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Prologue

In this thesis the Gaussianity of the Cosmic Microwave Background (CMB) an-
isotropies is analysed. As explained in the introduction, the CMB is the most
ancient image of the Universe and therefore it is a very useful tool to extend
our knowledge about the early Universe. The tiny anisotropies present in the
CMB give us information about the geometry, content and age of the Universe.
The Gaussianity of these anisotropies is a key issue to discriminate between
different cosmological models. The most precise all-sky experiment measuring
the CMB anisotropies is the Wilkinson Microwave Anisotropy Probe (WMAP)
satellite launched by the NASA in 2001. We analyse the WMAP data with a
technique based on wavelets on the sphere. A blind, not model dependent ap-
proach is chosen and hence the main difficulty is in identifying the source of
the non-Gaussianity.

The thesis is organised as follows. We start with an introduction explaining
general issues related with the CMB, its anisotropies and the importance of
studying the Gaussianity. In Chapter 2 the detection of a non-Gaussian spot in
the 1-year data of the WMAP data is reported. The significance, morphology
and foreground contribution of this spot are discussed in Chapter 3. The rede-
tection of the spot in the 3-year WMAP data is presented in Chapter 4, and the
possible interpretation of this spot as a topological defect, such as a texture is
considered in Chapter 5. The general conclusions of all these chapters are pre-
sented in Chapter 6. At the end of the thesis, a summary in Spanish language
is included.
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CHAPTER 1

Introduction

1.1 The Cosmic Microwave Background Radiation

The Cosmic Microwave Background (CMB) is the most ancient electromagnetic
radiation that can be observed. Therefore it is an unique tool for studying the
early Universe and is considered as the best evidence for the Big Bang model
of the Universe. The theory of the Big Bang was formulated by George Gamow
and collaborators in 1948 [5]. According to this theory the Universe could have
formed thousands of millions of years ago starting from a tremendously dense
and hot state. The theory explains the production of nuclei (primordial nucle-
osynthesis), the abundance of light elements and the expansion of the Universe
which had been observed by E. Hubble in 1929 [94]. In addition an isotropic
background radiation of the order of 5 Kelvin was predicted. It would rep-
resent a relic radiation of the hot early Universe which cooled from around
3, 000K down to about 5K due to the expansion of the Universe. At the time
this prediction was formulated this radiation had not been detected yet! More
than a decade later, in 1965, Penzias and Wilson [145] detected the CMB radi-
ation accidentally and R. Dicke, P.J.E. Peebles, P.G. Roll, & D.T. Wilkinson [53]
interpreted this radiation as a signature of the Big Bang.

Since then, a large number of experiments have been built to measure the CMB
radiation. The first satellite mission dedicated to it, the Cosmic Background Ex-
plorer (COBE), was launched in 1989. Two of their principal investigators, G. S.
Smoot (Differential Microwave Radiometer, DMR) and J. Mather (Far Infrared
Absolute Spectrophotometer, FIRAS), received the Nobel Prize in Physics in
2006. The COBE-FIRAS experiment showed that the CMB had an almost per-
fect black-body spectrum [125] corresponding to a temperature of T0 = 2.725K.

1



CHAPTER 1: INTRODUCTION

Figure 1.1 CMB black-body spectrum as measured by FIRAS.

COBE-DMR [167] measured the CMB radiation in all the sky. Subtracting the
average temperature, T0, and a dipole component due to our local movement
from the COBE-DMR map, small temperature anisotropies of order ∆T/T0 ∼
10−5 were measured (see Figures 1.1 and 1.2)1. One of the greatest successes
of the Big Bang theory is the prediction of these findings. The early Universe
is the ideal source of purely thermal radiation needed for observing a perfect
black-body spectrum, and Harrison [85], Peebles & Yu [143], and Zel’dovich
[195] had realized that the early Universe would have to have inhomogeneities
at the level of 10−5 or 10−4.

