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Motivation and outline of the

thesis

Although gravitational waves are a prediction of the Theory of General Relativity,
and although there have been some observations that suggest that this prediction
might be right, no direct observation has been successful until now. Many efforts are
being done in order to construct a new generation of, either ground or space-based,
gravitational wave detectors. Some examples are LISA, TAMA, LIGO, and VIRGO.
Each of these detectors has or will have its own gravitational wave frequency range,
allowing for the observation of different astrophysical phenomena. In particular,
LISA (Laser Interferometer Space Antenna) a joint ESA and NASA effort should
be able to eventually detect the gravitational wave emission from galactic binaries
involving at least a degenerate object (Mironowski 1965; Evans et al. 1987), such as
double neutron stars binaries, cataclysmic binaries, close double white dwarf binaries
and binary systems composed of a white dwarf and a neutron star. Additionally
the range frequencies of LISA would also allow for the detection of gravitational
waves arising from the non-radial pulsations of white dwarfs. In the present thesis,
the gravitational wave emission from single and binary white dwarfs is going to be
studied.

White dwarfs are, by far, the most numerous stellar remnants in our Galaxy.
Consequently, its study is of paramount importance to understand the current evo-
lutionary status of the Galaxy. This, toghether with the relatively simple and well
known physical processes involved in their formation and evolution, makes them an
ideal tool for fundamental physics. A good fraction of white dwarfs belongs to bi-
nary systems. Moreover, the final destiny of these binary systems is to merge due
precisely to energy loss by the emission of gravitational waves. Such an emission
is expected to be detectable by LISA, due to the frequency range at wich typically
white dwarf binary systems are supposed to radiate (Hils et al. 1990). Also, single
pulsating white dwarfs are supposedly powerful sources of gravitational waves. In
particular, certain non-radial pulsational modes could be detectable by space-bone
detectors, since it can be shown that the frequency of the radiated gravitational
waves lies within the range of sensibility of LISA — see Garćıa-Berro et al. (2006)
and references therein. However, in order for LISA to be able to detect gravitational
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waves, it is of primordial importance to have a complete set of waveforms to which
the otherwise noisy signal which LISA will record can be compared. According to the
previous discussion the goals of the present thesis are, on the one hand, to develop
efficient numerical algorithms able to follow the hydrodynamical evolution of the
merger of binary systems and, on the other, to compute accurate gravitational wave
emission patterns of such systems in order to predict what LISA could eventually
detect. Additionally, we also pretend to study the gravitational wave emission of
single pulsating white dwarfs.

We have organized the present thesis in the following way. The first chapter
reviews the most relevant issues concerning the emission of gravitational waves. We
also review some of the most relevant aspects of pulsating white dwarfs and of white
dwarf binary systems. For the sake of completenes we also will provide some details
about the characteristics of LISA. Chapter 2 is devoted to study the gravitational
wave patterns of single pulsating white dwarfs and to analyze the ability of LISA to
detect them. It follows chapter 3, where we study the gravitational wave emission
of coalescing double white dwarfs binary systems. In both chapters we will pay
especial attention to the possible detectability of such signals by LISA. In chapter 4
we perform high resolution simulations of the merger of binary white dwarfs in order
to check the sensitivity of our results to the resolution employed in the calculations.
Finally in chapter 5 we analyze possible outcomes of the mergers studied in chapter
3 and 4. More specifically, we study if a massive white dwarf, GD 362, with very
anomalous surface composition could be the result of the merger of two white dwarfs.
This might bear important consequences because the origin of these peculiar white
dwarfs is still unknown. Finally, in chapter 6 we will draw our conclusions and some
possible future research lines will be pointed out.

Additionally, the most basic aspects of the gravitational wave theory are reviewed
in appendix A, whereas in appendix B we describe the most relevant features of our
numerical code. It is important to realize that in order to simulate an intrinsically
three-dimensional phenomenon like the coalescence of binary white dwarfs we have
used a technique called SPH (Smoothed Particle Hydrodynamics). The reader should
bear in mind that SPH is an approximate technique to solve the equations of fluid
dynamics. However, we will show that this technique is specially well suited for
the kind of problems we want to solve. This technique was first introduced by
Lucy (1977). Since then, it has been succesfully used in many fields, being perhaps
astrophysics one of the most relevant amongst them. We have used a previously
developed code (Guerrero et al. 2004) which already has been shown to be efficient
and to provide reliable results. Nevertheless, given the numerical difficulties which
must be faced when simulating the astrophysical situations which are studied in the
present thesis, a substantial part of the work which is described here has consisted
in improving its performance and reliability. More specifically, perhaps the most
relevant contributions — but not the only ones — have been the introduction of
a new prescription of artificial viscosity, the inclusion of individual timesteps for
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each of the particles and the parallelization of the code. Finally, in appendix C we
describe in some detail the technical details of our particular implementation of the
code, paying special attention to code parallelization and to the specially built-in
cluster of computers.





Chapter 1

Introduction

Gravitational waves are a direct consequence of General Relativity. Much effort has
been made to detect them, but due to the intrinsic experimental difficulties involved
in detection and data analysis no definite result has yet been obtained. Supernova
core collapse, binary systems involving compact objects and pulsating neutron stars
are, amongst others, promising sources of gravitational waves — see Schutz (1999)
for a comprehensive review of the subject. Moreover, with the advent of the cur-
rent generation of terrestrial gravitational wave detectors, like LIGO (Abramovici
et al. 1992), VIRGO (Acernese et al. 2004), GEO600 (Willke et al. 2004), or TAMA
(Takahashi & the TAMA Collaboration 2004), and of space-borne interferometers
like LISA (Bender 1998, 2000), gravitational wave astronomy will probably soon be
a possible reality.

1.1 The last window of astronomy: gravitational waves

The existence of gravitational waves is nowadays almost universally accepted. Essen-
tially, gravitational waves can be thought as ripples in space-time. In other words,
due to the fact that in General Relativity space and time become dynamical vari-
ables, certain ondulatory space-time solutions similar to those found in electromag-
netic theory can be found. Although very different in its concept, gravitational wave
detectors are intended to be the analogous of the traditional optical telescopes. This
new generation of telescopes will allow us to enter into a completely new range of
observational events, some of which might lead us to completely new scenarios or
even to new astrophysical paradigms.

There are different possible designs for such gravitational telescopes. Some of
them are based on laser interferometry and some other are based on material acous-
tic resonances, but all of them rely on the same physical principle. These detectors
are designed to measure the distorsion that is created by a gravitational wave as it
transverses a certain region of the space-time. Unfortunately these distorsions are
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extremely weak, making its detection an enormous challenge. The first one to point
out the possibility of detecting gravitational waves was Joseph Webber in the early
sixties. He designed a resonant antenna consisting in a 1.5 tons cilinder sorrounded
by some piezoelectric crystals. He showed that when a gravitational wave crosses the
detector, an electric signal would be emmitted. The cilinder mass and size were care-
fully chosen in order to make the fundamental vibrational frequency be coincident
with the expected gravitational wave frequency of a typical core collapse supernova
event. Unfortunately and despite the claims of Weber of several gravitational wave
detections, nowadays we know that his design was not sensitive enough. However,
his pioneering work started a global effort towards the construction of newer and
more sensitive detectors. Nowadays, resonant detectors have been notably improved
with respect to the original designs of Webber, although the underlying physical
principles are the same. Some good examples of them are the Italian AURIGA (Cer-
donio et al. 1993) project, the Dutch miniGRAIL (Coccia et al. 1998) sphere or the
United States ALLEGRO project.

However, in the last few years another detection method has been shown to be an
alternative to resonant detectors. Interferometric techniques have been proven to be
the best option in the endeavour of detecting gravitational waves. If a gravitational
wave transverses the arm of an interferometer the change in the arm-length must
be translated into a measurable change in the phase difference. The only problem
relies in the extremely small change that a gravitational wave will produce into
a laboratory-sized interferometer. In order to solve the problem kilometer-sized
detectors have been constructed in different countries around the world. In spite of
the gigantic size of such detectors, the change in the arm-length of the detector is still
almost at the limit of detectability — one thousandth the diameter of a proton for a
4 km arm-long interferometer — and supposes a tremendous technical effort. Some
examples of this type of detectors are the American detector LIGO (Abramovici
et al. 1992), the European VIRGO (Acernese et al. 2004), or the Japanese TAMA
(Takahashi & the TAMA Collaboration 2004). The frequency interval covered by this
kind of detectors ranges from a few Hz up to some tenths of kHz, being instrumental
noise the responsible of the upper limit and terrestrial noise of the lower one. Despite
these limitations, terrestrial interferometric detectors should in principle be able
to detect events like core-collapse supernova, rotating neutron stars or black hole-
neutron star mergers. Unfortunately, events like massive black hole mergers, emission
from galactic compact binaries or relic emission from the very early universe will be
by far out of the observable frequency range.

The main source of noise below 1 Hz in terrestrial detectors are gravitational
gradients induced by time variations of the local gravitational potential. Thus, the
only way of detecting smaller frequencies is by going into space. This is precisely the
aim of LISA (Laser Interferometer Space Antenna). This space mission will consist
basically in a giant Michelson Morley interferometer (Prince et al. 2007). It will use
a three-satellite constellation, which will form a 5 million kilometers sided equilateral
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triangle, in order to perform very accurate interferometric mesures of the distance
between the satellites as this distance changes when gravitational waves cross it —
see appendix A. The three satellites will orbit around the Sun in the ecliptic plane,
1 AU from the Sun and 20 degrees behind Earth. The natural free-fall orbits of
the three satellites maintain this triangular formation throughout time, with the
triangle appearing to rotate about its center once per year (Prince et al. 2007).
Possible variations of arm length due to orbital motion will not affect the results,
because the typical frequency of such changes is safely out of the observational range.

Despite being very simple in concept, LISA represents a huge technological chal-
lenge. There are many issues which are at the edge of the current technological
capabilities but perhaps one of the most serious problems of the mission is the so-
called drag-free mechanism. In order to ensure that the mesured changes of the
distance between the satellites are only due to gravitational waves, each of the satel-
lites will carry a platinum-gold test mass which must be in an as perfect as possible
free fall. These test masses will be used as an inertial reference for the local optical
assembly (Prince et al. 2007). Each one of the satellites will be moving around its
test mass acting as a shield for any external disturbance, sensing test mass position
and using on-board rockets to correct its position as necessary without changing
noticeably the trajectory of the test mass. It must be proven to be feasible and in
order to do so a previous mission, called LTP (LISA Test Package), will be launched
around 2010.

Another example of the technical difficulties is the beam dispersion of the interfer-
ometric laser. It will be so weakened after travelling the 5 million kilometers distance
between satellites that the signal must be received, amplified and returned with the
same phase and frequency as the incoming one. This has never been implemented in
any previous space mission (Schutz & Ricci 2001), but there are preliminary studies
that ensure that this can be indeed done. A detailed description of the mission is,
however, beyond the scope of this work. The reader interested in the technological
details of the LISA mission might take a look at the excellent review documents
available at http://lisa.esa.int and http://lisa.nasa.gov/.

For the purpose of this work it is nevertheless important to review some important
scientific issues of LISA. In particular, one of these issues is the range of frequencies
to which LISA will be sensitive. This frequency range that LISA will cover lies
between 1 and 1× 10−4 Hz approximately. This frequency interval is limited by the
test-mass acceleration noise in the low-frequency band, by the shot noise and the
optical-path measurement errors in the mid-frequency band and by the arm length
in the high-frequency band. An order of magnitude approximation of the minimum
gravitational wave signal that LISA will be able to detect is

h =
△l

l
∼ 10−23 (1.1)

in one year of observation, with a signal-to-noise ratio of 5. That is, LISA will be able
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Figure 1.1: Sources of gravitational waves of astrophysical interest. The expected dimen-
sionless strains are compared to the sensitivities of the two terrestrial major gravitational
wave detectors: LIGO and VIRGO, and to the expected sensitivity of LISA. In this figure
CC stands for core-collapse supernova, RNS for rotating neutron stars, BH-NS for black
hole-neutron star mergers, BH-BH for the coalescence of binary black holes, GB for Galactic
binaries and, finally, EI for extreme mass-ratio inspirals.

to measure variations of 0.05 picometers over a separation of 5 million kilometers
(Prince et al. 2007). This frequency and amplitude combination will cover some of
the most interesting known high-energy astrophysical events. In Fig. 1.1 we show a
comparison of the sensitivity limits of LISA, and the previously mentioned VIRGO
and LIGO. As can be seen both detectors complement the measurements that LISA
will eventually perform. In this figure are also shown the expected amplitudes and
frequencies in which some of the previously mentioned gravitational wave sources
would radiate.

Thus, due to the forthcoming operation of LISA, it is essential to develop a com-
plete set of waveforms to which the otherwise noisy signal which LISA will record can
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be compared. As previously said, one of the aims of the present thesis is to compute
such waveforms for two interesting and common astrophysical phenomena, the non-
radial pulsations of white dwarfs and the merging of binary systems of white dwarfs.
The next sections will be devoted to the study of the physics of such phenomena and
its relation with the LISA mission.

1.2 Gravitational waves from pulsating white dwarfs

As explained in detail in appendix A, the gravitational wave emission in the mass-
quadrupole approximation is given by

hTT
jk (t, ~x) =

2G

c4d
Q̈TT

jk (tr) (1.2)

where Q̈ stands for the second time derivative of the mass quadrupole and tr is the
retarded time. The order of magnitude of the gravitational wave signal will be then

h ∼ G

c4

Mv2

d
∼ G

c4

(

Ek

d

)

∼ 8 × 10−50

(

Ek

d

)

(1.3)

where Ek is the kinetic energy involved in the process leading to the emission of
gravitational waves and d is the distance to the source of gravtitational waves. Ac-
cordingly, it can be seen from Eq. (1.2) that only those mass displacements with a
non-zero mass quadrupole second derivative — that is, with non-symmetric acceler-
ated mass displacements — will radiate gravitational waves. Furthermore, in order
to obtain amplitudes of the order of 10−23 large masses and velocities are necessary.
For example, for an hypothetical process located at a distance of ∼ 10 kpc — which
is approximately the distance to the Galactic center — a kinetic energy of Ek ∼ 1048

erg would be needed for LISA to be able to detect the event.

One of the simplest astrophysical processes which can lead to the emission of
gravitational waves are non-radial pulsations of white dwarfs. White dwarfs are the
most numerous remnants of stellar evolution and apart from the obvious fact that
the non-radial pulsations of such star have a non-zero second time derivative of the
quadrupole moment, it can be easily seen that they involve enough kinetic energy to
become detectable because the relevant range of frequencies lies within the sensibility
band of LISA. Consider for example a white dwarf of ∼ 1M⊙ undergoing non-radial
oscillations with a period of ∼ 1 s and with an amplitude δR/R ∼ 10−4, which are
otherwise typical values for white dwarfs. The kinetic energy associated the mass
displacements of such stars is Ek ∼ Mv2 ∼ 1045 erg, which is not far from the
lower observational limit of LISA. Hence, gravitational wave emission from galactic
pulsating white dwarfs should in principle be a serious candidate to be detected by
LISA. Thus, in the remaining of this section we describe in some detail the main
characteristics of pulsating white dwarfs.
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Nowadays it is commonly believed that all stars pulsate during some phases
of their evolution. As first suggested by Eddington, for stellar pulsations to be
driven stellar material must be able to increase its net thermal energy content for
every thermodynamic cycle around its equilibrium state. The most widely accepted
driving mechanism is the so called κ mechanism. The opacity, κ, can be understood
as the capacity of a certain material for trapping electromagnetic radiation. Its
dependence on the density and temperature of the stellar material is given to a first
order approximation by Kramer’s law

κ ∝ ρ

T 7/2
(1.4)

It is easy to see that for an ideal gas when contraction is proceeding opacity
must decrease due to its highest sensibility to temperature. This would prevent any
thermal energy gain, thus damping any pulsation that might be eventually present.
However, the situation becomes different for the stellar regions in which the material
is partially ionized. When contraction proceeds in these regions, the temperature
does not rise as much as expected, due to the fact that some of the energy released
during contraction is used to further increase the degree of ionization. Consequently,
the density dependence dominates and the opacity of the stellar material increases.
On the contrary, when stellar material is expanding recombination takes place, re-
leasing energy which prevents the material to be cooled as much as it should be
expected. Consequently, again the density dependence dominates and the opacity
of the stellar material is reduced. As a result of this process, stellar material is able
to increase its thermal energy content and stellar pulsations are sustained. Accord-
ingly, and quite generally, stars — and most particularly, white dwarfs — pulsate
non-radially. Fig. 1.2 shows an example of a non-radial pulsation mode. These
non-radial pulsations can be classified into three basic types, depending on the main
restoring mechanism. For the case of the so-called p-modes the main restoring force is
pressure, whereas for g-modes the main restoring force is gravity. Finally, f -modes
are an intermediate case between p- and g-modes. In all the cases, these kind of
stellar oscillations have a typical pulsational time-scales of the order

τ ∼
√

Gρ (1.5)

Note that adopting a typical density of ∼ 106 g/cm3 for a white dwarf gives a
pulsational period of ∼ 1 s, which is well within the sensitivity band of LISA. Detailed
calculations show that pulsational periods of white dwarf range typically from a few
seconds — for f - and p-modes — up to 1000 seconds for g-modes.

White dwarfs can be classified in two main groups, the ones showing hydrogen
in their spectra — usually referred to as DA white dwarfs — and those which do
not show hydrogen in their spectra — known as non-DA white dwarfs. This latter
group can be further divided in several different subgroups according to their spectral
features — DO, DB, DQ, DC. . . Of particular interest for the forthcoming discussion
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Figure 1.2: Representation of a non-radial pulsational mode in a star.

are those white dwarfs which show He I spectral features — which are known as DB
white dwarfs — and those stars showing either pure He II spectra or mixed He I and
He II spectra — which are called DO white dwarfs. The former classification is valid
for both pulsating and non-pulsating white dwarfs. Additionally, amongst white
dwarfs, the ones showing periodic variations in their luminosity curves are called
variable white dwarfs. They can be classified into three main groups, according to
their physical properties and spectral type. ZZ Ceti stars (or DAV white dwarfs)
are variable white dwarfs with hydrogen-rich atmospheres, V777 Her stars (or DBV
white dwarfs) and GW Vir stars (or DOV white dwarfs) are variable white dwarfs
with hydrogen-deficient atmospheres — see Gautschy & Saio (1996) for an excellent
review.

Variable DO white dwarfs (DOV), also known as variable PG1159 white dwarfs,
are stars which are in an evolutionary phase somewhere between the planetary neb-
ulae phase and the white dwarf cooling phase. They have effective temperatures
ranging between 7.5 × 104 and 2× 105 K, surface gravities within log g = 5.5 and 8
and their typical luminosities are log(L/L⊙) ∼ 2. One of the basic characteristics of
these kind of variable stars is that they exhibit strong abundances of He II, C and
O and a complete lack of H. They are commonly beleived to end their lives as DB
white dwarfs after cooling and sedimentation of the heavier atmospheric elements
(Unglaub & Bues 2000). Typical pulsational periods for DOV stars range from 400
s up to 1800 s and all of them can be atributed to g-modes. The driving mechanism
for this modes is thought to be the C and O partial ionization zones (Starrfield et al.
1984).
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Variable DB white dwarfs (DBV) have temperatures which range between 2.2×
104 and 2.4 × 104 K, surface gravities of log g ∼ 8 and luminosities of log(L/L⊙) ∼
−1.2. As it is the case of DOV stars, they exhibit a lack of hydrogen but in this case
their atmospheres are made of pure He I and no heavy elements seem to be present.
They have typical pulsational periods ranging from 140 s up to 1000 s, which, again,
are thought to correspond to g-modes. In this case, the main pulsational driving
mechanism is thought to be the second He partial ionization zone (Bradley & Winget
1994).

Finally, the variable DA stars (DAV or ZZ Ceti) have temperatures which range
between 1.2 × 104 and 1.4 × 104 K, surface gravities of log g ∼ 8 and luminosities
of log(L/L⊙) ∼ −2.8. Unlike the other two types of variable white dwarfs, DAV
stars show large abundances of hydrogen in their espectra. Their typical pulsational
periods range between 100 s and 1000 s. In this case the main pulsational driving
mechanism is thought to be the partially ionized hydrogen region and, again, all the
observed pulsations are thought to correspond to g-modes (Dolez & Vauclair 1981;
Winget et al. 1982)

In chapter 2 we will study in detail the gravitational wave emission of several
representative models for each one of the three types of pulsating white dwarfs and
we will investigate whether the closest and well studied white dwarfs belonging to
each one of the families could be enventually detectable by LISA. In order to do so we
will use an up-to-date numerical code to compute the pulsational modes. Once we
have all the detailed properties of the pulsational modes we will be able to calculate
in detail its gravitational wave emission and the potential interest of the pulsating
white dwarfs for the LISA mission will be assessed.

1.3 Galactic white dwarf binaries

Another source of gravitational radiation are Galactic close binary systems involving
at least one compact object. Binary systems also have a non-zero second time
derivative of the quadrupole momentum and the strength of the arising gravitational
wave emission is large enough to be detectable by LISA. For instance, consider a
system of two white darfs of comparable masses M , and orbital separation R. The
orbital velocity is then given by

v ∼
√

GM

R
(1.6)

Adopting typical white dwarf masses of ∼ 1M⊙ and orbital separations of ∼
0.04R⊙ — see chapter 3 for details — an associated kinetic energy of Ek ∼ Mv2 ∼
1050 erg is obtained, making close white dwarf binary systems another guaranteed
source for LISA. It is believed that there are around 200 million close white dwarf
binary systems in our Galaxy. According to Evans et al. (1987) many of those systems
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have small enough separations in order to be brought in contact by gravitational wave
emission in time scales of 105 to 1010 yrs. These systems in the last few years before
the merger phase starts will produce a gravitational wave emission of h ≃ 10−21 with
frequencies ranging from 10 to 100 mHz. Hence, the Galactic white dwarf binary
population will contribute to generate a gravitational wave background which will
extend up to some mHz (Mironowski 1965; Evans et al. 1987; Prince et al. 2007)
masking any low-amplitude signal occuring in this frequency region.

The process of formation of close white dwarf binaries involves two mass transfer
episodes of the progenitor stars when each of the components of the binary system
evolves off the main sequence. Depending on when during the lives of the binary
components the mass transfer episodes occur the components may have different
core compositions. In particular, we may have He-He systems with a total mass
Mtot ≤ 0.75M⊙, He-CO for those systems with masss within the range 0.75M⊙ ≤
Mtot ≤ 1.45M⊙, CO-CO for masses larger than Mtot ∼ 1.45M⊙ and even He-ONe or
CO-ONe systems when one of the white dwarfs is a massive one. The fate of all these
systems is to merge due precisely to angular momentum loss by gravitational wave
radiation. It is expected that during the coalescence of these systems large amounts
of gravitational waves will be radiated. As it will be shown in detail in chapter 3,
coalescing white dwarf binary systems will emerge out of the confusion noise region
eventually becoming detectable events. Thus, studying in detail the coalescence of
close white dwarf binary systems is of the maximum interest to produce theoretical
waveforms to which the data obtained by LISA can be finally compared.

However, this is not the only reason why close white dwarf binary systems are
interesting targets. The coalescence process has been shown to result in a configu-
ration composed by a central compact object surrounded by an accretion disk. For
systems whose mass exceeds 1.4M⊙, if the accretion rate from the disk is moderate
enough, a type Ia supernova event becomes the most probable outcome. On the con-
trary, if the accretion rate is too high, an off-center ignition seems to be unavoidable
and an ONe white dwarf turns out to be the most probable outcome. Thus, studying
the properties of the final merged configuration also bears important consequences
for other astrophysical scenarios.

Nonetheless, type Ia supernova are not the only interesting astrophysical objects
which can be attributed to a merger of binary white dwarfs. Recently, there has
been an enhanced interest for studying a certain type of white dwarfs, the so-called
DAZ white dwarfs. These white dwarfs present hydrogen spectral features, high
photospheric metal abundances and, in some cases, a massive circumstellar disk
has been found surrounding them. The very high metal abundances cannot be
satisfactorily explained by normal white dwarf evolution, since due to their strong
gravity, at the typical white dwarf atmospheric temperatures, metals should sink
very rapidly in the atmospheres of these white dwarfs. Amongst other possibilities,
a merger of white dwarfs has been invoked as a possible explanation (Garćıa-Berro
et al. 2007).
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Finally, for the sake of completeness and despite the fact that this is beyond
the scope of the present thesis, it is worth mentioning here that there are still more
objects that are atributed to a white dwarf merger. For instance, sdB and RCrB are
other examples of possible merger remnants. According to this discussion, we will
devote chapter 3 to study the expected gravitational waveforms during the coales-
cence. In chapter 4 we will discuss the effects of the adopted spatial resolution. To
do this a set of high-resolution white dwarf merger simulations will be discussed. We
will pay attention not only to the merging process but also to the long term evolu-
tion of the remnant system. Finally, in chapter 5 we will demonstrate that possibly
one of the observed DAZ white dwarfs with circumstellar disk, GD362, might be the
result of a merger of white dwarfs.



Chapter 2

The gravitational wave radiation

from pulsating white dwarfs

In this chapter the emission of gravitational radiation from pulsating white dwarfs
is considered. This is done by using an up-to-date stellar evolutionary code cou-
pled with a state-of-the-art pulsational code. The emission of gravitational waves
is computed for a standard 0.6M⊙ white dwarf with a liquid carbon-oxygen core
and a hydrogen-rich envelope, for a massive DA white dwarf with a partially crys-
tallized core for which various ℓ = 2 modes have been observed (BPM 37093) and
for PG 1159−035, the prototype of the GW Vir class of variable stars, for which
several quadrupole modes have been observed as well. We find that these stars do
not radiate sizeable amounts of gravitational waves through their observed pulsation
g-modes, in line with previous studies. We also explore the possibility of detect-
ing gravitational waves radiated by the f -mode and the p-modes. We find that in
this case the gravitational wave signal is very large and, hence, the modes decay
very rapidly. We also discuss the possible implications of our calculations for the
detection of gravitational waves from pulsating white dwarfs within the framework
of future space-borne interferometers like LISA.

