possible to fivedr spatial structure
from Equations4.2), (4.13 and @.14). In Figure4.3the eigenfunctiongr(r), v;(r) and
v,(r) are plotted for th&ink modeand for thefluting modesvith m = 2, 3, 4. For the kink
mode, the velocity componentsandy, are uniform inside the tube. However, the fluting
modes are confined near the tube surface & = 0.1L). It is important to note from this
figure that only the kink mode has a non zero velocity in theetakis ( = 0). From
Figures4.3a and4.3b, we clearly see the continuity of the magnetic pressureigstion
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(a) m=71 mode (b) m=2 mode

(C) m=3 mode
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Figure 4.4: Transverse structure of the magnetic pressrtarpation (colour field) and
velocity field (arrow field) for the first four fast MHD normalades of a homogeneous
tubem = 1, 2, 3, 4. (a) Kink mode with azimuthal numben = 1, fluting modes with{b)
m=2,(c)m=3and,(d) m=4.

(pr) and the radial component of the velocity | at the loop surfacer (= a), such as
required by the boundary conditions (Equatiéhd5. However, from Figuret.3c we

see that the azimuthal component of the velooiy bas a jump at = a for all modes.
Outside the tube, the trapped mode signature is shown ametthebationgr, v, andv,
decrease with the distance from the loop centre. The flutiodeneigenfunctions decrease
more rapidly than those of the kink mode, indicating thatftirener are more confined.

In Figure4.4the two dimensional magnetic pressure perturbation aratirglfields are
plotted. Thekink mode(m = 1) produces a displacement of the whole tube. The spatial
structure of thefluting modegdm > 1) is more complex than the kink mode and such
modes just distort the loop surface but do not produce a sptatiement of the tube.
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4.2 Two identical cylindrical loops

The equilibrium configuration considered here consists §siem of two parallel, ho-
mogeneous straight cylinders of radaydengthL and separation between centdsee
Figure4.5). We assume the following equilibrium plasma density peofil
_ | pe, ifry>aandr, >a,

pe(X.y) = { o ifr<aorn<a (4.22)
wherex, y are the Cartesian coordinates andandr,, defined as? = (x + d/2)* + y?
andrs = (x — d/2)? + y?, are the distances from the point ) to the centres of the left
and right loops, respectively. The loop centres lie onxfaxis atx = d/2 for the right

z
2a 2a
Pi Pi
B
pe 77777 /y 77777 T 0
I
—
X
i
d

Figure 4.5: Sketch of the model, that consists of two sttasghnders immersed in the
coronal medium. Hereafter the total pressure and the \glfieids are plotted in the
xy-plane, shown as a white slice.

loop andx = —d/2 for the left loop. The configuration is symmetric with resp® the
yz-plane and the-axis is parallel to the axes of the cylinders. As in Sectdh the loops
and the environment are permeated by a uniform magneticdietd) thez-direction. The
line-tying dfect is also incorporated by settikg= /L.

4.3 Normal modes

The methods used for a single cylinder (&skvin and Roberts1983 cannot be applied
to the study of two tubes. One way to solve the problem is tosgea#étering theory; see
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for exampleBogdan and Zweibg[1985, Bogdan and Knoelkg1991), Bogdan and Fox
(199])) andKeppens et al(1994). Another way is to numerically solve the eigenvalue
problem given by the ideal MHD equations. We have followed #pproach and have
calculated the normal modes with the PDE2D coflewell 2005. We have concen-
trated in the trapped normal modes of the system. We havehisgdthdrical orthogonal
coordinates, defined by the transformation

bsinhv bsinu
_ L y=—— 7= 4.23
coshv — cosu y coshv — cosu % ( )
2
where 0< U < 21, —c0 < V < 00, —0 < Z < o0 andb = /() - a2 Theu = const
andv = const coordinate lines are shown in Figdr®é. The loop boundaries are the
coordinate liney = iarcsinh—“’zzjaz, where the positive and negative signs correspond
to the right and left tubes, respectively. We impose a teadpdependence of the form

Figure 4.6: Bicylindrical coordinateauv,z). The coordinate linesi = const and

v = const are plotted in an arbitrary plame= const. The thick circles show the tube
boundaries and coincide with two coordinate lines const. The separation between the
tubesisd = 6 a.

e and a spatial dependence along the tebéin Equations 2.20 and @.21) for the
velocity and magnetic perturbations. With the previousiaggions these equations can
be written in bicylindrical components as

» (cosu — coshv) 4B,

wVy = -VakB,+ivi E 0 (4.24)
WV = -2 kB, +iv2 e _bcosm) 66'\3/2 , (4.25)

wBy = —kBovy, (4.26)
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w B\/ = _kZBOVV 9 (4.27)
. Bo | . . ovy 0V
wB, = +i 0y sinu v, + sinhv \, + (cosu — coshv) u + ~ | (4.28)

These set of equations constitute the eigenvalue problatwii solve numerically with
the PDE2D code to find the normal modes of the two-cylindefigaration.

We find four collective fundamental trapped modes (see Eigu) where the velocity
field is more or less uniform in the interior of the loops andisey move basically as a
solid body, while the external velocity field has a more cartructure. The structure
of the velocity field inside the tube is similar to the kink @mgnmode velocity inside of a
isolated tube. We call these as kink-like modes. The fousargl field solutions have a
well defined symmetry with respect to tit@xis. In Figured.7a, we see that the velocity
field inside the tubes lies in thedirection and is symmetric with respect to thaxis.
We call this modeS,, whereS refers to the symmetry of the velocity field with respect
to they-axis and the subscriptrefers to the direction of the velocity inside the tube. The
same nomenclature is used for the other modes. In Figutethe velocity inside the
cylinders is mainly in thex-direction and is antisymmetric with respect to fhaxis, so
we call this modeA,. Similarly, in Figure4.7c the velocity lies in the/-direction and is
symmetric with respect to theaxis, while it is antisymmetric in Figur¢.7d. Hence, we
call these mode$§, and Ay, respectively. The pressure field of tAg andS, modes is
symmetric with respect to theaxis, while that of th&S, andA, modes is antisymmetric.

The frequencies of oscillation of these four modes as a iomaif the loop separa-
tion, d, are displayed in Figurd.8 For large separations between the tubes, the mode
frequencies tend to the kink mode of an individual loop (settedl line). On the other
hand, for smaller separations, they split in four branclssseiated to the four oscillatory
modes described before. The splittinfeet was noticed iDiaz et al.(2005 andLuna
et al. (2006 (see ChapteB) in a configuration of several slabs. The frequendijedence
between the modes increases when the interaction betwedadps becomes stronger,
i.e. when the distance between them smaller. When the loepsegay closed ~ 2a), the
frequencies of th&, andA, modes tend to the value = 3.33/7,;, which is similar to the
internal cut-df frequencywe = kVai = /7, (the diference is only around 6%). Here
7ai IS the Alfven transit time, defined as; = L/vai. On the other hand, in this limit, the
Sy andA, frequencies are quite large in comparison to the kink moeiguiency.

It is interesting to note that when both tubes move symnadtyién the x-direction,
i.e. in theS, mode, the fluid between them follows the loops motion (seer€ig.7a).
On the other hand, when the loops oscillate antisymmelyjaa¢. in the Ay mode, the
intermediate fluid is compressed and rarefied (see Figatg, producing a more forced
motion than that of the symmetric mode. This is the reasoth®8, (Ax) mode having
a smaller (larger) frequency than that of the individualdo&or the modes polarised in
they-direction the behaviour is somehow similar, although is tase the antisymmetric
mode (see Figuré.7d) has a lower frequency than the symmetric mode (see Figucg
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Figure 4.7: Total pressure perturbation (colour field) aabbeity field (arrows) of the
fast four collective normal modes (plotted in tkg-plane, see Figurd.5). The modes
are labelled aga) Sy, with the loops moving in phase in thedirection;(b) Ay, the tubes
move in thex-direction but in antiphas€c) S,, the tubes move in thedirection in phase;
and finally(d) Ay, the loops move in antiphase in tit@irection. Here, the loop radii are
a = 0.1L and the distance between centred is 6a.

In the Ay mode, one of the loops moves upwards the surrounding fluidtheather loop

moves downwards. This helps to push the second loop in thestthn and produces
the antisymmetric motion. The situation is the oppositetifi@S, mode, for which the

direction of motion of the surrounding fluid is opposite tatlof the other tube. This
explains why the frequency of th, solution is smaller than that of ti# mode.

4.4 Time-dependent analysis: numerical simulations

In Section4.3we have studied the normal modes of the two identical loopesysNev-
ertheless coronal loop oscillations are often flare-itetdaevents and the normal modes
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Figure 4.8: Frequencyy, as a function of the separation between cylinddrdpor a
density enhancemept/p. = 10 and loop radiug = 0.1L. The lower horizontal thick
dotted line is the internal cutfofrequencyw. = n/7ai. The thin dotted line is the kink
frequency @ = 4.12/7,;) of an individual loop. The calculated frequencies fromtihee-
dependent results in Sectid.1are also plotted as triangleS,), squaresAy), asterisks
(Sy) and diamondsAy).

of the system are probably not a complete picture of suchtgvéins more appropriate
to describe the evolution of the system after a perturbdtpisolving the initial value
problem.

To solve the initial value problem of Equation&.20 and @.21) and an initial per-
turbation in our system, we use the CLAWPACKe{eque 2002 code based on finite
volume methods. Since we consider a finite domain, we havieiaea the &ect of
reflections at the domain boundaries on the system dynartosur simulations flow-
through boundary conditions are imposed (seeeque 2002. The system dynamics for
suficiently large domain sizes are studied and it is concludatttie reflections do not
produce appreciablefects. The domain size id.3 3L and the number of grid-points is
2100x 2100.

The governing Equation2(20 and @.21) in Cartesian coordinates are

N Vaf = 0B
E — EO (kZ BX aX ) 9 (4'29)
3Vy VZA 5 8Bz
—2 = AlkB,- , 4.30
at Bo(sz 6y) (4.30)
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oB

atx = — Bk vy, (4.31)
e

a—?y = —Bok, vy, (4.32)
oB, ovy  OVy

E = o(ax + 8y , (433)

where the line-tying fect is incorporated by setting the longitudinal wave nuniger
HereB, = —iB, andB, = —iB, are purely imaginary variables. This fact indicates that th
x- andy-components of the magnetic field have a phase lagng® with respect to the
temporal evolution of the other variables. The initial pépation is a planar pulse in the
velocity field of the form

Vo = K d-KToaF, (4.34)

i.e. a Gaussian profile (of width = 0.2L centred ar, = (d/2,0,0)) and direction of
propagation alon¢ = — (cose, Sina, 0), a being the angle between the wave vector and
the x-axis. HereK also defines the initial polarisation of which is perpendicular to the
planar pulse. The initial value of the magnetic field peratidn is zero and thus the same
applies to the total pressure perturbation.

In Figures4.9, 4.10and 4.11 three examples of the time evolution are shown for
a = 90°,0° and 45, respectively, and for a fixed distance between lodps 6a, identical
to the one used in Figurk7. These three cases illustrate the time evolution of theegyst
after a perturbation, which consists of two regimes: thedient and the stationary phases.
The stationary phase is characterised by oscillationsérooseveral fundamental trapped
normal modes (see Sectidi3). On the other hand, in the transient phase there are leaky
modes and internal reflections and refractions.