During the 1990’s, the anisotropies were measured with increasing sensitivity
by ground and balloon based experiments. By 2000 the BOOMERanG [48] and
MAXIMA [79] balloon experiments reported that the highest angular power
fluctuations occur at scales of approximately one degree. Together with other
cosmological data, these results implied that the geometry of the Universe is
flat. Over the next three years a number of ground-based interferometers pro-
vided measurements of the CMB anisotropies with higher accuracy, includ-
ing for instance the Very Small Array (VSA) [71], Cosmic Background Imager
(CBI) [163], Archeops [19], Arcminute Cosmology Bolometer Array Receiver

1http://lambda.gsfc.nasa.gov
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CHAPTER 1: INTRODUCTION

Figure 1.2 COBE-DMR data (top) on a scale from 0 - 4 K, showing the near-uniformity

of the CMB brightness, (middle) on a scale intended to enhance the contrast due to

the dipole due to our local movement, and (bottom) anisotropies after subtraction of

the monopole and the dipole components. From the Legacy Archive for Microwave

BAckground Data Analysis (LAMBDA) web site.

3



CHAPTER 1: INTRODUCTION

(ACBAR) [106], and Degree Angular Scale Interferometer (DASI) [78], which
made the first detection of the polarization of the CMB.

Recently the NASA satellite mission, Wilkinson Microwave Anisotropy Probe,
(WMAP) [17] measured with unprecedented accuracy the CMB anisotropies in
all the sky. The detailed analysis of these anisotropies can be used to estimate
the cosmological parameters which describe the age, geometry and composi-
tion of the Universe. The standard Λ-Cold Dark Matter (ΛCDM) model of the
Big Bang provides the best fit to the WMAP data [171]. Large scale structure
and supernovae observations also support this model, therefore it is frequently
referred to as the concordance model. It assumes a Universe without spatial
curvature and with an accelerated expansion, driven by the cosmological con-
stant, Λ. The nature of this constant is unknown and therefore it is called dark
energy. According to supernovae and CMB observations, dark energy repre-
sents around 74% of the energy density of the present Universe. Most of the
remaining energy density, about 22%, is due to Cold Dark Matter (CDM), which
is non-baryonic, not thermalized matter. It is of unknown composition and does
neither emit nor reflect electromagnetic radiation. Although it has not been ob-
served directly, its existence has been proven by gravitational effects. Only the
remaining 4% of the energy density is due to ordinary baryonic matter.

However the early Universe was considerably different. Extrapolating the ex-
pansion backwards in time yields infinite density and temperature 14 thousand
million years ago. This singularity at which the physical laws break down is
called Big Bang. From that moment to approximately 10−43 seconds (one Planck
time) after, the quantum effects of gravity were significant and the physics at
this epoch are unclear and poorly understood. From the first second after the
Big Bang until now, the physics are rather well known. The Universe was
homogeneously and isotropically filled with radiation and matter. The tem-
perature, density and pressure were enormously high, forcing the Universe to
expand very rapidly. The expansion causes a cooling of the Universe. Some
theories affirm [74], [9] that 10−35 seconds after the Big Bang a phase transi-
tion caused an exponential expansion called inflation. This would make the
Universe to appear flat, homogeneous and isotropic at the largest observable
scales. Moreover, the expansion amplified the tiny quantum fluctuations of the
Universe which seed the formation of structure in the later Universe.

At the end of inflation, the Universe consisted of a quark-gluon plasma. As the

4



CHAPTER 1: INTRODUCTION

Universe continued to expand, the cooling allowed the formation of baryons.

However, atoms could not form until many years later. Radiation and matter
were constantly interacting so that atoms could not form and photons could not
escape. When the Universe cooled down to 3000K, 375,000 years after the Big
Bang, the interaction rate was low enough to allow atom formation and photons
could escape. Photons were scattered at all points and in all directions. These
are the CMB photons measured today after traveling through the Universe for
almost 14 thousand million years.

The density fluctuations at decoupling were imprinted in the CMB. Standard
inflation predicts these fluctuations to represent a Gaussian and Isotropic ran-
dom field (see Liddle & Lyth [114] for a detailed description), whereas non-
standard inflation (see [13] for a review) or topological defect models [191] pre-
dict non-Gaussian features in the CMB.

Therefore studying the Gaussianity of the CMB anisotropies allows to discrimi-
nate between different cosmological models.

The PLANCK satellite which will be launched in 2008 by the ESA, will mea-
sure the CMB on smaller scales than WMAP and its increased sensitivity will
provide more accurate polarization data. The wide frequency range (30 to 857
GHz) will allow to better separate the contaminant signals (see section 1.4). The
PLANCK data are expected to confirm the above described scenario or perhaps
open new possibilities.