2.1 Introduction

Despite its potential interest, the emission of gravitational waves by pulsating white
dwarfs has been little explored up to now. Apart from the pionering work of Osaki
& Hansen (1973), only the gravitational wave radiation of rotating white dwarfs
undergoing quasi-radial oscillations has been studied so far — see Benacquista et al.
(2003) and references therein. White dwarfs are the most common end-point of
the evolution of low- and intermediate-mass stars. Hence, white dwarfs constitute,
by far, the most numerous stellar remnants in our Galaxy, outnumbering neutron
stars. Moreover, the relative simplicity of their physics allows us to obtain very
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detailed models which can be ultimately compared with their observed properties.
Among white dwarfs there are three specific families of variable stars, known as
ZZ Ceti (or DAV, with hydrogen-rich envelopes and Teff ∼ 12 000 K), V777 Her
(or DBV, with helium-rich envelopes and Teff ∼ 25 000 K) and GW Vir stars (or
variable PG 1159 objects, with envelopes which are rich in carbon, oxygen and
helium, and Teff ranging from ∼ 80 000 to 150 000 K), which show periodic variations
in their light curves — see Gautschy & Saio (1995, 1996) for reviews. The typical
periods are within ∼ 100 s and ∼ 2 000 s and, consequently, lay in the region of
frequencies to which LISA will be sensitive. The luminosity changes of these variable
stars have been successfully explained as due to nonradial g-mode pulsations. At
present, there is a general consensus that variable white dwarfs are very interesting
targets for pulsational studies. Their very simple internal structures allow us to
predict theoretically the pulsational frequencies with a very high degree of detail
and sophistication. Also, they have a very rich spectrum of frequencies which may
give us information about the stellar mass, the core composition, the mass of the
surface helium and hydrogen layers (if present), the angular speed of rotation and
the strength of the magnetic field — see, for instance, Pfeiffer et al. (1996) and
Bradley (1998, 2001), amongst others. Consequently, it is not surprising that in
recent years ZZ Ceti and V777 Her white dwarfs, as well as GW Vir stars, have been
the preferred targets for the network called the “Whole Earth Telescope” (WET).
WET observations have been of an unprecedent quality, and in some cases have
allowed us to disentangle the internal structure and evolutionary status of several
white dwarf stars by applying the powerful tools of asteroseismology (Nather 1995;
Kawaler 1998)

BPM 37093 is the most massive pulsating white dwarf ever found (Kanaan et al.
1992). It is a massive ZZ Ceti star — that is, with a hydrogen-rich atmosphere —
with a stellar mass of ∼ 1.05M⊙, and an effective temperature Teff ≃ 11 800 K.
BPM 37093 has been thoroughly studied (both theoretically and observationally)
because presumably it should have a sizeable crystallized core (Winget et al. 1997).
Hence, for BPM 37093 we have detailed models (Montgomery & Winget 1999;
Córsico et al. 2005) and extensive observational data (Kanaan et al. 2005). One
of the most apparent modes of BPM 37093 has a period P = 531.1 s, very close
to the frequency of maximum sensitivity of LISA and pulsates with ℓ = 2. Since
ℓ = 1 modes do not radiate gravitational waves it turns out that only ℓ = 2 modes
are relevant for the emission of gravitational waves, thus making BPM 37093 an
especially suitable target for LISA. Moreover, the distance to BPM 37093 is known
(d = 16.8 pc). Consequently, a detailed study of the possibilty of detecting the grav-
itational waves emitted by this star is of the maximum interest, but still remains
to be done. On the other hand, PG 1159−035, the prototype of the GW Vir class
of objects, has a complex spectrum with several ℓ = 2 modes (Winget et al. 1991).
Unfortunately there is no reliable parallax determination for PG 1159−035. Werner
et al. (1991) provide d ∼ 800+600

−400 pc, whereas Kawaler & Bradley (1994) obtained
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d ≃ 400±40 pc. However, a spectroscopic determination of its mass (M⋆ ≃ 0.54M⊙)
is available. These are, to the best of our knowledge, the only two known white dwarf
pulsators with confirmed quadrupole g-modes.

We have first computed the gravitational waves radiated by a typical 0.6M⊙

white dwarf with a carbon-oxygen core and a 10−4 M⋆ hydrogen envelope, which
we regard as our fiducial model. For this model white dwarf we first compute the
gravitational waves emitted by g-modes. Then we compute the gravitational waves
emitted by BPM 37093 and PG 1159−035, the only two known white dwarfs with
quadrupole g-modes. As it will be shown below, we have found that the fluxes
radiated away by these two stars in the form of gravitational waves are very small.
This is why we also explore other possibilities. In particular we have also computed
the fluxes radiated by the f - and p-modes, independently of the lack of observational
evidence for these modes in pulsating white dwarfs.

2.2 Imput physics and method of calculation

2.2.1 Nonradial pulsation modes

Unno et al. (1989) and Cox (1980) give details of nonradial stellar pulsations. Here
we give a brief overview of the basic properties of nonradial modes. Briefly, nonradial
modes are the most general kind of stellar oscillations. There exist two subclasses
of nonradial pulsations, namely spheroidal and toroidal modes. Of interest in this
chapter are the spheroidal modes, which are further classified into g-, f - and p-modes
according to the main restoring force acting on the oscillations, gravity for the g-
and f -modes and pressure for the p-modes.

For a spherically symmetric star, a linear nonradial pulsation mode can be repre-
sented as a standing wave of the form Ψ′

k,ℓ,m(r, θ, φ, t) = Ψ′

k,ℓ,m(r) Y m
ℓ (θ, φ) eiσk,ℓ,mt,

where the prime indicates a small eulerian perturbation of a given quantity Ψ (like
the pressure, gravitational potential,. . . ) and Y m

ℓ (θ, φ) are the corresponding spher-
ical harmonics. Geometrically, ℓ is the number of nodal lines on the stellar surface
and m is the number of such nodal lines in longitude. In the absence of any physical
agent able to remove spherical symmetry (like magnetic fields or rotation), the eigen-
frequencies σk,ℓ,m are dependent on ℓ but are 2ℓ+1 times degenerate in m. Ψ′

k,ℓ,m(r)
is the radial part of the eigenfunctions, which for realistic models necessarily must
be computed numerically together with σk,ℓ,m. The index k (known as the radial
order of the mode) represents, in the frame of simple stellar models (like those of
white dwarf stars which we shall study below), the number of nodes in the radial
component of the eigenfunction. Generally speaking, g-modes are characterized by
low oscillation frequencies (long periods) and by displacements of the stellar fluid
essentially in the horizontal direction. At variance, p-modes have high frequencies
(short periods) and are characterized by essentially radial displacements of the stel-
lar fluid. Finally, there is a single f -mode for a given ℓ (≥ 2) value. This mode
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does not have any node in the radial direction (k = 0) and possesses an intermediate
character between g- and p-modes. Its eigenfrequency lies between that of the low
order g- and p-modes, and generally slowly increases when ℓ increases. For g-modes
(p-modes), the larger the value of k the lower (higher) the oscillation frequency.

2.2.2 Numerical codes

We compute the nonradial pulsation modes of the white dwarf models considered in
this work with the help of the same pulsational code described in detail in Córsico
et al. (2001a, 2002). The code, which is based on a standard finite differences scheme,
provides very accurate oscillation frequencies and nonradial eigenfunctions, and has
been employed in numerous works on white dwarf pulsations — see, for instance,
Córsico et al. (2004) and references therein. The code solves the fourth-order set of
equations governing newtonian, linear, nonradial stellar pulsations in the adiabatic
approximation following the dimensionless formulation given in Unno et al. (1989).
To build up the white dwarf models needed for our pulsational code we employed
the LPCODE evolutionary code described in detail in Althaus et al. (2003, 2005b).
Our evolutionary code contains very detailed physical ingredients. A full description
of these physical ingredients can be found in Althaus et al. (2003, 2005b) where
an extensive description of these inputs is done. However, we will summarize here
the most important inputs. For instance, the equation of state includes partial ion-
ization, radiation pressure, ionic contributions, partially degenerate electrons and
Coulomb interactions. For the white dwarf regime, we include an updated version
of the equation of state of Magni & Mazzitelli (1979). The code uses OPAL radia-
tive opacities — including carbon- and oxygen-rich compositions — for arbitrary
metallicity from Iglesias & Rogers (1996) and molecular opacities from Alexander &
Ferguson (1994). High-density conductive opacities are taken from Itoh et al. (1994)
and the references cited there, whereas neutrino emission rates are those of Itoh et al.
(1996), and references therein. The stellar models for BPM 37093 and PG 1159−035
discussed below have been derived from full evolutionary calculations that take into
account the history of the progenitor stars — see Althaus et al. (2003, 2005b) for
details. During the white dwarf cooling phase, the effects of time-dependent element
diffusion have been considered in the calculations.

2.2.3 Gravitational waves from a pulsating white dwarf

The basic formalism for deriving the gravitational wave radiation of pulsating objects
(either white dwarfs or neutron stars) is well known — see, for instance, Osaki &
Hansen (1973). We will extend it to the case in which a white dwarf has a partially
crystallized core. Generally speaking, the amplitude of a gravitational wave emitted
from any slow-moving source in the quadrupole approximation is given by (Misner
et al. 1973)
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hTT
ij =

2G

c4d
Q̈TT

ij , (2.1)

where “TT” stands for the traceless-transverse gauge, d for the distance, and Q is
the quadrupole moment of the mass distribution, which is defined as

Qij =

∫

R3

ρ(~r)(3xixj − δijr
2)d3r (2.2)

As previously stated, we assume that the spatial and temporal behavior of the the
perturbed density profile is provided by the following expression:

ρ(~r, t) = ρ0(r) + ρ′(r)Re
(

Y m
ℓ (θ, φ)eiσt

)

(2.3)

where ρ0 is the unperturbed density profile, ρ′(r) stands for the radial perturbation
of the density profile, Y m

ℓ (θ, φ) are the spherical harmonics, and σ is the pulsational
frequency. As we are dealing with ℓ = 2 modes, and since the emission of gravita-
tional waves in this case will be the same for all the values of m, we shall choose
the simplest case. That is, we adopt ℓ = 2 and m = 0. Additionally, it must be
taken into account that BPM 37093 has a sizeable crystallized core. Therefore, the
appropriate boundary conditions differ from those of an ordinary star. Particularly,
the boundary condition at the stellar center (when crystallization has not yet set in)
is that given by Osaki & Hansen (1973). However, when the core of the white dwarf
undergoes crystallization we switch the fluid internal boundary conditions to the
so-called “hard sphere” boundary conditions (Montgomery & Winget 1999). Within
this approximation the nonradial eigenfunctions are inhibited from propagating in
the crystallized region of the core. Consequently, and keeping in mind that for the
axisymmetric case Q11 = Q22 = −1

2
Q33 and Qij = 0 if i 6= j (Osaki & Hansen 1973),

the following expression can be easily obtained

Q33 =

∫ 2π

0

dφ

∫ π

0

√

5

16π
sin θ(cos2 θ − 1)(3 cos2 θ − 1)dθ

∫ R⋆

R0

r4ρ′(r) cos(σt) dr (2.4)

where R⋆ and R0 are the stellar radius and the radial coordinate of the crystallization
front, respectively. By using Poisson’s equation

4πGρ′(r) =
1

r2

d

dr

(

r2 dΦ′

dr

)

− 6

r2
Φ′ (2.5)

and Eq. (2.4) it can be shown after a straightforward calculation that the dimen-
sionless strain, hTT

33 , is given by
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hTT
33 ≈ 5 × 10−18

(M⋆

M⊙

)(R⋆

R⊙

)2( ν

1mHz

)2(1 pc

d

)

[

A(R⋆) − FµF 2
RA(R0)

]

cos(σt) (2.6)

being ν = 2πσ the frequency of the signal and

A(r) ≡ y4 − 2y3

y3 ≡ Φ′

gr

y4 ≡ 1

g

dΦ′

dr
(2.7)

Fµ ≡ M0

M⋆

FR ≡ R0

R⋆

In these expressions Φ′ is the perturbed gravitational potential, g is the gravitational
acceleration at a given radius, M⋆ and R⋆ are the mass and radius of the star, and M0

and R0 are the mass and radius of the crystallized core of the white dwarf. Obviously,
in the non-crystallized case, M0 and R0 are identically zero (corresponding to the
stellar center). The advantage of the previously described formalism is that the
quantities y3 and y4 can be easily tabulated for a typical stellar model, whereas the
rest can be observationally obtained. Finally, the luminosity radiated in the form of
gravitational waves is (Osaki & Hansen 1973):

LGW ≈ 1036
(M⋆

M⊙

)2(R⋆

R⊙

)4( ν

1mHz

)6

[

A(R⋆) − FµF 2
RA(R0)

]2

(2.8)

2.3 Results

2.3.1 Gravitational wave signal

Fig. 2.1 shows the run, as a function of the mass coordinate, of the functions y3 — left
panels — and y4 — right panels — discussed in §2.2.3 for the g-modes of our fiducial
model (a typical 0.6M⊙ white dwarf made of carbon and oxygen with a liquid core
and hydrogen envelope of 10−4M∗), for BPM 37093 — a massive (M⋆ ≃ 1.05M⊙)
white dwarf, with a sizeable crystallized core — and for PG 1159−035, the other
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Figure 2.1: Run of the y3 — left panels — and y4 — right panels — eigenfunctions for
the g-modes of a typical 0.6 M⊙ white dwarf — top panels — for BPM 37093 — central
panels — and for PG 1159−035 — bottom panels — as a function of the mass coordinate
log(1−m/M⋆). For the case of BPM 37093 the crystallized core is shown as a hatched area.
See text for details.

known white dwarf with unambiguously identified quadrupole g-modes. The frac-
tional change in radius due to pulsations, δR⋆/R⋆, must not necessarily be the same
for each pulsation mode. However, the linear theory of nonradial pulsations does
not provide any indication of the value of the fractional change in radius, since the
governing equations are homogeneous and the normalization of the eigenfunctions
is arbitrary (Cox 1980). In addition, δR⋆/R⋆ is poorly constrained by the observa-
tions, since the luminosity variations of pulsating white dwarfs are almost exclusively
caused by changes in temperature, not by their radius variations (Robinson et al.
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1982). Thus, we have adopted, somewhat arbitrarily, that the fractional change in
radius due to pulsations is δR⋆/R⋆ = 10−4 for all the considered modes, which is a
typical value for pulsating white dwarfs, and reasonably reproduces the amplitude
of the observed light curve (Robinson et al. 1982).

We discuss the results obtained for our fiducial model (top panels of Fig. 2.1).
We have chosen to display the quadrupole (ℓ = 2) g-mode with radial order k = 25,
which has a period P = 678.22 s. As can be seen the functions y3 and y4 are small
everywhere in the star, their amplitudes being of the order of ∼ 10−6 and ∼ 10−4,
respectively. Moreover, the amplitudes are only significant for the central regions
of the white dwarf. For the case of BPM 37093 — central panels — we show the
quadrupole g- mode with k = 27. This g-mode has a period P = 536.4 s, which is
very close to one of the observed periods, P = 531.1 s. Since BPM 37093 is a massive
white dwarf, a sizeable region of its core is crystallized. This region is clearly marked
in the central panels of Fig. 2.1 as a shaded area. We note that in this region the
amplitudes of both y3 and y4 are null. For the PG 1159−035 model — bottom panels
— we display the quadrupole mode with k = 30, which best fits the observed period
of P = 423.2 s. This mode has a period P = 423.8 s, thus providing an excellent fit
to the observational data.

In Table 2.1 we summarize the most important results for several g-modes of
the models computed so far. We have assumed that all of the observed periods
in BPM 37093 and in PG 1159−035 in Table 2.1 are ℓ = 2, following the works
by Kanaan et al. (2005) and Winget et al. (1991), respectively. The maximum
dimensionless strain, hmax for BPM 37093 has been computed adopting the measured
distance to the source (d = 16.8 pc), whereas for our fiducial model we have adopted
a distance d = 50 pc, which we consider to be representative of a typical white dwarf.
For the case of PG 1159−035 we have adopted a distance of 400 pc, in line with the
determinations of Werner et al. (1991) and Kawaler & Bradley (1994). Column
7 provides the luminosity radiated away in the form of gravitational waves, LGW,
computed with Eq. (2.8). In the last column of Table 2.1 we list the kinetic energy
of each of the modes. In general, the agreement between the computed and the
observed periods is rather good for all the modes, both for the case of BPM 37093
and for PG 1159−035. However, the amplitudes of the dimensionless strains are
small in all cases. This is also the case for the luminosities radiated away in the
form of gravitational waves. In the best of the cases BPM 37093 radiates away
∼ 1019 erg/s in the form of gravitational waves, whereas PG 1159−035 radiates
away a much more modest amount, only ∼ 1017 erg/s.

For our fiducial model — third section of Table 2.1 — the larger the radial order
k, the smaller the dimensionless strain and the smaller the luminosities radiated
away in the form of gravitational waves. In particular, an increase from k = 1 to
k = 10 produces a reduction of a factor of almost 4× 102 in the dimensionless strain
and of 3 × 106 in the flux of gravitational waves. The reductions when considering
the k = 20 mode are much more modest. This is because low-k modes sample
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Table 2.1: Summary of the gravitational wave emission of the g-modes of BPM 37093 and
PG 1159−035. Our fiducial model is also shown for comparison. In all cases we have
adopted δR⋆/R⋆ = 10−4. The first column lists the model. The second column corresponds
to its respective mass. In the third column we show the radial order, k, of the computed
g-mode. The observed and the computed periods (in seconds) are given in columns 4 and 5,
respectively. In column 6 we give the maximum dimensionless strain, hmax. Column 7 lists
the luminosity in the form of gravitational waves and column 8 lists the kinetic energy of
the modes.

Model M/M⊙ k Po Pc hmax LGW log(EK)
(s) (s) (erg/s) (erg)

BPM 37093 1.10 26 511.7 516.7 4.8 × 10−28 9.2 × 1018 46.4
27 531.1 536.4 5.4 × 10−28 1.1 × 1019 46.5
28 548.4 555.8 5.3 × 10−28 9.9 × 1018 46.6
29 582.0 574.9 6.4 × 10−28 1.3 × 1019 46.7
30 600.7 593.0 6.4 × 10−28 1.2 × 1019 46.8
32 633.5 630.4 5.5 × 10−28 8.3 × 1018 46.9

PG 1159−035 0.54 25 352.7 358.9 1.0 × 10−30 5.0 × 1016 44.0
30 423.8 423.2 2.3 × 10−30 1.7 × 1017 43.8
50 694.9 684.5 3.5 × 10−31 1.6 × 1015 43.4
55 734.2 752.9 2.0 × 10−31 4.1 × 1014 43.3
60 812.6 818.1 1.8 × 10−31 2.8 × 1014 43.2
70 968.7 950.1 6.0 × 10−32 2.5 × 1013 42.8

0.6 M⊙ 0.6 1 — 66.6 6.9 × 10−25 1.0 × 1028 47.0
10 — 310.3 1.8 × 10−27 3.1 × 1021 44.8
20 — 555.2 1.5 × 10−27 6.6 × 1020 45.1

the core more than high-k modes, and since the core has a higher density, larger
mass motions are produced, and hence more gravitational wave losses are produced.
Nevertheless, both the dimensionless strains and the fluxes of gravitational waves
are in this case much larger than those found for BPM 37093 and PG 1159−035.
For the case of BPM 37093 pulsations occur only in a small region of the star as a
result of its crystallized core. Thus, despite its mass being much larger than that of
our fiducial model, the emission of gravitational waves is strongly inhibited. For the
case of PG 1159−035, the most important reason why so few gravitational waves are
radiated away is its small mass (and average density).

Given the results obtained for the quadrupole g-modes studied up to now we ask
whether other modes, namely the f - and p-modes, of pulsating white dwarfs can
radiate away a measurable amount of gravitational waves. Thus, we have extended
our calculations to incorporate such modes, despite the lack of observational evidence
for them. Obviously, for these modes we do not know the appropriate value of
δR⋆/R⋆, since the estimate δR⋆/R⋆ = 10−4 is based on observed g-modes in white
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Table 2.2: Summary of the gravitational wave emission of the f - and p-modes of BPM 37093 and PG 1159−035. Our fiducial model
is also shown for the sake of comparison. In all cases we have adopted δR⋆/R⋆ = 10−4. We show the model (first column), its
respective mass (second column), the considered mode (third column), the radial order (fourth column), the respective frequency of
the mode (fifth column), the dimensionless strain (sixth column), the luminosity radiated away in the form of gravitational waves
(seventh column) and the kinetic energy (last column).

Model M/M⊙ Mode k ν hmax LGW log(EK)
(Hz) (erg/s) (erg)

BPM 37093 1.10 f 0 2.7 × 10−1 6.6 × 10−19 3.4 × 1041 49.2
p 1 9.3 × 10−1 9.1 × 10−20 7.7 × 1040 47.8

PG 1159−035 0.54 f 0 4.8 × 10−2 1.2 × 10−22 2.1 × 1035 45.5
p 1 5.9 × 10−2 7.1 × 10−23 5.1 × 1034 44.6

0.6M⊙ 0.60 f 0 8.8 × 10−2 5.6 × 10−20 2.3 × 1039 47.0
p 1 1.8 × 10−1 6.4 × 10−21 1.3 × 1038 48.6
p 5 4.6 × 10−1 6.1 × 10−21 7.5 × 1038 46.0
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Figure 2.2: Same as Fig. 2.1 for the f -mode of our 0.6 M⊙ fiducial model, for BPM 37093
and for PG 1159−035.

dwarfs. However, for the calculations reported here we adopted the same value.
Fig. 2.2 shows the run of the functions y3 and y4 for f -modes of our fiducial model,
for BPM 37093 and for PG 1159−035. As is the case for all f -modes the radial order
is zero, and their respective periods are (from top to bottom): 11.35 s, 3.7 s and
20.9 s. The functions y3 and y4 are much larger than in the case previously studied.
In this case the functions y3 and y4 have large amplitudes everywhere and do not
vanish at the surface. Consequently, we expect that a large number of gravitational
waves can be radiated away. This is indeed the case, as can be observed in Table 2.2.
For all the f -modes of the three models presented here the dimensionless strains are
several orders of magnitude larger and, moreover, the luminosities radiated away
are much larger than the optical luminosities, even of the order of 1041 erg/s in the
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Figure 2.3: Same as Fig. 2.1 for the p-modes of our 0.6 M⊙ fiducial model, for BPM 37093
and for PG 1159−035.

case of BPM 37093. This, in turn, could have important consequences since it could
provide one of the possible reasons why these modes have not been observed thus
far: if they are excited they are quickly damped by emission of gravitational waves.

Now we turn our attention to the p-modes. Again, we show the run of the y3 and
y4 functions of the p-modes in terms of the mass coordinate for our three models in
Fig. 2.3. We have chosen to show the k = 25 mode for all three cases. Their respective
periods are P = 0.56 s for our fiducial 0.6M⊙ model, P = 0.11 s for BPM 37093 and
P = 2.26 s for PG 1159−035. The amplitudes of the y3 and y4 functions for p-modes
are much smaller than those of the corresponding f -modes, and comparable to the
corresponding g-modes studied before. In addition, in contrast to the situation for
the f -modes, the amplitudes of y3 and y4 are almost negligible in regions close to the
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surface of the white dwarf. However, because the pulsation frequencies of p-modes
are considerably higher than those of the f - and g-modes, the dimensionless strains
— see Table 2.2 — are consequently large and the corresponding gravitational wave
luminosities are very large as well, although roughly one order of magnitude smaller
than those obtained for the f -modes.

2.3.2 Detectability

In order to check whether LISA would be able to detect the pulsating white dwarfs
studied here we have assumed that the integration time of LISA will be one year.
The signal-to-noise ratio, η, is given by:

η2 =

∫ +∞

−∞

h̃2(σ)

S(σ)

dσ

2π
(2.9)

where S(σ) = Sh(σ)τ is the sensitivity of LISA, τ is the integration period, h̃(σ) is the
Fourier Transform of the dimensionless strain, and σ has been previously defined. It

can easily be shown that for a monochromatic gravitational wave η = h(σ)/S
1/2

h (σ).
We have adopted a signal-to-noise ratio η = 5. We have furthermore used the
integrated sensitivity of LISA as obtained from http://www.srl.caltech.edu/

∼shane/sensitivity. The results of this procedure are shown in Figs. 2.4, 2.5
and 2.6 for our fiducial model (0.6M⊙ carbon-oxygen white dwarf), for BPM 37093
and for PG 1159−035, respectively. In all three figures the g-modes are shown as
circles, the f -mode is shown as a square and the p-modes are displayed as triangles.
As done previously, for our fiducial model we have adopted a distance of 50 pc, for
PG 1159-035 we have assumed a distance of 400 pc, and for BPM 37093 we have
used its measured distance (16.8 pc). As can be seen, for none of the three cases
studied here will LISA be able to measure the dimensionless strains of the g-modes,
even at a reduced signal-to-noise ratio. Most of the p-modes will not be observed
as well, either because their frequencies are too high to be observed by LISA or
because they are too weak. Moreover, given that these modes radiate huge amounts
of energy in the form of gravitational waves they become quickly damped and, con-
sequently, it will be very difficult to detect them. Particularly, and given that for
the p-modes studied here the time-averaged dissipation rates of pulsations due to
radiative (photons) heat leakage and neutrino losses are much smaller than the lu-
minosity radiated as gravitational waves, an estimate of the damping timescale, τd,
can be easily obtained by considering the kinetic energy of the mode, EK , which can
be easily computed from our numerical models:

τd ≃ 2EK

LGW

(2.10)

For instance, for the p-mode with k = 1 of BPM 37093 one obtains τd ≃ 0.5 yr,
which clearly is too short to allow a detection.
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Figure 2.4: A comparison of the signal produced by the quadrupole g-modes of our fiducial
model — circles — by the f -mode — square — and by the p-modes — triangles — with the
spectral distribution of noise of LISA for a one-year integration period, and assuming that
the source is located at 50 pc.

Finally, the three f -modes of the models presented here lay in the appropri-
ate range of frequencies and, additionally, they are well over the sensitivity curve of
LISA. However, as was the case for the p-modes, they also radiate very large amounts
of gravitational waves and, hence, they will be quickly damped, hampering the pos-
sibility of detection. In this case we obtain a damping timescale τd ≃ 2.9 yr for the
f -mode of BPM 37093. Although the luminosity radiated away in the form of grav-
itational waves is larger for the f -mode than for the p-mode considered previously,
the damping timescale is larger. This is so because the kinetic energies involved are
quite different: EK = 1.54 × 1049 erg for the f -mode and EK = 6.42 × 1047 erg for
the p-mode with k = 1. For the sake of completeness we present in Table 2.2 all the
relevant information for the p- and f -modes that may be detected.
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Figure 2.5: Same as Fig. 2.4 for the case of BPM 37093. The distance in this case is known,
d = 16.8 pc.

2.4 Discussion and conclusions

In this chapter we have computed the gravitational wave emission of pulsating white
dwarfs. We have started by computing the gravitational wave radiation of white
dwarfs undergoing nonradial g-mode pulsations, which are currently observed in a
handful of pulsating white dwarfs. We have focused on three model stars. Our
fiducial model corresponds to an otherwise typical 0.6M⊙ model white dwarf with
a carbon-oxygen fluid core and a hydrogen envelope. We have also paid attention to
two additional white dwarf models, corresponding to two stars for which quadrupole
g-modes have been observed so far, namely, BPM 37093 and PG 1159−035. We have
shown that in these cases the gravitational wave signal is too weak to be observed by
future space-borne interferometers, like LISA. We have found that the luminosities in
the form of gravitational waves radiated away by these stars and the corresponding
dimensionless strains are very small in all the cases, in agreement with the pioneering
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Figure 2.6: Same as Fig. 2.4 for the case of PG 1159−035. Since the distance to PG 1159−035
is not accurately known we have adopted d = 400 pc, which is a reasonable estimate.

work of Osaki & Hansen (1973). Hence, all these sources contribute to the Galactic
noise and no individual detections are expected, despite the proximity of the sources.
For completeness we have computed the gravitational wave emission of white dwarfs
undergoing nonradial f - and p-mode oscillations, even if these modes have not been
observationally detected. We have found that for white dwarfs undergoing this kind
of pulsation the luminosities in the form of gravitational waves radiated away are
very large in all the cases, in line with the earlier results of Osaki & Hansen (1973).
Consequently, these modes, if excited, should be very short-lived, thus hampering
their eventual detection.