In Figure4.9(seeMovie 1in the accompanying CD) the time evolution for the: 90°
initial disturbance is shown, for which the pulse front l@eng thex-axis and excites
the vy, component. The loops are perturbed at the same time (as cappbeciated in
Figure 4.%) and as a consequence they oscillate in phase. In Fg@pethe system
is in the transient phase, characterised by internal redlectrelated with the emission
of leaky modes. The external medium has not relaxed yet.ll#itle system reaches
the stationary phase (see Figu#eSc and4.9d) and oscillates with th8, trapped mode
(compare the velocity field and the pressure distributicin wWiose of Figure.7c).

In Figure4.10 (and Movie 2 in the accompanying CD), the time evolution for the
a = 0° initial disturbance is shown. Now the pulse is centred orritji® loop (see Figure
4.1(n) and excites the, component. In Figurd.1(, the pulse reaches the left tube and
passes through it, the system still being in the transieas@h On the other hand, in
Figures4.1Qc and4.1(d the system oscillates in the stationary phase. It is istgrg to
note that this particular initial disturbance does not &xthe left loop; neither at= 0
nor during the transient phase. Nevertheless, the oseilamplitude in the left loop
grows with time in the stationary phase, while the amplitud#e right loop decreases
in the time interval shown in Figures1(c and4.10d (see alsd/lovie 2). Then, itis clear
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Figure 4.9: Time-evolution of the velocity field (arrows)otal pressure field (coloured
contours) for a separation between lodps 6a and an initial pulse with an angée= 90°.
The two circles mark the positions of the loopstat 0. The panels show filerent
evolution times. In(a) the initial condition over the velocity field is representebh
(b) the velocity and pressure field shortly after the initiatdibance, that is, during the
transient phase, are shown. Both tubes are excited at thetsaedn panelgc) and(d)
the system oscillates in the stationary phase wittfSh@ormal mode. This time evolution
is also available as an mpeg animatiorMnovie 1in the accompanying CD.

that the left tube acquires its movement through the intemaaevith the right loop, i.e.

by a transfer of energy from the right loop to the left loop.isTprocess is reversed and
repeated periodically: once the left loop has gained most@fnergy retained by the
loops system, so that the right loop is almost at rest, thelbke starts giving away its
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Figure 4.10: Same as Figu#e9 for an initial pulse with an angle = 0°. Here the
stationary phase is governed by a superposition ofShand A, normal modes. The
whole time evolution is presented fiovie 2 in the accompanying CD.

energy to the right cylinder and so on. This is simply a beafihenomenon, that can
be explained in terms of the normal modes excited in this mioalesimulation. In fact,
the initial disturbance excites tt® and A, modes with the same amplitude and for this
reason the excitation is initially maximum on the right tudved zero on the left tube. A
more detailed discussion about this issue is given in Sedtid

Finally, we discuss the results for an excitation with= 45°. This simulation is
the most complex and general of all (ddevie 3in the accompanying CD). As we can
see in Figured.11a now both components of the velocity are excited. In Figldelb
the initial pulse reaches the left tube and passes throudiuitonly leaky modes are
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Figure 4.11: Same as Figude9 for an initial pulse with an angle = 45°. Here the
stationary phase is governed by a superposition oSthé,, Sy and A, normal modes.
The whole time evolution is presented ovie 3 in the accompanying CDViovie 4

contains the time evolution for much larger times.

excited. In Figuregl.11c and4.11d the system oscillates in the stationary phase, which
is a combination of the four mode;, Ay, Sy andA,. As in the previous case, there is
beating but now it is present in both tkeandy-velocity components. Like in the previous
simulation, the left loop is almost at rest until the statipnphase (see also dotted curves
in Figures4.12a and4.1x) despite that in this simulation the pulse directly hits éft
loop without the obstacle of the right loop. In Sectib® details about the behaviour of
the system are given.

Once we know the general features of the excitation of the apWimders we can
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perform a parametric study of théfect of the distance between the loops and also the
angle of excitation on the loops motion.

4.4.1 Hfect of the distance between loops

We generate an initial disturbance with an angle of #5 different loop separationd,

and measure the velocity in the loops as a function of timenfhis information we can
extract the frequencies of oscillation. As we have seeicesine velocity field inside the
loops is more or less uniform (see Figur®), it is enough to measure the velocity at the
centre of the loops to describe their global motion. Theaeder choosing the initial
disturbance withr = 45° is that it excites the four normal modes, so that with a single
simulation we can measure their frequencies.

In Figures4.12a and4.1Z the x- andy-components of the velocity at the centre of
each loop are plotted. In these figures we see that, afteydvief transient characterised
by short-period oscillations, the system oscillates vingum of normal modes. The fre-
guencies of the modes are quite similar and it f&dilt to resolve them. Although the
frequencies of these modes are present in the time-deptsideal, this information can-
not be easily extracted from the data because in these sionddhe maximum evolution
time (which is determined by the numerical dampingJis: 67,;. With this maximum
time we have a frequency resolutiofnT2= 0.3/74;, but, as evidenced by Figu#e8, the
difference in frequency between the eigenmodes is typicakythes 01/7, SO we have
not enough frequency resolution. For this reason we extinadrequencies with another
method, taking into account that the velocity field is theiadd of normal modes with
symmetric and antisymmetric spatial functions with respethey-axis. We measure the
velocity in the loop centrex(= —-d/2,y = 0) and & = d/2,y = 0), i.e. two symmetric
points with respect ta = 0. Then, the sum of both measured velocities in these paints i
twice the part of velocity components that are symmetritiwéispect toc = 0. Dividing
this velocity by two we obtain the, component of th&, mode and th&, component of
theS, mode in these points. On the other hand, the subtractioreohtasured velocities
is twice the antisymmetric velocity components. Similadividing this velocity by two
we obtain thevs, component of thé\, mode and they, component of thél, mode. The
obtained mode velocities are plotted in Figufe$2b and4.12d. Next, we compute the
periodogram of these four signals (plotted in Figufes3a and4.13J), from which the
frequencies of the collective modes are determined. Thiegmyram is preferred over
the FFT as it allows to more precisely identify these freques The above procedure
has been applied to numerical simulations fdfedent separations between loops and the
frequencies of the four fundamental eigenmodes have beamel. The calculated fre-
guencies have been superimposed to the normal mode valbggine4.8using symbols.

A good agreement between the normal mode calculations anihtke-dependent results
can be appreciated.
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Figure 4.12: (a) x-component andc) y-component of the velocity at the centre of the
right (solid line) and left (dotted line) loops for the nurivad simulation of Figuret.11
(i.e. with an initial incidence angle = 45°). With the method explained in Sectidi.1
the normal mode velocities are extracted and plottgt)rior the Sy (solid line) and the
Ay (three-dot-dashed line) modes andf) for the S, (dashed line) and, (dot-dashed
line) modes.

4.4.2 Hfect of the incidence angle

We next study the evolution of the system foffeient incidence angles, of the planar
pulse and a fixed distance between loaps:-(6a). Some examples of the time evolution
have already been discussed and shown in Figli@s4.10and4.11 The amplitude
of the excited normal modes depends on the widththe incidence angley and the
position,rq, of the initial disturbance, but here we only consider thpestelence on the
incidence angle. The angles considered in our simulatiangsfvoma = 0° to 90 with
steps of 8. Using the method of Sectigh4.1it is also possible to extract the amplitude of
each normal mode, given by the amplitude of the sinusoidallagons in the stationary
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Figure 4.13: (a) and(b) corresponding power spectra of Figured2b and4.12, re-
spectively, plotted with the same line styles. The posibbpower maxima allow us to
determine the frequency of the normal modes from the nuesimulation.

phase. Two examples of the extraction method are plottedguwr&€s4.12and4.13 for
a = 45 and Figuregt.14and4.15 for a = 70°.

In Figure4.16the amplitude of the four collective modes is plotted as afion of
the incidence angle. The behaviour of the amplitude can\dedi in two parts, namely
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Figure 4.14: Same as Figudel2for an initial incidence angle = 70°.

for 0° < @ < 50° and for 50 < a < 90C°. In the first interval the amplitudes of tt8 and

A, modes are more or less equal (see Figufgb and4.124 as an example) and can be
approximated by @ cose. The same occurs for the amplitudes of 8eand A, modes,
which vary roughly as 29 sina. In the second interval these amplitudes can be quite
different (see Figures$.14 and4.14d as an example) and ti8, A, and A, amplitudes
go to zero atr = 90°. On the other hand, th8, amplitude increases and reaches its
maximum value atr = 90°. Furthermore, forr = 0° the amplitudes of th&, and A,
modes have a maximum around@vhile the amplitudes o, and A, modes are zero.
This is because far = 0° the initial disturbance drives thecomponent of the velocity
and so only th&, andA, modes are excited. Similarly, for the perturbation witk 90°
only theS, and Ay modes can be excited, although the shape of our initial pgeEtion
prevents thé\, mode from being driven and so t&g mode reaches the largest amplitude
of all modes. On the other hand, the excitation of the antmgitnic modes requires the
initial disturbance to hit the right and left loops atfdrent times. For this reason, the
amplitudes of these modes decrease within fact, whena = 90 this time diference
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Figure 4.15: Same as Figufel3for (a) and(b) the corresponding power spectra of
Figures4.14 and4.14d, respectively, plotted with the same line styles.

is zero since both loops are excited at the same time and tpétade of theA, and

A, modes vanishes. Finally, it is interesting to note thatofor 45° the four modes are
excited with almost the same amplitude.
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Figure 4.16: Amplitudes of the four normal modes as a fumctibthe incidence angle
a. The separation between loopglis- 6a.

4.5 Study of the loop motions: beating

As we have shown in the previous Section, loop motions carebg complex. This is
even more clear itovie 4, in which the time-evolution for a simulation with identica
parameters to those used in Figurd 1l but for much larger times is represented. In
Section4.4 we mentioned that the initial disturbance excites the righp but does not
perturb the left loop. After a short time the left tube stémtescillate due to the interaction
with the right one. At this stage, the right loop oscillateishvthe velocity polarisation
of the initial pulse, whereas the left tube oscillates in @ection perpendicular to that
of the initial disturbance. The reason for the complexityhe loop motions is that their
oscillations are a superposition of four normal modes wiffecent velocity polarisations,
parities and frequencies.

We next analyse this case in detail. Thieandy-components of the velocity at the
centre of the loops are represented in FigutdSa and4.17, respectively. There is a
clear beating, characterised by the periodic interchahgeex- andy-components of the
velocity between the loops. The two velocity componentsnaoelulated in such a way
thatv, reaches its maximum value in the left tube and becomes zdheirnght tube at
the same time (arountd~ 40r,;). This process is reversedtat 80r, and is repeated
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Figure 4.17: Temporal variation of the velocity componefasv, and (b) v, at the
centre of the right loop (solid line) and left loop (dashew)i. These results correspond
to the simulation shown in Figuré.11 and illustrate the beating of the pair of loops.
Damping caused by numerical dissipation causes a slightdse of the amplitude during
the numerical simulation. The time-evolution is also aalié as an mpeg animation in
Movie 4in the accompanying CD.

periodically.