1.2 Anisotropies of the CMB

As the early Universe was very homogeneous and isotropic, photons with the
same energy were scattered in all directions. Hence we measure the same aver-
age CMB radiation in any direction of a sphere representing the observable sky.
The photons we receive were emitted almost 14 thousand million years ago at
the Last Scattering Surface. The density fluctuations present at that epoch are
imprinted in the CMB producing small anisotropies.

The CMB anisotropies projected on the unit sphere can be seen as a function of
the spherical coordinates θ and φ, and therefore they can be expressed as a sum

5
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of spherical harmonics (Y`m(θ, φ)) with coefficients a`m:

∆T
T

(θ, φ) =
T(θ, φ) − T0

T0
=

∞

∑
`=1

`

∑
m=−`

a`mY`m(θ, φ). (1.2.1)

Assuming the standard inflationary prediction, the anisotropies represent a
Gaussian and isotropic random field. In this case the statistical properties are
described by the two point correlation function:

C(θ̄) =

〈

∆T
T

( ~Ω1)
∆T
T

( ~Ω2)

〉

= ∑
`m

∑
`′m′

〈a`ma∗`′m′〉Y`m(θ1, φ1)Y`′m′(θ2, φ2), (1.2.2)

where θ̄ = cos−1
(

~Ω1 · ~Ω2

)

and ~Ω1 and ~Ω2 denote two unit vectors pointing
towards the two directions in the sky given by the coordinates (θ1, φ1) and
(θ2, φ2). If the isotropy and homogeneity properties are verified, then the angu-
lar power spectrum C` can be written as

〈a`ma∗
`′m′〉 = C`δ``′δmm′ , (1.2.3)

where 〈.〉 denotes averaging over sufficiently large volumes.

The correlation function of the temperature fluctuations, C(θ̄), is related to the
angular power spectrum C` through the Legendre transform

C(θ̄) = ∑
`

2` + 1
4π

C`P`(cosθ̄), (1.2.4)

where P` are the Legendre polynomials of order `. The angular power spectrum
of a model can be calculated as a function of the cosmological parameters. The
ΛCDM model provides the best fit to the WMAP data as can be seen in Figure
1.3.

There are different kinds of anisotropies depending on the moment when they
were generated. They are usually divided into primary and secondary aniso-
tropies:

• Primary anisotropies, are due to effects that occurred at the last scatter-
ing surface. The physics of the photon-baryon plasma determined the
shape of the CMB angular power spectrum. The radiation pressure of the
photons competing with the gravitational attraction of the baryons cre-
ate acoustic oscillations which are responsible for the characteristic peak
structure of the angular power spectrum. At large scales the Sachs-Wolfe
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Figure 1.3 WMAP three-year binned angular power spectrum (in black) from ` = 2 −
1000,[90]. The red line represents the best fit Λ-CDM model fit to the data and the

band stands for the one sigma cosmic variance error. From the Legacy Archive for

Microwave BAckground Data Analysis (LAMBDA) web site.

effect [151] due to variations in the gravitational potential dominates, whe-
reas at small scales diffusion damping [164] and blurring effects due to the
finite thickness of the last scattering surface prevail.

• Secondary anisotropies, are generated between the last scattering surface
and the observer. They are due to interactions of the CMB photons with
hot gas or gravitational potentials. Here the gravitational effect is called
Integrated Sachs-Wolfe (ISW) effect. There are two kinds of ISW effect. The
early ISW occurs shortly after photons leave the last scattering surface,
and is due to the evolution of the potential wells as the Universe changes
from being dominated by radiation to being dominated by matter. The
late-time ISW arises much later, as the evolution starts to feel the effect of
the cosmological constant. When the late-time ISW is due the non-linear
evolution of a collapsing structure it is also called Rees-Sciama effect [149],
[120].

The reionization of the Universe after recombination produces free elec-
trons that rescatter off the photons of the CMB radiation, producing sec-
ondary anisotropies. The first few generations of population III stars and
quasars emitted radiation that reionized the Universe globally [72]. Local
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reionization takes place in clusters of galaxies. Hot gas trapped in clus-
ters contains high energy electrons which distort the (CMB) black-body
spectrum through inverse Compton scattering [174]. This effect is called
thermal Sunyaev-Zeldovich effect when the electrons have high energies due
to their temperature and kinematic Sunyaev-Zeldovich effect if the high en-
ergies are due to their bulk motion.