It may seem that for the case of pulsating white dwarfs undergoing g-mode
oscillations there could still be a possibility of indirect detection by measuring the
secular rate of change of the period of the observed modes. However, this is not the
case. The secular rate of change of the period of a pulsating white dwarf is given by
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Ṗ

P
= −a

Ṫ

T
+ b

Ṙ⋆

R⋆
(2.11)

where T is the temperature of the isothermal core and a and b are constants of order
unity which depend on the chemical composition, thicknesses of the H atmosphere
and He buffer, equation of state, and other ingredients involved in the modeling of
white dwarfs. For DA white dwarfs in the ZZ Ceti instability strip, the second term
of the right hand side of Eq. (2.11) is usually negligible and, thus, the secular rate
of change of the period only reflects the speed of cooling — see, for instance, Isern
et al. (1992) and references therein — whereas for GW Vir stars this term is relevant,
but can be accounted for by the theoretical models and, hence, the speed of cooling
can also be derived. However, any additional source of cooling — like gravitational
waves — would eventually translate into an anomalous rate of period change (Isern
et al. 1992)

Ṗo

Ṗc

− 1 =
LGW

L + Lν
(2.12)

where Po is the observed period, Pc is the computed period without taking into
account the emission of gravitational waves, Lν is the neutrino luminosity — which
is important for hot white dwarfs — and the rest of the symbols are as previously
defined. The rate of secular period change has been measured for some pulsating
white dwarfs. Particularly, for G117-B15A (Kepler et al. 2000) it has been possible
to measure the secular variation of the main observed period of 215.2 s, Ṗ = (2.3 ±
1.4)×10−15 s s−1, with unprecedented accuracy. This white dwarf is the most stable
optical clock known, and has been used to pose tight constraints on the mass of
the axion (Córsico et al. 2001b) and the rate of variation of gravitational constant
(Benvenuto et al. 2004). Other pulsating white dwarfs — like L 19-2 and R 548 —
also have determinations of the secular rate of period change but are not as accurate
as that of G117-B15A. Note, however, that for a 0.6M⊙ white dwarf undergoing
quadrupole g-mode oscillations with a period of P ∼ 200 s the right hand side of
Eq. (2.12) is 2 × 10−10 and Pc ∼ 10−15 s s−1. In other words the gravitational
radiation will produce a change in Ṗ ∼ 10−25 s s−1, making impossible such an
indirect detection even if accurate observational data and reliable theoretical models
eventually become available. Again, the only case of interest here would be the case
in which LGW ∼ L + Lν , which may be true for the f - and p-mode pulsators.





Chapter 3

Gravitational wave radiation

from the coalescence of white

dwarfs

In this chapter we compute the emission of gravitational radiation from the merg-
ing of a close white dwarf binary system. This is done for a wide range of masses
and compositions of the white dwarfs, ranging from mergers involving two He white
dwarfs, mergers in which two CO white dwarfs coalesce to mergers in which a massive
ONe white dwarf is involved. In doing so we follow the evolution of binary system us-
ing a Smoothed Particle Hydrodynamics code. Even though the coalescence process
of the white dwarfs involves considerable masses, moving at relatively high velocities
with a high degree of asymmetry we find that the signature of the merger is not very
strong. In fact, the most prominent feature of the coalescence is that in a relatively
small time scale (of the order of the period of the last stable orbit, typically a few
minutes) the sources stop emitting gravitational waves. We also discuss the possi-
ble implications of our calculations for the detection of the coalescence within the
framework of future space-borne interferometers like LISA.

3.1 Introduction

As already mentioned, one of the most promising sources of gravitational waves are
galactic binary systems containing at least one compact object. Galactic binaries,
such as neutron stars binaries, cataclysmic binaries or close white dwarf binaries, are
guaranteed sources for LISA (Mironowski 1965; Evans et al. 1987), provided that the
sources are at sufficiently close distances. In fact, emission from Galactic close white
dwarf binary systems is expected to be the dominant contribution to the background
noise in the low frequency region, which ranges from ∼ 10−3 up to ∼ 10−2 Hz (Bender
1998). Additionally, from very simple considerations about the initial mass funtion,
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it is easy to see that galactic close white dwarf binaries must be quite common (Hils
et al. 1990) and, consequently, if the amplitude of the gravitational waves is large
enough we should be able to eventually detect them during the operation of LISA.
Moreover, the merging of two white dwarfs by emission of gravitational radiation
will be the final destiny of a good fraction of this type of binary systems. Since
during the merging process a sizeable amount of gravitational waves is expected to
be produced (Guerrero et al. 2004) it is important to characterize which would be the
gravitational wave emission of such process and to assess the feasibility of dectecting
them.

The process of formation of close white dwarf binaries involves two mass transfer
episodes of the progenitor stars when each of the components of the binary system
evolves off the main sequence. Depending on when during the lives of the binary
components the mass transfer episodes occur the components may have different
core compositions. In particular, we may have He-He systems with a total mass
Mtot ≤ 0.75M⊙, He-CO for those systems with masss within the range 0.75M⊙ ≤
Mtot ≤ 1.45M⊙, CO-CO for masses larger than Mtot ∼ 1.45M⊙ and even He-ONe
or CO-ONe systems when one of the white dwarfs is a massive one. Although the
astrophysical scenarios in which a merger of two white dwarfs in a close binary
system can occur and their relative frequencies have been relatively well studied
— see, for instance, Yungelson et al. (1994), and Nelemans et al. (2001a,b), and
references therein — the process of merging itself has received little attention until
very recently. Indeed, one of the probable reasons for this lack of theoretical models is
the heavy computational demand involved in the simulation of an intrinsically three-
dimensional phenomenon. However, in sharp contrast, the coalescence of two neutron
stars has been extensively studied — see, for instance, Rosswog et al. (2000), Rosswog
& Davies (2002), and Rosswog & Liebendörfer (2003), and references therein, for
some of the most recent works on this subject.

In a recent paper (Guerrero et al. 2004) the merging of white dwarf binary systems
was thoroughly studied for a wide range of masses and compositions. In doing this
an up-to-date Smoothed Particle Hydrodynamics code was used. This method was
first proposed by Lucy (1977) and, independently, by Gingold & Monaghan (1977).
The fact that the method is totally Lagrangian and does not require a grid makes
it specially suitable for studying an intrinsically three-dimensional problem like the
coalescence of two white dwarfs. In this chapter we will not discuss the simulations
presented there, and we defer the description of the SPH code to chapter 4. Also,
a full description of SPH techniques can be found in appendix A. Instead, in this
chapter we will concentrate on the expected gravitational emission from the merging
of two white dwarfs using the results of the SPH calculations of Guerrero et al.
(2004).
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3.2 Gravitational wave emission in SPH

We compute the gravitational wave emission in the slow-motion, weak-field quadrupole
approximation (Misner et al. 1973). The dimensionless wave strain, h, in the transverse-
traceless gauge is given by:

hTT
jk (t,x) =

2G

c4d

∂2QTT
jk (t − R)

∂t2
(3.1)

where t − R = t − d/c is the retarded time, d is the distance to the observer and
QTT

jk (t − R) is the reduced quadrupole moment of the mass distribution, which is
given by:

QTT
jk (t − R) =

∫

ρ(x, t − R)(xjxk − 1

3
x2δjk)d

3x (3.2)

The rest of the symbols have their usual meaning. It is useful to express the time
derivative of the quadrupole moment in the following way (Nakamura & Oohara
1989):

Q̈TT
jk (t − R) = Pijkl(N)

∫

d3xρ
[

2vkvl − xk∂lφ − xl∂kφ
]

(3.3)

where

Pijkl(N) ≡ (δij − NiNk)(δjl − NjNl)

− 1

2
(δij − NiNj)(δkl − NkNl) (3.4)

is the transverse-traceless projection operator onto the plane ortogonal to the out-
going wave direction, N, and φ is the gravitational potential. Now, one can express
Eq. (3.1) in the following way:

hTT
jk (t,x) =

G

c4d

(

A+(t,x)e+ jk + A×(t,x)e× jk

)

(3.5)

where the polarization tensor coordinate matrices are defined as:

e+ jk =
1√
2
[(ex)j(ex)k − (ey)j(ey)k]

(3.6)

e× jk =
1√
2
[(ex)j(ey)k + (ey)j(ex)k],

the dimensionless amplitudes h+ ≡ A+/d and h× ≡ A×/d are the two indepen-
dent modes of polarization in the transverse-traceless gauge, and the amplitudes are
respectively given by
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A+(t,x) = Q̈xx − Q̈yy, A×(t,x) = +2Q̈xy (3.7)

for i = 0, and

A+(t,x) = Q̈zz − Q̈yy, A×(t,x) = −2Q̈yz (3.8)

for i = π/2.
In our case we have a collection of n individual SPH particles. Consequently,

Eq. (3.3) must be discretized and it is computed according to the following expres-
sion:

Q̈TT
jk (t − R) ≈ Pijkl(N)

n
∑

p=1

m(p)[2vk(p)vl(p)

+ xk(p)al(p) + xl(p)ak(p)] (3.9)

Where m(p) is the mass of each SPH particle, and x(p), v(p) and a(p) are, respec-
tively, its position, velocity and acceleration.

3.3 Calibration and consistency checks

We have done two tests, gravitational wave emission from a single, isolated star,
and gravitational wave emission from a close white dwarf binary system in a circular
orbit. For both cases there exist analytical solutions to which we can compare our
numerical results. In the first case, we have followed the time evolution of an isolated
1M⊙ star using 2 × 104 SPH particles of the same mass. For the second test we
have followed the evolution of a binary system made of two white dwarfs of the same
mass (1M⊙) in a circular orbit. Each one of the white dwarfs was simulated using
2 × 104 SPH particles of the same mass.

The first of our tests was designed to set the zero point of our calculations.
Since in SPH simulations the particles are allowed to move freely under the action
of their own gravitational potential and of the pressure forces, and since the mass of
each particle is relatively large it is not obvious a priori whether or not a stable re-
laxed configuration radiates gravitational waves. Figure 3.1 shows the dimensionless
strains for the case of an isolated white dwarf. We only show times larger than 60 s,
for which the star is already relaxed to its final configuration. The relaxation pro-
cedure consisted in allowing the initial configuration (which consisted in randomly
distributing the SPH particles according to the density profile of a zero temperature
white dwarf of the same mass) to evolve for a long enough time until the oscilla-
tions of the resulting configuration were completely negligible. In this way we check
whether or not the numerical noise produces a negligible emission of gravitational
waves. And this is indeed the case. As it can be seen the emission of gravitational
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Figure 3.1: Gravitational wave emission from an isolated, spherical star. The dimensionless
strains h+ and h× are measured in units of 10−25. The source is located at a distance of
10 kpc.

waves is negligible, as it should be, given that the relaxed configuration presents
spherical symmetry — see Eq. (3.2).

With regard to the second test, it is worth recalling that the emission of gravi-
tational waves from a binary system, can be obtained quite easily by assuming that
both stars are point-like mass distributions. By doing so, from Eqs. (3.1) and (3.2)
one obtains

h+ =
√

2
µ

d

G
5

3

c4
(ωMtot)

2

3 (1 + cos2 i) cos 2ωt (3.10)

and

h× = 2
√

2
µ

d

G
5

3

c4
(ωMtot)

2

3 (cos i) sin 2ωt, (3.11)
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Figure 3.2: Gravitational wave emission from a close white dwarf binary system. The di-
mensionless strains h+ and h× are measured in units of 10−22. The solid line corresponds to
the theoretical solution whereas the dots correspond to our numerical solution. Again, the
source is assumed to be at a distance of 10 kpc.

where ω is the angular velocity of the stars, µ is the reduced mass, M is the mass of
the white dwarfs, and i is the observation angle with respect to the orbital plane.

In our SPH simulations we have chosen the binary system to have a separation
of 0.05R⊙ or, equivalently, ω = 7.94 × 10−2 s−1. The two white dwarfs describe
circular orbits and no mass is transferred between both components. Moreover, the
two white dwarfs preserve their initial spherical symmetry. Hence, and according to
Eqs. (3.10) and (3.11), we should expect to obtain dimensionless strains which are
sinusoidal functions with a period equal to half of the orbital period. As it can be
seen from Figure 3.2, the numerical solution matches very well the theoretical one. In
particular, both the amplitude and the frequency (ν ≃ 0.025 Hz) show an excellent
agreement between theory and simulations. To further illustrate this overall excellent
agreement, in Figure 3.3 we show the residuals between the theoretical solution and
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Figure 3.3: Residuals between the theoretical solution and the gravitational wave emission
from the close white dwarf binary system of Fig. 3.2. Note that the dimensionless strains
h+ and h× are measured in units of 10−23, one order of magnitude smaller than the scale of
Fig. 3.2.

the gravitational wave emission of the close white dwarf binary system in circular
orbit. Note that the scale in this case is one order of magnitude smaller than that of
Figure 3.2. Hence, we conclude that our SPH simulations can accurately compute
the emission of gravitational waves from coalescing white dwarfs.

3.4 Results

3.4.1 Gravitational wave emission

We have computed the emission of gravitational waves resulting from the merging
of several close white dwarf binary systems. In particular, the radiation of gravita-
tional waves from a 0.4+0.4 M⊙ He-He system, a 0.4+1.2 M⊙ He-ONe close binary,
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Table 3.1: Summary of the simulations discussed in this chapter. The number of SPH
particles for the simulations of the first section of the table is 4 × 104, whereas for the last
simulation is 4 × 105.

Run Mtot (M⊙) Composition R0 (R⊙) t (s)

1 0.4+1.2 He/ONe 0.040 180
2 0.4+0.4 He/He 0.042 600
3 0.6+0.6 CO/CO 0.041 180
4 0.6+1.0 CO/CO 0.038 725
5 0.6+0.8 CO/CO 0.033 600
6 0.8+1.0 CO/CO 0.028 1000

7 0.6+0.6 CO/CO 0.040 90

a 0.6+0.8 double white dwarf, a 0.6+1.0 system and a 0.8+1.0 M⊙ CO-CO binary
system was computed. All the simulations performed so far are listed in Table 3.1,
where the mass of both components of the binary system, their respective composi-
tion, the initial separation (R0) and the simulation time can be found. For the sake
of conciseness we will only discuss in some detail the results of the 0.4+0.4 M⊙ He-He
system and of the 0.8+1.0 M⊙ CO-CO merger. In all the cases the initial separation
was larger than the corresponding Roche lobe radius of the less massive component.
For instance, for the case in which a 0.4+0.4 M⊙ He-He merger is considered the
initial separation was ≃ 0.042R⊙, and in the case of a 0.8+1.0 M⊙ CO-CO system
the initial separation was ≃ 0.027R⊙.

Instead of computing self-consistently the chirping phase we have chosen to add
a very small artificial radial acceleration term which decreases the separation of
both components until the last stable orbit is reached. This acceleration term is
proportional to the velocity, never amounts to more than a 5% of the real orbital
acceleration and is added once the stars have already done a full orbit, then we let the
system relax during another orbit and the whole procedure is repeated again until the
secondary fills its Roche lobe. Once the secondary fills its Roche lobe this acceleration
term is suppressed and the system is allowed to evolve freely. Nevertheless, we
have checked (see §2.3.2) that the amplitude of the gravitational waves during the
initial phase of the coalescence agrees with that of the chirping phase. Finally, it is
important to mention here that in all the simulations studied in the present work
the number of particles for each white dwarf is 2× 104 in all cases. However, and in
order to check the sensitivity of our results to the number of particles, we have run
an additional simulation in which the number of particles was significantly increased
to 2 × 105 for each star, this simulation is listed in the last entry of table 3.1 and
discussed below.

In Fig. 3.4 we show the temporal evolution of the positions of the SPH particles
projected on to the orbital plane as a function of time for the 0.8 + 1.0M⊙ system.
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Figure 3.4: Temporal evolution of the 0.8+1.0 M⊙ CO-CO close white dwarf binary system
during the most important phases of the merger. The SPH particles have been projected in
the orbital plane. The units of positions are 109 cm. See text for additional details.

The initial configuration of the two stars was completely spherically symmetric.
After some time the secondary is tidally deformed and begins to overflow its Roche
lobe (top left panel). As a consequence, an accretion stream forms (top middle
panel). This accretion stream is directed towards the primary, forming an arm.
The particles flowing from the secondary onto the primary are redistributed over
the surface of the primary (top right panel) and the arm twists as time increases
(central panels), leading to the formation of a heavy accretion disk with cylindrical
symmetry (bottom right panel). The whole process lasts for about 3.8 minutes. The
merging process can be understood in terms of the positive feedback experienced



38 3 Gravitational wave radiation from the coalescence of white dwarfs

by the secondary: as the coalescence proceeds the secondary looses mass and, thus,
becomes less dense and expands leading to an enhanced mass-loss rate which, in
turn, leads to a decrease of the average density of the secondary. Very few particles
achieve velocities larger than the escape velocity and, hence, a very small fraction
of the total mass is ejected from the system (about 6.5 × 10−3 M⊙ in this case).
An important feature of the simulation is that the accretion disk is supported by
its own rotational velocity. However, it is important to realize that in the final
configuration a weak spiral pattern can still be found. This pattern should become
less and less apparent as time increases, reaching cylindrical symmetry during the
very late stages of the simulation. However, following the long term evolution of
this heavy accretion disk would require a heavy computational load which is well
beyond our current possibilities. Additionally, the accretion rate onto the primary
becomes negligible during this phase. Hence, our final configuration consists in a
central rotating spherically symmetric compact star surrounded by a keplerian and
almost cylindrically symmetric accretion disk. As discussed in Guerrero et al. (2004)
the rotational velocity of the central star has been problably overestimated due to
the large shear introduced by SPH methods. We have used the artificial viscosity
of Balsara (1995), which does not produce an excessive shear and, consequently,
reduces somewhat (but not completely) these problems. Therefore, some properties
of the merged object could be affected by the excess of rotation of the primary.
However, since even in this case the star preserves spherical symmetry we consider
that the calculations described below provide a good approximation to the emission
of gravitational waves. All the cases studied present more or less the same features
except those in which two white dwarfs of equal mass are involved. In such a case
the final configuration is a single spheroidal central object — see, for instance, Fig. 5
of Guerrero et al. (2004).

In figure 3.5 the coalescence of a binary system of 0.6+0.6 M⊙ in which each
of the stars was modelled using 2 × 105 particles is displayed. As in figure 3.4 we
have chosen to represent the temporal evolution of the SPH particles projected in
the orbital plane. Note, however, that in this case only one out of four particles has
been represented. In this case, however, the simulation only covers times larger than
that at which the last stable orbit of the system occurs. As it can be seen, the results
are essentially the same and, thus, we are confident in the main results and general
trends of our numerical simulations. We will, however, come back later to this issue
at the end of this section, when discussing the emission of gravitational waves.

An example of our results is shown in figures 3.6 and 3.7, where the dimension-
less strains h+ and h× as a function of time for different inclinations are respectively
shown for the 0.8+1.0 M⊙ CO-CO and the 0.4+0.4 M⊙ He-He systems. The be-
ginning and the final time of the merging itself are shown in both figures as thin
dotted lines. In figure 3.6 it can be seen that before the coalescence proceeds the
emission of gravitational waves still has a sinusoidal pattern, but with an increasing
frequency. That is, the close white dwarf binary system chirps as a consequence
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Figure 3.5: Same as figure 3.4 for the 0.6+0.6 M⊙ CO-CO close white dwarf binary system
in which 2 × 105 SPH particles were used. The units of positions are 109 cm.

of the spiral trajectory of the stars towards the center of mass. Note that h× for
i = π/2 is zero because the orbital plane is parallel to the line of sight. When the
two white dwarfs start to coalesce, the amplitude of the dimensionless strains some-
how increase first, but only during the first (and most violent) stage of the merger.
This corresponds to the phase in which a spiral arm is formed. After the second
maximum is achieved the amplitude decreases dramatically. In fact, only two more
clear maxima can be apparently distinguished before the system reaches its final
configuration. It is interesting to note that once the merger has already finished
one of the dimensionless strains still is significant, h+ ≃ −5 × 10−22 at d = 10 kpc
for i = π/2. This residual emission is due to the inhomegenieties of the accretion
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Figure 3.6: Gravitational wave emission from the merger of a 0.8+1.0 M⊙ CO-CO close
white dwarf binary system. The dimensionless strains h+ and h× are measured in units
of 10−22. The leftmost thin dotted line corresponds to the time at which the two white
dwarfs start to merge and the rightmost thin dotted line corresponds to the time at which
an approximate cylindrical configuration has been already achieved. Again, the source is
assumed to be at a distance of 10 kpc.

disk previously discussed. Each one of the very small maxima appearing at very
late times corresponds to successive crossings of the edge of the weak spiral arm in
front of the line of sight. Note as well that this residual emission tends to disappear
assymptotically, as a consequence of the ongoing rehomogeneization of the accretion
disk. It is important to realize that these inhomogeneities could be either an artifact
due to the resolution used in our SPH simulations or a consequence of the adopted
artificial viscosity, since it is well known that the artificial viscosity of Balsara (1995)
induces a considerable shear viscosity.

In figure 3.7 it can be seen that although during the first part of simulation the
same chirping pattern is found, once the merger proceeds the gravitational wave
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Figure 3.7: Same as Fig. 3.6 but for the case of a 0.4+0.4 M⊙ He-He close white dwarf
binary system.

signal suddenly disappears on a short time scale, comparable to the orbital period.
This is due to the fact that in this case the two stars have equal masses and, there-
fore, there is not a prominent spiral accretion stream. Instead the two components
of the binary system are disrupted around the center of masses, where a shocked
region forms as a consequence of the impact between two streams. The typical Mach
numbers in the shocked region are Ma ∼ 1. The streams are slightly asymmetric,
depending on the orbital phase at which they form. By the end of the simulation —
see again Fig. 5 of Guerrero et al. (2004) — both streams become entangled and the
final configuration of the resulting object consists in a central shocked region sur-
rounded by a less dense rotating spheroid, in which a certain degree of asymmetry
is still present. Hence, the coalescing process does not present a rather symmetric
behavior during the initial phases and, consequently, we see three consecutive max-
ima. After this, once the streams become entangled the emission of gravitational
waves is heavily suppressed and, by the end of the merging process, the emission
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Figure 3.8: Modulus of the Fast Fourier Transform of the adimensional strains h+ and h×

of Fig. 3.6.

of gravitational waves is negligible. However, note as well that in this case a small
residual emission is also observed in the dimensionless strain h+ = −0.8 × 10−22 at
d = 10 kpc for i = π/2, although considerably smaller than in the previous case. This
is again due to our limited computational resources. The impossibility of following
the very late phases of the coalescence episode does not allow us to compute the
rehomogeneization of the external spheroid and, hence, to compute the long-term
behavior of h+ accurately. The same information is displayed in figures 3.8 and 3.9,
but in a different format. As can be seen there, the dominant frequency is given by
the orbital period. However, as the components of the binary system approach each
other, the dominant frequency is shifted to larger values and, during the merger,
high frequencies show up, although with very low amplitudes.

Finally, and in order to check the sensitivity of our results to the resolution of
the SPH simulations described above we have computed the emission of gravitational
waves for both our run “7”, in which 2 × 105 particles were used for each star, and
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Figure 3.9: Modulus of the Fast Fourier Transform of the adimensional strains h+ and h×

of Fig. 3.7.

our run number 3, in which a resolution 10 times poorer was adopted. The results
are displayed in Fig. 3.10. As in the previous figures the vertical thin lines denote
the moment at which the last stable orbit is achieved. Note, nevertheless, that the
high resolution simulation was started, as previously mentioned, when the system
was already at the last stable orbit. That is the reason why the chirping phase
does not appear. Consequently, the time origin of this simulation has been shifted
accordingly to match that of the low resolution simulation. As it can be seen the
emission of gravitational waves is very similar in both cases, and, hence, our results
are robust.

3.4.2 Detectability

In order to check whether or not LISA would be able to detect a close white dwarf
binary system we have proceeded as follows. We have already shown that the most
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Table 3.2: Maximum distance at which LISA will detect the close white dwarf binary systems
discussed in this paper, see text for details.

Run Mtot ν0 M dmax η hmax E
(M⊙) (mHz) (M⊙) (kpc) (10 kpc) (10−22) (1041 erg)

1 0.4+1.2 32 0.59 21 10.5 11.4 6
2 0.4+0.4 21 0.35 10 5.0 2.4 0.1
3 0.6+0.6 13 0.53 26 13.0 6.0 0.6
4 0.6+1.0 34 0.67 29 14.5 6.8 2
5 0.6+0.8 40 0.60 31 15.6 6.1 1
6 0.8+1.0 58 0.77 33 16.6 12.8 7

7 0.6+0.6 13 0.53 26 12.8 5.9 0.6

prominent feature of the emitted signal is its sudden disappearance in a couple of
orbital periods and that the gravitational wave emission during the coalescence phase
does not increase noticeably. Hence, the gravitational wave emission is dominated
by the chirping phase. Thus, we have assumed that the orbital separation of the two
white dwarfs is exactly that of our binary system when mass transfer starts. We have
done so because, as explained before, we have added a small artificial acceleration
term to the initial configuration in order to avoid an excessive computational demand
at the very beginning of our simulations. This acceleration term is suppressed once
the secondary begins to transfer mass onto the primary. Note, however, that the
mass transfer starts when the secondary fills its Roche lobe and, consequently, this
orbital separation is physically sound. We have further assumed that the integration
time of LISA will be one year. We have checked that during this period the variation
of the orbital separation is negligible (see also figures 3.6 and 3.7). Of course, should
the integration time be smaller the signal-to-noise ratio derived below would smaller.
Consequently, our results should be regarded as an upper limit.

The signal-to-noise ratio, η, is given by

η2 =

∫ +∞

−∞

h̃2(ω)

S(ω)

dω

2π
(3.12)

where S(ω) = Sh(ω)τ is the sensibility of LISA, τ is the integration period, and h̃(ω)
is the Fourier Transform of the dimensionless strain. It can be easily shown that

for a monocromatic gravitational wave η = h(ω)/S
1/2

h (ω). The maximum distance,
dmax, at which LISA would be able to detect a close white dwarf binary system is
then:

dmax ≈ 17
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η
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√
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)
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where ν0 is the frequency of gravitational wave, and M is the chirping mass.
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Figure 3.10: A comparison of the computed emission of gravitational waves when the reso-
lution of our SPH simulations is changed. The left panels show the emission of gravitational
waves for a simulation in which a low resolution (2×104 SPH particles) was used. The right
panels show the same quantities when a high resolution was adopted (2×105 SPH particles).
See text for further details.

M = (µM
2/3
tot )3/5 (3.14)

being µ = m1m2/Mtot the reduced mass, and Mtot = m1 + m2 the total mass.

In order to evaluate the maximum distance at which LISA would be able to
detect the close white dwarf binary systems studied here we have adopted η = 5.
We have furthermore used the integrated sensibility of LISA as obtained again from
http://www.srl.caltech.edu/∼shane/sensitivity. The results are given in Ta-
ble 3.2, where the frequency of the close white dwarf binary system when the sec-
ondary overflows its Roche lobe, the chirping mass, the maximum distance at which
LISA would detect them for a signal-to-noise ratio of 5 and one year integration, and
the signal-to-noise ratio at 10 kpc for one year integration are shown. Also shown in
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Figure 3.11: A comparison of the signal produced by the close white dwarf binary systems
studied here, when a distance of 10 kpc is adopted, with the spectral distribution of noise of
LISA for a one year integration period.