The loop motions can be studied theoretically and the falignanalysis is a two
dimensional generalisation of SectiBrb (seeLuna et al, 2009. In the stationary phase,
during which the system oscillates in the normal mo8gsA,, Sy andA, the velocity
field components inside the loops are

VY t) = CR(xy)cos(wit + ¢7) + Cr(x. ) cos(wit + ¢%),  (4.35)
wxy.t) = CJ(x.y)cos(wjt + ¢}) + CH(x.y) cos(wit + ¢). (4.36)
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The S and A superscripts refer to the symmetric and antisymmetric moaspectively.
The functionsCS, C%, C§ andC} represent the spatial distribution of the four normal
modes (see Figuré.7) and their amplitude accounts for the energy deposited &yntih
tial disturbance in each of them. The normal mode frequsraie represented by their
frequenciesqw, while ¢ are their initial phases.

Let us turn our attention to the results in Figdré2 In the loos centres the symmetric
and antisymmetric modes have a very similar amplitude (e FRigure4.17 for a =
45°), which means that$(d/2,0) = C2(d/2,0). Then, taking into account the parity of
C3 andCZ2 aboutx = 0, we haveC$(—d/2, 0) = —C2(-d/2, 0). Inserting these expressions
into Equations4.35 and @.36) evaluated at the loop centres we obtain

A_ S A, .S
Viight(t) = [CXCOS(% t) cos(w";wx t), (4.37)
Q)A_(US (UA+(,()S
C, cos| ~——~ t|cos| 2—2t||,
R L
A_ S A, S
Ver(t) = —[cxsin(‘*’x—z“’x t)sin(% t), (4.38)
wh - w3 wh + WS
Cysin( Y 5 Y t)sin(—y 5 Y t).

whereviign: andvies; are the velocity at the centre of the right and left loop, eesipely.
We have define€, = 2C3(d/2,0) andC, = 2C3(d/2,0) and have assumeg = ¢} =
¢§‘ = qb{,* = 0 because the initial disturbance is over the right loop. Béating curves
shown in Figuret.17are accurately described by these equations.

These formulae contain products of two harmonic functidieen, the temporal evo-
lution during the stationary phase is governed by four gisiidhe two oscillatory periods,

4r
=——" 4.39
X (,()Q‘ + w§ b} ( )
4
Y= AL S (4.40)
Wy + Wy
giving the mean periods of the time signal and two beatingpsr
4r
Tox = : (4.41)
TR
47
Toy = - (4.42)

giving the periods of the envelope of the time signal. To ppbése expressions to the
numerical simulation of Figuré.12we insert the values @b3, w}, wj andw ford = 6a
into Equations4.39—(4.42. Then we obtaiy = 1.52r,;, Ty = 1.5274;, Tpx = 1599674;
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andTy,, = 47988r,. The two oscillating periods are equal because the frequeistri-
bution is approximately symmetric around the central vdthe kink frequency of an
individual loop) for stficiently large distances (see Figuts). The two beating periods
derived from the numerical simulations match very well theaslues because Figutel7
giveSTbX/4 ~ 407 p andTby/4 ~ 120r,;.

The n/2 phase dference betweem;gy: andvies; (see Figurest.12a and4.1Xx) is
due to the fact that our system of two loops basically behasges pair of driven-forced
oscillators. Considering, the left loop has initially ar/2 delay with respect to the right
loop because it behaves as a driven oscillator and the leflikena forced oscillator. After
half a beating periodly,/2, the roles are exchanged and the left loop becomes the drive
and right one the forced oscillator. Tlgecomponents o¥ig,: andvie; exhibit the same
behaviour (see Figure 1X). This was already shown thyina et al. (2006 in the case of
two slabs (see Sectidh4.2).

As we have seen, the polarisation of the oscillations chamggh time (seéviovie 4
for an example). In the beating range, we can see this froredbations by calculating
the scalar product of the velocity at the loop centres,

Vright * Viert = —C2 sin [2 (a/j - a)f) t] sin[z (a/j + wf) t]

—C§ sin[2 (w? - w}?) t] sin [2 (w? + a)i) t]. (4.43)
This product gives the relative polarisation of the loopiltettons and we see that it is
zero att = 0 and approximately zero for ficiently small times. Thus, the left loop does
not oscillate initially and it starts to oscillate perpernudarly to the right loop during the
first oscillations. This feature is shown in Figutdl1and Movies3 and4.

Similar beating features are recovered for incidence angflehe initial disturbance
in the range 0 < a < 50 (what we call the beating range). The cause of this behaviour
is explained by Figurd.16 for these values af a similar amount of energy is deposited
in the Sy, and A, modes, so the beating of thig component is possible. Obviously, an
analogous argument applieswp This is not the case for 830 @ < 90° for which the
symmetric and antisymmetric modes receiv@aiient amounts of energy from the initial
excitation and then their relative amplitude isfelient (see Figuréd.14for an example).
Simulations for anglea > 50° do not clearly exhibit beating and the trajectories of the
loops are much more complex than those in the beating range.

4.6 Discussion and conclusions

In this Chapter, we have investigated the transverse asaiiof a system of two coronal
loops. We have considered the zgodeal MHD equations and have studied both the
normal modes of this configuration and the time-dependefilem. The results of this
work can be summarised as follows:
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1. The system has four fundamental normal modes, somehdlasiothe kink mode
of a single cylinder (see Sectighl). These modes are collective, i.e. the system
oscillates with a unique frequency,fidirent for each mode. When arranged in
increasing frequency, the modes &g A, Sy andA,, whereS(A) stands for sym-
metric (antisymmetric) velocity oscillations with respéx the plane in the middle
of the two loops andk (y) stands for the polarisation of motions. These modes
produce transverse motions of the tubes, so they are Kiekatiodes.

2. We have studied the eigenfrequencies as a function okibaration of loops. For
large distances between cylinders, they behave as two endept loops, i.e. the
frequency tends to the individual kink mode frequency. Whw distance de-
creases the frequency splits in four branches, two of wharhespond to thé&,
andA, modes and are below the frequency of the individual tube badther two
are related to th&, andA, modes and lie above the kink frequency of a single tube.

3. For small distances between the loops, the frequencyeotrand A, modes is
quite similar and tends to the internal cuf-requency. This is dferent to the
behaviour in a configuration of two slabs in which, for smadtances between the
slabs, the system behaves as an individual loop of doublthsge Sectio.3).
On the other hand, for the two cylinders the frequency is namhller than that of
a loop with double radius.

4. We have also studied the temporal evolution of the systiéen an initial planar
pulse. We have shown that, depending on the incidence atfglesystem oscil-
lates with a combination of several normal modes. The fregies of oscillation
calculated from the numerical simulations agree very wéthwthe normal mode
eigenfrequencies.

5. In the beating range {& a < 50°), the system beats in the andy-components
of the velocity and the left and right loops ar¢2 out of phase for each velocity
component. They behave as a pair of driven-forced osaiiatath one loop giving
energy to the other and forcing its transverse oscillatidine role of the two loops
is interchanged every half beating period. On the other h&dperturbations
with @ > 50° the loop motions are much more complex than those in therigeati
range. The phase lag cannot be clearly appreciated andrigbgrdepends on the
incidence angle of the initial pulse.

From this work, we conclude that a loop system can show aatée behaviour,
its fundamental normal modes being quitéelient from those of the kink mode of a
single loop. These collective normal modes are not a cortibmaf individual loop
modes. This suggests that the observed oscillations exporAschwanden et a(1999
2002; Schrijver et al.(2002; Verwichte et al.(2004 are in fact caused by one or a
superposition of some collective modes. Moreover, thgpaaBe movements reported by
Nakariakov et al(1999 can be easily explained using our model. The same applies to
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the bounce movement of loops D and E studiedenwichte et al(2004). These motions
can be interpreted by assuming that there is beating betthecloops produced by the
simultaneous excitation of the fundameraland A, modes.

It should be noted that the observations indicate a verydrdamping of transverse
oscillations, such that in a few periods the amplitude ofllagion of the loops is almost
zero. This fast attenuation may hide the beating producethéysimultaneous excita-
tion of several normal modes of the system. However, in sdtnat®ns, for example,
for small loop separations and high density contrast lothpspeating periods decrease.
Then, under such conditions the beating could be detedtatiie observation interval. In
any case, the beating is just one particular collective iehaand there is always inter-
action between the individual loops in short time scalegi¢aily of the order of 8/Vae).
The consequences of this interaction are the collectivenabmodes of the system. The
presence of the normal modes could be also clear from a fneguemnalysis. Unfortu-
nately, due to the temporal resolution, these observatlon®t allow us to perform such
analysis, but the frequency extraction method derived icti®@e4.4.1is suitable to be
applied to the observations.

In this Chapter, we have studied two loops with exactly theesdensity and radii,
and the next step is to analyse the behaviour of a system ajerlaumber of loops with
different properties. This study can also be extended to umaaershe possiblefiect of
the internal structure (multistranded models and smaihdlfactors) on the oscillating
loops by considering a set of very thin tubes witfelient densities and radii. These are
the topics of the following two Chapters.



Chapter 5

Two and three non-identical loop model.
T-matrix theory 1

Following the previous Chapters it is necessary to incrdaseamplexity of the systems
of loops that we investigate. In this Chapter we expand theystd the collective nor-
mal modes from two identical cylindrical flux tubes to an &ty system of loops or
strands with dierent physical and geometrical properties by using theesaag theory.
The scattering theory, or its matricial formulation callBdnatrix theory (see, e.gWa-
terman and Truell1961;, Waterman 1969 Ramm 1989, was first applied to magnetic
tubes byBogdan and Zweibgl1985. These authors studied thffext of inhomogeneous
magnetic fields in sunspots on solamodes. The model consists in an infinite non-
magnetised medium filled with an infinite number of identizagnetic fibrils distributed
randomly. They found that the frequency is shifted with ezspo the homogeneous case.
Later, a similar study was made Bypgdan and Zweibd[1987) for an infinite half-space
and inBogdan(1987) for a slab filled with magnetic fibrils and the reflection anahts-
mission of an acoustic plane-wave was studied in the haéesnterphase and the slab,
respectively. IrBogdan and Cattan€@989 the frequency shifts and velocity eigenfunc-
tions were calculated for a cylindrical cavity randomlyedl with distributions of up to
100 fibrils. The authors computed the frequency shifts bggithe perturbation theory.
Bogdan and Fox199]) investigated the interaction of an acoustic plane-wavh wpair
of identical uniformly magnetised flux tubes. The authonsnid that the scattered field
differs significantly from that of only one tube. Keppens et a1994) the scattering and
absorption of sound waves by bundles of magnetic flux tulbethe so-called spaghetti
sunspot model was studied. The individual fibrils within thendle have thin transition
nonuniform layers. They found that the composite sunspebrds much more wave
energy than its monolithic counterpart. In all these paperon-magnetised external
medium was considered.

In this Chapter we apply th€-matrix theory to a magnetic tube system with an ex-

1The novel results in this Section have been publishddiima et al.(2009

87



88 CHAPTER 5. TWO AND THREE NON-IDENTICAL LOOP MODEL

ternal magnetised medium in order to extend previous wark®tonal loop conditions.
Our model consists of an ensemble of parallel cylindershaut gravity and curvature.
The individual flux tubes have uniform transverse strugtoé the nonuniform transition
layers ofkKeppens et a1994) are not considered. We assume a uniform magnetic field in
the loop and in the external or coronal media. This assumpidiows the existence of fast
MHD waves in the internal and the external medium also. Ttienindividual flux tubes
produce excitations of the other loops by means of fast waMas stationary situation is
governed by one or more fast collective normal modes. THneatrix method allows us to
explicitly compute the eigenvalues and eigenfunctioneté collective normal modes
of the model.