Gravitational lensing of the CMB photons is a further effect that can produce
secondary anisotropies [160], [121]. It is caused by massive superclusters
that deviate the trajectory of the CMB photons.

1.2.1 Polarization

The CMB is polarized at the level of a few µK. There are two polarization
modes, E-modes and B-modes. This is in analogy to electrostatics, in which
the electric field (E-field) has a vanishing curl and the magnetic field (B-field)
has a vanishing divergence. The E-modes arise from the Thomson scattering in
an inhomogeneous plasma as the one present in the early Universe and hence
they are correlated with the temperature anisotropies. The polarization of the
CMB is a much weaker signal than the temperature anisotropies and thus it
is more difficult to measure it accurately. The E mode and the TE correlation
have been measured recently by DASI, [104] WMAP [138] and BOOMeranG
[147]. Future experiments are focusing in more precise polarization measures.
The primordial B-modes which have not been detected by now, are thought
to have an amplitude of at most 0.1µK and are not produced from the plasma
physics alone. They are a signal from cosmic inflation and are determined by
the density of primordial gravitational waves. Detecting the B-modes will be
extremely difficult, particularly given that the degree of foreground contamina-
tion is relatively much higher, and the weak gravitational lensing signal mixes
the relatively strong E-mode signal with the B-mode signal.

1.3 WMAP data

The Wilkinson Microwave Anisotropy Probe (WMAP, [17]) is a NASA satellite
mission. It was launched in 2001 and observes the sky from an orbit about the
L2 Sun-Earth Lagrangian point, 1.5 million km from Earth. Its aim is to produce
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Ωmh2 0.1277+0.0080
−0.0079

102Ωbh2 2.229 ± 0.073

H0 73.2+0.031
−0.032 km/s/Mpc

σ8 0.761+0.049
−0.048

τ 0.089 ± 0.030

ns 0.958 ± 0.016

Table 1.1 Cosmological parameters for the WMAP data, considering the Λ-CDM

model.

a 13 arcminute FWHM resolution full sky map of the CMB anisotropies.

The WMAP radiometers, measure temperature differences at 5 frequency bands,
namely K-band (22.8 GHz, 1 differencing assembly), Ka-Band (33.0 GHz, 1
differencing assembly), Q-Band (40.7 GHz, 2 differencing assemblies), V-Band
(60.8 GHz, 2 differencing assemblies) and W-Band (93.5 GHz, 4 differencing
assemblies).

The beam size ranges from 0.9 to 0.2 degrees and the sensitivity is around 1
mK s1/2. The Hierarchical, Equal Area and iso-Latitude Pixelization (HEALPix,
[73])2, is used in all maps and the resolution parameter of this pixelization is
called Nside.

The WMAP data give precise information about the content, age, evolution
and geometry of the Universe [171]. A Λ-CDM model provides the best fit to
the data with only six parameters: matter density, Ωmh2, baryon density, Ωbh2,
Hubble constant, H0 ≡ 100h km/s/Mpc, amplitude of fluctuations, σ8, optical
depth, τ, and a slope for the scalar perturbation spectrum, ns. The best fit values
of these parameters are listed in Table 1.1.

The statistical analysis of the CMB maps can give us very valuable information
which can not be deduced from the angular power spectrum. Testing the Gaus-
sianity and the isotropy of the CMB and looking for cross-correlations between
CMB and large scale structure are some of the analyses which can be performed
on CMB maps. For these kind of cosmological analyses the WMAP team rec-
ommends the use of a combined map. It is a linear combination of the receivers

2http://www.eso.org/science/healpix/
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Figure 1.4 WMAP combined and foreground cleaned map.

where CMB is the dominant signal, namely Q, V, W radiometers:

T(x) =
10

∑
j=3

Tj(x) wj(x), (1.3.1)

The Q-Band receivers are denoted with indices j = 3, 4, V-Band receivers with
indices j = 5, 6, whereas indices j = 7, 8, 9, 10 correspond to the four W-Band
receivers. Noise weights wj(x) are defined so that receivers with less noise have
more weight:

wj(x) =
w̄j(x)

∑
10
j=3 w̄j(x)

, w̄j(x) =
Nj(x)

σ0 j
2 (1.3.2)

where σ0 j is the noise dispersion per observation and Nj(x) is the number of
observations performed by the receiver j at position x (see [17]). The combined
map, shown in Figure 1.4, increases the signal to noise ratio and does not use
the K and Ka bands which are highly contaminated by Galactic radiation.