Table 3.2 are the peak amplitude at 10 kpc of the dimensionless strain (in units of
10−22) and the total radiated energy in the form of gravitational waves. We stress
that if the merger occurs during the one year integration period the signal-to-noise
ratio would be smaller. It is worth noticing as well that the energy radiated away
from the binary system during the coalescence in the form of gravitational waves is
of the order of ∼ 1041 erg, much smaller than the total energy of the system and,
hence, totally negligible in the energy budget, so no back reaction should be taken
into account and the procedure used here is robust. Note as well, that for the case
of 0.6 + 0.6M⊙ system, in which two resolutions were used the maximum distance
at which LISA would be able to detect the coalescence is very similar for both the
high resolution simulation, 12.8 pc, and the low resolution simulation, 13.0 pc. The
energy released during the coalescence is very similar as well in both cases, 0.63 and
0.64 × 1041 erg, respectively.
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Finally, in Fig. 3.11 we compare the signal produced by the close white dwarf
binary systems studied in this paper, when a distance of 10 kpc is adopted, with the
spectral distribution of noise of LISA for a one year integration period. As it can
be seen, all of them will be eventually detected, at different signal-to-noise ratios,
ranging from ∼ 5.0 for the 0.4+0.4M⊙ system to ∼ 16.6 for the 0.8+1.0M⊙ system.

3.5 Discussion and conclusions

We have computed the emission of gravitational waves of merging white dwarf bina-
ries, for a wide range of masses and compositions of the components of the binary
system. For that purpose we have used the results of a SPH code which allowed
us to follow the temporal evolution of the coalescing white dwarfs. We have shown
that the most noticeable feature of the emitted signal is a sudden disappearance of
the gravitational strains. By contrast the chirping phase will be easily detectable by
future space-borne interferometers like LISA. In fact, it can be said that the most
relevant signature of the merger will be the absence of any signature and the sudden
disappearance of the source. Since the frequency coverage of LISA will range from
10−1 to 10−4 Hz, the detection of chirping close white dwarf binary systems is guar-
anteed (Farmer & Phinney 2003; Nelemans et al. 2001b). Moreover, at frequencies
of ∼ 3 × 10−3 Hz most close white dwarf binary systems will be spectrally resolved
(Cornish & Larson 2003). Typically, LISA will be able to detect ∼ 3 000 binaries
at these frequencies (Seto 2002). Additonally, it has been recently shown (Cooray
et al. 2004) that the typical error box of LISA for these kind of systems will be
δΩ ∼ 5 deg2, and that, given that many of the detected sources will be eclipsing
binaries with a period equal to that of the gravitational waves, optical follow-up
campaigns will allow us to further constrain the location of the sources. Hence, by
combining optical observations and gravitational wave data, and taking into account
that the gravitational wave signal for such mergers suddenly vanishes — or, equiva-
lently, that during the integration period the signal-to-noise ratio stops growing —
we should be able to gain insight into the physics of merging and to obtain pre-
cise information of the properties of the progenitor systems. Moreover, it should be
taken into account that for a typical merger — namely, the 0.6+ 0.8M⊙ case — the
volume accesible to LISA is VLISA ∼ 1.2× 1014 pc3. Since the volume of the Galaxy
is V ∼ 3 × 1011 pc3, LISA would be able to detect all the mergers occuring in our
Galaxy during its operation period. However, the typical rate of white dwarf mergers
is r ∼ 8.3× 10−3 yr−1 (Nelemans 2003) and, hence, although there is an uncertainty
of a factor of 5 in the rate of white dwarf mergers, the expected detection rate is
consequently small.





Chapter 4

High-resolution SPH simulations

of the merger of white dwarfs

The merger of two white dwarfs is the final outcome of a sizeable fraction of binary
systems. Moreover, white dwarf mergers have been proposed to explain several
interesting astrophysical phenomena. In this chapter we present the results of a set
of high-resolution simulations of the merger of two white dwarfs. We use an up-to-
date Smoothed Particle Hydrodynamics code which incorporates very detailed input
physics and an improved treatment of the artificial viscosity. Our simulations have
been done using a large number of particles (∼ 3 × 105) and cover the full range of
masses and chemical compositions of the coalescing white dwarfs.

4.1 Introduction

The merger of a binary system made of two white dwarfs is thought to be one of the
most common endpoints of the evolution of binary systems. Consequently, the study
of the coalescence process is an interesting issue, with many potential applications.
Although the astrophysical scenarios in which the coalescence of two white dwarfs in
a close binary system can occur and their relative frequencies have been well studied
— see, for instance, Yungelson et al. (1994), Nelemans et al. (2001a), Nelemans et al.
(2001b), and the recent review of Postnov & Yungelson (2006) — the merging process
has received little attention until recently. The pioneering works of Mochkovitch &
Livio (1989, 1990) who used an approximate method — the so-called Self-Consistent-
Field method (Clement 1974) — and the full Smoothed Particle Hydrodynamic
(SPH) simulations of Benz et al. (1989a), Benz et al. (1989b), Benz et al. (1990) and
Segretain et al. (1997) were the only exceptions. Most of these early works had several
drawbacks. For instance, some of them did not include a detailed nuclear network
or the network was very simplistic, other used a very small number of SPH particles
(∼ 103) and, finally, other did not discuss the properties of the merger configuration.
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Additionally, all these early works studied a reduced set of masses and chemical
compositions and used the classical expression for the artificial viscosity (Monaghan
& Gingold 1983). This is an important issue since it is well known that SPH induces
a large shear viscosity, which is more pronounced when the classical expression for
the artificial viscosity is used. However, the situation has changed recently. Guerrero
et al. (2004) opened the way to more realistic simulations. They used a SPH code to
study a considerable range of masses and chemical compositions of the merging white
dwarfs. Moreover, these simulations employed a sizeable number of particles (∼ 4×
104) and a formulation of the artificial viscosity which reduces considerably the excess
viscosity (Balsara 1995). Nevertheless, there are more recent viscosity formulations
which reduce even more the excess of shear and, in addition, the available computing
power has considerably increased since then. More recently, Yoon et al. (2007) have
studied in detail the coalescence of a binary system composed of two white dwarfs
of masses 0.6 and 0.9M⊙ using 2× 105 SPH particles. However, only one simulation
was presented in this work. It is thus clear that a thorough parametric study in
which several white dwarf masses and chemical compositions are explored using a
larger number of SPH particles and a more elaborated treatment of the artificial
viscosity remains to be done.

Possible applications of this kind of simulations include the formation of Type Ia
supernovae in the double degenerate scenario (Webbink 1984; Iben & Tutukov 1984)
and the formation of magnetars (King et al. 2001). Also three hot and massive
white dwarfs members of the Galactic halo, could be the result of the coalescence
of a double white dwarf binary system (Schmidt et al. 1992; Segretain et al. 1997).
Additionally, the origin of hydrogen-deficient carbon and R Corona Borealis stars
(Izzard et al. 2007; Clayton et al. 2007) and of extreme helium stars (Pandey et al.
2005) is thought to be the merger of two white dwarfs. Finally, the large metal
abundances found around some hydrogen-rich white dwarfs with dusty disks around
them can be explained by the merger of a CO and a He white dwarf (Garćıa-Berro
et al. 2007). Last but not least, the coalescence of a double white dwarf close binary
system has been shown to be a powerful source of gravitational waves which would
be eventually detectable by LISA (Lorén-Aguilar et al. 2005).

In fact, the fate of double white dwarf binary systems is a merging process due
to the loss of angular momentum through gravitational wave radiation. Stars will
orbit each other at decreasing orbital separations until the less massive one overfills
its Roche lobe and mass transfer begins. Depending on the initial conditions mass
transfer proceeds either in an stable or a dynamically unstable regime. The stability
of mass transfer is an important issue. If the mass transfer process is stable, mass
will flow at relatively low accretion rates and the whole merging process could last
for several million years. On the contrary, if mass transfer proceds in an unstable
way, the whole merging process finishes in a few minutes. The difference between
the two cases relies on the ability of the binary system to return enough angular
momentum back to the orbit. In fact, there are two competing processes. On the
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one hand the donor star is supported by the pressure of degenerate electrons and,
hence, it will expand as it loses mass, thus enhancing the mass-transfer rate. On the
other, if orbital angular momentum is conserved the orbit will expand as the donor
star loses mass thus reducing the mass-transfer rate. The precise trade-off between
both physical processes determines the stability of mass transfer. Guerrero et al.
(2004) found that all the systems merged in a few hundred seconds, corresponding
to mass transfer rates of ∼ 10−2 M⊙ s−1. Since the Eddington rate is of the order of
10−5 M⊙ yr−1 the most massive white dwarf cannot incorporate the material of the
disrupted secondary in such a short timescale and, thus, the secondary forms a hot
atmosphere and a heavy keplerian disk around the primary. This has been challenged
by the simulations of Motl et al. (2002) and D’Souza et al. (2006). These authors
used a grid-based three-dimensional finite-difference Eulerian hydrodynamical code
and found that when the stars are co-rotating mass transfer is stable. Nevertheless,
it should be noted that these simulations were done using simplified physical inputs.
For instance, they used a polytropic equation of state. More importantly, grid-based
methods are known to poorly conserve angular momentum. In any case, it is clear
that to assess the stability of mass transfer large spatial resolutions are required
given the degenerate nature of the donor star, since once mass transfer begins the
radius of the secondary increases very rapidly thereby increasing the mass-loss rate.

In this chapter we study the coalescence of binary white dwarfs employing an
enhanced spatial resolution (3×105 SPH particles) and a formulation of the artificial
viscosity which very much reduces the excess of shear. This is done for a broad
range of initial masses and chemical compositions of the coalescing white dwarfs. In
particular we study the following cases: 0.3 + 0.5M⊙, 0.4 + 0.8M⊙, 0.6 + 0.6M⊙,
0.6 + 0.8M⊙, 0.6 + 0.8M⊙, and 0.6 + 1.2M⊙. Although the we have computed a
large number of mergers we will only discuss in detail the results of the merger of
a 0.6 + 0.8M⊙ binary system. The main results of the rest of the simulations are
only given in tabular form, but we can provide them upon request of the interested
reader. The large number of particles used here allows to compare the results of our
hydrodynamical calculations with the theoretical expectations. Consequently, we
will devote most of the chapter to compare the results of this set of simulations with
those of our previous paper (Guerrero et al. 2004) and with those of the available
high-resolution simulations (Yoon et al. 2007). The chapter is organized as follows. In
section 4.2 a general description of our SPH code is given. In section 4.3 we describe
the results of the simulations and we compare them with the results of other authors.
In section 4.4 we discuss these simulations. Specifically, we pay special attention to
discuss the stability of mass transfer. This is done in section 4.4.1, whereas in sections
4.4.2 and 4.4.3 the possible observational signatures arising from the merging process
are studied. In particular, we consider the gravitational wave pattern of the several
mergers studied here (section 4.4.2) and the X-ray emission that might be expected
from the early phases of the disk evolution (section 4.4.3), while in section 4.4.4 the
long-term evolution of the result of the merger is discussed. Finally, in section 4.5
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we summarize our major findings, we elaborate on the possible implications of our
work and we draw our conclusions.

4.2 Input physics and method of calculation

We follow the hydrodynamic evolution of the binary system using a Lagrangian par-
ticle numerical code, the so-called Smoothed Particle Hydrodynamics. This method
was first proposed by Lucy (1977) and, independently, by Gingold & Monaghan
(1977). The fact that the method is totally Lagrangian and does not require a grid
makes it specially suitable for studying an intrinsically three-dimensional problem
like the coalescence of two white dwarfs. We will not describe in detail the most
basic equations of our numerical code, since this is a well-known technique. Instead,
the reader is referred to Benz (1990) where the basic numerical scheme for solving
the hydrodynamic equations can be found, whereas a general introduction to the
SPH method can be found in the excellent review of Monaghan (2005). However,
and for the sake of completeness, we shortly describe the most relevant equations of
our numerical code.

We use the standard polynomic kernel of Monaghan & Lattanzio (1985). The
gravitational forces are evaluated using an octree (Barnes & Hut 1986). Our SPH
code uses a prescription for the artificial viscosity based in Riemann-solvers (Mon-
aghan 1997). Additionally, to suppress artificial viscosity forces in pure shear flows
we also use the viscosity switch of Balsara (1995). In this way that the dissipative
terms are essentially absent in most parts of the fluid and are only used where they
are really necessary to resolve a shock, if present. Within this approach, the SPH
equations for the momentum and energy conservation read respectively
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2|~rij|F ij (4.2)

where ρij = (ρi + ρj)/2 and Fij ≡ (Fi + Fj)/2, and F is a positive definite function
which depends only on |~r| and and on the smoothing kernel h, used to express
gradient of the kernel ~∇Wij = F ij~rij. The signal velocity is taken as vsig

ij = ci + cj −
4~vij · êij and the rest of the symbols have their usual meaning. We have found that
α = 0.5 yields good results.

However, we have found that it is sometimes advisable to use a different for-
mulation of the equation of energy conservation. Accordingly, for each timestep
we compute the variation of the internal energy using Eq. (4.2) and simultaneously
calculate the variation of temperature using:
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where qvisc includes the contribution of viscous dissipation, which is computed in a
way analogous to that of Eq. (4.2). For regions in which the temperatures are lower
than 6× 108 K or the densities are smaller than 6× 103 g/cm3 Eq. (4.2) is adopted,
whereas Eq. (4.3) is used in the rest of the fluid. Using this prescription we find that
energy is best conserved.

The equation of state adopted for the white dwarf is the sum of three compo-
nents. The ions are treated as an ideal gas but taking into account the Coulomb
corrections. We have also incorporated the pressure of photons, which turns out to
be important only when nuclear reactions become relevant. Finally the most impor-
tant contribution is the pressure of degenerate electrons which is treated integrating
the Fermi-Dirac integrals. The nuclear network adopted here (Benz et al. 1989b)
incorporates 14 nuclei: He, C, O, Ne, Mg, Si, S, Ar, Ca, Ti, Cr, Fe, Ni and Zn.
The reactions considered are captures of α particles, and the associated back reac-
tions, the fussion of two C nuclei, and the reaction between C and O nuclei. All the
rates are taken from Rauscher & Thielemann (2000). The nuclear energy release is
computed independently of the dynamical evolution with much smaller time-steps,
assuming that the dynamical variables do not change much during these time-steps.
Finally, neutrino loses have been also included according to the formulation of Itoh
et al. (1996).

Regarding the integration method we use a predictor-corrector numerical scheme
with variable time step (Serna et al. 1996), which turns out to be quite accurate.
With this procedure the energy and angular momentum of the system are conserved
to a good accuracy. In order to achieve an equilibrium initial configuration we relaxed
each individual model star separately. In all cases the initial system is composed of
the two white dwarfs in a circular orbit at a distance slightly larger than that of
the Roche lobe radius of the less massive component. In this way mass transfer in
the system will inmediately start and we avoid using numerical artifacts like adding
artificial acceleration terms in order to decrease the separation of the stars. We adopt
this instant as our time origin. This is done because we cannot follow in a physically
consistent way the orbital evolution of the binary system during the inspiralling
phase due to gravitational wave emission because the corresponding timescales are
very large. The systems are not synchronized because, at least in the stage previous
to the coalescence itself, the time scale for loss of angular momentum due to the
emission of gravitational radiation is so small that it remains quite unlikely that
there exists any dissipation mechanism able to ensure synchronization (Segretain
et al. 1997). However, as already stated, synchronized systems will be studied in a
forthcoming future.

The chemical compositions of the coalescing white dwarfs depend on the mass of
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Table 4.1: Summary of hydrodynamical results. Masses and radii are in solar units, times in seconds and energies in ergs.

Run MWD Mdisk Macc Mej Tpeak Tmax Rdisk H ∆t Enuc Eν EGW

0.3+0.5 0.62 0.18 0.12 10−3 6.0 × 108 6.0 × 108 0.2 6.1 × 10−3 300 1 × 1042 4 × 1021 9 × 1038

0.4+0.8 0.92 0.28 0.12 10−3 6.5 × 108 6.0 × 108 0.2 6.0 × 10−3 166 1 × 1044 5 × 1024 4 × 1039

0.6+0.6 1.10 0.10 0.50 10−3 6.3 × 108 6.2 × 108 0.07 5.5 × 10−3 514 0 3 × 1024 1 × 1041

0.6+0.8 1.10 0.30 0.30 10−3 2.0 × 109 8.7 × 108 0.2 5.0 × 10−3 164 1 × 1041 3 × 1028 6 × 1040

0.6+1.2 1.50 0.30 0.30 10−3 1.0 × 1010 1.0 × 109 0.2 4.4 × 10−3 122 2 × 1044 8 × 1036 5 × 1040



4.3 Results 55

each star. White dwarfs with masses smaller than 0.45M⊙ have pure He cores. For
white dwarfs with masses within this value and 1.1M⊙ we adopt the corresponding
chemical composition, namely, carbon and oxygen, with mass fractions XC = 0.4
and XO = 0.6 uniformingly distributed through out the core. Finally, white dwarfs
more massive than 1.1M⊙ have ONe cores of the appropriate composition (Ritossa
et al. 1996).

4.3 Results

Figs. 4.1 and 4.2 show the temporal evolution of the logarithm of density for the
coalescence of the 0.6 + 0.8M⊙ double white dwarf binary system. In Fig. 4.1 the
positions of the SPH particles have been projected onto the equatorial plane and in
Fig. 4.2 onto the polar plane. Time (in seconds) is shown on the right upper corner
of each panel. As can be seen in the uppermost left panels, the initial configurations
of both white dwarfs are rather symmetric. Soon after, the less massive white dwarf
fills its Roche lobe and mass tranfer begins, as can be seen in top central panel of
this figure. The top right panel of Fig. 4.1 shows that, after some time, the matter
outflowing the secondary hits the surface of the primary white dwarf and spreads
on top of it. Note as well that since the radius of white dwarfs scales as ∼ M−1/3,
as the secondary loses mass its radius increases and, hence, the mass-loss rate of
the secondary increases, thus leading to a positive feedback of the process. As a
consequence of this positive feedback an accretion arm is formed which extends from
the remnant of the secondary white dwarf (central panels in Fig. 4.1) to the surface of
the primary white dwarf. This accretion arm becomes entangled as a consequence of
the orbital motion of the coalescing white dwarfs and adopts a spiral shape (bottom
left panel). Ultimately, the secondary is totally disrupted and a heavy disk is formed
around the primary (bottom central panel of Fig. 4.1). The bottom right panel of
Fig. 4.1 shows that at time t = 152 s the disk is still not well formed and the remnant
of a spiral arm still persists. We followed the evolution of this merger for some more
time and we found that the final configuration has cylindrical symmetry, that all the
orbits of the SPH particles belonging to the secondary have been circularized and
that the spiral pattern has totally disappeared. At the end of the simulations the
radial extension of the disk is ∼ 0.2R⊙, whereas its height is ∼ 5.0 × 10−3 R⊙.

The temporal evolution of the temperature for the merger of a 0.6 + 0.8M⊙

binary system is shown in Fig. 4.3. As can be seen in this figure the material of the
secondary is first heated by tidal torques. As the secondary begins the disruption
process this material is transferred to the surface of the primary and, consequently, it
is compressed and its temperature increases. The peak temperatures (Tpeak) achieved
during the coalescence are displayed in Table 4.1 for each one of the runs presented in
this paper. For the 0.6+0.8M⊙ simulation the peak temperature is Tpeak ∼ 2.0×109

K, clearly larger than the carbon ignition temperature Tign ∼ 109 K, and occurs
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Figure 4.1: Temporal evolution of the density for the coalescence of the 0.6+0.8 M⊙ double
dwarf binary system. The positions of the particles have been projected onto the xy plane.
The units of positions and densities are, respectively, solar radii and 109 g/cm3. Times
are shown in the right upper corner of each panel. These figures have been done using the
visualization tool SPLASH (Price 2007).

during the first and most violent part of the merger. However, a strong thermonuclear
flash does not develop because although the temperature in the region where the
material of the secondary first hits the primary increases very rapidly, degeneracy
is rapidly lifted, leading to an expansion of the material, which, in turn, quenches
the thermonuclear flash. This is in agreement with the results of Guerrero et al.
(2004) and Yoon et al. (2007). Thus, since these high temperatures are attained
only during a very short time interval thermonuclear processing is very mild for this
simulation. It is also interesting to compare the equatorial and polar distribution
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Figure 4.2: Temporal evolution of the density for the coalescence of the 0.6+ 0.8 M⊙ double
dwarf binary system. The positions of the particles have been projected onto the xz plane.
The units of positions and densities are, respectively, solar radii and 109 g/cm3. Times
are shown in the right upper corner of each panel. These figures have been done using the
visualization tool SPLASH (Price 2007).

of temperatures shown in the central panels of Figs. 4.3 and 4.4. This comparison
reveals that the heated material is rapidly redistributed on the surface of the primary
and, as a consequence, a hot corona forms around the primary. The spiral structure
previously described can be more easily appreciated in the bottom right panels of
figure 4.3. In fact, this spiral structure persists for some more time.

In all the cases studied here a self-gravitating structure forms after a few or-
bital periods, in agreement with our previous findings (Guerrero et al. 2004) and
with those of Yoon et al. (2007). The time necessary for its formation depends on
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Figure 4.3: Temporal evolution of the temperature (in units of 108 K) for the coalescence of
the same binary system shown in Fig. 4.1. The positions of the particles have been projected
onto the xy plane. These figures have been done using the visualization tool SPLASH (Price
2007).

the system being studied, and ranges from ∼ 120 seconds to ∼ 520 seconds. This
self-gravitating structure consists in all the cases but that in which two equal-mass
white dwarfs are involved of a compact central object, surrounded by a heavy ke-
plerian disk of variable extension. In the case in which two 0.6M⊙ white dwarfs
are involved the configuration is rather different. In this last case the simmetry of
the systems avoids the formation of a clear disk structure, giving rise instead to a
rotating elipsoid around the central compact object, surrounded by a considerably
smaller disk. In table 4.1 we summarize the most relevant parameters of all the
mergers studied here. Columns two, three, four and five list, respectively, the mass
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Figure 4.4: Temporal evolution of the temperature (in units of 108 K) for the coalescence of
the same binary system shown in Fig. 4.1. The positions of the particles have been projected
onto the xz plane. These figures have been done using the visualization tool SPLASH (Price
2007).

of the central white dwarf obtained after the disruption of the secondary, the mass of
the keplerian disk, the accreted and the ejected mass. All the masses are expressed
in solar units. In column six we show the peak temperatures achieved during the
coalescence. In column seven we display the temperature of the hot corona around
the central object by the end of our simulations, whereas in column eight the ra-
dius of the disk is shown. In column nine we list the disk half-thickness. Finally
column ten displays the duration of the coalescence process and columns eleven,
twelve and thirteen display the energetics of the process. In particular we show the
thermonuclear energy released during the coalescence process (Enuc), the neutrino
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energy (Eν) and the energy radiated in the form of gravitational waves (EGW. As
can be seen, for the first two simulations the accreted mass is approximately the
same and the same occurs for the last two simulations. As already commented, the
simulation in which two equal-mass white dwarfs are involved is rather special and in
this case we do not have properly speaking a disk, although a very flattened region
with cylindrical symmetry forms around the central object of ellipsoidal shape. The
mass of this region is ∼ 0.1M⊙. In all five cases the mass ejected from the sys-
tem (those particles which acquire velocities larger than the escape velocity) is very
small (∼ 10−3 M⊙), and thus the merging process can be considered as conservative.
The maximum temperatures of the coronae increase as the total mass of the binary
system increases. It should be noted that for the case of the 0.6 + 0.6M⊙ binary
system the maximum temperature occurs at the center of the merged configuration.
We have found that these temperatures are somewhat smaller than those obtained
in our previous simulations (Guerrero et al. 2004). This is a direct consequence of
the improved treatment of the artificial viscosity. It is worth noting that the radial
extension of the disks is roughly the same for all but one the simulations presented
here and it is considerably smaller for the case in which two equal-mass white dwarfs
are involved. This is a natural behavior since in this last case the central object is
rather massive. Finally, it is as well interesting to realize that all the disks are rather
thin, being the typical half-thickness of the order of ∼ 10−3 R⊙, much smaller than
the typical disk radial extension, ∼ 0.2R⊙.

The chemical composition of the disk formed by the disrupted secondary can be
found for all the simulations presented in this paper in Table 4.2. In this table we
show, for each of the mergers computed here, the averaged chemical composition (by
mass) of the heavily rotationally-supported disk — left section of table 4.2 — and
the hot corona — right section — described previously. For the mergers in which two
carbon-oxygen white dwarfs are involved the disk is mainly formed by carbon and
oxygen and the nuclear processing is very small (see the peak temperatures shown in
column ten of Table 4.1). This is not the case for the simulations in which a lighter
He white dwarf is involved. Since in these cases the Coulomb barrier is considerably
smaller, the shocked material is nuclarly processed and heavy isotopes form. This is
more evident for the case in which a massive He white dwarf of 0.4M⊙ is disrupted
by a massive CO white dwarf of 0.8M⊙ — third and eight columns in Table 4.2. In
this case the abundances in the disk and the hot corona are rather large. Note as well
that the abundances of heavy nuclei in the hot corona are much larger than those
of the disk, indicating that most of the nuclear reactions occur when the accretion
stream hits the surface of the primary. Nevertheless, although the disk is primarily
made of the He coming from the disrupted secondary the abundances of C and O
are sizeable and, moreover, the disk is contaminated by heavy metals. This has
important consequences because it is thought that some of the recently discovered
metal-rich DA white dwarfs with dusty disks around them — also known as DAZd
white dwarfs — could be formed by accretion of a minor planet. The origin of such
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Figure 4.5: Left panels: rotational velocity of the merger products as a function of the
radius. For the sake of comparison the keplerian velocity is also shown as a dashed line.
Right panels: surface density profiles compared with the theoretical thin disk model profiles
(dashed lines).

minor planets still remains a mistery, since asteroids sufficiently close to the white
dwarf would have not survived the AGB phase (Villaver & Livio 2007). However,
planet formation in these metal-rich disks is expected to be rather efficient, thus
providing a natural environment where minor planetary bodies could be formed
and, ultimately, tidally disrupted to produce the observed abundance pattern in
these white dwarfs (Garćıa-Berro et al. 2007). Nuclear reactions are also important
in the case in which a regular 0.6M⊙ carbon-oxygen white dwarf and a massive
oxygen-neon white dwarf of 1.2M⊙ are involved. In this case the peak temperature
achieved during the coalescence is rather high Tpeak ≃ 1.0 × 1010 — see Table 4.1
— enough to power carbon burning. Consequently, the chemical abundances of the
keplerian disk and of the hot corona are largely enhanced in oxygen and neon, which
are the main products of carbon burning.