The Chapter is organised as follows. In Sectohthe loop ensemble model and the
equations for its dynamics are presented. In Sed&i@nve briefly describe th& -matrix
theory and apply it to our model. With this method the exagéefrequencies and eigen-
modes of two non-identical loops are investigated. The dégece of the interaction
with the relative density and radii of the loops is studie®eéttion5.3. The study of three
identical aligned, equispaced loops is presented in Sebt® In the same Section the
interaction between three non-identical loops is considerinally, in Sectiorb.5 the
results are summarised and the main conclusions are drawn.

5.1 Theoretical model

The equilibrium configuration used to model the loop set iystesn of N cylindrical,
parallel homogeneous flux tubes, with thaxis pointing in the direction of the loop axes.
All loops have the same length, and each individual loop, labellgdis characterised by
the position of its centre in they-plane,r; = Xjex +Y;&, its radiusa;, and its densityp;.
The density of the coronal environmenjis As in Chapte#, the tubes and the external
medium are permeated by a uniform magnetic field alongzttieection Bg = Bpe,).
The Alfvén speedya = Bo/ y/up, takes the value,; inside thej-th loop andvae in the
surrounding coronavhj < Vae).

Linear perturbations about this equilibrium for a perfeatbnducting fluid can be
readily described using the ideal MHD equations of Chagtern particular we use
Equation 2.29 to describe the magnetic pressure perturbatippsdefined by Equation
(2.25. The line-tying &ect is incorporated by setting = /L, and we concentrate on
the fundamental mode, as we have seen in Sedtian\We only consider problems for
which the time dependence is a simple harmonic oscillatibh frequencyw. Then, the
magnetic pressure perturbation can be written in cylirmdigoordinates as

pr = ey (r,g), (5.1)

wherey(r, ¢) is a function that includes the dependence andy. Inserting this expres-
sion in EquationZ.29, we obtain the scalar Helmholtz equation

Vig+KEy =0, (5.2)
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wherek, is
2 2\ 2
k2 — w” = kZVA

L

(5.3)

2
VA

Hereafter, theL symbol is dropped for the sake of simplicity.

5.2 T-matrix theory: Normal modes

The scattering theory, or its matricial formulation call€eématrix theory, provides an
scheme to find analytically the normal modes of a system dfeseas in which waves
are described by a Helmholtz equation ($&amm 1989 Waterman 1969. We fulfil
the T-matrix theory requirements because our ensembld tdops can be considered
a collection of scatterers and the perturbed magnetic press described by Equation
(5.2.

The T-matrix scheme states that theh flux tube generates an outgoing scattered
wave, L., in a field positionr (in the two-dimensionaky-plane) that adds to the waves
scattered from the other loops to produce the following métreal field Bogdan and
Cattanep1989,

N
w(r) = ) wldr —ry). (5.4)
j

The scattered wave by theth loop is produced as a response of an exciting wave pro-
duced by the external field minus the contribution of the no@ed loop,

whr = i) = 9(r) - yldr —y). (5.5)

With Equations %.4) and 6.5) the exciting fields.,, may be written entirely in terms of
the scattered field, resulting in the self-consistency fejdation Bogdan and Cattangeo
1989. This system of equations may then be closed by noting tietekciting and
scattered fields are further related by linear operaf®ts that describe the scattering
properties of the individual flux tube8¢gdan and Cattaned989 Waterman 1969
Ramm 1989

lr —15) = Tyl = 1)) (5.6)
The key point is that the linear operatdfs depend exclusively on the individual loop

and external medium properties and can be directly comghtedgh the boundary con-
ditions at the loop-external medium interphase as we wallzsow.

The external field to thg-th loop can be decomposed with Equati&bf as an ex-
citation field on this loop and a scattered field by this loope Excitation field has no
sources in thg-th loop, i.e. it is the scattered field of the other loops,tsman be written
as

(59

VLR ep) = D ahJn(keRy)e™, (5.7)

M=—00
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wherea}, are the expansion cficients of ordem, that depend on thk, wave number
and the frequency andR; andg; are the local polar coordinates centred gtdefined
throughR; = |r —r | and cosp; = e~ (r —r;)/Ir —rj|. HereJy is the Bessel function of the
first kind and ordem andk. is the wave number in the external medium calculated using
Equation B.3). With Equations%.6) and 6.7), we find the scattered field in terms of an
outgoing wave with sources gf,

VLR, ¢) = D ThhHY(keR))eE™), (5.8)

whereT;nare the matrix diagonal elements of the operatgorojected on the local basis,
called T-matrix. The non-diagonal elements of this matrix are zemoaixisymmetric
tubes Bogdan and Zweibell985. The functionsH{" are the Hankel functions of the
first kind. With Equationsg.4), (5.9), (5.7) and 6.8), we find the following expression
for the total field

() = > ah[In(keRy) + ThHD(kRy) | €™, (5.9)
m=-co

in which the external field tg-th loop is decomposed as an excitation on this loop and a
scattered field by this loopNaterman 1969. In this work, we consider trapped modes,
for which ke is imaginary and the excitation field and the scattered fiatdle expanded
in terms of the modified Bessel functions of the first kingl) (and second kindK,),
respectively. However, this formalism also allows us to timel leaky modes. In order to
keep the generality of the analysis, the notation basedeBdssel and Hankel functions
is preserved.

Following the development dogdan and Cattangd989), a linear algebraic system
of equations for the complex cfieientsa;, may then be obtained. We first substitute
Equation b.4) in Equation b.5) in order to obtain the self-consistency requirement

N
Yhir = 1)) = D uidr =), (5.10)

i%]
Next the exciting and scattered fields are replaced by tlesisbexpansions, Equations
(5.7) and 6.8), and the translation formula (see appendiBofjdan and Cattanet989,

HO@ - r)d™ = 3 H(r - r)e™ D13, - r e, (5.11)

N=—co

is used to express the scattered wave centred intthBop into an excitation ajtth flux
tube.j is the angle formed by the centre of thth loop with respect to the centre of the
j-th flux tube. Finally, we obtain the following set of equai$o

N 00
ot DS AT HE (el —r)EC™1 =0, —co<m<e.  (5.12)

i#] n=—co
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As we will see below with this equation we can find thfg codficients and the frequen-
cies,w, from which the spatial structure of the normal modes candterthined. From
Equation .12, we see that the expansion @deent of ordem of the j-th loop, a},, is
coupled to all expansion cfiients of the other loops. This fact reflects the collective
nature of the normal modes. With thg, and Equationsg.4) and 6.8) we find the net
external field.

The internal or transmitted field is
U =1) = ) Bhdm(kiR)E™), (5.13)

wherek; is the perpendicular wave number inside jké loop calculated using Equation
(5.3. The Bessel functions of the second kiivg, are not considered in the expansion of
the internal field (EquatioB.13 because they are singular at the loop axes. The transmit-
ted field (Equatiorb.13 can be calculated through the boundary conditions, nathely
continuity of the magnetic pressure perturbation and tdelaomponent of the velocity
atR; = a; (Equation2.49). In terms of they fields they are expressed as follows

U (KiR)Rza;, = W(keRy)Ir=a;s (5.14)

wtjr,(ijj)le:aj '»[’/(keRj)|Rj:aj

_— = — 5.15
K < (5.15)

where the prime is the derivative with respect to the fumcigumenty’(x) = dw(X)/ox.

Equation B.12 is completely general for a system Wf cylindrical flux tubes (see
Keppens1994 for the expressions of the non-axisymmetric case) anti@iitformation
of the individual loops is included in th&-matrix elementsT). These elements are
calculated through the boundary conditions at the intesplzetween the loop and the
external medium. With Equations.9), (5.13, (5.14) and 6.15 we find theT/,,element
expression
 kPkedm(kiay) I(ked) — keK;Jra(Kiaj) Im(ked)

ke?kiHD (kedy) Ipa(kjay) — ki keHS (kedy) Im(k;ay)
Equation 6.16) is the generalisation d&dogdan and Zweib€lL985; Bogdan and Cattaneo
(1989 to the case of a magnetised external environment.

i
mm

(5.16)

Finally, note that with the boundary conditions (Equatibristand5.19 it is possible
to calculate thgs), coeficients

i Im(kedy) + ThaHW (k) |
Pm = Jn(ka) Fme
MUY

(5.17)

which can be inserted into Equatiob. {3 to obtain the internal field//tjr.

From the previous theory, the results of a single osciliploop can be retrieved (see
Section4.1l). The second term of the left hand side of Equatibrid is zero and this
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implies thata), = 0. In order to have a non-zero external solution (Equafid), the
productsT i, must be finite and arbitrary. This implies that th&,, elements are sin-
gular at the eigenfrequencies of the isolated loop. Thisadehaviour found in Equation
(5.16, since the zeroes of the denominator correspond to thedism relation of the
individual loop (see Equatio$.17).

Equation 6.12) is formally an infinite system of equations for an infinitenmoer of
unknowns §;,). In order to solve it, we truncate the system into a finite banof equa-
tions and unknowns by setting,,,, = 0 for azimuthal numbers greater than a truncation
number (h > m). To ensure the convergence of solutions, they must be aramt
of the truncation numbem,. With these considerations, the solution of Equati®ri?
reduces to solving a homogeneous linear systeM(@im + 1) equations andll(2m; + 1)
unknowns. For this system of equations to have a non-tragdition, its determinant
must be zero. This requirement gives the dispersion relaga transcendental equa-
tion. We solve the dispersion relation numerically and fimel frequencies of the normal
modes and with these frequencies we calculatethexpansion coicients. With Equa-
tions (6.4) and 6.13 we find the net field in the external medium and the transohftedd
in each loop. In all our calculations, solutions are indejeem of the truncation number
for valuesm, > 5 but we fix this number ton, = 20 to more confidently ensure their con-
vergence. With the method presented here we have obtairgdghlts of the following
Sections. We apply the method outlined before to a systemmfdops. EquationF.12
can be written as

Ma =0, (5.18)
where the matrixM is
1 0 T2 mHPKer12) ... TR HY, (ker12)
0 1 T2-mHimkers) . T2 mHP(ker12)
M =
ThemH (ker21) . T mHiY (Ker21) 1 0
Th-mH o (er21) . T HEP (ker21) 0 1
and the vectow is
1
Amy
g
1
a
a = th
Am
ag
2
¥my
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Here,ri, = 1y = |r1 —ry| = |r, — rql is the separation between the centres of the loops 1
and 2. Equationq.18 is a homogeneous set of equations and as we have seen ghgviou
the determinant of the céiecient matrix M) must be zero,

detM = 0. (5.19)

This equation gives the dispersion relation of the colectiormal modes, from which
we find their frequencies numerically. With these frequesciwe find the cdécients
ai, through Equation3.18 and reconstruct the external field with Equatiofs( and
(5.4) and the internal field with Equation8.(7) and 6.13. The method outlined here
is fully general for an arbitrary loop system but tklematrix is diferent and depends on
the system considered. We have developed a general FORTRé&icmrder to find
the normal modes of an arbitrary loop system. In the follgxgections we show several
examples with dterent configurations.