Unfortunately even at the Q, V and W bands, the CMB photons constitute not
the only microwave signal we receive. In order to perform cosmological stud-
ies, the contaminating signals must be understood and removed from the CMB
maps before combining them as explained above. There are several component
separation techniques as presented in the following section. After removing the
contaminating emissions which we describe below, the residual monopole and
dipole have to be subtracted.
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Figure 1.5 Foreground frequency dependence compared to CMB as calculated for

WMAP [18]. From the Legacy Archive for Microwave BAckground Data Analysis

(LAMBDA) web site.

1.4 Foregrounds

The CMB signal is contaminated by microwave emission from the Milky Way
Galaxy and from extragalactic sources. These emissions are called foregrounds.
They are usually expressed in antenna temperature TA rather than thermody-
namic temperature T which is used for the CMB. The relation between both
temperatures is given by

∆T = ∆TA
(ex − 1)2

x2ex , (1.4.1)

where x = hν/kT0 , h the Planck constant, ν the frequency and k Boltzmann’s
constant. The frequency dependence of the foregrounds in a certain range is
usually expressed as TA ∼ νβ, where β is the spectral index. Figure 1.53 shows
the frequency dependence of the Galactic foregrounds at WMAP frequencies
compared to the CMB.

1.4.1 Synchrotron

Synchrotron emission arises from the acceleration of cosmic ray electrons in
magnetic fields. Its signal is complex and the spectral index varies between

3http://lambda.gsfc.nasa.gov
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βs ∼ −2.6 and βs ∼ −3.1 at the WMAP frequencies. Therefore great care must
be taken when using low frequency maps as tracers of the synchrotron emission
at microwave frequencies. In the first release of the WMAP data, the Haslam
408 MHz template [84] was used [18], but in the three year version they use the
WMAP K- and Ka-bands to provide a synchrotron template [90].

1.4.2 Free-free

Free-free emission is due to electron-ion scattering which produces microwaves.
At frequencies above 10 GHz the free-free spectral index is β f f = −2.15. Free-
free emission does not dominate the sky at any radio frequency and hence there
are no free-free maps. High resolution large-scale maps of Hα emission can be
used as an approximate template for free-free emission, except for regions with
high interstellar dust optical depth τ > 1 at the wavelength of Hα. For τ ≤ 1
the Hα can be approximately corrected for extinction. The WMAP team use the
Hα map assembled by [68] corrected for extinction using the Galactic reddening
map provided in [157].

1.4.3 Dust

Thermal dust emission is produced by small dust grains that absorb UV radi-
ation, re-emitting at the far-infrared and microwave frequencies. The spectral
index depends on the grain material and lies in the range 1.5 ≤ βd ≤ 2.5. It has
been mapped over the full sky by the COBE and IRAS missions. In [157] both
datasets are combined to provide a full sky dust template. The WMAP team
uses the extrapolation of this map performed in [67].

1.4.4 Anomalous dust emission

In the last years some works seem to support the existence of spinning dust
emission at frequencies around 10–20 GHz [49], [192] produced by rotational
electric dipole emission and, thus, has been named spinning dust. This emission
has a similar frequency dependence to that of free-free emission at a certain
range of frequencies. However this emission could provide a significant contri-
bution to the WMAP data only for the K and Ka bands, whereas it quickly de-
creases at higher frequencies, becoming negligible [58] for the V and W bands.
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1.4.5 Extragalactic point sources

Extragalactic objects such as quasars, galaxies, active galactic nuclei, infrared
galaxies, starbursts or spheroids can also emit microwave radiation. As they are
distant objects they appear as punctual objects in the CMB maps. The WMAP
team identified and masked out several hundreds of point sources. Recently
[116] provided a new catalogue using wavelets. For the PLANCK satellite, due
to its better resolution and sensitivity, thousands of point sources are expected
to be identified and masked.