In figure 4.5 we explore the final characteristics of the merged configuration.
We start discussing the left panels of figure 4.5 which show the rotational velocity
of the merger as a function of the distance to the center of the merged object.
Clearly in all the cases there is a central region which rotates as rigid solid. This
behavior was already found in Guerrero et al. (2004) and Yoon et al. (2007), and it
is a consequence of the conservation of angular momentum. On top of this region
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a differentially rotating layer is present. This rapidly rotating region is formed by
material coming from the disrupted secondary, which has been accumulated on top of
the primary and thus carries the original angular moment of the secondary. Finally,
for sufficiently large radius a rotationally-supported disk is found. The exact location
where the disk begins can be easily found by looking at the left panels of Fig. 4.5,
where the keplerian velocity is also shown as a dashed line. The change in the slope
of the profile of the rotational velocity clearly marks the outer edge of the compact
inner object and the beginnig of the disk. All the disks extend up to some solar
radii — see column eight in Table 4.1. The stratification of surface densities of these
disks can be seen in the left panels of Fig. 4.5, where we have plotted the surface
density as a function of the distance. For the sake of comparison the theoretical
surface density of a thin disk analytical model (Lorén-Aguilar et al. 2005) is also
shown as a dashed line. Within this model the surface density of the disk should
be of the form Σ ∝ R−β. We have used β = 7/4 to produce the dashed lines in
the right panels of Fig. 4.5, very close to the value adopted by Lorén-Aguilar et al.
(2005), β = 3/2. As can be seen in this figure for the first two fiducial mergers
studied here there is a region where the analytical model and the numerical results
are in good agreement. However, at large enough distances the SPH density profile
falls off more rapidly than that of the theoretical model. In the case of the merger
of two equal-mass 0.6M⊙ white dwarfs the agreement is poor. In this case, the
symmetry of the system avoids the formation of a clear disk structure, giving rise
instead to a rotating ellipsoid around the central compact object. Moreover, it can
be shown that the angular moment of the disk can be expressed in terms of the
disk radius Rdisk and the disk mass Mdisk as Jz = ξMdisk(GMWDRdisk)

1/2, where
ξ = (2 − β)/(5/2 − β) = 1/3. The theoretical angular moments obtained using this
equation agree very well with the results of our SPH simulations.

In Fig. 4.6 we show the temperature profiles at the end of the simulations for
some of the mergers studied here. We have averaged the temperatures of those
particles close to the orbital plane. The average was done using cylindrical shells
and the size of these shells was chosen in such a way that each of them contained
a significative number of particles. As can be seen, for the 0.3 + 0.5M⊙ and the
0.4 + 0.8M⊙ systems, the region of maximum temperatures occurs off-center, at the
edge of the original primary, in the region of accreted and shocked material, whereas
for the merger in which two equal-mass 0.6M⊙ white dwarfs coalesce the maximum
temperature occurs at the center of the merged object, as it should be expected.
These maximum temperatures are listed in the seventh column of Table 4.1. In
fact, the temperature profiles shown in this figure clearly show that the cores of the
primaries in the first two simulations remain almost intact and, hence, are rather
cold. These cores, in turn, are surrounded by a hot envelope wich corresponds to
the shocked material coming from the disrupted secondary. Nuclear reactions are
responsible for the observed heating of the accreted matter, initially triggered in the
shocked regions. The case in which two 0.6M⊙ white dwarfs coalesce is somewhat
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Figure 4.6: Radially averaged temperature profiles as a function of radius.

different. In this case there is not a hot envelope around central object — although a
local maximum of temperatures can indeed be appreciated at the edge of the rapidly
spinning central object, as shown in the bottom panel of Fig. 4.6 — and, instead,
the central region of the compact object is formed by the cores of the merging white
dwarfs. Most of the temperature increase in this case is due to viscous heating since
nuclear reactions are negligible because the increase in temperature of the shocked
material is not enough to ignite carbon. In all the cases it is rather apparent a
sizeable dispersion of temperatures in the outermost regions. This dispersion is due
in part to the fact that in these regions some of the particles that were ejected during
the first and most violent phases of the merger can be found.

4.4 Discussion

4.4.1 Comparison with theory

To obtain a better understanding of the coalescence process and to compare our
results with those theoretically expected, we have numerically solved the equations
of the evolution of the binary system during the mass transfer phase. The evolution
of a binary system during this phase is determined by three basic physical processes,
namely, gravitational wave emission, tidal torques and mass transfer. There is a
wealth of literature dealing with this problem. We adopt as our starting point the
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analysis of Marsh et al. (2004) and the more recent formulation of Gokhale et al.
(2007).

The total angular momentum of the system is given by:

Jtot = Jorb + J1 + J2 = M1M2

√

Ga

M
+ I1ω1 + I2ω2 (4.4)

where subscript 1 refers to the accretor star and subscript 2 refers to the donor
star, I1 and I2 are the moments of inertia of the stars, ω1 and ω2 are the spin
angular frequencies, M is the total mass of the system and a is the orbital separation.
Following Gokhale et al. (2007) the total variation of the orbital angular momentum
can be expressed as:

J̇orb = J̇GW + (j2 − j1)Ṁ2 −
I1

τ1

(Ω − ω1) −
I2

τ2

(Ω − ω2) (4.5)

where j1 represents the specific angular momentum of the infalling matter onto the
accretor, j2 represents the specific angular momentum of the ejected matter from
the donor, Ω is the orbital angular frequency and τ1 and τ2 are the synchroniza-
tion timescales of the accretor and the donor, respectively. The synchronization
timescales have been computed using the expressions of Campbell (1984)

τ1 = τ0
1

(

M1

M2

)2( a

R1

)6

τ2 = τ0
2

(

M2

M1

)2( a

R2

)6

(4.6)

where the normalization factors τ0
1 and τ0

2 are freely adjustable parameters (Marsh
et al. 2004; Gokhale et al. 2007).

The first term in Eq. (4.5) corresponds to the angular momentum loses due to
gravitational radiation and is given by (Landau & Lifshitz 1975):

J̇GW = −32

5

G3

c5

M1M2Mtot

a4
Jorb (4.7)

The second term in Eq. (4.5) is the orbital angular momentum loss due to mass
transfer between stars. Finally, the last two terms represent tidal torques due to
non-synchronization of spin and orbital angular velocities of the stars. Now, in order
to find an expression for the time variation of the orbital separation a, we use the
time derivative of the orbital angular momentum of the system — see Eq. (4.4) —
for conservative mass transfer:

J̇orb

Jorb

= (1 − q)
Ṁ2

M2

+
1

2

ȧ

a
(4.8)

where q = M2/M1. Then, the variation of the orbital separation ȧ is given by:
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Table 4.2: Averaged chemical composition (by mass) of the heavy rotationally-supported disk and the hot corona obtained by the
end of the coalescing process.

Disk Corona

Run 0.3+0.5 0.4+0.8 0.6+0.6 0.6+0.8 0.6+1.2 0.3+0.5 0.4+0.8 0.6+0.6 0.6+0.8 0.6+1.2

He 0.94 0.98 0 0 5 × 10−5 0.72 0.68 0 0 5 × 10−5

C 2.4 × 10−2 7 × 10−3 0.4 0.4 0.39 0.11 0.12 0.4 0.4 0.26
O 3.6 × 10−2 9 × 10−3 0.6 0.6 0.60 0.17 0.18 0.6 0.6 0.66
Ne 9 × 10−13 6 × 10−10 0 0 3 × 10−3 3 × 10−13 7 × 10−7 0 0 0.07
Mg 4 × 10−14 5 × 10−11 0 0 7 × 10−5 1 × 10−12 1 × 10−5 0 0 8 × 10−5

Si 1 × 10−17 3 × 10−14 0 0 1 × 10−5 1 × 10−11 1 × 10−4 0 0 5 × 10−5

S 2 × 10−23 1 × 10−19 0 0 3 × 10−7 1 × 10−10 2 × 10−4 0 0 5 × 10−5

Ar < 10−30 7 × 10−27 0 0 1 × 10−7 5 × 10−9 9 × 10−4 0 0 4 × 10−5

Ca < 10−30 < 10−30 0 0 8 × 10−7 1 × 10−8 5 × 10−4 0 0 1 × 10−4

Ti < 10−30 < 10−30 0 0 7 × 10−7 2 × 10−4 1 × 10−2 0 0 1 × 10−4

Cr < 10−30 < 10−30 0 0 8 × 10−7 4 × 10−4 2 × 10−3 0 0 2 × 10−4

Fe < 10−30 < 10−30 0 0 5 × 10−6 2 × 10−5 1 × 10−5 0 0 6 × 10−4

Ni < 10−30 < 10−30 0 0 6 × 10−4 2 × 10−7 4 × 10−8 0 0 1 × 10−2

Zn < 10−30 < 10−30 0 0 6 × 10−6 2 × 10−9 6 × 10−10 0 0 2 × 10−5
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ȧ

2a
=

J̇GW

Jorb

− I1 (Ω − ω1)

Jorbτ1
− I2 (Ω − ω2)

Jorbτ2
− (qa − q)

Ṁ2

M2
(4.9)

where

qa ≡ 1 + M2
j2 − j1

Jorb

(4.10)

In the disk-fed accretion approximation the specific angular momentum of the matter
arriving to the accretor, j1, can be aproximated by:

j1 =
√

GM1R1 (4.11)

Finally, the angular momentum of the matter leaving the donor, j2, can be expressed
as (Gokhale et al. 2007):

j2 ≃ R2
2ω2 (4.12)

As can be seen, the term arising from the emission of gravitational waves will
always lead to a decrease of the orbital separation, since J̇GW < 0. The tidal terms,
that is the ones coming from the spin-orbit coupling, can contribute to increase or
to decrease the orbital distance depending on the relation between the spin and
orbital velocities. If a star is rotating faster than the binary, angular momentum
will be transferred from the star to the orbit, thus leading to an increase in the
orbital separation. On the contrary, if the star is rotating slower than the orbit, a
transfer of angular momentum from the orbit to the star is produced, thus leading
to a decrease of the orbital separation. The last term comes from the variation of
angular momentum due to mass transfer, and can produce an increase or a decrease
of the orbital separation depending on the specific angular momentum of the accreted
material. It can be seen that if the mass-transfer rate leads to a decrease of the orbital
separation this will in turn increase the mass transfer rate, thus leading to a runaway
process ending with a dynamically unstable merging process. On the contrary if mass
transfer leads to an increase of the orbital separation it will lead to a reduction of
the mass transfer, thus stabilizing the merging process. As a consequence, it can be
seen that it is possible for a system to change its mass-transfer type from stable to
unstable or vice versa because q is a dynamical value. Thus, in order to determine
the exact type of mass transfer of the system it is necessary to study how the mass-
transfer rate evolves with time. The mass-transfer rate is determined by the Roche
Lobe overfill factor ∆ wich is usually defined as:

∆ ≡ R2 − RL (4.13)

Adopting a polytropic equation of state with n = 3/2 for the donor star, the mass-
transfer rate can be approximated by (Paczyiński & Sienkiewicz 1972)
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Ṁ2 = −αW (µ)

(

∆

R2

)3

(4.14)

being

W (µ) =

√
µ
√

1 − µ

(
√

µ +
√

1 − µ)4

(

µ

R1

)3

(4.15)

where µ = M2/(M1 + M2) and α is a smoothly varying function of the stellar
parameters which, following the approach of Gokhale et al. (2007), we have taken as
a constant freely adjustable parameter.

Thus, in order to compute the exact value of the mass tranfer rate, it is necessary
to follow the time evolution of stelar radius R1 and R2 and the Roche Lobe radius,
RL. For the Roche lobe radius we have adopted the expression of Eggleton (1983):

RL =
0.49q2/3

0.6q2/3 + ln(1 + q1/3)
(4.16)

whereas its time evolution is given by (Gokhale et al. 2007):

ṘL

2RL
=

J̇GW

Jorb

− I1 (Ω − ω1)

Jorbτ1
− I2 (Ω − ω2)

Jorbτ2

− (qa −
ζRL

2
− q)

Ṁ2

M2

(4.17)

where ζRL
≈ 0.30 + 0.16q which is valid for 0.01 ≤ q ≤ 1 (Gokhale et al. 2007).

The calculation of stellar radius requires some care. Although the equilibrium
radius of a white dwarf of a certain mass is well known, it should be taken into account
that due to dynamics of the process stars are not in perfect hydrostatic equilibrium,
especially in the last stages of our calculations. Consequently, equilibrium values
cannot be used, since this might introduce strong errors in the calculations. Hence,
we have adopted a different approach. We have computed for each time step the
actual moment of inertia of each star. In particular, in the case of the primary white
dwarf for each computed model we look for the location of the region with maximum
temperature (see Fig. 4.3). We then compute the mass interior to this shell and the
corresponding moment of inertia. For the case of the donor white dwarf we look for
the region which still has an approximate spherical symmetry (see Fig. 4.1) and we
follow the same procedure adopted for the accretor. Once we know the moment of
inertia of the stars and given the masses we can compute an approximate value for
the stellar radius.

With all these inputs the equations for the evolution of the binary system —
Eqs. (4.9) and (4.17) — together with the equations for the evolution of the spin
angular velocities of each of the components
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Figure 4.7: A comparison of the SPH values for the orbital distance a and for the spin
angular moments of the donor and the accretor stars for the 0.6 + 0.8 M⊙ case and those
obtained using a simplified model. The sping angular moments are expressed in units of 1051

g cm2/s.

ω̇i =

(

ji

Ii

)

Ṁi −
(

İi

Ii

)

ωi +
Ω − ωi

τi
(4.18)

can be integrated. In doing so it has to be taken into account the logical limitations
of the theoretical approach. In particular, the SPH results show that mass transfer
is not perfectly conservative, although this assumption is fairly good — see Table
4.1. Moreover, stars are not point-like masses and, most importantly, the method
adopted for the calculation of the stellar radii presents some difficulties in the last
moments of the simulation because of the very large degree of deformation of the
secondary star. All these assumptions may produce marked differences between the
SPH and the theoretical results.

In figure 4.7 we show a comparison of the theoretical results — shown as a dashed
line — and the SPH results — shown as dots — for the time evolution of the orbital
separation and of the spin angular moment of the accretor (J1) and donor stars
(J2). The three adjustable parameters adopted in the theoretical calculations are,
respectively, α = 145M⊙ R3

⊙ yr, τ0
1 = 3.50× 104 yr and τ0

2 = 4.7510−8 yr. As can be
seen, during the first phases of the merger the agreement is excellent. Note however
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that we can only compare the SPH results with the theoretical expectations while
the secondary still preserves partially its initial shape. This is why we only show in
Fig. 4.7 a reduced time interval, corresponding to the first five panels in Figs. 4.1
and 4.3. For times longer than ∼ 70 s, the secondary rapidly dissolves and, hence,
the approach followed here is no longer valid. It is worth realizing that τ0

1 ≫ τ0
2 .

This means that the synchronization timescale of the primary is much larger than
that of the secondary. Accordingly, during this phase of the mass-transfer episode
the donor rapidly synchronizes whereas the primary does not. Consequently, orbital
angular moment is transferred from the orbit to the donor in a short timescale, thus
reducing the orbital separation. This, in turn, increases the mass-transfer rate and
the final result is that the secondary is rapidly disrupted. Since the total angular
momentum is conserved the material transferred to the primary must rotate rapidly,
thus producing the characteristic rotational profiles shown in the left panels of Fig.
4.5. In summary, the results of the hydrodynamic calculations can be accurately
reproduced by a simple model once all the weaknesses of the theoretical approach
are correctly taken into account.

4.4.2 Gravitational wave radiation

Gravitational wave radiation from Galactic close white dwarf binary systems is ex-
pected to be the dominant contribution to the background noise in the low frequency
region, which ranges from ∼ 10−3 up to ∼ 10−2 Hz (Bender 1998). Moreover, since
during the merging process a sizeable amount of mass is transferred from the donor
star to the primary at considerable speeds, the gravitational wave signal is expected
to be detectable by LISA (Guerrero et al. 2004; Lorén-Aguilar et al. 2005). It is
thus important to characterize which would be the gravitational wave emission of
the white dwarf mergers studied here and to assess the feasibility of dectecting them.

To compute the gravitational wave pattern we proceed as in Lorén-Aguilar et al.
(2005). In particular, we use the weak-field quadrupole approximation (Misner et al.
1973):

hTT
jk (t, ~x) =

2G

c4d

∂2QTT
jk (t − R)

∂t2
(4.19)

where t − R = t − d/c is the retarded time, d is the distance to the observer, and
QTT

jk (t − R) is the quadrupole moment of the mass distribution, wich is given by

Q̈TT
jk (t − R) =

∫

ρ(~x, t − R)(xjxk − 1

3
x2δjk)d

3x (4.20)

To calculate the quadrupole moment of the mass distribution using SPH particles,
Eq. (4.20) must be discretized according to the following expression
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Figure 4.8: Gravitational wave emission from the merger of a 0.6+0.8 M⊙ close white dwarf
binary system. The dimensionless strains h+ and h× are measured in units of 10−22. The
source has been assumed to be at a distance of 10 kpc.

Q̈TT
jk (t − R) ≈ Pijkl( ~N)

n
∑

p=1

m(p)
[

2~vk(p)~vl(p)

+ ~xk(p)~al(p) + ~xl(p)~ak(p)
]

(4.21)

where

Pijkl( ~N) ≡ (δij − NiNk)(δjl − NjNl)

− 1

2
(δij − NiNj)(δkl − NkNl) (4.22)

is the transverse-traceless projection operator onto the plane orthogonal to the out-
going wave direction, ~N , m(p) is the mass of each SPH particle, and ~x(p), ~v(p) and
~a(p) are, respectively, its position, velocity and acceleration.

Using this prescription the corresponding strains for the 0.6 + 0.8M⊙, which is
a representative case, are shown in Fig. 4.8. As shown in this figure the gravita-
tional waveforms rapidly vanish in a couple of orbital periods and the gravitational
wave emission during the coalescence phase does not have a noticeable large peak.
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Figure 4.9: A comparison of the signal produced by the close white dwarf binary systems
studied here, when a distance of 10 kpc is adopted. The spectral distribution of noise of
LISA for a one year integration period is also shown. We have adopted a signal-to-noise
ratio η = 5.

Hence, the gravitational wave emission is dominated by the chirping phase, in agree-
ment with the findings of Lorén-Aguilar et al. (2005). Moreover, the gravitational
waveforms obtained here are very similar to those computed by Lorén-Aguilar et al.
(2005) and, thus, do not depend appreciably on the number of particles used to
calculate them. Since the gravitational wave signal is dominated by that of the in-
spiralling phase, in order to assess the feasibility of detecting it using gravitational
wave detectors we have assumed that the orbital separation of the binary system is
that of the last stable orbit. Furthermore, we have also assumed that the integration
time of LISA will be one year. It is then straightforward to demonstrate that during
this time interval the variation of the orbital separation is negligible. With these
assumptions the double white dwarf binary system basically radiates a monochro-
matic wave and it is easy to assess the feasibility of detecting the signal produced
by the coalescence of close binary white dwarf systems. This is done in figure 4.9
where we show the strength of the resulting signals and we compare them with the
spectral distribution of noise of LISA, when a distance of 10 kpc is adopted. As can
be seen in this figure all the systems are well inside the detectability region and,
consequently, LISA should be able to distinguish them from Galactic noise.
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Figure 4.10: Fallback accretion luminosity for our three fiducial double white dwarf mergers.
The units of time are seconds, whereas those of luminosities are erg/s. A straight line with
slope 5/3 is shown for the sake of comparison.

4.4.3 Fallback luminosities

Another potential observational signature of the mergers studied here is the emission
of X-rays from the fallback material in the aftermath of the coalescence itself. We
have already shown that as a result of the merger of two white dwarfs of different
masses, most of the SPH particles of the disrupted secondary form a keplerian disk.
These SPH particles have circularized orbits. However, as it occurs in the mergers
of double neutron stars, some material of the secondary is found to be in highly
eccentric orbits as well. After some time, this material will most likely interact with
the recently formed disk. As discussed in Rosswog (2007) the timescale for this is not
set by viscous dissipation but, instead, by the distribution of eccentrities. We follow
closely the model proposed by Rosswog (2007) and calculate the accretion luminosity
obtained from the interaction of the stellar material with high eccentricities with the
newly formed disk by assuming that the kinetic energy of these particles is dissipated
within the radius of the debris disk.

In figure 4.10 we have plotted the accretion luminosities as a function of time
for our three fiducial cases. We emphasize that these luminosities have been com-
puted assuming that the highly eccentric particles loose all its kinetic energy when
interacting with the disk, for which we adopt the radius obtained by the end of our
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SPH simulations, which are those shown in Table 4.1. Moreover, only a fraction of
this energy will be released in the form of high-energy photons. Thus, the results
shown in Fig. 4.10 can be regarded as an upper limit for the actual luminosity of
high-energy photons. Note that although the luminosities are smaller than those
typically obtained for the merger of double neutron stars — which are typically of
the order of ∼ 1052 erg/s — white dwarfs mergers predict a very similar time de-
pendence (∝ t5/3). This is an important result because it shows that observations
of high-energy photons can help in detecting the gravitational wave signal radiated
by these systems. In fact, the detection of the gravitational waves arising from the
merger of white dwarfs is a tough task because, as previously explained, the signal
is dominated by the inspiralling phase and the waveforms do not have a prominent
peak before the ringdown phase. Thus a combined strategy in which optical, UV,
X-ray and gravitational wave detectors are used could be very useful.

4.4.4 Long-term evolution

We have already shown that no explosive nuclear burning takes place during the
merging phase. However, this does not necessarily mean that such an explosion could
not take place due to mass accretion from the disk at late times. If mass acccretion
occurs at rates smaller than 10−6 M⊙ yr−1 then, central carbon ignition is possible
and a SNIa is the most probable outcome. On the other hand, if the accretion
rates are larger than this value, then off-center carbon ignition is the most probable
outcome, giving rise to an inward propagating burning flame and an ONe white
dwarf is likely to be formed (Nomoto & Iben 1985; Garcia-Berro & Iben 1994; Ritossa
et al. 1999) wich might eventually form a neutron star by accretion-induced collapse
(Saio & Nomoto 1985; Woosley & Weaver 1986; Gutierrez et al. 1996; Gutiérrez
et al. 2005). However, once the disk has been formed, angular momentum viscous
transfer is relevant and the hydrodynamical timescale of the disk becomes very large.
Consequenlty, the subsequent evolution of the disk cannot be followed using a SPH
code. However, some estimates of the accretion rate can still be done by considering
the typical viscous transport timescales.

The typical viscous transport timescale is (Mochkovitch & Livio 1989, 1990)

τvisc =

(

1

T

dT

dt

)−1

(4.23)

where T is the rotational kinetic energy and

dT

dt
= −

∫ (

∂Ω

∂r

)2

r2η(r)d3r (4.24)

is its rate of change. In this expression Ω is the angular velocity, r is the radial
cylindrical coordinate and η is the (physical) viscosity parameter, that depends on
the viscous mechanism. If the disk is laminar and the viscosity is that of degenerate
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Figure 4.11: Richardson number as a function of the distance. When Ri> 1/4 the disk is
turbulent. The horizontal dashed line corresponds to Ri=1/4.

electrons then η = 2.0 × 10−5ρ5/3 g/cm s (Durisen 1973,Itoh et al. 1987) and the
associated accretion rates can be obtained taking into account that

Ṫ ∼ GM∗Ṁ

R∗

(4.25)

where M∗ and R∗ are the mass and radius of the central object. If, instead, the
disk is turbulent the classical approximation of Shakura & Syunyaev (1973) is valid.
Within this approximation the viscous timescale is given by

τvisc = α−1

(

Rdisk

H

)(

Rdisk

cs

)

(4.26)

where α ∼ 0.1 is the standard viscosity, cs is the sound speed, Rdisk is the radius
of the disk and H is the disk half-thickness. Both the radius of the disk and its
half-thickness are listed in Table 4.1 for each one of the simulations presented here.
The accretion rate is then given by

Ṁ ≃ Mdisk

τvisc
(4.27)

In order to check if the disk is turbulent we have computed the Richardson
number
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Table 4.3: Typical viscous timescales (in years), dissipated kinetic energies (in erg/s), and
accretion rates (in M⊙ yr−1) for the case in which the laminar viscosity is used. Columns
5 and 6 show the corresponding viscous timescales and accretion rates obtained when the
classical Shakura & Syunyaev (1973) expression is employed.

Laminar Turbulent

Run τ Ṫ Ṁ τ Ṁ

0.3+0.5 3 × 1011 1 × 1029 2 × 10−14 7.6 × 10−4 43
0.4+0.8 1 × 1011 5 × 1029 8 × 10−14 1.1 × 10−2 63
0.6+0.6 1 × 1011 6 × 1029 1 × 10−13 2.0 × 10−4 560
0.6+0.8 5 × 1010 3 × 1030 4 × 10−13 1.2 × 10−2 62
0.6+1.2 3 × 108 7 × 1032 8 × 10−11 1.0 × 10−2 75

Ri =

(

geff

cs

)

(

1 − γ
Γ

)

(

r dΩ
dr

) (4.28)

In this expression geff is the effective gravity, that is the real gravity minus the
centrifugal force, γ is the logarithmic derivative of the pressure with respect to the
density, Γ is the adiabatic and the rest of the symbols have their usual meaning. We
have chosen γ = 1.4 and Γ = 5/3. If the Richardson number is smaller than 1/4
stability against turbulence is guaranteed. If this is not the case the disk may be
turbulent, since this is only a necessary condition, but Ri> 1/4 is a good indication
for turbulence to occur. In figure 4.11 we show the Richardson number as a function
of the radial coordinate for the three fiducial cases described here. As can be seen in
this figure the condition Ri> 1/4 is satisfied in the innermost regions of the disk, up
to distances ∼ 0.2R⊙. Thus, the innermost regions of the disk are turbulent and it
is likely that the accretion rate is that given by Eq. (4.27). Nevertheless, Eq. (4.23)
provides a safe upper limit for the typical transport timescale of the disk. The total
rotational kinetic luminosity dissipated, Ṫ , and the corresponding timescales using
this approach are given in the left section of table 4.3. For the case in which the
laminar viscosity is used the resulting accretion rates turn out to be ≤ 10−12 M⊙/yr,
and consequently central carbon ignition leading to a SNIa is possible. When the
classical Shakura & Syunyaev (1973) expression is adopted the accretion rates are
shown in the right section of table 4.3. As can be seen these accretion rates turn
out to be very large. There are experimental and theoretical reasons to suspect that
the central object will not be able to accrete material from the surrounding disk at
these very high accretion rates. From a theoretical perspective it is rather clear that
these accretion rates exceed the Eddington limit, which is order of 10−5 M⊙ yr−1.
Additionally, and from a experimental point of view, there is growing evidence (Ji



76 4 High-resolution SPH simulations of the merger of white dwarfs

et al. 2006) that hydrodynamic turbulence cannot transport angular momentum
effectively in astrophysical disks, even at very large Reynolds numbers, leaving as
the only possible way to lose angular momentum the magnetorotational instability.

Yoon et al. (2007) have systematically explored the conditions for avoiding off-
center carbon ignition in the merged configurations resulting from the coalescence
of two CO white dwarfs. They computed the evolution of the central remnant of
the coalescence of a 0.9 + 0.6M⊙ binary white dwarf, adopting a realistic initial
model, which includes the differentially rotating primary, the hot envelope we also
find in our simulations and the centrifugally supported accretion disk. Our final
configurations resemble very much those found by these authors and, consequently,
the same conclusions obtained in this paper hold. In particular, since in our models
the maximum temperature of the hot envelope is smaller than the carbon ignition
temperature and the mass-accretion rate from the keplerian disk is possibly smaller
than the critical one (Ṁ ≃ 5.0 × 10−6 M⊙ yr−1) it is probable that at least some of
our merged configurations may be considered good candidates for the progenitors of
Type Ia supernovae.