5.3 Interaction between two loops

First, we compute the normal modes of two non-identical $oafih theT-matrix theory
outlined in Sectiorb.2 In this Section we study the dependence of the interacsoa a
function of the density and radii of the loops. We consideystean of two loops with
radiia; = a, = a = 0.03L and separated a distande= 3a. The first loop density

is p1 = 3pe While p, is allowed to change fromp, = pe to 50 to study its influence
on the normal mode properties. We concentrate on the kiek#iodes in which the
individual loops move more or less as kink andfsuthe largest transverse displacement
(see Sectiod.1). We find four kink-like normal modes, two with motions potad in the
x-direction and moving in phase and antiphase witfedént amplitudes, and other two
with the same properties but polarised in yhdirection. In the case of two identical tubes
(see Chapted andLuna et al, 2008 the four kink-like solutions are either symmetric
or antisymmetric with respect to theaxis and for this reason they are callg A,

Sy andAy. The present system consists of two non-identical loopssanithe kink-like
modes have dierent amplitude in each tube. In order not to introduce exttation, we
generalise the meaning 8fandA to motions in phase or antiphase, respectively, so that
the modes are still referred to &g, Ay, Sy andA,. The frequencies of oscillation of these
four modes as a function @k /p. are displayed in Figuré.1 The bottom solid line is
associated to th8, and A, modes, which almost have the same frequency (see inbox in
Figure5.1). The same behaviour is found for the top solid line, whichregponds to the
Sy andA, modes. We see that the collective normal modes (solid lides)ot coincide
with the kink frequencies of the individual loops (dashegt$), a discrepancy caused by
the interaction between loops. This interaction is maximaénp, = p; (dotted line)
and the normal modeS,, A,, Sy and A, become the modes reported in Sectiband
Luna et al.(2008 with identical amplitude in each loop. The opposite sitwatakes
place wherp; is suficiently different fromp;: the collective frequencies are closer to the
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Figure 5.1: Dimensionless frequeneyl./vae, as a function of the internal density of
the second loop. The bottom solid line is associated to tloekink-like normal modes
Sy and Ay, which have very similar frequencies. In the same way, theeuogolid line

is associated to th8, and Ay modes. In the inner plot a detailed view foy ~ p; is
displayed showing that the solid lines are in fact doubledinThe two dashed lines are
the individual kink frequencies of each loop. We see thatkih& frequency of loop 1

is constant and the frequency of loop 2 decreases ayitbecause; is constant ang,
changes. The vertical dotted line is plotteghat= p;. Diamonds mark the frequencies of
the modes represented in Figlr® The asterisks mark the frequencies computed with
the analytical Equatiorb(20 derived byVan Doorsselaere et g20089.

individual kink frequencies and the system behaves as apaidependently oscillating
loops. In this regime, th&, and A, modes correspond to the individual oscillations of
the denser loop in the- andy-direction, respectively, and possess identical freqesnc
whereas th&, andA, modes are the individual oscillations of the rarer loop Ethand
y-direction, respectively, and also share the same frequé&igure5.1 can be interpreted
globally as an avoided crossing of the kink modes of the lod@sfrom the coupling,
each branch is associated to the individual loop kink modenear the avoided crossing
motions are associated to the two loops to produce fourcatoléekink-like modes. As
long as kink-like solutions are concerned, loops interactdiensities approximately in

the rangep,; = 20 10 4oe.

The magnetic pressure perturbation of 8yeand A, modes is plotted in Figurg.2
for two cases in which the loop interaction is importapt & 2.50, and 35p¢). The
behaviour of the other two mode&, andS,, is analogous to that of tH&, andA, modes
and thus their spatial structure is not shown. In contrasteécase, = p,, in which the
interaction is maximal and thus the two loops oscillate weijual amplitudes (see Figure
4.7) the solutions in Figur®.2 display an imbalance in the oscillatory amplitude of the
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Figure 5.2: Total pressure perturbation of the fast calleatormal modes$S, and A,
(plotted in thexy-plane) for a fixed density of the left loop = 3pe) and diterent
densities of the right looog). The panels show th®, mode for(a) p, = 2.50, and(b)

p2 = 3.5pe; the Ay mode for(c) p, = 2.50 and(d) p» = 3.50.. The frequencies of the
modes are given on top of the corresponding panels. Theddotes show the boundaries
of the unperturbed tubes. Regions of the positive (negapeelrbed magnetic pressure
represent density enhancements (decrements), so tka} amd (b) the loops move in
phase in thex-direction, while in(c) and(d) they move in antiphase in thedirection.

two loops. The largest amplitude of the pressure pertwbatorresponds to the denser
loop for theS, mode (see Figures.2a and5.2b), while it occurs in the rarer loop for the
A, mode (see Figures.2c and5.2d).

Secondly, we consider the same system of two loops but nowehsities are fixed
to p1 = p2 = 3pe, the radius of the left loop ig; = 0.03L and the right loop radiusy, is
allowed to vary. The distance between the tube centresyjs\Bhereay, is the averaged
radius defined aay = (a; + &) /2. With this condition the separation measured in av-
eraged radius units is constant. The frequencies of therhmalesS,, A, Sy andA, are
plotted in Figureb.3. As in Figure5.1, the collective frequencies (solid lines) aré&eient
from the individual kink frequencies (dashed lines), shapihe collective nature of the
oscillations. The chosen range of radii are those measur@dRACE observations of
transverse oscillations (see, eschwanden et g12003. In Figure5.3we see that the
collective frequencies are more or less constant; moreabeaamplitude of the oscillation
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is more or less equal in each tube. Then, in the considerept rainradii the interaction
between kink modes is strong and does not significantly dieparthe loop radii.

In Van Doorsselaere et §20089 an analytical approximation of the eigenfrequencies
and eigenmodes of the present problem has been derived larthevavelength limit.
They have found the four collective normal modes, but3hendA, have a degenerate
frequencyw_ and theS, andA, a degenerate frequeney.. The authors found an explicit
expression for the two degenerate frequencies,

W = po @2, P P2t 200 (o~ 2 + 41— plp2 — pe)E2
= PR T o+ pe)p2 + pe) — (o1 — pe)(p2 — pe)E2

(5.20)

d2+a2—a2 d?2+a2-a? .
whereE = e+ ¢, = arccosl'(% andr, = arccos ;Z;dal). The frequencies

obtained with this expressions are plotted with asterisksiguress.1and5.3. We find

a very good agreement between the approximate values anb-mhegrix results. The
results ofVan Doorsselaere et 20089 are a good approximation because we fulfil
the long-wavelength condition in the rangeal andd/L considered here. However,
the Van Doorsselaere et 0089 method is limited to two loop systems because they
use bicylindrical coordinates to find the eigenfrequenaigs eigenfunctions. Then, this
method is not applicable, for example, in the following $&tb.4, in which a system of
three loops is considered or in Chapégrin which the normal modes of more than ten
strands are computed. In addition, ti@n Doorsselaere et g20089 results disagree
with those of Sectiod.2in which all the four modes havefterent frequencies because
the long-wavelength limit is not fulfilled.

5.4 Interaction between three loops

5.4.1 Equalloop densities

We first study the situation in which the density and radiiteé toops is the same and
find that there are eight kink-like normal modes, whose digsstions are plotted in
Figure5.4, with the modes ordered by increasing frequency. The lofwegtiency corre-
sponds to a mode in which the three loops move in phase ir-thieection (Figureb.4a),
whereas in the highest frequency mode (Fidueh) the three loops move in phase in the
y-direction. This behaviour is fferent from that of the system of two loops (see Section
5.3), in which the higher frequency mode corresponds toAh@stead of thesS, mode.
The modes of Figures.4a, 5.4b, 5.4g and5.4h are kink-like while the other four modes
of Figures5.4c, 5.4d, 5.4e and5.4f combine kink and fluting oscillations: the two left
and right loops oscillate with a kink-like motion whereas tientral loop oscillates with a
fluting motion. We also refer to these modes as kink-like beeat least one loop oscil-
lates with a kink-like behaviour. In these modes the cemd@b contributes appreciably
to the total field (Equatio’.8) with the multipolem = 2 (see Figurel.4). Between the
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Figure 5.3: Dimensionless frequeneyl./vae, Of the four collective kink-like modeS,,
Ay, Sy and A, (solid lines), as a function of the normalised right loopiuada,/L. As
in Figure5.1, the two individual kink frequencies are plotted (dashees), where the
horizontal dashed line corresponds to the left loop and tieevaith a slight dependence
on a, corresponds to the right loop. The asterisks mark the fregjae computed with
Equation 6.20 derived byVan Doorsselaere et d20089.

frequencies of the modes plotted in Figukedd and5.4e there are modes with the three
loops oscillating with fluting motions and even with more giex structure associated
to m > 2 solutions. Then we call these modes fluting-like. They atefurther analysed
because they do not produce transverse displacementslobihe

5.4.2 Dfferent loop densities

Now we consider the dependence of the interaction on the deogity. The loop radii
are fixed toa; = a, = a3 = a = 0.03L, the separation between adjacent loop centres
is d = 3a, the densities of loops 1 and 2 are fixedoto = 3p. andp, = 2pe andps

is allowed to change from, to 4o.. Six kink-like normal modes, rather than eight, are
found and their frequencies are plotted as a functiopsah Figure5.5. There are six
branches associated to the six kink-like modes, that haee ladelledn, to mg starting
with the lowest frequency mode. We have chgsgandp, in such a way that loops 1 and
2 are basically decoupled (see SecttoB). Figure5.5is similar to Figure5.1 and can
be interpreted as two avoided crossings of the individuak knodes of the three loops.
Far from the couplings, the loops behave independentlys it is illustrated in Figure
5.6. In this figure we have plotted the modes associated to thechesm,, m; andmg

in the top, central and bottom rows, respectively. The modgsam, and ms have an
equivalent behaviour and have not been plotted. Far fronsdbeling region then, and
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Figure 5.4. Total pressure perturbation of the eight kikk-kcollective normal modes
of three identical loops. The densities are fixegpto= p, = p3 = 3pe, the radii to
a, = a, = ag = a = 0.03L and the separation between adjacent loojpks=s3a.

m, solutions are associated to the individual kink oscillasi@f the denser loop in the
x- andy-direction, respectively. In the same way, the branehgandm, are associated
to the individual kink mode of the intermediate density @yl the branchess andmg

to the individual kink oscillations of the rarest loop. Ortbther hand, at the couplings
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Figure 5.5: Same as Figutel for the collective frequencies of three aligned, equisdace
loops plotted as a function of the density of loop 3. Solig@éircorrespond to the frequen-
cies of the six collective kink-like modes. Dashed linegespond to the individual kink
frequencies of the loops. The horizontal bottom and uppsheklines correspond to the
kink frequencies of loops 1 and 2, respectively. The othehdd curve corresponds to the
kink frequency of the third loop, with variable density Diamonds mark the frequencies
of the modes represented in Figute6 and5.7.

the loops interact by pairs as we see in Figbiré The interacting pair oscillates with a
collective normal mode whereas the other loop oscillatdividually. In the first avoided
crossing, foros = p, = 2pe, the branchesz andmy are coupled withms andmg (see
Figure5.5), associated to loops 2 and 3, that oscillate collectivelyasee in Figures.7c
and5.7e. The branchesy, andm, are uncoupled and loop 1 oscillates independently from
the other two, as we see in Figusera. In the second avoided crossingat= p1 = 3pe
the branchesn, andm, are coupled withmg andmy, while mg andmg are independent.
Therefore, in this avoided crossing the interaction is leetwloops 1 and 3 (Figurés7b
and5.7d) and loop 2 oscillates independently (Figl.&f). It is important to note that
the collective modes of the two coupled tubes havefiedint frequency ordering with
respect to the case of two loops, studied in Sedi@because of the presence of loop 1.