1.4.6 Component Separation

Several statistical methods have been developed in order to separate each of
the above described components. They can be classified into methods for dif-
fuse components, such as Galactic foreground emissions and methods to iden-
tify compact objects, such as point sources and Sunyaev-Zeldovich effect. In
the first group we can list the Maximum Entropy Method (MEM) [12], [91],
[172], [186], Fast Independent Component Analysis (FastICA) [7], [118], Spec-
tral Matching Independent Component Analysis (SMICA), [52], [140], Expecta-
tion -Maximization [123], Wiener filtering [24], [176], [178], Correlated Compo-
nent Analysis (CCA) [23], and template fitting [17], [83], which is the approach
used by the WMAP team. In the point source detection the matched filter [177],
and wavelet based methods [28], [185], [187], [70], [116], have proved to be
optimal. Scale adaptive filters [155], [88], multifilters [87], [89], and wavelet
transforms [127], have been proposed for the Sunyaev-Zeldovich component
separation.

1.4.7 Foreground masks

Despite all the component separation methods it is not possible to remove
the foreground emissions completely. As most of the contaminating emission
comes from our own Galaxy, the region of the sky lying on the galactic plane
is usually excluded from cosmological studies. The WMAP team proposed
different exclusion masks [18], [90], being the kp0-mask the most conservative
one. This mask excludes around 23% of the pixels including a few hundreds of
known point sources.
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1.5 Gaussianity

1.5.1 Introduction

The Gaussianity of the CMB anisotropies is a testable prediction of the sim-
plest inflationary models [74], [9]. The quantum vacuum fluctuations of the
inflationary field have a Gaussian distribution. As mentioned before, inflation
boosts the tiny vacuum fluctuations which seed the formation of structure in
the later Universe. CMB anisotropies are related to energy density fluctuations
through the linearized Einstein-Boltzmann equations. Hence their distribution
is Gaussian as well (see [114]). Even in this scenario small departures from
Gaussianity can arise due to non-linear second order effects. In the standard
inflationary model these deviations from Gaussianity are negligible, but in al-
ternative non-standard inflationary models the departure from Gaussianity is
significant [13]. The degree of non-Gaussianity in inflationary models is usually
quantified phenomenologically by the non-linear parameter fNL in the gravita-
tional potential:

Φ = ΦL + fNLΦ2, (1.5.1)

where ΦL is the gravitational potential at linear order. Using the 1-year WMAP
data, [103] constrained −54 < fNL < 134 at the 95% confidence level.

Topological defect models also predict non-Gaussian features in the CMB [191].
Unified theories of high energy physics predict the production of topological
defects during a symmetry-breaking phase transition in the early Universe. Dif-
ferent types of defects were predicted depending on the broken O(N) symme-
try: domain walls are two-dimensional membranes that form when a discrete
symmetry (N = 1) is broken; after an axial or cylindrical symmetry break (N =

2), one-dimensional lines called cosmic strings arise; monopoles are point-like
defects that form when the broken symmetry is spherical (N = 3); and finally
global textures are formed after an N = 4 broken symmetry. For the case when
N > 4 we have non-topological textures. Topological defects are extremely
high-energy phenomena which leave an imprint in the CMB photons. Each
type of defect produces a characteristic CMB-pattern, for instance textures may
produce hot or cold spots in the CMB.

Another prediction of inflation is the homogeneity, isotropy and flatness of the
Universe due to the drastic inflationary expansion. Non-trivial topologies [107]
or anisotropic models [14], would leave characteristic imprints in the CMB. For
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instance homogeneous and anisotropic models can produce a spiral pattern
due to global rotation. Non-trivial topologies can produce anisotropic patterns,
matched circles or, more generally deviations from a Gaussian random field.

Since most of the non-Gaussianity analyses are blind (not model-dependent), a
great effort has to be done to identify the origin of a deviation from Gaussian-
ity and/or isotropy. In addition to hypothetical primordial non-Gaussianities,
most of the secondary anisotropies are not linear in nature and hence produce
non-Gaussian signatures. The same is true for contaminants such as galactic
and extragalactic foregrounds and instrumental or astrophysical systematics.
Non-Gaussianity tests what the distribution is not, not what it is.