4.5 Conclusions

We have performed several high-resolution Smoothed Particle Hydrodynamics sim-
ulations of coalescing white dwarfs. We have done so for a broad range of masses
and chemical compositions of the coalescing white dwarfs, which includes He, CO
and ONe white dwarfs. Such a parametric study using a large number of particles
(4 × 105 SPH particles) had never been done before. Previous works on the subject
used a considerably smaller number — by a factor of 10 — of SPH particles (Guerrero
et al. 2004), or did not explore the full range of masses and chemical compositions of
interest (Yoon et al. 2007) — only one merger was computed, that of 0.9 + 0.6M⊙

double white dwarf. In addition, we have included a refined treatment of the artifi-
cial viscosity. In particular, we have used an artificial viscosity formulation that is
oriented at Riemann-solvers (Monaghan 1997) together with time dependent viscos-
ity parameters and an additional switch to suppress the excess of viscosity (Balsara
1995). With this treatment the dissipative terms are only applied in those regions
of the fluid in which they are really necessary to resolve a shock. This refined treat-
ment of the artificial viscosity overcomes some of the problems found in our previous
simulations (Guerrero et al. 2004).

In all cases, the merged configuration consists of a compact central object sur-
rounded by a hot corona with spheroidal shape and a self-gravitating keplerian disk
around it. For the cases in which two white dwarfs of different masses are involved
the resulting disk can be considered as a thin disk, whereas for the 0.6+0.6M⊙ case
we have found that the resulting final configuration resembles a rotating ellipsoid
around the central object with a much more modest disk. The peak temperatures
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attained during the merger are smaller than those found by Guerrero et al. (2004)
and in line with that found by Yoon et al. (2007) for the case of a 0.9 + 0.6M⊙

merger. We also confirm the results obtained in previous works (Guerrero et al.
2004; Lorén-Aguilar et al. 2005; Yoon et al. 2007) and we find that only when one of
the merging white dwarfs is a He white dwarf nuclear reactions are relevant. However
none of the cases studied here show an explosive behavior during the merging phase.
Furthermore, no essential differences are found when the chemical abundances ob-
tained here using an enhanced spatial resolution and a refined prescription for the
artificial viscosity and those obtained in previous works (Garćıa-Berro et al. 2007)
are compared. The chemical composition of the disks formed by the coalescence of
a He white dwarf with CO white dwarfs shows an enrichment in heavy elements like
Ca, Mg, S, Si and Fe and constitute a natural environment where planets and aster-
oids can be formed. This could explain the anomalous abundances of metals found
in several hydrogen-rich white dwarfs with dusty disks around them and which have
been attributed to the impact of asteroids (Jura 2003), since it is quite unlikely that
such asteroids could survive the red giant phase.

We have also compared the results of our hydrodynamical calculations with the
theoretical expectations and we have found a satisfactory agreement when the syn-
chronization timescale of the disrupted secondary is much shorter than that of the
primary. In this case the rate of change of the orbital distance and the corresponding
spins of both the donor star and of the accretor are reproduced with a large degree
of accuracy. We have shown as well that the emission of gravitational waves from
these kind of systems is strong enough to be obervable by LISA, and that the cor-
responding waveforms do not depend appreciably on the resolution employed in the
hydrodynamical calculations and, thus, that these waveforms are robust.

We have computed as well the possible X-ray emission produced in the aftermath
of the merger. This X-ray emission is a consequence of the interaction of the material
with highly eccentric orbits — which is produced during the first and most violent
phases of the merger — with the resulting disk — which is formed by particles with
circularized orbits — and we have found that the typical luminosities are of the
order ∼ 1049 erg/s, although the precise value of the peak luminosity depends very
much on the masses of the coalescing white dwarfs. The time dependence of the
X-ray emission is ∝ t5/3, a behavior also present in the merger of double neutron
stars and neutron stars and black holes (Rosswog 2007). The detection of this X-ray
burst would eventually help in detecting the gravitational waves suposedly radiated
during the merger.

With respect to the long-term evolution of the mergers we have found that all
the disks product of the coalescence of two white dwarfs are potentially turbulent.
This result implies that very large accretion rates from the disk onto the primary
are expected. Despite our crude approximations, it is thus quite likely that these
accretion rates would lead to an off-center carbon ignition, although an in depth
study remains to be done. However, since our final configurations resemble very
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much those found by Yoon et al. (2007), it is as well probable that at least some
of our merged configurations may be considered good candidates for the progenitors
of Type Ia supernovae. A detailed calculation of the evolution of the resulting
disks, including an accurate description of the mechanisms of angular momentum
transport, must therefore be done. Unfortunately this task is far beyond the current
possibilities of SPH techniques.



Chapter 5

Evidence of a merger of binary

white dwarfs: the case of

GD 362

GD 362 is a massive white dwarf with a spectrum suggesting a H-rich atmosphere
which also shows very high abundances of Ca, Mg, Fe and other metals. However, for
pure H-atmospheres the diffusion timescales are so short that very extreme assump-
tions have to be made to account for the observed abundances of metals. The most
favored hypothesis is that the metals are accreted from either a dusty disk or from
an asteroid belt. Here we propose that the envelope of GD 362 is dominated by He,
which at these effective temperatures is almost completely invisible in the spectrum.
This assumption strongly alleviates the problem, since the diffusion timescales are
much larger for He-dominated atmospheres. In this chapter we compare the results
ouf our simulations the recent observations of GD 362. We report the abundances
of the resulting accretion disk, and we discuss the possibility of explaining both the
accretion disk and the high metal abundances found in GD 362 as the the coales-
cence of a double white dwarf binary system. We have explored a significant range of
masses for the primary, but we concentrate in secondaries with masses M ≤ 0.45M⊙,
although we also show, for the sake of comparison the emerging chemical composi-
tion of the coalescence of a close binary system in which the two components are
carbon-oxygen white dwarfs.

5.1 Introduction

GD 362 is a massive, rather cool (Teff ≃ 9 740 ± 50 K), white dwarf with a heavy
accretion disk surrounding it (Kilic et al. 2005; Becklin et al. 2005; Gianninas et al.
2004). The dusty disk around GD 362 produces an excess of infrared radiation which
amounts to ∼3% of the total stellar luminosity. The chemical composition of GD 362
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Run MWD Mdisk Macc Mej ω (s−1) JSPH
z Jz

0.4+0.8 0.99 0.21 0.19 10−3 0.61 2.4 × 10−5 2.4 × 10−5

0.4+1.0 1.16 0.24 0.16 10−3 1.00 3.0 × 10−5 2.9 × 10−5

0.4+1.2 1.30 0.30 0.10 10−3 1.72 4.0 × 10−5 3.9 × 10−5

0.6+0.6 0.90 0.30 0.90 10−2 0.21 2.5 × 10−5 3.2 × 10−5

0.6+0.8 1.09 0.29 0.29 10−3 0.49 3.4 × 10−5 3.4 × 10−5

Table 5.1: Main results of the SPH simulations of Guerrero et al. (2004) All masses are in
solar units, whereas the units of the angular momentum are M⊙R2

⊙/s.

is also rather singular, showing very high abundances of Ca, Mg and Fe (Gianninas
et al. 2004). Thus, it is classified as a massive DAZ (hydrogen-rich) white dwarf. The
origin of such particularly high photospheric abundances — log(NCa/NH) = −5.2,
log(NMg/NH) = −4.8 and log(NFe/NH) = −4.5 — and of the surrounding dusty
disk still remains a mistery and it is the matter of an active ongoing debate. In
particular, since the diffusion timescales for metals in H-rich white dwarfs are of
only a few years (Koester & Wilken 2006) very extreme assumptions have to be
made in order to explain these abundances. At present the most widely accepted
scenario is disruption and accretion of a planetary body, although for this scenario to
be feasible the planetary system should survive during the advances stages of stellar
evolution, which by no means is guaranteed. The formation of an asteroid would
require the previous existence of a disk around this white dwarf (Livio et al. 1992,
2005). Particularly, a recent analysis (Villaver & Livio 2007) has shown that planets
around white dwarfs with masses MWD > 0.7M⊙ are generally expected to be found
at orbital radii r > 15 AU because they cannot survive the planetary nebula phase
and that if planets are to be found at smaller orbital radii around massive white
dwarfs, they had to form as the result of the merger of two white dwarfs. It is also
interesting to note that there have been previous suggestions about white dwarfs
that are merger products — see for instance Liebert et al. (2005) — but these claims
do not have yet any observational support.

5.2 Characteristics of the merger products

One of the possibilities is that this massive white dwarf is the result of the merger of a
double white dwarf close binary system. Indeed, the merger of two white dwarfs is one
of the outcomes of binary star evolution. This scenario has been recently studied by
Guerrero et al. (2004) and Lorén-Aguilar et al. (2005) using an up-to-date Smoothed
Particle Hydrodynamics code and employing the adequate spatial resolution. Also,
the nucleosynthesis of the merger was carefully studied in these papers. The main
results of such simulations is that the less massive white dwarf of the binary system
is totally disrupted in a few orbital periods. A fraction of the secondary is directly
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Run 0.4+0.8 0.4+1.0 0.4+1.2 0.6+0.6 0.6+0.8

He 0.94 0.93 0.99 0 0
C 3 × 10−2 2 × 10−2 5 × 10−3 0.4 0.4
O 1 × 10−2 3 × 10−3 3 × 10−3 0.6 0.6
Ca 4 × 10−5 2 × 10−4 9 × 10−6 0 0
Mg 3 × 10−5 3 × 10−5 6 × 10−6 0 0
S 8 × 10−5 2 × 10−4 5 × 10−7 0 0
Si 1 × 10−4 2 × 10−4 3 × 10−5 0 0
Fe 9 × 10−3 7 × 10−3 5 × 10−4 0 0

Table 5.2: Averaged chemical composition (by mass) of the heavy-rotationally supported
disk obtained by the end of the coalescing process.

accreted onto the primary white dwarf whereas the remnants of the secondary form
a heavy, rotationally–supported accretion disk around the primary and little mass
is ejected from the binary system. The resulting temperatures are rather high (9 ×
108 K) during the most violent phases of the merger process, allowing for extensive
nuclear processing. The enhancement of the abundances of the most relevant nuclear
isotopes occurs when one of the coalescing white dwarfs is made of pure He. This
stems from two facts. First, the Coulomb barrier is much smaller in this case leading
to enhanced abundances of Ca, Mg and Fe and, second, the secondary is less compact
leading larger kinetic energies of the disrupted secondary and, consequently, to a
stronger impact of the accreted matter on the surface of the primary resulting in
larger temperatures of the shocked material.

Table 5.1 shows the main results of the SPH simulations discussed in detail in
Guerrero et al. (2004). The first column displays the masses of the coalescing white
dwarfs, in the second column the mass of the resulting white dwarf is listed. The
mass of the rotationally-supported disk emerging from the simulations is tabulated
in column three. The fourth column provides the accreted mass, whereas in column
five the mass ejected from the system is given. Finally columns six and seven list
the rotational velocity of the surface of the central object and the total orbital
angular momentum stored in the disk. Note that in this table, as predicted by the
standard theory of stellar evolution, white dwarfs with masses smaller than 0.45M⊙

are assumed to be made of pure He, white dwarfs with masses larger than 1.0M⊙ are
considered to be ONe white dwarfs and white dwarfs with masses 0.45M⊙ ≤ M ≤
1.0M⊙ are considered to be made of carbon and oxygen. As can be seen, in all cases
the primary is considerably spun-up during the merger, although — as discussed in
Guerrero et al. (2004) — this may be an artifact of the adopted artificial viscosity
and should then considered as a safe upper limit. Also interesting to note is that
approximately half of mass of the disrupted secondary is directly accreted by the
primary, whereas most of the remnants of the secondary form an accretion disk with
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Figure 5.1: Abundances by mass of Ca (top) and Mg (bottom). The left panels show the
distribution profile projected on the orbital plane, whereas the right panels show the angular
average.

a rather high orbital angular momentum.

Table 5.2 shows the averaged chemical composition of the resulting accretion
disk, whereas table 5.3 shows the maximum local chemical composition of the disk.
For the cases in which a secondary of mass 0.4M⊙ is adopted the major constituent
of the disk is He. For the rest of the cases studied here the most abundant isotopes
are C and O. Note that for the case in which a He white dwarf is disrupted the
chemical enrichment in Ca, Mg Fe and Si is rather noticeable, leaving open the
possibility of explaining the rather high photospheric abundances of these elements
found in GD 362 by direct accretion from the disk. To this regard in figures 5.1 and
5.2 we show, respectively, the distribution of the projected abundances of Ca (figure
5.1, top panels), Mg (figure 5.1, bottom panels), Si (figure 5.2, top panels) and Fe
(figure 5.2, bottom panels). In both figures the left panels represent the computed
distribution of abundances as it results from our SPH calculations, whereas in the
right panels we have averaged this abundances over an annulus.

It is worth noticing that the distribution of the different elements in the disk
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Figure 5.2: Abundances by mass of Si (top) and Fe (bottom). The left panels show the
distribution profile projected on the orbital plane, whereas de right panels show the angular
average.

is rather inhomogeneous, as already apparent from figures 5.1 and 5.2. Obviously
those parts of the disk in which the material of the secondary has been shocked have
undergone major nuclear processing. Hence, these regions are C- and O-depleted
and Si- and Fe-enhanced. In fact, the innermost regions (R < 0.1R⊙) of the merged
object, which have approximately the shape of an ellipsoid, are C- and O-rich. It is
expected that this region would be eventually accreted during the the first moments
of the cooling phase of the central object, leading to a more massive white dwarf.
We also find that the abundance of intermediate-mass and iron-group elements is
considerably larger than that of C and O in the remnants of the accretion stream
which are at larger distances.

In order to correctly address whether or not the high photospheric abundances
of GD 362 are the product of a merger of a binary white dwarf system we must first
compute the mass of the envelope of GD 362. To this end it is important to realize
that during the merger process the (tiny) H envelopes of the merging white dwarfs
are completely destroyed as a consequence of the large temperatures achieved in the
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Run 0.4+0.8 0.4+1.0 0.4+1.2 0.6+0.6 0.6+0.8

He 1.0 1.0 1.0 0 0
C 4 × 10−1 3 × 10−1 4 × 10−1 4 × 10−1 4 × 10−1

O 6 × 10−1 6 × 10−1 8 × 10−1 6 × 10−1 6 × 10−1

Ca 4 × 10−3 2 × 10−2 3 × 10−3 0 0
Mg 7 × 10−4 6 × 10−2 2 × 10−3 0 0
S 1 × 10−2 7 × 10−3 7 × 10−3 0 0
Si 3 × 10−2 6 × 10−3 8 × 10−3 0 0
Fe 8 × 10−2 6 × 10−2 2 × 10−1 0 0

Table 5.3: Maximum local chemical composition (by mass) of the heavy-rotationally sup-
ported disk obtained by the end of the coalescing process.

outermost regions of the remnant white dwarf. Hence, GD 362 must have accreted
at least part of its envelope from the ISM. We will come back to this issue in the
next section. For the moment it is as well important to study the resulting disks.

Following Livio et al. (2005) the surface density profile of the disk is of the form
Σ ∝ R−α. Fig. 5.3 shows the resulting density profile of the disk (dots) for the
0.4+1.0M⊙ run and the fit obtained using α = 7/4 (line), which is very close to the
value adopted by Livio et al. (2005), α = 3/2. Note that the inner edge of the disk
is located at ∼ 1.0×10−2 R⊙. Then, it can be shown that the angular momentum of
the disk can be expressed in terms of the disk radius Rout and the disk mass Mdisk

as

Jz = ξMdisk(GMWDRout)
1/2 (5.1)

where ξ = (2 − α)/(5
2
− α) = 1/3. As can be seen in table 5.1 the predicted angular

momentum using Eq. 5.1 — last column — agrees very well with the results of our
SPH simulations. This provides confidence in our theoretical simulations. In all the
cases we have used Rout ≃ 0.3R⊙, as it results from our detailed SPH simulations.
For illustrative purposes in Fig. 5.4 we also show the temperatures in the disk by
the end of our simulations — when the effective temperature is rather high — and
we compare them with the theoretical profile (Chiang & Goldreich 1997).

5.3 Results

5.3.1 The chemical abundances

If the photospheric abundances of GD 362 are to be explained with this scenario
the accretion of He-rich material is required. Since He is also accreted onto the
surface of GD 362, the photospheric layers may contain significant amounts of He
which, at the effective temperature of GD 362 would be spectroscopically invisible.
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Figure 5.3: Surface density profile of the resulting disk (dots) compared to an exponentially
decreasing law with an exponent of α = 7/4. Only the innermost regions of the disk are
shown.

Consequently, the H/He ratio can be regarded as a free parameter. However, the
presence of He in a cool hydrogen-rich atmosphere affects the mass determination
(Bergeron et al. 1991). For instance, in Fig. 5.5 we show three almost identical
synthetic spectra representative of GD 362 with various assumed He abundances.
If He/H=10 is adopted then log g = 8.25 is obtained (MWD ≃ 0.8M⊙) whereas
if we adopt He/H=1 then the surface gravity turns out to be log g = 8.72. This
corresponds to a mass of the primary of MWD ≃ 1.0M⊙ which can be obtained from
the coalescence of a 0.4+0.8M⊙ binary system. Additionally, in this case the largest
abundances of the relevant elements are obtained. Thus, we choose the 0.4+0.8M⊙

simulation as our reference model.

In order to know whether the chemical abundances of GD 362 can be reproduced
by direct accretion from the keplerian disk we proceed as follows. First, given the
surface gravity and the effective temperature of our model we compute the luminos-
ity, the radius and the cooling time of the white dwarf according to a set of cooling
sequences (Salaris et al. 2000). We obtain respectively log(LWD/L⊙) ∼ −3.283,
log(RWD/R⊙) ∼ −2.096, and tcool ∼ 2.2 Gyr. Hence, in this scenario GD 362
has had enough time from the moment in which the merger occurred to cool down
enough for the accretion disk to settle down, loose some mass — even at a very
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Figure 5.4: Surface temperature profile of the resulting disk (dots) compared to the theoret-
ical relationship of Chiang & Goldreich (1997)

modest mass–loss rate — and form dust. Additionally, the central white dwarf has
had time enough to accrete at a rate much smaller than the Bondi-Hoyle accretion
rate

ṀBH = 10−15
( n

cm−3

)( v

10 km/s

)−3(MWD

M⊙

)2

M⊙ yr−1 (5.2)

the very small amount of hydrogen from the ISM to show spectroscopic hydrogen
features. We further assume that the accretion luminosity:

Lacc =
GMWDṀacc

RWD
(5.3)

is, in the worst of the cases, smaller than the luminosity of the white dwarf. This
provides us with an (extreme) upper limit to the accretion rate from the disk, which
turns out to be 1.3×10−13 M⊙ yr−1. Next, we assume that the abundance of Ca is the
result of the equilibrium between the accreted material and gravitational diffusion:

ṀaccXdisk =
MenvX

τdiff

(5.4)



5.3 Results 87

Figure 5.5: Spectrum of GD 362 for three different helium abundances. The black line shows
the spectrum of GD 362 when a pure hydrogen atmosphere is assumed, leading to a surface
gravity of log g = 9.12. For increasing amounts of He — namely N(He)/N(H)=1, red curve,
and N(He)/N(H)=10, blue curve — the corresponding surface gravities are smaller.

where Menv is the mass of the envelope of GD 362, X is the mass abundance in the
envelope of the white dwarf of the considered element (either Ca, Mg or Fe), τdiff is
the diffusion timescale, Ṁacc is the required accretion rate and and Xdisk is the mass
abundance in the disk.

The diffusion timescale of Ca for H-rich atmospheres is of the order of a few years.
However, the accreted material is He-rich, so the diffusion timescale is probably more
typical of a He-rich envelope, which is much larger (Paquette et al. 1986), of the order
of τdiff ∼ 1.5× 104 yr. Unfortunately, diffusion timescales for mixed H/He envelopes
do not exist. However, the diffusion characteristic times scale as τdiff ∝ ρT−1/2g−2

(Alcock & Illarionov 1980). We have computed detailed atmosphere models for pure
H, He/H=1 and He/H=10 and scaled the diffusion timescale using the values of the
density and the temperature at the base of the convective zones and the appropriate
chemical composition. For our fiducial composition (He/H=10) we obtain τdiff ∼
8.5 × 103 yr. From this we obtain the mass of the envelope which turns out to
be Menv ∼ 7.2 × 10−9 M⊙, which is much smaller than that obtained by accretion
from the interstellar medium at the Bondi-Hoyle accretion rate — of the order of
∼ 1.5 × 10−6 M⊙, adopting the typical values for the the velocity of a disk white
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dwarf (v = 10 km/s) and for the density of the interstellar medium (n = 0.7 cm−3) —
and larger than that required to prevent convective mixing to occur at the effective
temperature of GD 362 (≃ 1.0×10−10 M⊙), in which case GD 362 would not appear
as a DAZ white dwarf, but as a He-rich DZ star instead. Hence, the photospheric
abundances of GD 362 can be successfully explained by direct accretion from the
surrounding disk.

5.3.2 The infrared excess

Now we assess whether the flux from the accretion disc can be fitted by the results of
our SPH simulations. In order to compute the flux radiated away from the system two
contributions must be taken into account. The first one is the expected photospheric
flux from the star, for which we use the spectral energy distribution (BWD) of a white
dwarf of mass 1M⊙, at Teff = 9740 K:

FWD = π

(

RWD

DWD

)2

BWD(Teff), (5.5)

where DWD is the distance to the white dwarf and RWD is the radius of the white
dwarf. Given the luminosity of our model and the apparent magnitude of GD 362
we obtain a distance of DWD = 33 pc. Becklin et al. (2005) used 22 pc but it
should be taken into account that they adopted a mass for the central white dwarf
of 1.2M⊙, with a much smaller radius. Additionally Becklin et al. (2005) used
RWD ∼ 5.0×10−3 R⊙ in order to fit the flux in the J-band. This value is excessively
large for such a massive white dwarf. A typical value for a ∼ 1.2M⊙ white dwarf is
RWD ≃ 2.0× 10−4 R⊙ (Althaus et al. 2005a), which is considerably smaller than the
value adopted by these authors.

The second component of the spectral energy distribution is the emission of the
disk which for a passive flat, opaque dust disk is given (Jura 2003):

Fdisk ≃ 12π1/3 cos i

(

RWD

DWD

)2(2kBTs

3hν

)8/3(hν3

c2

)∫ xout

xin

x5/3

ex − 1
dx (5.6)

where i is the inclination of the disk (which we adopt to be face–on), xin = hν/kBTin

and Tin = 1200 K is the condensation temperature of silicate dust. The outer radius
is taken from the results of our SPH simulations and turns out to be Rout ≃ 1R⊙.
The dots are the observational data for GD 362. The result is displayed in Fig. 5.5.
As can be seen the agreement with the observational data is excellent.

The proposed scenario has two apparently weak points. The first one is that
infrared observations indicate the presence of SiO. This requires that O should be
more abundant than C in order to form it. However our simulations show that the
ratio of C to O is a function of the distance to the primary and, in some regions of
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Figure 5.6: Spectral energy distribution for the circumstellar dust around GD 362. The
dashed line represents the emission from the newly formed white dwarf, the dotted line is
the emission from the disk and the solid line shows the sum of both spectral distributions.

the disk the ratio is smaller than 1, allowing for the formation of SiO in the accretion
disk. Furthermore, after 2.2 Gyr of evolution the resulting disk has had time to form
planets or asteroids with the subsequent chemical differentiation (see next section).

The second weakness of the model is that the central white dwarf rotates indeed
very fast. However, a simple model of magnetic braking, coupling the magnetosphere
of the white dwarf with the disk (see §5.3.4) shows that even very weak magnetic
fields (of the order of 100 kG) are sufficient to brake down the central star to accept-
able velocities.

5.3.3 Accretion from planets or asteroids

The mass available for forming planets is the mass contained between xin (at ∼
0.057R⊙) and the outer boundary of the disk, which turns out to be M ≃ 0.086M⊙.
Hence we have enough material to form planets or asteroids (∼ 4 × 104 earth–like
planets), which ultimately could be accreted by GD 362. Moreover, the probability
of hosting a planet has been found to significantly increase with metallicity, as it
is the case for the disks described here. Thus, planet formation in our scenario
should also be highly efficient allowing to explain the very high metal abundances of
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GD 362 by accretion of planets as initially suggested by Jura (2003). Moreover, after
2.2 Gyr, the disk has cooled enough to allow for the formation of solid bodies leading
to an additional chemical differentiation. Since the radiation pressure is rather low,
dust grains can be accreted by Poynting-Robertson drag. The timescale is given by
(Hansen et al. 2006):

τPR =
4π

3
sρs

c2a2

LWD

≈
(

ρs

3 g cm−3

)(

s

10µm

)(

Rout

1011 cm

)2( LWD

10−2 L⊙

)−1

yr (5.7)

where s and ρs are respectively the average size and density of dust grains. Adopting
the values and the parameters that characterize GD 362, we obtain τPR ∼ 1 900 yr,
which is much shorter than the diffusion timescale for the case of a He–rich envelope
(τdiff ∼ 15 000 yr). Note as well that since τPR ∝ R2

out if the asteroids were placed
farther away from the star, the timescale would rapidly increase. The mass of the
dust necessary to sustain the accretion rate demanded by the observations is then:

Mdust = Menv
τPR

τdiff

X

Xdust

(5.8)

If we assume that the abundance of Ca in the grains is in the range 0.1 ≤ X ≤ 1,
the mass of the disk must be between 2×1018 and 2×1019 g, which is reasonable. The
characteristic timescale for collision between asteroids is (Dominik & Decin 2003):

τcol ≈ 40

(

Rout

1011 cm

)3.5( R

1 km

)(

Mdisk

1022 g

)−1

yr (5.9)

where R is the radius of the asteroid and the rest of the symbols have been previously
defined. In the case of GD 362, this gives between τcol ∼ 2 × 105 yr and 2 × 104 yr
which, given the crude figures used here, indicates that collisions are frequent enough
to sustain either a continuous or an intermittent production of dust. Additionally,
some of the excess of angular momentum of the disk could be stored in this case in
the form of planets (Livio et al. 2005).

5.3.4 Magnetic braking

One of the apparent drawbacks of the proposed scenario is that the central white
dwarf spins rapidly. Using the observed spectrum of GD 362 it is possible to set an
upper limit to the rotation speed which turns out to be v sin i ≤ 500 km s−1, see
figure 5.7.