Comparing Figure®.1 and 5.5 the coupling regions occur in a narrower range of
density values in the three loop system than for two tubeg. pftysical meaning is that
only loops with similar densities are coupled in the thremplensemble. In this system,
it is important to note that in the second avoided crossingsat p; loop 2 does not
participate of the collective dynamics despite being tleses$t tube to the interacting
loops.

The results discussed so far in this Subsection correspmuiiterent densities of
loops 1 and 2. Nevertheless, if the densities of loops 1 and Rimilar, their interaction
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Figure 5.6: Same as Figuke4 for three values gps far from the two coupling regions
of Figure5.5. The densities of loops 1 and 2 are fixedoto= 3p. andp, = 2p and
p3 is allowed to change. The loop radii are fixedao= a, = az = 0.03L. In the top,
central and bottom rows of panels tirg, mz andmg modes are plotted fafa), (d) and
(9) p3 = 1.5p¢; (), (€) and(h) p3 = 2.50¢; (c), (f) and(i) p3 = 3.5p.

is more important and the description of the dispersionrdiagand the normal modes of
the system is much more complex. In this case, there are laigitdike normal modes.
In this situation there are not only interactions betweearspd loops but also interactions
between three loops. There are modes associated to theldadermed by tubes 1 and
2, individual oscillations of the cylinder 3 and the enseenti the three loops depending
onps. A particular case of this situation is the three identicalds previously discussed
(Section5.4.]) in which all modes are associated to the collectivity.
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Figure 5.7: Same as Figube4d for two values ojo; at the maximal coupling (Figure5).
In the top, central and bottom rows of panels tifge ms andmg modes are plotted fdr),

(c) and(e) pz = 2pe, (b), (d) and(f) p3 = 3pe.
5.5 Discussion and conclusions

In this Chapter we have investigated the kink-like normal esodf a system of several
loops with the help of th&-matrix theory. The results of this work can be summarised as
follows:

1. In the system of two non-identical loops, we have found fkink-like normal
modesSy, A, Sy and A,. The frequencies of th&, and A, solutions are very
similar as well as the frequencies of tBgand A, modes. This result agrees with
Van Doorsselaere et g20089, who considered thin tubes (i.e. long wavelength
approximation). For fat loops th&, and A, modes, as well th&, and A, have
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different frequencies, as was shown in Chagtand Luna et al.(2008. These
collective normal modes are related with the standing-ohbscattering resonances
discussed ilBogdan and Fox1991) andKeppeng1994).

. For a system of two loops we have investigated the depeedafithe interaction

between kink oscillations as a function on the relative dgrms the loop pair. For
p1 = 3pe We have found that the oscillations of the loops are coupleke range of
02 between g, to 4o and that the coupling is maximum fpg = p; = 3pe. Outside
this density range the loops are essentially decoupled seitlade independently.

. We have also studied the dependence of the interactibrtigtrelative radii of the

loops. We have seen that in the range of radii for which trarssvloop oscillations
have been observed the interaction depends very little isnptrameter and the
loops strongly interact for all the radii considered. Thplaration of this behaviour
is that in our loops the thin loop approximation can be apldiad in this situation

the kink frequency depends on the tube density and not orathie r

. In the case of a system of three equal, aligned, equisdaoed there are eight

kink-like normal modes. The lower frequency mode corresisdo the three loops
oscillating in phase in the-direction, i.e. along the direction in which their axes
are aligned, in agreement with the results of two identiwapk. On the other hand,
the upper frequency mode corresponds to the three looptatiag in phase in the
y-direction. This does not agree with the two identical lodpagion, in which the
upper mode corresponds to the two loops oscillating in Aasp in thex-direction.

In fact, this property of the three-loop system is also tiaresihsembles of four or
more aligned loops.

. We have made a parametric study of the kink-like modes ystes of three loops

with equal radii and dierent densities by changing the density of loop33, We
have chosep; = 3pe andp, = 2p, SO that the interaction between loops 1 and 2
is negligible. We have found that the oscillations of loop& eoupled with loop 2
whenps ~ p,, whereas loop 1 oscillates independently. Furthermoog, Bxcouples
with loop 1 wherps ~ p; with loop 2 oscillating independently. g takes diterent
values, the system is decoupled and the three loops osailidependently.

In this Chapter, we have found that the interaction betweepdaegarding kink-like
motions depends strongly on the their individual kink freqcies. If these frequencies are
similar, loop motions are coupled and the normal modes dlective. On the other hand,
if the loop kink frequencies are quiteftérent their motions are not coupled. Since the
individual frequencies depend on the loop density and s®adwe have studied separately
the influence of the two parameters. We have found that if @msities are quite similar,
loops are coupled and the oscillations are collective. @nother hand, if the densities
are quite diferent, the tubes oscillate independently. The range ofitiesfor which the
loops are coupled depends on the system properties andaonlifiguration of three loops
this range is narrower than in the two tubes configuration.
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From the results shown in this Chapter we suggest that thphas® motions re-
ported inSchrijver and Browr(2000; Schrijver et al(2002 are collective motions and,
therefore, that the individual kink frequencies are similat different from the collective
observed frequency. If the loop model presented here id Madith loop densities are also
similar. In addition, inVerwichte et al(2004) a loop arcade is studied and three groups
of tubes oscillating with similar frequencies can be apjated. The dynamics of each
group of tubes can be interpreted as collective, althougitaildd study of such config-
uration is needed to relate the loop characteristics anttelqeency of oscillation of the
group. On the other hand, loops not belonging to these tim@gog do not share their
frequencies with other loops and so oscillate indepengeiithis has to be interpreted
as a sign that these loops havéelient densities from those of the rest of the loops. It
must be mentioned that Merwichte et al (2004 all the oscillations are assumed as in-
dividual, but this is only true in the case of loops that do simre their frequency. For
example, if the loops actually oscillate with the lowestitency collective mode, the
assumption of individual motion might produce an undenestion of the magnetic field
or an overestimation of the loop density.

The T-matrix method shown in this Chapter can be easily applieddcensomplex
configurations with gas pressure and tubes with flows ogvofig Keppens et a1994),
with thin non-uniform layers. However, here we neglect éeects and consider a more
complex system using the multistranded loop model in tHevwiehg Chapter.






Chapter 6

Transverse oscillations of a
multistranded loop model

In Sectionl1.2we have pointed out that the nature and detailed structul@opt is not

yet well understood. Recent observations suggest that abiayps could be made up by
filaments called strands. Here we consider a multistranolggl With a fine structure that

is formed by several tens or hundreds of strands consideredraloops and for which
the plasma heating properties are approximately uniforthertransverse direction (see
Sectionl.2). In this Chapter we apply the techniques and results of Chaped find

the collective normal modes offtierent ensembles of strands. The aim of this Chapter is
to discuss the implications of the fine structure on the dlobasverse motion of loops.

This Chapter is organised as follows. In Secttoh the multistranded loop model is
presented. In Sectidh2, the normal modes of a system of ten identical strands areifou
while the same is done for ten non-identical tubes in Se@&i8nin Section6.4, a much
more complex configuration, namely a loop made of 40 straisdeyestigated. Finally,
in Section6.5the results are discussed and the main conclusions are drawn

6.1 Theoretical model

In this Chapter a coronal loop is assumed to be a compositetisteuof several strands.
Each coronal strand is modelled as a straight cylinder witlgoavity and uniform den-
sity along the tube with the loop feet tied in the photosphérke multistranded loop
configuration consists of a bundle Nfcylindrical, parallel, homogeneous strands. The
z-axis points in the direction of the strands axes. All steahave the same length, and
each individual strand, labelled gsis characterised by the position of its centre in the
Xy-plane,r; = xjex + Y;g, its radius,a;, and its densityp;. The position of each strand
is randomly generated within a hypothetical unresolveg loforadiusRk (see Figures.1).
The density of the coronal environmentos Similarly to Chaptes, the uniform mag-
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netic equilibrium field isBg = Bye, inside the strands and in the coronal medium. A
harmonic time dependence of the perturbatieri¢ is assumed and thedependence
of the forme*, with k, = /L (line-tying efect). With all the assumptions discussed
here the governing equations of our system reduce to a ddalarholtz equation for the
magnetic pressure (see Equating).

1.010 o,

Figure 6.1: Sketch of the cross section of a multistranded lnodel, which consists of
a loop of radiuRR (large dotted circle) filled withN homogeneous strands of densiiigs

and radiusa; (solid smaller circles). The external medium to the loop tmemedium

between strands consist of coronal material with densityit is important to note that
the large dotted circle is not real and represents the exddtboundary of a hypothetical
unresolved loop.

In order to compare the dynamics of a multistranded loop mwedke that of a mono-
lithic tube, an equivalent flux tube is defined. The flux tulsius, R, corresponds to size
of the cylinder that wraps the strand bundle (see Figuie An equivalent density is

defined as "
a 2 ai 2
Peq = ij (ﬁj) +pe|1-N (_J)

j=1

R
so that the equivalent monolithic loop has the same massastiltistranded loop. We
have fixed the radius of the cylinder envelopRo= 0.03L, that is a typical value for
coronal loops (se@schwanden et 812003. We have assumed the volume filled by the
strands is 40% that of the monolithic loop. In addition, &k tstrands have the same
radius,a; = 0.2R = 0.006L.

: (6.1)
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6.2 Normal modes of ten identical strands

We first study a system df = 10 identical strands, i.e. with identical densities andirad
From the results of Chaptér this is the situation for which the coupling between stsand
is stronger because all the tubes have identical indivikund frequencieSwggang. The
density of each strand is fixed tg = 7.5p¢ in order to have an equivalent density, =
3.6p¢ (see Equatio.l). The equivalent monolithic loop has an individual kinkqfuency
wmono = 2.06e/L computed with the fast wave dispersion relation in a cylingee
Equationd.17). Hereafter, all the frequencies will be expressed in teshtlis frequency.
The individual kink frequency of each strand is thefang = 0.737wmono

6.2.1 Frequency analysis of the collective normal modes

We have investigated the eigenfrequencies of the systerharadfound that they are dis-
tributed at both sides of the individual strand frequenayaways below the frequency of
the equivalent monolithic loop (see Figwse?a). The lowest and highest frequencies are
w = 0.612vmenoandw = 0.993wmeno respectively. We see that the eigenfrequencies are
in a broad band of width approximately3&wmone According to their spatial structure,
we classify the normal modes in three groups. Modes withuieegies below the central
frequency { < wsrang) are called low modes (left-hand side of the shaded areagur&i
6.2a). Mid modes are those with frequencies similar to the eéfrfequency ¢ ~ wstrand;
shaded area in Figu®2a) and finally the solutions withh > wgyang are referred to as
high modes (right hand side of the shaded area in Fi§. It is important to note that
in a system of non-interacting strands the frequency oflation of each strand i®gang.