1.5.2 Gaussianity analyses

The primary challenge in studies of non-Gaussianity is in choosing the statistic
that quantifies it. Depending on the kind of features that are investigated some
methods will be more efficient than others. Since the detection of the CMB an-
isotropies in 1992, many Gaussianity analyses have been performed (see [124]
for a review). The first ones analysed the 4 year COBE-DMR data [16] using
a wide ensemble of methods, namely 3-point correlation functions [102], ex-
trema distribution and correlations [102], [146], Minkowski functionals [158],
[137],[102], [146] partition functions [55],[131], Principal Component Analysis
[26], bispectrum [66], [86], [8], trispectrum [105] and wavelets listed in the next
section. Some of these analyses revealed deviations from Gaussianity that were
found to be due to systematic effects.

Further analyses studied balloon-borne and ground based experiments such
as QMASK [141],[162], MAXIMA-1 [194],[152], [30],[3], BOOMERanG [148],
Archeops [47] and VSA [156],[166],[150] without finding any significant devia-
tion from Gaussianity.

As already mentioned, the WMAP data measured the CMB anisotropies with
unprecedented accuracy. The first Gaussianity analysis performed on the 1–
year WMAP data [103] found the data to be compatible with Gaussianity us-
ing Minkowski functionals and the bispectrum. Further analyses found several
asymmetries and/or non-Gaussian features in the 1–year data using different
methods: low multipole alignment statistics [50], [39], [40], [159], [108], [109],
[110], [22], [165]; phase correlations [34], [37], [135], [136]; hot and cold spot
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analysis [112], [113]; local curvature methods [80], [27]; correlation functions
[61], [64], [180]; structure alignment statistics [193], [190]; multivariate analy-
sis [56]; Minkowski functionals [142], [63]; bipolar spectra [76],[77]; and several
statistics applied in wavelet space which we describe more in detail below.

Some of these anomalies have been redetected in the 3–year WMAP data [111],
[51], [41], [65], [190]. However, [171] repeated the analysis of [103] and found
the data to be compatible with Gaussianity although they do not re-evaluate the
other statistics showing asymmetries or non–Gaussian signatures in the 1–year
data.

The most important anomalies are perhaps: the alignment and symmetry fea-
tures among low-l multipoles; the apparent asymmetries in the distribution of
fluctuation power in two opposing hemispheres; alignment of local CMB fea-
tures; and the one presented in this thesis [43], [44], [45], [46], a very cold spot
in the southern hemisphere, which we call the Spot. This anomaly was pointed
out first by [188] and confirmed by [43], [32], [44] and [45], [46] in the 3–year
WMAP data. The tool used in these analyses is the Spherical Mexican Hat Wa-
velet defined in the next section.

The alignment of low-` multipoles, the asymmetries, and alignment of CMB
features are related to the ecliptic plane and hence are suspect to be due to
some undetermined systematic effect. The origin of the Spot is analysed in this
thesis. As we discuss in Chapter 5, it could be the first detection of a topological
defect.

1.5.3 Wavelets

In a Fourier transform signals are represented as a sum of sinusoids. Analogo-
usly, a wavelet transform is the representation of a function by wavelets, which
are mathematical functions different from sinusoids. The main difference is that
wavelets are localized in time (or space) and frequency whereas the standard
Fourier transform is only localized in frequency.

Applying a wavelet transform allows to divide a given function into differ-
ent components. Each component matches the scale of the wavelet which is a
scaled and translated copy of a finite-length or fast-decaying oscillating wave-
form, known as the mother wavelet.

There are many different wavelet transforms which can be classified into dis-
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crete wavelet transforms, such as the Haar wavelet [75] and continuous wavelet
transforms such as the Mexican Hat one. We will focus on the latter type of wa-
velet transforms.

In continuous wavelet transforms, the mother wavelet, Ψ(x), satisfies the com-
pensation, normalization and admissibility properties, namely,

∫ ∞

−∞

Ψ(x)dx = 0, (1.5.2)

∫ ∞

−∞

|Ψ(x)|2 dx = 1, (1.5.3)

CΨ ≡
(

2π2
)

∫ ∞

0
k−1Ψ2(k)dk < ∞, (1.5.4)

where Ψ(k) is the Fourier transform of Ψ(x).