We assume that central white dwarf has a weak magnetic field, B. The magnetic
torques that lead to spin-down are caused by the interaction between the white dwarf
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Figure 5.7: Spectrum of GD 362 for two different rotational velocities.

and the surrounding disc. The evolution of the angular velocity due to the coupling
of the white dwarf magnetosphere and the disk is given by (Armitage & Clarke 1996;
Livio & Pringle 1992; Benacquista et al. 2003):

Ω̇ = −2µ2Ω3

3Ic3
sin2 φ +

µ2

3I

(

1

R3
m

− 2

(RcRm)3/2

)

+
ṀR2

mΩ

I
(5.10)

where µ = BR3
WD, RWD is the radius of the white dwarf, Rm is the magnetospheric

radius of the star, I is the moment of inertia, φ is the angle between the rotation
and magnetic axes (which we adopt to be 30◦) and

Rc =

(

GMWD

Ω2

)1/3

(5.11)

is the corotation radius. In Eq. (5.10) the first term corresponds to the magnetic
dipole radiation emission, the second one to the field–disk coupling, and the third
one to the angular momentum tranferred between disk and the central star. After
some algebra Eq. (5.10) can be written as:

Ω̇ = αΩ3 + βΩ + γ (5.12)

where
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Figure 5.8: Evolution of the rotational velocity for several field strengths, the observational
upper limit is shown as a horizontal dashed line.

α ≡ −(
2R6

m sin2 φ

3I3
c

)B2 (5.13)

β ≡ ṀR2
m

I
− 2R6

WDB2

3IR
3/2
m

√
GMWD

(5.14)

γ ≡ R6
WDB2

3IR3
m

(5.15)

As can be seen, in the low velocity regime, the Ω3 term in Eq. (5.10) can be ne-
glected and so the field–disk coupling dominates the evolution of the system. Hence,
although Eq. (5.10) can be solved numerically it is interesting to explore the linear
regime. In this case we solve the simplified equation

Ω̇ ≃ βΩ + γ (5.16)

for which the following solution holds:

Ω(t) = −γ

β
+ (Ω0 +

γ

β
)eβt (5.17)
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Figure 5.9: Spectrum of GD 362 for different magnetic field strengths.

where Ω0 is the initial velocity. We want the star to spin down, so its derivative
must be negative

Ω̇(t) = (βΩ0 + γ)eβt < 0 (5.18)

and, consequently:

β +
γ

Ω0
< 0 (5.19)

which, after some manipulation, leads to:

Rm

Rc

> 2−2/3 ≈ 0.63 (5.20)

Consequently, we adopt Rm = Rc, which ensures that the magnetic linkage between
the star and the disk leads to a spin-down torque on the star, because the magneto-
spheric radius is large enough relative to the corotation radius.

Solving numerically the differential equation of Eq. (5.10), with the appropriate
parameters for our case, the evolution of the rotation velocity is shown in figure 5.8.
As can be seen, a weak magnetic field of about 50 kG is able to slow down the white
dwarf to velocities below the observational limit. In order to see if this magnetic field
is compatible with the spectrum of GD 362 in figure 5.9 we compare its spectrum
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Figure 5.10: Evolution of the rotational velocity for several field strengths when only the
dipole emission is taken into account. Again, the observational upper limit is shown as a
horizontal dashed line.

with several theoretical spectra for different strengths of the magnetic field. The
observations provide an upper limit of about 0.7 MG, much larger than the value
needed to slow down the white dwarf to reasonable velocities. We emphasize that
the responsible for the braking of the central star is the magnetic coupling between
the white dwarf and the surrounding disk. In order to make this clear in figure 5.10
we show the evolution of the rotational velocity when only the dipole emission is
included and the coupling between the white dwarf and the disk is ignored. As can
be seen, the field strengths are in this case much larger and can be safely ruled out
using the spectroscopic data for GD 362.

5.4 Discussion and conclusions

We have shown that the anomalous photospheric chemical composition of the DAZ
white dwarf GD 362 and of the infrared excess of surrounding disk can be quite
naturally explained assuming that this white dwarf is the result of the coalescence of
a binary white dwarf system. This scenario provides a natural explanation of both
the observed photospheric abundances of GD 362 and of its infrared excess without
the need to invoke extreme assumptions, like the accretion of a planet or an asteroid,
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since direct accretion from the disk surrounding disk provides a self-consistent way
of polluting the envelope of the white dwarf with the required amounts of Ca, Mg,
Si and Fe. Moreover, this last scenario can be also well accomodated within the
framework of our scenario given that the formation of planets and other minor bodies
is strongly enhanced in metal rich disks. Hence, GD 362 could be the relic of a very
rare event in our Galaxy: the coalescence of a double white dwarf binary system.





Chapter 6

Conclusions

The goals of the present thesis were three. Firstly, we were interested in computing
the the gravitational wave emission of white dwarfs, either if they were members of
a binary system or if they were single, field white dwarfs. Secondly, we were also
concerned in studying the a mergers of white dwarfs with the highest possible reso-
lution and exploring the widest possible range of physical parameters of the double
white dwarf binary systems. Finally, we also wanted to improve the computational
performance of the previously existing SPH code. This, of course, should include the
parallelization of the code which, on the one hand, should allow for an efficient use
of the computational resources and, on the other, to make possible the calculation of
large sets of initial conditions including, as already mentioned, the largest possible
range of physical parameters of the intervening white dwarfs.

With respect to the first issue, the gravitational wave emission of pulsating white
dwarfs has been studied for those white dwarfs for which we have good determina-
tions of the physical and astronomical parameters, such as mass, distance, periods
of the quadrupole modes,. . . and for a standard 0.6M⊙ white dwarf. These stars are
BPM 37093 and PG 1159−035. We have computed the gravitational wave emission
of the three kinds of pulsational modes, g,f , and p for our three model stars and we
have shown that none of these white dwarfs will be a good candidate for the LISA
mission. In the case of the g-modes we have found that the signal is too weak to
produce a direct detection by the LISA detector. In addition, we have taken into
consideration the possibility of an indirect detection by measuring the secular rate
of change of the period of the observed modes. Unfortunately we have shown that
the rate of change is too small and lies far beyond the current observational possi-
bilities. Despite this, this observationally confirmed pulsational modes are expected
to contribute significantly to the gravitational wave background noise and must be
taken into account. On the contrary, we have found that for the f - and p-modes
the signal is high enough to be detected, but the very large luminosities emmited
in form of gravitational waves will lead to very short-lived pulsational modes which
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will hamper their detection independently of the considered star.

In second place, the emission of gravitational waves from merging white dwarf
binaries has been computed for a wide range of masses and compositions of the
components of the binary system. For that purpose we have used a SPH code
which allowed us to follow the temporal evolution of the coalescing white dwarfs.
We have shown that the most noticeable feature of the emitted signal is a sudden
disappearance of the gravitational strains. We have additionally shown that the final
stages of the chirping phase will be clearly detectable by LISA with a signal to noise
ratio larger than 10 in all cases. Unfortunately, and despite the great insight that
this kind of observations could give us into the physics of merging and progenitor
systems, the actual number of systems that we expect LISA to be able do detect is
rather small.

With respect to the second main topic of the thesis, we have performed several
high-resolution Smoothed Particle Hydrodynamics simulations of coalescing white
dwarfs. We have done so for a broad range of masses and chemical compositions of
the coalescing white dwarfs, which includes He, CO and ONe white dwarfs. Several
improvements with respect to previous studies have been done. Among these im-
provements we would like to mention a noticeable increase in the particle resolution,
a full coverage of the possible initial masses of the coalescing white dwarfs and a
refined treatment of the artificial viscosity. In all the cases, the merged configura-
tion consists of a compact central object surrounded by a hot corona with spheroidal
shape and a self-gravitating keplerian disk around it, which can be considered as
a thin disk for all the cases except for the 0.6 + 0.6M⊙ case. We have found that
nuclear reactions take place only when He is present in one of the stars, tipically
the secondary, being the only exception the 0.6 + 1.2M⊙ case, where high enough
temperatures for the ingnition of C have been reached. However, none of the cases
studied here shows an explosive behavior during the merging phase. The chemical
composition of the disks where relevant nuclear reactions have taken place has been
analized showing an enrichment in heavy elements like Ca, Mg, S, Si and Fe.

In order to check the code consistency we have also compared the results of our
hydrodynamical calculations with the angular momentum and mass transfer the-
oretical expectations finding a satisfactory agreement in the rate of change of the
orbital distance and the corresponding spins of both the donor and the accretor star.
We have computed as well the possible X-ray emission produced in the aftermath of
the merger due to the interaction of disk material with high eccentricities with the
innermost part of the disk where the particles have circularized orbits. This X-ray
emission could eventually be used as an observational indication of the merger allow-
ing for a more accurate detection of the gravitational wave signal. We have found
that the X-ray luminosities are of the order of ∼ 1049 erg/s with a time dependence
∝ t5/3. We have finally tried to elucidate the long-term evolution of the merger
remnant. We have found that all the disks product of the coalescence of two white
dwarfs are potentially turbulent. This most likely implies a very large accretion rate



99

from the disk onto the primary. If this were the case, an off-center carbon ignition,
leading to the formation of a neutron star, seems to be the unavoidable outcome,
although an in depth study remains to be done due to the crudeness of the approx-
imations involved in the calculation of the accretion rates. Nevertheless, due to the
very strong similarities between our results and those found by other authors (Yoon
et al. 2007) it might be possible that at least some of our merged configurations may
be considered good candidates for the progenitors of Type Ia supernovae. There are
also some recent works (Ji et al. 2006) that suggest that even in cases where the
classical indicators might suggest the presence of turbulence, its development does
not take place, leading to steady and, consequently, much smaller accretion rates,
compatible with those needed to produce a Type Ia supernova. Thus, a detailed
calculation of the evolution of the resulting disks, including an accurate description
of the mechanisms of angular momentum transport, must be done. Unfortunately
this task is far beyond the current possibilities of SPH techniques and, hence, the
problem remains still unsolved. In addition, we have shown that some of the obser-
vational properties of the DAZ white dwarf GD 362 might be explained assuming
that the white dwarf is the result of the coalescence of a binary white dwarf system.
The metal-rich disk generated after the merger constitutes a natural environment
for the formation of planets and asteroids, which can account for the anomalous
photospheric abundances of GD 362, while the resulting disk has proven to be able
to account for the observed infrared excess.

Finally, with respect to the third main topic of the present thesis, several im-
provements have been incorporated into the code, being the most significant ones
the new Riemann-based prescription for the artificial viscosity or the code paral-
lelization which is discussed in appendix D. Additionally, as discused in appendix
B, a cluster of computers has been built in order to be able to comfortably run the
code in parallel. As a result, we have been able to perform reliable high-resolution
simulations in a relatively short periods of time.

There are however, some points that deserve more efforts, which must be under-
taken in future works. We have already mentioned that a detailed calculation of the
angular momentum transport in the resulting disks must be done. Due to the fact
that SPH is not a suitable numerical technique for this purpose, other alternatives
must be explored. Additionally, we have mentioned as well that the merger remnant
of our simulations is a valid scenario for the formation of planets which can account
for the anomalous atmospheric abundances of the DAZ white dwarf GD 362 and
other white dwarfs with similar characteristics. This validity of this hypothesis still
needs to be definitely proven, since other possibilities are still envisaged. Among
these possibilities the most favored one is accretion from a tidally disrupted aster-
oid. Some simulations can be performed in this direction in order to prove that
tidally crushed asteriods are able to reproduce the observed abundances. Addition-
ally, there is work to do in code parallelization, which can still be refined, using
perhaps the locally essential tree scheme or incorporating new technologies to our
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cluster of computers, like GRAPE technology for the gravitational force calculation
and neighbor search. Work in this direction is in progress.



Appendix A

Gravitational waves

In this appendix we introduce the basics of the theory of gravitational waves and
their sources. The reader is assumed to be familiar with the basic concepts of the
Theory of General Relativity. This appendix is organized as follows. In section A.1
we review the most basic aspects of general relativity. It follows section A.2 where
the theory of linearized of general relativity is described, whereas in section A.3 we
discuss the propagation and the most basic features of gravitational waves. Finally,
section A.4 is devoted to briefly summarize how gravitational waves are produced.

A.1 General relativity

The theoretical basis of gravitational waves relies on General Relativity (Einstein
1916). General Relativity is a relativistic theory of gravity, constructed by Einstein
in order to reconcile Newton’s theory of gravity with special relativity. Special
relativity asserts that we live in a four-dimensional manifold, described entirely by
Minkowski’s metric tensor ηµν . From this tensor, one can calculate the distance or
the interval, ds, between any two points of space-time

ds2 = ηµνdxµdxν = (cdt)2 − d~x2 µ, ν = 0, . . . , 3 (A.1)

where d~x2 is the usual euclidean distance. Therefore, ηµν is a 4× 4 diagonal matrix
with components 1,−1,−1,−1. General relativity goes still further and asserts that
we live in a four-dimensional manifold, described by a general symmetrical 4 × 4
metric tensor gµν . Again, the four-dimensional distance can be computed as

ds2 = gµνdxµdxν µ, ν = 0, . . . , 3 (A.2)

Conceptually speaking, general relativity is very simple. The gravitational field is
represented as the departure of the space-time metric from Minkowski’s one. In
other words, in absence of a gravitational field, the space-time metric is equal to
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ηµν and bodies follow the trajectories predicted by the laws of special relativity. If
a gravitational field is present, the space-time metric becomes the more general gµν

and bodies freely follow the geodesics of this general space-time. Within this context
gravity is not a force, it is only the manifestation of the space-time geometry over the
trajectories of bodies. Likewise newtonian theory, in general relativity the gravita-
tional field in a certain space-time region is determined by its matter content, which
in any sensible relativistic theory must be represented by the energy-momentum
tensor. Thus, in order to determine the space-time metric in any region, a set of
equations must be constructed which relates the gravitational field — represented by
gµν — with its matter content — which will be represented by the energy-momentum
tensor Tµν . These are Einstein’s equations:

Rµν = −8πG

(

Tµν − 1

2
gµνT

)

(A.3)

which must be complemented with the four-dimensional equation of motion (geodesic)
that a body must follow under the influence of a gravitational field:

dxλ

dτ2
+ Γλ

µν
dxµ

dτ

dxν

dτ
= 0. (A.4)

Eq. (A.3) determines the geometry of a region of space-time as a function of its
matter content. Once we solve it, an expression for the metric tensor is obtained
which, in turn, allows to solve Eq. (A.4). However, it must be kept in mind that
both Rµν and Γλ

µν are functions of gµν :

Γλ
µν =

1

2
gλκ [∂µgκν + ∂νgκµ − ∂κgµν ] (A.5)

Rλµνκ =
1

2
[∂κ∂µgλν − ∂κ∂λgµν − ∂ν∂µgλκ + ∂ν∂λgµκ] (A.6)

Rµν = Rλ
µλν (A.7)

Eqs. (A.3) are highly non-linar, which makes very difficult finding exact solutions to
them. As it will be shown later, all the astrophysical processes we have studied are
well described in terms of weak gravitational fields, and in this regime, the non-linear
effects can be neglected. Hence, from now on we concentrate in the study the linear
regime only.

A.2 Linearized general relativity

One of the most remarkable facts about general relativity is that a gravitational
field carries away energy and momentum. Accordingly, a gravitational field is also
a source of new gravitational fields. This is the reason why general relativiy is a
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non-linear theory. In order to find a linear approximation to general relativity, the
energy and momentum carried away by the gravitational field must be neglected.
This is only true for weak gravitational fields. Under these conditions the metric is,
consequently, very close to the Minkowski metric ηµν , and we can safely write

gµν = ηµν + hµν (A.8)

where |hµν | ≪ 1. To first order in h, the Ricci tensor is then

Rµν ≃ ∂µΓλ
λµ − ∂λΓλ

µν + O(h2) (A.9)

and the affine connection is

Γλ
µν =

1

2
ηλρ [∂µhρν + ∂νhρµ − ∂ρhµν ] + O

(

h2
)

(A.10)

Now, introducing Eqs. (A.9) and (A.10) into Eq. (A.3), after some algebra we obtain
the following expression:

�
2hµν − ∂λ∂µhλ

ν − ∂λ∂νhλ
µ + ∂µ∂νh

λ
λ = −16πGT̄µν (A.11)

T̄µν ≡ Tµν − 1

2
ηµνT λ

λ (A.12)

Where Tµν is taken to the lowest order in hµν — that is, it does not take into account
the energy of the gravitational field — and, consequently, satisfies the ordinary
special-relativistic conservation equations

∂µT µ
ν = 0 (A.13)

Now, we have found a linear field equation, but it is not difficult to see that Eq. (A.11)
cannot yield unique solutions. This is a general problem of the theory, similar to
what occurs for Maxwell’s equations. By construction, the Ricci tensor satisfies the
so-called Bianchi identities

∇µ

(

Rµν − 1

2
gµνR

)

= 0 (A.14)

Where the symbol ∇ stands for the covariant derivative — i.e., a coordinate-invariant
derivative. Thus, despite the fact the Ricci tensor has 10 independent components,
in Eq. (A.6) there are only 6 functionally independent equations. Thus, any solution
of the field equations will have four degrees of freedom. In other words, if gµν is
a solution of the field equations, then we can generate new solutions by a general
coordinate transformation. This is usually called gauge invariance. In order to solve
the linear field equations a certain gauge must be fixed. The most convenient choice
is to work in a harmonic coordinate system, for which
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gµνΓλ
µν = 0 (A.15)

Using Eq. (A.10), in the weak field limit this gives

∂µhµ
ν − 1

2
∂νhµ

µ = 0 (A.16)

Consequently, introducing Eq. (A.15) in Eq. (A.11), the final field equations for the
linearized gravitational field are

�
2hµν = −16πGT̄µν (A.17)

Or alternatively

�
2h̄µν = −16πGTµν (A.18)

where

h̄µν ≡ hµν − 1

2
ηµνh. (A.19)

It is easy to see that the complete set of linearized field equations in vacuum take
the form

�
2h̄µν = 0 (A.20)

∂µh̄µ
ν = 0 (A.21)

Which is simply the conventional relativistic wave equation. This will determine
the evolution of a disturbance of the gravitational field in vacuum in the harmonic
gauge. These are usually called gravitational waves.

A.3 Plane waves

If we want to study the propagation of gravitational waves in vacuum, a particularly
useful set of solutions to this wave equation are plane waves, which are given by

hµν = eµν exp(ikσxσ) (A.22)

where eµν and kσ are constants. Substituting Eq. (A.22) into the set of equations
(A.20) and (A.21) we obtain

kσkσ = 0 (A.23)

and
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Figure A.1: Two neighbouring particles and its 3-space distance ξ.

kµe
µν = 0 (A.24)

That is, k is a null vector and it is othogonal to e. Eq. (A.23) implies that gravi-
tational waves travel at the speed of light, whereas Eq. (A.24) means that they are
transversal waves. Note that the plane wave has 10 independent components, and
that the gauge equation, Eq. (A.24), reduces the number of independent equations
from 10 to 6. Despite the fact we have imposed the gauge condition there is still some
coordinate freedom left. In particular, we still can, by coordinate transformations,
generate new solutions to the field equations without leaving the harmonic gauge.
By using this remaining freedom we can always demand that eµ

µ = 0 and e0ν = 0.
Thus, in general, the independent components of a plane wave can be written as:

eµν =









0 0 0 0
0 exx exy 0
0 exy −exx 0
0 0 0 0









(A.25)

With this choice of gauge, we have reached a subgauge of the harmonic gauge wich
is usually called the transverse-traceless gauge. It is easy to see that in this gauge
hTT

µν = h̄TT
µν .

Now that we know how a gravitational wave propagates in vacuum, we ask our-
selves how this gravitational wave affects matter as it travels through. Imagine that
we have two particles A and B at rest, as illustrated in figure A.1. And now imagine
that an arbitrary gravitational wave crosses. How will they be affected? In order to
answer this question we simply need what is called the geodesic deviation equation,
which mesures how the distance ξ between two particles evolves with time as they
move along two neighbouring geodesics. The equation of geodesic deviation can be
derived from Eq. (A.4) and is given by
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Figure A.2: A ring of test particles under the influence of a gravitational wave. The top
panel corresponds to the effect of a “+” polarized gravitational wave, while the bottom panel
corresponds to the effect of a “×” polarized gravitational wave.

∇µ∇νξ
ρ = Rρ

µλνvµvνξλ (A.26)

which is a four-dimensional differential equation. In fact, we are only interested in
its three-dimensional part, which reads

d2ξi

dt2
= Ri

0j0ξ
j =

1

2
hTTi

j,00ξ
j (A.27)

This equation will describe the oscillations of particle B as seen from an observer co-
moving with particle A due to space-time distorsion produced by the gravitational
wave. In this aproximation, valid for small curvature gradients, the gravitational
wave is seen as a tidal force, perturbing the proper distance between the two particles.
The way the particles will be distorted depends essentially on the polarization of
the wave. From what we have said before it can be seen that there are only two
independent polarization states a gravitational wave can have, the exx and the exy

polarizations, also called the “+” and “×” polarizations. In Fig. A.2 the effect of
the two polarizations can be seen.

A.4 The sources of gravitational waves

In order to compute the gravitational emission of a certain system the system of
equations given by Eq. (A.17) must be solved. This can be done by using Green’s
function

h̄µν (xσ) = −16πG

∫

R4

G (xσ − yσ) Tµν (yσ) dy4 (A.28)

where xσ is the point where the gravitational wave will be mesured, yσ belongs to
the radiating space-time region and
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G (xσ − yσ) = − 1

4πG |~x − ~y|δ |~x − ~y| θ
(

x0 − y0
)

(A.29)

It can be easily seen that Eq. (A.29) simply selects the contribution of those radiating
regions ~y which are causally connected with point ~x. If we restric ourselves to slow-
moving sources and, moreover, to sources whose size is small compared with the
observational distance — which will always be the case in astrophysical situations
— it can be proven after some algebra that the solution turns out to be:

hTT
jk (t, ~x) =

2G

c4d
S̈TT

jk

(

t − d

c

)

(A.30)

where R = |~y − ~x| and t−R/c is the so-called the retarded time — the time at which
the gravitational perturbation that is now reaching the observer at ~x was produced.
Finally, S is given by

Sjk =

∫

T 00

(

t − d

c
, ~y

)(

yjyk − 1

3
δjkd

2

)

d3y (A.31)

Moreover, since

T 00

(

t − d

c
, ~y

)

≈ ρ

(

t − d

c
, ~y

)

(A.32)

the solution can also be written as

hTT
jk (t, ~x) =

2G

c4d
Q̈TT

jk

(

t − d

c

)

(A.33)

where Q is nothing but the newtonian mass-quadrupole. This is the so called mass-
quadrupole emission term and corresponds to the lowest order term in any grav-
itational radiation emission process. Higher order terms, like current-quadrupole
or mass-octupole are usually completely negligible for the phenomena we pretend
to study. Consequently, all our calculations will be performed using this aprroxi-
mation. Within the same approximation, the total luminosity radiated in form of
gravitational waves is:

L =
1

5

G

c5

[...
Q

jk...
Qjk

]

(A.34)





Appendix B

The essence of SPH

B.1 Introduction

The most commonly used technique to solve the equations of fluid dynamics con-
sists of discretizing and linearizing these equations using finite differences. The main
drawbacks of this approach are the errors introduced by the discretization of the
equations and the loss of physical perspective. Additionally, finite difference tech-
niques usually result in a heavy computational demand. Therefore, other numerical
techniques are sometimes advisable. In the remaining of this chapter it will be shown
how to solve numerically the equations of motion of a real fluid in the Lagrangian for-
mulation using an alternative technique: Smoothed Particle Hydrodynamics. Since
this is a well known technique we will only summarize here the most important and
basic ingredients of this technique and we refer the reader to the recent and excel-
lent review of Monaghan (2005) and to the older review of Benz (1990) for thorough
descriptions of the rest of the details.

Smoothed Particle Hydrodynamics is an approximate method to solve the equa-
tions of fluid dynamics where the elements are replaced by particles of finite size.
The method is gridless, and the forces on the fluid are calculated directly from the
particle positions. The SPH method has several attractive features. The first of
these is that pure advection is treated exactly. The second advantage is that with
more than one material, each one of these materials can be described by a different
set of particles and, consequently, interface problems are often very easy to han-
dle using SPH techniques but quite difficult for methods in which finite difference
schemes are involved. The third advantage is that particle methods are able to han-
dle quite smoothly and naturally the transition the continuum and fragmentation. A
fourth advantage is that the resolution can be made to depend on position and time.
This propertymakes the method very appealing for most astrophysical applications.
Fifth, SPH has the computational advantage, particularly in problems involving re-
gions with large voids, that the computation is only done in those places where the



110 B The essence of SPH

matter is. This, in turn, results in a considerable reduction of storage needs and
an effective saving in computing resources. Finally, in SPH codes it is possible to
include complex physics in a rather simple way. Perhaps the major drawback of
SPH algorithms is that although typical codes give reasonable and sound results for
shocks, they are not as accurate as the those codes in which Riemann-solvers and
other modern techniques are used. Due to the poorer accuracy of SPH algorithms,
in systems where very small perturbations are to be followed it is preferable to use
finite difference methods.

The SPH method was originally introduced by Lucy (1977) and Gingold & Mon-
aghan (1977) who applied it to the calculation of dynamical fission instabilities in
rapidly rotating stars. Since then, the method has been used in many different
types of astrophysical fluid dynamic problems. Planet and star formation, solar
system formation, supernova explosions, tidal disruption of stars by massive black
holes, large scale cosmological structure formation, galaxy formation, stellar colli-
sions, binary coalescence and the propagation of a termonuclear flame are some of
them. The SPH method was originally designed to deal with astrophysical problems
but has also been successfully used for several practical problems involving complex
flows like gas dynamics, incompressible flows, elasticity and fracture, liquid metals,
conduction problems and others. All these cases have systems sharing the com-
mon property that they sometimes present difficulties for finite difference and finite
element methods. Particularly when coupled with complex free surface motion.

B.2 Interpolation

In Smoothed Particle Hydrodynamics the fundamental properties of a fluid element
are locally reconstructed by interpolating the properties of the neighboring particles,
while the whole system follows the hydrodynamic equations. The SPH method is
purely lagrangian and gridless and it works optimally in systems without definite
boundaries. Consequently the key concept in SPH is interpolation. Precisely, this
section deals with the way in which these properties are interpolated.