6.2.2 Velocity and total pressure perturbation analysis

The spatial structure of the three groups of modes is clafiffgrent. Low modes are
kink-like modes in the sense that at least one strand moaasversely like a kink. For
these modes, the fluid between tubes follows the strand m(se® Figuré.3), producing
chains of loops in which one follows the next. In Fig&&, two examples of low modes
are plotted. Figuré.3a corresponds to the lowest frequency mode, in which only five
strands oscillate, producing some kind of global torsionadion of the strands. In Figure
6.3p, another example of low eigenfunction is plotted and shivasalmost all the strands
are excited. As in the previous example, the fluid betweeands moves with them. In
both modes the maximum velocity takes place inside the d¢ramhese characteristics
are shared by all the low modes. TBgandA, modes of the system of two loops (Chapter
4) and them, to my modes of a system of three aligned loops (Chaptean be classified
in the low mode group because the spatial structure of thenatagpressure perturbation
and velocity field have the features previously describetithair frequencies are below
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Figure 6.2: Distribution of the frequencies of the colleetnormal modes associated to
the three systems considered in this Chafer10 identical strandgp) 10 nonidentical
strands with diferent densities andg) 40 identical strands. In all cases we clearly see that
the frequencies are distributed at both sides of the indalidtrand frequencies)siang,
(dotted line) in a broad band of frequencies and that all tbdes have frequencies below
wmono (dashed line). The mid modes are within the shaded area. riimglies mark the
frequencies of the modes displayed in the following plots are labelled with integers.

the corresponding individual kink frequency.

On the other hand, for the high modes the intermediate fluiekden tubes is com-
pressed or rarefied (which leads to a higher or lower totaigune perturbation) or moves
in the opposite direction to the strands, producing a moreefib motion than that of the
low modes (see Figuré.4). These modes are kink-like too, but, in contrast to the low
modes, the maximum velocities take place in the intermediaid between strands, i.e.
outside them. This behaviour is very clear in Figétda, in which the strand motions
force the coronal fluid to pass through the narrow channelgdsn them or to compress
the coronal medium. Similarly, in the highest frequency m(€igure6.4b), high velocity
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flows between the five excited strands takes place. The caredium within the excited
strands is compressed and rarefied, giving rise to some kisausage global motion of
the strands. All the modes that we have classified as higle shase characteristics. The
Sy andA, modes of two identical tubes (Chap#rand thems to mg modes of a system
of three aligned loops (ChaptBy belong to the high group of modes.

Finally, the mid modes have the most complex spatial stracflihey are fluting-like
modes and have strand motions similar to those of the flutinde® of the individual
tube (see Figure6.5a and6.5b). The magnetic pressure perturbation and velocity are
concentrated mainly in the strand surface. There is an tefiimber of mid modes with
frequencies concentrated around~ wsyrang, and for this reason they are plotted as a
shaded area in Figu@2
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Figure 6.3: Total pressure perturbation (color field) anidcigy field (arrows) of the fast
collective normal modes of two low modes labelled as 1 andrRignre6.2a. (a) Lowest
frequency mode labelled as (h) Low mode, labelled as 2.

6.3 Normal modes of ten non-identical strands

In this Section we have considered the previous spatiallaision of strands but with dif-
ferent densities. The strand densities have been disgtdbandomly around and average
density 750, with a deviation of 3. and the equivalent monolithic density has been kept
equal topeq = 3.6p. and the volume filled by the strands to 40% that of the moriolith
loop volume, as in Sectiof.2 The densities we use apg/p. = {7.89, 7.61, 7.60, 897,
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Figure 6.4: Same as Figuée3for two modes classified as tofa) Mode labelled as 3 in
Figure6.2a. (b) Highest frequency mode, labelled as 4.

5.98, 873, 752, 862, 618, 580} following the ordination of Figuré.1 The density
deviation implies a diference between the individual kirdguencies of the strands. This
difference between the maximum and minimum values of the ingaikink frequencies
is 0.13wmone This makes the coupling between the strands weaker (segethaand
Luna et al, 2009 than in the identical strand case discussed in Se@&ian However,
the strands still interact and so it is not possible to carstle multistranded system
as a collection of individual tubes. The band of collectivegiiencies now goes from
w = 0.6020monot0 w = 1.036wmeno I-€. it has a width of @13wmene as we see in Figure
6.2b. This band is broader than in the identical strand casewfoch it is 0.38wmong
but this does not mean that the interaction between nortigdéistrands is stronger. The
reason is the additional broadening associated to thedipgeaf the individual kink fre-
guencies, which results in the enlargement of the mid frequéand (see Figuré.2b).
Roughly speaking, the broadening associated to the couiglihgn the total broadening
minus the spreading of the individual kink frequencies. dseof an uncoupled system
of nonidentical strands the band width associated to thplewis zero. The individual
kink frequencies of our system are in a band 4f30n, This implies that the contribu-
tion of the strand interaction is roughly3@wmene indicating less interaction between the
strands than for the identical strand system (Sed@i@n Similarly to Sectior6.2, we can
divide the collective normal modes in three groups. Howewer spatial structure filers
from those of the previous Section. Théfdrences are clear, for example, in the lowest
frequency mode. Comparing Figuseta with Figure6.3a we see that the global torsional
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Figure 6.5: Same as Figuée3for two modes classified as middl@) Mode labelled as
5 in Figure6.2a. (b) Mode labelled as 6. In both cases we see the complex struafture
the mid normal modes.

oscillation of the five strands labelled 2, 5, 6, 7 and 10 iSdma because their densities
are very diferent, but the oscillation of the strands labelled as 1, 2, 8, 7 and 8 with
similar densities, is favoured. The highest frequency ndted in Figure5.6b is very
similar to the corresponding mode in the identical tube ¢&ggure6.4b), although the
amplitude of the oscillations is concentrated in the raigsts, labelled 5 and 10. These
results are general and the low modes have the largestadspillamplitudes in the denser
tubes. On the contrary, for the high modes, the highestlagmy amplitudes are asso-
ciated to the rarest strands. The mid modes have complealkgtaticture but similar to
that of the identical strand case and are not plotted forake sf simplicity.

In Terradas et al(2008 a system of 10 non-homogeneous strands was considered.
The authors studied the time-dependent evolution of theesyafter an initial excitation.
They found a collective frequency2®/ra, wherer, is a time unit defined in that paper as
Ta = Vae/R. We have considered an equivalent system of homogeneaunsistpreserving
the total mass and have found that modes lie in a frequenay ¢paing from 0182/ to
0.23/7 that agrees very well with the mentioned results.
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Figure 6.6: Same as Figufe3 for the collective normal modes of a system of 10 non-
identical strands(a) Lowest frequency mode, labelled as 1 in Figérgb. (b) Highest
frequency mode, labelled as 2.

6.4 Normal modes of forty identical strands

We have also found the normal modes of a much more complegrayst 40 identical
strands. The strands fill 40% of the equivalent loop volumi¢h & strand density; =
7.50¢ and an equivalent densiptq = 3.6p.. The frequencies of the normal modes lie in
a band that goes from = 0.614wmenot0 w = 0.987wmeno SO that its width is B7wmono
This frequency band coincides well with that of the 10 idesitstrand case (see Figures
6.2a and6.2c). However, the system of 40 strands has more collectivealomodes than
the system of 10 strands. The classification in low, mid amggh lmnodes is still valid in
this complex system of strands. In this Section we have oohsicered the kink-like
modes (low and high modes) and the mid modes are not plotteddsake of simplicity.
In Figures6.7a and6.7b, two examples of low collective normal modes are plotted. |
the lowest frequency normal mode (Fig@&a), a cluster of close strands is excited and
the others are at rest. In the second example (Figuftg), a cluster of distant strands
participates in the motion. In Figurés8a and6.8b, two examples of high modes are
also plotted. Similarly to the low modes, in the high modesuster of several strands
participates in the motion whereas the others are at rest.
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Figure 6.7: Same as Figuée3for two low modes in a system of 40 identical stran@s.
Lowest frequency mode, labelled as 1 in Fig@rec. (b) Normal mode labelled as 2.

6.5 Discussion and conclusions

In this Chapter we have found analytically the normal modes wiultistranded coronal
loop with the help of th& -matrix theory outlined in Chaptér. The results of this work
can be summarised as follows

1. We have considered a multistranded loop filled with 10tidahstrands located at
random positions. We have found a large quantity of normadesovhose their
frequencies are in a broad band of width approximate®80,,ono All these fre-
guencies are smaller than the monolithic kink frequency. Hake seen that the
collective normal modes can be classified in three groupsrdiog to their fre-
guencies and spatial structures. Low modes have a frequeRCYvsyang and the
spatial structure is kink-like and characterised by stsandving in complex chains.
In these modes, the intermediate fluid between strandsislibeir transverse dis-
placement and produces a non-forced motion of the systemmellow modes the
strands move faster than the surrounding medium, i.e. thémuan velocities are
within the strands. Mid modes have a frequeacy wsyang@nd the spatial structure
is fluting-like, by which the strands are essentially ditdrand their displacements
are small. Finally, high mode& (> wsyang) are kink-like modes characterised by a
forced motion of the strands, that move in the opposite tdordo the surrounding
plasma or compress and rarefy their intermediate fluid, yciod) high velocities in
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Figure 6.8: Same as Figufe3 for two high modes in a system of 40 identical strands.
(a) Collective normal mode, labelled as 3 in Fig@ec. (b) Highest frequency mode,
labelled as 4.

the coronal medium. Then, the surrounding medium movesrfésan the strands.

2. We have also investigated a system of 10 non-identicaigs. The spatial distribu-
tion of the strands is the same as in Sectad? but with diferent strand densities.
Similarly to the identical strand case, we have found a lauggntity of collective
normal modes, but now their frequencies lie in a band of wil80wmeno This
band width is narrower than that of the identical strand ads®ection6.2, indi-
cating a weaker interaction between the strands. The tioketormal modes can
be also classified in low, mid and high modes. The largestlason amplitudes
correspond to the denser strands in the low modes and toris sdrands in the
high modes.

3. The normal modes of a complex system of 40 identical sgdrave also been
computed. Their frequencies lie in a band of widtB®mono that coincides well
with that of system of 10 identical strands. The classifazadf the normal modes
in low, mid and high is still valid in this complex system. Hewver, the number of
normal modes is larger than in the two systems with 10 strafdis indicates that
the number of collective normal modes increases with thelbaurof strands.

The spatial structure of the normal modes is very complex\wwadave found no
collective normal mode that can be considered as a glob&lrkiode. In such modes,
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we expect that all the strands move in phase with the sametidingproducing a whole
displacement of the loop. The collective normal modes trehave found displace the
loop centre but the detailed motion of the strands is veryper Low and high normal
modes produce the largest transverse displacements aidhewhereas the mid modes
do not produce important oscillations of the whole tube. Té®son is that the low and
high modes are kink-like, and the combined motion of thenstsaproduces the whole
motion of the loop. However, the mid modes are fluting-liked éhe individual motion
of the strands does not contribute to the transverse loopomotOn the other hand,
the frequencies of the normal modes lie in a broad band. Ttessdts indicates that
the whole loop motion cannot be described by an equivalenifitbic and uniform loop
system, with some equivalent density and its kink freque@tiierwise, the fine structure
influences the collective dynamics of the multistrandegbloo

In this study we have only considered the normal modes ofyh&es. The investi-
gation of the time evolution after an initial disturbanceneeded to understand how the
different normal modes are excited, and how is the whole looprdigsa In Chapted,
we have shown that the motion of a two strand system is congsiexhat the complex-
ity of its dynamics depends on the width of the frequency bafnithe collective modes.
For this reason, we expect a complex dynamics of the mualtiged loops studied here.
Terradas et al(2008 have found that an initial disturbance produces a disph&ce of
the strands in the direction of the initial pulse perturtyati As we have seen, there are
no normal modes with such a structure of strand oscillatibus it is possible to ob-
tain this initial configuration by a combination of colleainormal modes. We expect
that after some time, each collective normal mode oscdlatigh different phase due to
the frequency dferences between them. As a consequence each strand escaigt
a complicated motion. This complex motion reflects in theataon of the direction of
oscillation with time and a modulation of the amplitude (§¥epterd). Terradas et al.
(2008 considered a system of weakly coupled strands with frecjeenn a band of ap-
proximately 012wmono The rapid damping of the oscillations due to resonant gibisor
in the nonuniform layers of the strands makes vefidilt the study of the collective dy-
namics. However, we expect that the collective dynamicsccautribute to the observed
damping of transverse loop oscillations.






Chapter 7

Conclusions and future work

7.1 Conclusions

The main goal of this Thesis has been to study the collectaresverse oscillations of
composite coronal magnetic structures. This investigatias focused on bundles and
arcades of coronal loops belonging to active regions and monlastranded loop model
with internal fine structure. The work has been carried owgdlying the governing equa-
tions analytically and numerically, providing a sound thegizal basis for more realistic
magnetohydrodynamic coronal seismology.

Firstly, we modelled a loop as a magnetic slab, studying lgisystem of two iden-
tical slabs. In Chapte8 we studied the collective oscillations of this configuratend
found analytically the normal modes. There are two funddaiamrmal modes, the
symmetric and antisymmetric collective modes, in whichglads move in phase or an-
tiphase, respectively. Both these modes hafiemint frequencies: the symmetric mode
has a smaller frequency than that of the individual slab)enthie opposite happens with
the antisymmetric mode. The symmetric mode is always trépipat the antisymmetric
mode can be leaky or trapped according to the separatiorebatthe slabs. In addition,
we numerically solved the initial value problem, pertupthe system with a pulse with
a Gaussian shape. We then investigated the collectiveagincitand the time evolution
as a function of the slab separation. In all cases, aftermsigat phase, the system os-
cillates with a combination of collective normal modes. Inaage of slab separations
the amplitude of oscillation shows a sinusoidal modulagthich is the well known col-
lective beating phenomenon. In this range of separatiomsléibs interchange energy
periodically, indicating a complex behaviour of the system

The interaction between the loops depends on the considex@detry and on how
the flux tubes perturb their surrounding plasma and magfield. Consequently, in
the second step, we considered a cylindrical loop model. lkap&n4, we studied two
identical and parallel cylindrical loops. We found fourleative normal modes calle8,,
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Ay, Sy andA,, whereS andA stand for the phase and antiphase motions, respectively (th
subscripts are the direction of oscillation). It is impaoitted note that the system dynamics
are not the sum of two individual loops moving independemlg investigated the system
oscillations after an initial disturbance solving the iaditvalue problem numerically in
two dimensions. After dierent numerical experiments withfidirent incidence angles,
we found that the system oscillates with a combination of fallective normal modes
after a very brief transient phase. The amplitude of odmieaof each normal mode
depends on the incidence angle of the initial pulse, withdyx@amics of the two loop
system being very complex, indicating strong interactietween the flux tubes.

In Chapter5 we generalised our investigation to complex systems oflleacylindri-
cal flux tubes usin@ -matrix theory. The first system that we considered is madeof
non-identical tubes, in order to investigate the depenglehtoop coupling with respect
to their relatives densities and radii. We found that theéesyds coupled if their densities
or radii are similar and the normal modes of the system ateaale. On the other hand,
the system behaves as two independent loops if their desiaite stiiciently different. In
the range of observed loop radii the interaction does notleégtrongly on this parame-
ter and the loops are coupled. A further study was made oftamsywith three identical
loops and this produced eight kink-like normal modes. Initamid we investigated the
dependence of the interaction between the three loops tin telative density. Our
study showed that loops with similar kink frequencies angpted and their dynamics are
collective, but if their kink frequencies arefigiently different they are uncoupled and
behave as independent tubes. Importantly, these advameexktical results can be actu-
ally be applied to real observations of coronal loop systegillations. Observed loops
that share their frequencies are likely to be coupled anbghily have similar densities,
but on the other hand, loops whose frequencies do not carariel probably uncoupled
oscillators. Crucially, the assumption of individual irestieof collective motion might
produce a seismological underestimation of the magnetit dieoverestimation of the
loop density.

Finally, in Chaptel6 we applied thd -matrix theory outlined in Chaptérto find the
collective normal modes of the multistranded loop modelyimch our system consists
of several thin and close strands. We first considered aatmfeof ten identical strands
and found a huge quantity of normal modes with their freqiesnkying in a broad band
at both sides of the individual strand frequency. The ctillecmormal modes can be clas-
sified as low, mid and high frequency modes according to finequencies and spatial
structure. Low modes have frequencies smaller than anithaivstrand kink frequency
and their spatial structure is basically kink-like, witfetmotion of the strands following
one another in the form of a complex chains of strands. Irethesdes, the intermediate
fluid between strands follows the tubes and produces a n@edanotion of the system.
With the low frequency modes, the strands move faster tresulrounding medium, i.e.
the maximum velocities are within the strands. Mid freqyemodes have a frequency
similar to the individual strand kink frequency and theiasal structure is fluting-like,
i.e. the strands are essentially distorted and their cisphents are small. Interestingly,
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in this complex equilibrium configuration, there can existifinite number of mid fre-
guency fluting-like modes. Finally, high frequency modeghwrequencies greater than
the strand kink frequency, are kink-like modes charaatdrisy a forced motion of the
strands, that move oppositely to the surrounding plasmaropeess and rarefy the inter-
mediate fluid, producing high velocities in the coronal nuadicausing the surrounding
medium to move faster than the strands. We also considengstens of ten strands with
different densities, in which we found similar results but with frequency band of the
collective normal modes being narrower. The reason fornghisat the coupling between
the non-identical strands is weaker than in the identicahst configuration, but our clas-
sification of the normal modes in the low, mid and high frequiesis still valid. In order
to confirm our results we considered a much more complexmystade of forty strands
and found that the results agree with the ten strand caseevtmwhere are many more
collective modes than in the simpler case. One of the mosbitapt results of our anal-
ysis is that there is no global kink normal mode with all thestls moving in phase in
the same direction. This shows that the internal struagusira loop can fiect the global
motion and produces amplitude modulations and changesitrainsverse direction of
oscillation.

In summary, in this Thesis the transverse oscillations eés# loops and their col-
lective behaviour were investigated. We performed ounstustly by considering a very
simplified two loop model and then increased the complexytyniareasing the number
of loops, thereby creating a more realistic configurationaddition, we investigated the
transverse oscillations of a loop with fine structure anchtbthat its internal structure
affects the global motion of the loop. With the purpose of gajrésen more progress in
coronal physics, some further key topics not addressedsrirtesis, related to coronal
loop modelling, should be the subject of future researchtlaaske will be discussed in the
next and final Section.

7.2 Future work

In Chapters3, 4 and5 the coupling between loops was investigated and we ideshtifie
collective oscillation signatures and determined undeickviconditions coupling takes
place. With these new results it is now possible to attempenadvanced coronal seis-
mology by reinterpreting existing observational resufsr example, in the harmonica
event reported byerwichte et al(2004), the physical reason why three groups of coronal
loops are oscillating with similar frequencies may be eixd for the first time. Since
there is similarity in the observed frequencies, it is polesihat the oscillations of these
loops are coupled. However, a more detailed study of th&itive phase and position is
needed before a more definite answer can be made and thislsyethe aim of future
work in this field. If their oscillations are indeed couplede theory developed in this
Thesis may provide fine corrections to the densities and etagfields estimated by the
method of coronal seismology. In addition, new telescopesreew observations with
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improved temporal and spatial resolution will increasegbssibility of identifying such
coupled loops oscillations.

Concerning the multistranded loop model, the next step isotesider the normal
modes of the system for flerent filling factors. Additionally, by using the long wave-
length approximation it is possible to find an expressioritierband of frequencies of the
collective normal modes. This analytical expression carelsed with the mean strand
characteristics and would also be a useful tool for coror@nsology. On the other
hand, there is a huge quantity of normal modes in a multidedroop. It is necessary
to study which combination of normal modes are excited aftemitial disturbance as
this determines the temporal evolution of the whole loogesys This last point is very
interesting as the resulting collective loop motion can beywcomplex (see even the
simple case of two tubes studied in Secti#d). Therefore, if such complicated loop
motions are actually observed this would be a strong indicaif sub-resolution internal
fine structuring.

The theoretical models presented in this Thesis are onlypproaimation to the real
situations, however, such models allows us to understandin® diterent physical pro-
cesses take place. After our initial simple model it is wasessary to increase the com-
plexity to have a more realistic system. Following this ideaatural extension to make
our modelling more realistic would be to introduce plasnnacttiring along coronal loops
(or the component strands) and the surrounding medium. Sarle has already been
made in this regard, for example, blanasoge and Call{2009 andJain et al.(2009.
These authors have studied the scattering ofptihheodes stratified fibrils and found that
multiple-scattering is important in the solar plage. Sangtudies can be also made relat-
ing to the solar corona to investigate thieeet of longitudinal loop or strand stratification
on the collective dynamics.
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Total pressure perturbation (colour field) and veloigl (arrows) of the

fast four collective normal modes (plotted in tkyegplane, see Figuré.5).
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Sy, the tubes move in thedirection in phase; and finallg) Ay, the loops
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Time-evolution of the velocity field (arrows) and totaégsure field (co-
loured contours) for a separation between lodps 6a and an initial
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panelgc) and(d) the system oscillates in the stationary phase wittf&he
normal mode. This time evolution is also available as an ngpeégation

in Movie 1in the accompanyingCD. . .. ... ... ......... 73

4.10 Same as Figu#.9 for an initial pulse with an angle = 0°. Here the

stationary phase is governed by a superposition oSthand A, normal
modes. The whole time evolution is presented/iovie 2 in the accom-
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stationary phase is governed by a superposition othé\,, Sy and A,
normal modes. The whole time evolution is presentelfiavie 3in the
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times. . . . . .. .. ... e IS

4.12 (a) x-component angc) y-component of the velocity at the centre of the

right (solid line) and left (dotted line) loops for the nuneal simula-
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(a) and(b) corresponding power spectra of Figure&z and4.12, re-
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Temporal variation of the velocity compone(@s$ vy and (b) v, at the
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Dimensionless frequenayl /vae, as a function of the internal density of
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