As clearly seen from Eqs. (2.1), in the Lagrangian form the equations of fluid
dynamics adopt the form

dA

dt
= f(A,∇A, r) (B.1)

where A can be either a scalar or a vector, and

d

dt
=

∂

∂t
+ ~v · ~∇ (B.2)

is the lagrangian derivative. Thus, in fluid dynamics the rates of change of physical
quantities require the evaluation of derivatives. While in finite difference methods the
derivatives are evaluated at the vertices of a mesh, in SPH the interpolating points are
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particles moving with the flow and the interpolation is done using kernel estimation.
The kernel is an interpolating function W (r − r′, h). The SPH interpolation of a
quantity, which is a function of the spatial coordinates, is based on the integral
interpolant

〈A(r)〉 =

∫

A(r′)W (r − r′, h)dr′ (B.3)

that reproduces the quantity exactly if the kernel is a delta function. The constant
h is a free paramter which, for obvious reasons, is called the smoothing length. The
smoothing length is a measure of the typical size of the “particles”. The kernels are
always normalized to unity. In practice they are functions that tend to the delta
function as the length scale h tends to zero. For instance, in one dimension the
gaussian kernel has the form

W (r, h) =
1

πh3
exp(−r2/h2) (B.4)

whereas the original kernel of Lucy (1977) has the form:

W (r, h) =

{

105
16πh3

(

1 − r
h

)3 (
1 + 3r

h

)

0 ≤ r ≤ h
0 r > h

(B.5)

The most commonly used kernels are based on spline interpolation (Monaghan,
1985). More specifically, the most widely adopted kernel is the so-called cubic spline
(Monaghan & Lattanzio, 1985):

W (r, h) =











1
4π

[

(

2 − r
h

)3 − 4
(

1 − r
h

)3
]

0 ≤ r ≤ h

1
4π

(

2 − r
h

)3
h ≤ r ≤ 2h

0 r > 2h

(B.6)

which is positive definite. The reason for refraining to use higher order spline kernels
is that they do not perform well in real situations, when the particles of the fluid
are not equally distributed. The cubic spline kernel has a very valuable property:
it is a continous function with a continous derivative. Thus, if the quantity to be
interpolated is a constant or a linear function the interpolation is exact, otherwise
it is an approximation of second order in space to the true value of the function. All
kernels fall off rapidly with distance. However, as can be seen from Eqs. (B.4) and
(B.6) their properties are rather different. For instance the gaussian kernel is never
zero, which means that at a given point in space we have contributions from the
rest of particles regardless of their distance. This is not the case of the cubic spline
kernel, which is exactly zero for distances r ≥ 2h. Hence, particles at distances larger
than 2h do not contribute to the average.
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To interpolate the properties of the fluid at a given point we divide in several
small mass elements, where element a will have a mass, a density and a position.
The interpolating integral can be written as

〈A(r)〉 =

∫

A(r′)

ρ(r′)
ρ(r′)dr′ =

∫

A(r′)

ρ(r′)
dm′ (B.7)

The integral is then substituted by a summation over all particles

〈A(r)〉 =
∑

b

mb
Ab

ρb
W (r − rb, h) (B.8)

However, since the kernel falls off very rapidly, only the neighboring particles con-
tribute. Typically the smoothing length is close to the particle separation. For
instance, if we want to interpolate the density, we would have

〈ρ(r)〉 =
∑

b

mbW (r − rb, h) (B.9)

If the smoothing length h is constant the density can be integrated

∫

〈ρ(r)〉 dV =
∑

b

mb = M (B.10)

and mass will be conserved exactly. If h is allowed to vary, the integral no longer
yields the total mass of the system, but the total mass is conserved because it is
carried by the particles.

B.3 SPH derivatives

When the smoothing kernel is a differentiable function, the derivatives in SPH can
be very easily estimated:

〈

∂A

∂x

〉

=
∑

b

mb
Ab

ρb

∂W

∂x
(B.11)

In SPH the derivative is therefore found by an exact derivative of an approximate
function. Though, this form of the derivative does not vanish if A is constant, but
there is an easy way solve this problem. Assume that Φ is a differentiable function,
so that

∂A

∂x
=

1

Φ

(

∂(ΦA)

∂x
− A

∂Φ

∂x

)

(B.12)

the SPH form is then
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〈

∂A

∂x

〉

=
1

Φa

∑

b

mb
Φb

ρb
(Ab − Aa)

∂Wab

∂xa
(B.13)

where

Wab = W (xa − xb, h) (B.14)

which vanishes if A is constant. Different choices of Φ yield different formulations.
For instance, the continuity equation

dρ

dt
+ ρ~∇ · ~v = 0 (B.15)

can be presented either as

dρa

dt
= ρa

∑

b

mb

ρb
~vab · ~∇aWab (B.16)

or

dρa

dt
=
∑

b

mb~vab · ~∇aWab (B.17)

where ~vab = ~va−~vb. Both expressions vanish when the velocity is constant. However,
the former yields better results for problems in which two fluids with a large density
contrast are involved, because it involves contributions of the density from both sides
of the interface.

B.4 Errors in the integral interpolant

It is not easy to estimate the errors in the SPH equations from first principles be-
cause the particles get disordered during motion. The errors depend on the type of
disorder which, in turn, depends on the dynamics. SPH is much more accurate than
the interpolation of quantities from randomly disordered particles would suggest.
Starting with the integral interpolant in one dimension

〈A(r)〉 =

∫

A(x′)W (x − x′, h)dx′

= A(x) +

∫

(A(x′) − A(x))W (x − x′, h)dx′ (B.18)

the error can be estimated by a Taylor series expansion of A(x). By assuming that
W (x − x′, h) is an even function of q, the interpolant gives
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〈A(x)〉 = A(x) +
σh2

2

d2A(x)

dx2
+ ... (B.19)

where σ is a constant depending on the kernel. As the third term vanishes due to
symmetry, only the fourth term is left. However, all these results assume that the
integrals can be extended to the entire volume within the support of the kernel. If
this is not possible, close to the boundary for instance, the error is larger. Higher
order smoothing kernels are not positive definite, which is an undesired property,
since the density may become negative close to a strong shock.

B.5 SPH Euler equations

The Euler equations are the equations for the rates of change of velocity, density and
position, namely

d~v

dt
= −1

ρ
~∇P + g (B.20)

dρ

dt
= −ρ~∇ · ~v (B.21)

d~r

dt
= ~v (B.22)

The equation for the rate of change of the density has been discussed earlier, so
we start with the equation for the acceleration:

d~va

dt
= − 1

ρa

∑

b

mb
Pb

ρb

~∇aWab (B.23)

However, it can be easily seen that this equation does not conserve linear and
angular momentum, since

mambPa

ρaρb
Wab 6=

mambPb

ρaρb
Wab (B.24)

Thus, the force on particle a due to b is not equal and opposite to that on a due
to b. However, we can take advantage of the fact that

~∇P

ρ
= ~∇

(

P

ρ

)

+
P

ρ2
~∇ρ (B.25)

which gives

d~va

dt
= −

∑

b

mb

(

Pb

ρ2
b

+
Pa

ρ2
a

)

~∇aWab (B.26)
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that has the correct behavior. Thus, linear and angular momentum are conserved
exactly, even if the smoothing length is allowed to vary. Finally, the SPH formulation
of Eq. (2.22) is rather obvious:

d~ra

dt
= ~va (B.27)

To this set of equations most SPH codes add another equation, namely, the
equation of energy conservation. Strictly speaking the Euler equations do not require
the time rate of change of thermal energy to be calculated. However it is advisable
to keep track of energy. We start with the First Law of Thermodynamics

Tds = du + PdV = du − P

ρ2
dρ (B.28)

where all the symbols have their usual meaning. Thus, we have:

du

dt
=

P

ρ2

dρ

dt
= − P

ρ2
~∇ · ~v (B.29)

in the absence of transport. Then, it is possible to use the previous procedure to
obtain for each particle the following expression

dua

dt
=

Pa

ρ2
a

∑

b

mb~vab · ~∇aWab (B.30)

However, it turns out that the expression

dua

dt
=

Pa

ρa

∑

b

mb

ρb
~vab · ~∇aWab (B.31)

yields better results. It is also useful to add the kinetic energy

e =
1

2
v2 + u (B.32)

to obtain the equation of conservation of energy

de

dt
= − 1

ρ2
~∇ · (P~v) (B.33)

Once again following the former procedure gives

dea

dt
= −

∑

b

mb

(

Pa~vb

ρ2
a

+
Pb~va

ρ2
b

)

· ~∇aWab (B.34)

Calculations of shock phenomena with finite difference methods often use the
thermokinetic energy equation rather than the thermal energy equation, because it
ensures conservation of the energy. In SPH codes this is done as well.
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B.6 Resolution varying in space and time

In the original formulation of SPH the smoothing length was kept constant. In fact,
in the original calculations of Gingold & Monaghan (1977), each particle had the
same h

h ∝
√

〈r2〉 − 〈r〉2 (B.35)

where 〈r2〉 was computed according to the expression

〈r2〉 =

∑

b mbr
2
b

∑

b mb
(B.36)

During a simulation, h is then increased when the particle system expands and
decreases when it contracts. Nowadays, a variable smoothing length as a function of
density is used. Gingold & Monaghan (1983) considered it preferable to allow the
smoothing length to change according to

ha = σ

(

ma

ρa

)1/d

(B.37)

where d is the number of dimensions and σ ≈ 1.3 is a constant. In this way the
smoothing length, and thus the resolution, varies both in space and time. If the
density is determined by summation, the density for a given particle can be written
as

ρa =
∑

b

mbWab(ha) (B.38)

The usual approach in the literature is either to calculate the smoothing length at
any time using the current value of the density (estimated from the SPH summation),
or to calculate it from the density according to the expression

d ln h

dt
= −1

d

d ln ρ

dt
(B.39)

Various techniques may then be used to adjust the value of h. For instance,
Steinmetz & Mueller (1993) average the local density and use this to change h.
Another often used method is to adjust it so that each particle has a constant number
of neighbours Hernquist & Katz (1989). Ideally, ha should be determined from the
summation equations so that it is consistent with the density obtained from the
summation, but this requires solving for each ha iteratively and is not usually done.
In some problems it might be necessary to replace the expression for ha by a formula
that limits how large or small ha can become. For example, an upper bound on
ha is desirable when the density becomes very small, to prevent strong interactions
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between a very low and a very high density region. This can be achieved if the
expression for ha is replaced by

ha = σ

(

ma

A + ρa

)1/d

(B.40)

B.7 Artifical viscosity

Lucy (1977) first introduced an artificial bulk viscosity to prevent a slow build-up
of integration errors in SPH simulations. A different and more effective viscosity,
which conserves linear and angular momentum was suggested and tested by Gingold
& Monaghan (1983). It is important to realize that in problems involving strong
shocks, SPH does not give the widths of shock fronts as accurately as the methods
based on Riemann-solvers with similar resolution. However, no current method gives
the width of a shock front accurately, since the width of real shock fronts is only
a few molecular free mean paths. Typical resolutions in numerical simulations are
a factor 104 greater. However, the key issue is that SPH yields the pre- and post-
shock values of any physical quantity very accurately with a reasonable number of
particles.

Nevertheless, in two and three dimensions it is more difficult for SPH to match the
accuracy of modern finite difference codes. Its advantage is that it is independent
of the special properties of the ideal gas equation, which are built into the finite
difference codes. For this reason SPH can be used when the equation of state is
complicated and Riemann solutions are unavailable. In reality, for astrophysical
fluids the physical viscosity is extremely small. Thus, to handle shocks, a so-called
artificial viscosity is introduced.

The artificial viscosity bears no relation to real viscosities. It is designed to al-
low shock phenomena to be simulated, or simply to stabilize a numerical algorithm.
Artificial viscosities are often constructed analogously to real gas viscosities, replac-
ing the mean free path with the resolution length. The Navier-Stokes equation for
viscous flow has the form

dv1

dt
= −1

ρ

∂P

∂xi
+

1

ρ

[

∂

∂xk

(

η

(

∂vi

∂xk
+

∂vk

∂xi

2

3
δik

~∇ · ~v
))

+
∂

∂xi
(ζ ~∇ · ~v)

]

(B.41)

where η is the shear viscosity coefficient and ζ is the bulk viscosity. For a mono-
atomic gas

η ≈ 1

3
ρλcs (B.42)

where λ is the free mean path. The viscous terms can be estimated directly using
the SPH interpolation formula but this leads to equations that do not conserve linear
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and angular momentum. Gingold & Monaghan (1983) devised a viscosity by simple
arguments about its form and its relation to gas viscosity. The viscous term is added
to the pressure terms in SPH equations to give

d~va

dt
= −

∑

b

mb

(

Pb

ρ2
b

+
Pa

ρ2
a

+ Πab

)

~∇aWab (B.43)

where

Πab = −ν

(

~vab · ~rab

r2
ab + ε〈hab〉2

)

(B.44)

being

ν =
α〈hab〉〈cab〉

〈ρab〉
(B.45)

and

〈hab〉 =
ha + hb

2
(B.46)

In this expression ε is a free parameter which is usually adopted to be ε ≈ 0.01. This
free parameter is introduced to prevent a singularity when rab = 0. Also

〈cab〉 =
ca + cb

2
(B.47)

is the average sound speed velocity and an equivalent expression is used to compute
the average density 〈ρab〉.

It can be easily shown that the artificial viscosity term is a Galilean invariant and
vanishes for rigid rotation. When two particles approach each other, the artificial
viscosity produces a repulsive force between the particles. When they recede from
each other the force is attractive.

The SPH viscosity can be related to a continuum viscosity by converting the
summation to integrals. The x component of the acceleration equation has the
viscous contribution

fx =
∑

b

mb
α〈cab〉〈hab〉

〈ρab〉
~vab · ~rab

r2
ab + ε〈hab〉2

(xa − xb)Fab (B.48)

that can be written as a sum of terms if the ε is dropped. If α, c, h and ρ are
constant the continuum equivalent of fx in two dimensions is

fx = αhc

(

3

8

∂2vx

∂x∂x
+

1

8

∂2vx

∂y∂y
+

1

4

∂2vx

∂x∂y

)

(B.49)
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This shows that the shear viscosity coefficient η = ραhc/8 and the bulk viscosity
coefficient ζ = 5η/3. In three dimensions η = ραhc/10 and ζ = 5η/3. If there are
rapid changes in the parameters, it is better to use

Πab = − 16µaµb

ρaρb(µa + µb)

(

vab · rab

r2
ab + ε〈hab〉2

)

(B.50)

where

µa =
1

8
αahacaρa (B.51)

In the case of the shocks, it is usual to turn the viscosity on for approaching
particles and turn it off for receding particles. In this way the viscosity is used for
shocks and not rarefactions. Unfortunately this means that the viscosity is turned
on when the density increases in the shock-free regions, for example when gravity
pulls gas together.

When the viscosity was first used it was found to work well for shocks of moderate
strength. Though, in astrophysical calculations involving colliding gas clouds, where
the Mach number can be very high, it was found that gas particles from one cloud
could stream between the particles of the other cloud. Generally, this streaming is
limited to a few particle spacings and is therefore not a severe problem. However,
it should not occur at all. To prevent this a new extra term can be included in the
coefficient of the viscosity (Monaghan, 1992)

ν =
〈hab

〈ρab〉

(

α〈cab〉 − β
〈gab〉~vab · ~rab

r2
ab + ε〈hab〉2

)

(B.52)

Good results have been obtained with α = 1 and β = 2. Another form of the
viscosity is found naturally by considering aspects of the dissipative term in shock
solutions based on Riemann solvers, namely

Πab = −K
vsig(~vab · ~rab)

〈ρab〉|rab|
(B.53)

where K ∼ 0.5 and the signal velocity is defined as

vsig = ca + cb − β~vab ·
~rab

|rab|
(B.54)

In this expression the constant β is usually adopted to be ≈ 4. The signal velocity
can be easily interpreted. If the fluid is at rest we estimate the speed at which a
sound wave from a approaches a sound wave from b as (ca + cb). The extra term
represents the change in speed if the fluids at a and b are moving relatively to each
other.

Viscosity dissipates the flow and transfers energy from kinetic to thermal, a
contribution to the thermal energy that is always positive. Owing to the way in
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which the SPH viscosity was derived, viscous dissipation is best obtained directly
from the SPH equations. By taking the scalar product of ~va and the acceleration
equation, multiplying by ma and summing over a, the viscous contribution to the
rate of change of thermal energy can be identified. The final result is then

dua

dt
=

Pa

Ωaρ2
a

∑

b

mb~vab · ~∇aWab +
1

2

∑

a

ma

∑

b

mbΠab~vab · ~∇aWab (B.55)

Artificial dissipation is very successful for handling shocks but it can be too
large in other parts of the flow. Another effect is that the Reynolds number of a
flow is artificially increased. This leads to, for example, that the Kelvin-Helmholtz
shear instabilities are heavily diffused. Balsara (1995) suggested reducing viscous
dissipation by multiplying the artificial viscosity by the factor

|~∇ · ~v|
|~∇ · ~v| + |~∇× ~v|

(B.56)

where ∇ · ~v is replaced by the symmetric pair of particles. Cornish & Larson (2003)
found that it is preferable to replace the previous factor by

|~∇ · ~v|
|~∇ · ~v| +

√
EijEij + 10−4〈cab〉/h

(B.57)

where the strain tensor Eij is defined by

Eij =
1

2

(

∂vi

∂xj
+

∂vj

∂xi

)

(B.58)

The most commonly used prescription is (Monaghan & Gingold, 1983; Balsara, 1995)

Πab =
−αcabµab + βµ2

ab

ρab
(B.59)

if ~vab · ~rab ≤ 0 and Πab = 0 otherwise, where α and β are adimensional constants
whose value depends on the problem under study (typically α = 1 and β = 2), and

µab =
hab(~va − ~vb) · (~ra − ~rb)

|~ra − ~rb|2 + ǫh2
ab

(

fa + fb

2

)

(B.60)

being ǫ = 10−4. Finally the factor fa is defined as follows
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B.8 Integration

Because the SPH algorithm reduces the original continuum partial differential equa-
tions to sets of ordinary differential equations, any stable time stepping algorithm
for ordinary differential equations can be used to solve the problem. The aim of this
section is to review these methods. The reader should bear in mind that SPH is an
approximate method, and thus we will generally require the method to be stable,
but not extremely accurate. Generally speaking we now have a problem in which we
have solve a set of ordinary differential equations (ODEs) of the form

dyi

dx
+ fi(x, y1, ...yN ) = 0, i = 1, ...N (B.62)

The easiest and most straightforward way of integrating the system of ODEs is
to use the so-called Euler method

yi(xn+1) ≃ yi(xn) − δxf(xn, y1(xn), ..., yN (xn)) (B.63)

where

δx = xn+1 − xn (B.64)

However, this method is not very accurate. This can be seen by expanding y(x)
around xn

yi(xn+1) = yi(xn) + δx
dy

dx

∣

∣

∣

∣

n

+
δx2

2

d2y

dx2

∣

∣

∣

∣

n

+ ... (B.65)

Comparing Eqs. (2.63) and (2.65) it is clear that the difference between the true
and the approximate solutions is of second order, which means that we have a first
order approximation. Most importantly, we also want to study the stability of the
solution. A method is stable if a small deviation from the true solution does not
tend to grow as the solution is iterated. To do this end we assume that at some
time the actual numerical solution deviates from the true solution of the difference
equation by some small amount δy. By substrating we obtain

yi(xn+1) + δyi(xn+1) ≃ yi(xn) + δyi(xn)

− δx

[

f

(

xn, yi(xn) +
∂f

∂yi

∣

∣

∣

∣

n

δyi(xn)

)]

(B.66)

Hence, expanding around xn and operating we have

δyi(xn+1) ≃
[

1 − δx
∂f

∂yi

∣

∣

∣

∣

n

]

δyi(xn) = gδyi(xn) (B.67)
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where g is the so-called growth factor. It is obvious that the Euler solution will be
stable if the absolute value of the growth factor is smaller than unity, otherwise the
perturbation will grow:

−1 ≤ 1 − δx
∂f

∂yi

∣

∣

∣

∣

n

≤ 1 (B.68)

This means that the choice of the integration step is limited. For instance, if

∂f

∂yi
< 0 (B.69)

the Euler method is unstable, whatever the choice of δx is, whereas if

∂f

∂yi
≥ 0 (B.70)

then by choosing an appropriately small δx we can stabilise the computation. Thus,
the Euler method is conditionally stable. The Euler method can be improved by
considering the different ways in which derivatives can be evaluated. For instance,
another well known method, the Leap-Frog integrator uses another approximation
(centered differences) for evaluating the derivatives:

dy

dx

∣

∣

∣

∣

n

≃ yi(xn+1) − yi(xn−1)

2δx
(B.71)

and, consequently, we have

yi(xn+1) ≃ yi(xn−1) − 2δxf(xn−1, yi(xn)) (B.72)

Applying the same techniques previously used, it can be shown that the Leap-
Frog method is second order accurate. Also, the following stability condition can be
obtained

δyi(xn+1) ≃ δyi(xn−1) − 2δx
∂f

∂y

∣

∣

∣

∣

n

δyi(xn) (B.73)

Thus, it is not guaranteed that the error will not grow as n increases and therefore
the Leap-Frog method is also conditionally unstable. This is the method we use in
our code.

Yet there are more accurate methods. For instance, the Runge-Kutta method
uses a trial step in the middle of the interval to compute the solution across the
whole interval
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k1 = f (xn, yi(xn)) δx

k2 = f

(

xn +
1

2
δx, yi(xn) − 1

2
k1

)

δx (B.74)

yi(xn+1) ≃ yi(xn) − k2 + O(δx3)

There are also higher order Runge-Kutta schemes. They are also conditionally
stable. It can be shown that

δyi(xn+1) ≃
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Consequently, the growth factor g must fulfill
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Finally, the predictor-corrector method that considers a solution of the form

yi(xn+1) ≃ yi(xn) − 1

2
[f(xn+1, yi(xn+1) + f(xn, yi(xn)] δx (B.77)

that does not have a direct solution as yn+1 appears on both sides, so the value has
to be guessed

y′i(xn+1) = yn − f (xn, yi(xn)) δx

yn+1 ≃ yn − 1

2

[

f
(

xn+1, y
′

i(xn+1)
)

+ f (xn, yi(xn))
]

δx (B.78)

The accuracy and stability properties are identical to those of the Runge-Kutta
method. We have used a stable method. However, the reader should take into
account that, since SPH is an approximate method, it is preferable to do not invest
much time in using high-order numerical schemes. It is also good to remember that
maximum accuracy is desirable, of course, but not at any computational cost.





Appendix C

Cluster architecture

The SPH simulations described were run in a cluster of computers built by ourselves.
We started its construction in 2004 and since then its has become an essential tool
for performing efficient calculations.

C.1 Characteristics of the cluster

Figure C.1: Front look of the cluster of computers.

The cluster is composed of 32 personal computers with Intel Pentium IV proces-
sors with velocities ranging from 2.8 up to 3.2 GHz and 1Gb of RAM. The computers
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Figure C.2: Gigabit switches for internal communications.

are linked with Gigabite switches wich ensure fast enough communications essential
for the parallel calculations. A photograph of the actual cluster configuration is
shown in Fig. C.1, whereas the detail of communications switches is shown in Fig.
C.2. We installed the Red-Hat based LINUX operating system called LINUX-rocks

wich is specially designed for the installation, use and administration of clusters of
computers. Some of the most remarcable features of the system are for example an
extremely easy and friendly installation procedure, a complete set of administrative
tools like a ready-to-use queue system or a completely automatic user control system.
It also has an html interface that allows control and monitorization of the status of
the cluster. This web page is accesible from any external computer.

One of the most complex task in designing the cluster has been the data storage
system of the users. In fact all the computers of our cluster are standard computers
with a hard disk of 60 Gb — see Fig. C.3. This means that none of them would be
able to act as the master node and to store all the user data as required to obtain
an optimal performance. To solve the problem, we decided to a particular node
to each user, from which the data can be exported to the master node — which
is the only accessible from outsidethe cluster — via NFS. In this way the cluster
has a virtual master node with enough disk space for all data of a given user. Of
course this structure has some limitations, because the NFS export of the data from
the nodes can saturate the cluster internal communications. In order to partially
overcome this problem we perform the data export via autofs, so the data is only
transferred via NFS when the user is performing calculations. Only when many users
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Figure C.3: Close look of one of the computers of the cluster.

are working simultaneously, wich is a rare event, performance problems have been
observed. However, this is only a partial solution and in the future, if more nodes
and users are incorporated to the cluster, the adquisition of a high capacity storage
unit will become an unavoidable necessity.





Appendix D

Code parallelization

In order to be able to perform the high resolution SPH simulations a parallelization
of the code was an unavoidable task. Thus, one of the first tasks that has been
tackled in the present thesis is the parallelization of the previously existing SPH
code. In this appendix we discuss the parallelization strategy.

D.1 Message Passage Interface and parallelization strat-

egy

The Message Passage Interface or MPI is the parallelization language that was
selected for the task. We have chosen this language because it is a well-established
protocol which is widely used by the scientific community and because it is available
in most scientific clusters of computers. MPI essentially consists of a set of subrou-
tines that control the transfer of information between the different computers of the
cluster and allows the user to freely design the parallelization strategy.

In order to tackle the problem we decided to adopt a conservative strategy, that
is to parallelize just the most computationally-expensive subroutines. The most
expensive part of our SPH code is by far the search of neighbors for the gravitational
force calculation. This task actually accounts for more than 85% of the computing
time. In sharp contrast the calculations involved in the hydrodynamical evolution
need merely a 4% of the total computing time, an amount of computing time which is
comparable the tree construction — which takes slightly more than a 3% of the time.
The rest of the computing time is basically invested in the calculation of the input
physics, including, among other necessary quantities, the calculation of the release
of energy by nuclear reactions, the necessary thermodinamical quantities and the
energy carried out by neutrinos. Thus, to parallelize the code the following strategy
was followed. First the complete tree structure is calculated for each node, as shown
in figure D.1. A more ellegant and efficient approach would have been probably to
build what it is known as the locally essential tree which is a small version of the
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Gravitational forces
calculation

Neighbour search

Hydrodynamical  

forces calculation

Neighbour search

Gravitational forces
calculation

Hydrodynamical  

forces calculation

Neighbour search

Gravitational forces
calculation

Hydrodynamical  

forces calculation

MPI data transfer

Tree construction

Figure D.1: Sketch of the calculation of the interactions in the parallel version of the SPH
code. Each processor computes a local neighbor list and calculates the partial forces by
walking the common tree. After doing this, the partial forces are sent to the rest of the
nodes to obtain the total gravitational and hydrodynamical forces.

tree built in each node according to, for example, a spatial domain decomposition.
With this local tree each processor is able to perform the subsequent tree walk and
neighbour search with a minimum data transfer from the rest of the nodes. However,
the tree construction is — as already commented — a relatively inexpensive process
and we consider that for moderate numbers of particles the technical difficulties of
its construction does not compensate its benefits.

Table D.1: Maximum gain factor as a function of the number of the particles used in the
calculation. The gain factor is defined as the mean time spent in each time-step with one
processor divided by the time spent with Np processors.

Particles Gain factor

300000 4.9
100000 6.7
50000 7.5
10000 8.0
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Figure D.2: Time spent by the program — in CPU seconds — to perform a complete SPH
time-step as a function of the number of processors. Each curve is labelled with the number
of particles of the simulation.

After tree construction we equally distribute particles into processors in order to
evenly balance the computational work of every processor. This imposes a restriction
to the number of processors that can be assigned to the parallel calculation, because
the ratio between the number of particles and the number of processors must be
an integer number. Note that at this stage no data transfer between processors is
needed because all the information of the particles — including the tree structure
— is present in every processor. Subsequently, each processor obtains from the
global tree local neighbour lists wich will be used to compute the hydrodynamical
and gravitational forces for each particle. After the calculations we use the MPI
subroutines to pass the local information of each processor to the rest of nodes,
which are needed to continue the calculations. This transfer of information of course
limits the computational gain, because the time needed for data transfer is finite,
but as can be seen in table D.1 with this design very reasonable gain factors have
been obtained.

In Fig. D.2 we show the limiting effect of internal communications as the number
of processors employed in the calculation is increased. Note that for a sufficiently
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large number of nodes adding a new node does not increase the efficiency of the
calculation. There is no way to avoid such limiting effect because of the increasing
demands of internal data transfers needed. However, our feeling is that the gain
factor can be enhanced by code optimization. This is undoubtfully something that
must be tackled in the future if we want to further increase the resolution of the
simulations.
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2003. New evolutionary models for massive ZZ Ceti stars. I. First results for their
pulsational properties. A&A, 404, 593–609.

Althaus, L. G., Serenelli, A. M., Panei, J. A., Córsico, A. H., Garćıa-
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