The wavelet (or daughter wavelet), ψ, can be defined in terms of the mother wa-
velet, the scale parameter R and the position b, as:

ψR,b(x) =
1
R

Ψ

(

x − b
R

)

. (1.5.5)

The wavelet coefficients, wR,b of a given function, f (x), are defined as its con-
volution with the wavelet:

wR,b ≡
∫

f (x)ψR,b(x)dx. (1.5.6)

The above formulas for one dimensional signals, can easily be extended to
higher dimensions.

Wavelet transforms can be used for data compression, image processing, acous-
tics, optics, seismic geophysics, ... and astrophysics.

Several works have been published in recent years concerning CMB studies
based on wavelets. Wavelet transforms can be applied to separate the differ-
ent components appearing in microwave observations [179], [28], [185],[186],
[187],[70], [116], [133], in denoising techniques [153], [154], cross-correlation
analyses [189], [130], and in Gaussianity studies [139], [92], [4], [10], [11], [126],
[128], [193], [190] and references listed below for the spherical symmetry case.
Wavelets increase the signal to noise ratio, allowing to detect weak non-Gaussian
signals. Furthermore they preserve the spatial location and the angular scale R
of a hypothetical non-Gaussian feature.
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Figure 1.6 Left: Mexican Hat Wavelet on the plane (dashed line) and as deformed on

the sphere (solid line). Right: Stereographic projection of the Mexican Hat Wavelet

from the plane to the sphere. (From[122])

In our case, the chosen wavelet is the Spherical Mexican Hat Wavelet (SMHW)
[6], which is the stereographic projection of the 2D Mexican Hat Wavelet de-
fined by:

Ψ(x) =
1√
2π

[

2 −
( x

R

)2
]

e−x2/2R2
, (1.5.7)

which is the Laplacian of a Gaussian and where x ≡ |~x|.

The SMHW efficiently enhances the non-Gaussian signatures on the sphere
[122]. The expression of the SMHW mother wavelet is:

ΨS(y, R) =
1√

2πN(R)

[

1 +
(y

2

)2
]2 [

2 −
( y

R

)2
]

e−y2/2R2
, (1.5.8)

where R is the scale and N(R) is the normalization constant:

N(R) ≡ R
√

1 + R2/2 + R4/4. (1.5.9)

The distance y on the tangent plane is related to the polar angle (θ) as: y ≡
2 tan θ/2. The MHW and SMHW functions can be seen in Figure 1.6.

The SMHW has been applied to non-Gaussian studies of the COBE-DMR data
[29], [31].
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This thesis presents an analysis of the WMAP data with the SMHW, written in
[43], [44], [45], [46]. Several other analyses of the WMAP data [188], [134], [27],
[82], [32] or [189] have been performed with the SMHW.

1.6 Outline

In this thesis we present a non-Gaussian analysis of the WMAP data, performed
with spherical wavelets. In the next chapter the detection of a non-Gaussian
spot in the 1–year data is described [43]. In Chapter 3 the morphology and
foreground contribution to the Spot are analysed [44]. In Chapter 4 we show the
redetection of the spot in the 3–year WMAP data [45]. Chapter 5 explores the
possibility that the Spot is due to a cosmic texture [46]. Chapter 6 presents the
conclusions and finally a summary in Spanish language can be found in the last
chapter.
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CHAPTER 2

Detection of a non-Gaussian Spot in
the WMAP 1–year data

An extremely cold and big spot in the WMAP 1-year data is analysed. Our work
is a continuation of a previous paper [188] where a deviation from Gaussian-
ity was detected, with a method based on the Spherical Mexican Hat Wavelet
(SMHW) technique. We study the spots at different thresholds on the SMHW
coefficient maps, considering six estimators, namely number of maxima, num-
ber of minima, number of hot and cold spots, and number of pixels of the spots.
At SMHW scales around 4◦ (10◦ on the sky), the data deviate from Gaussianity.
The analysis is performed on all sky, the northern and southern hemispheres,
and on four regions covering all the sky. A cold spot at (b = −57◦, l = 209◦) is
found to be the source of this non-Gaussian signature. We compare the spots of
our data with 10000 Gaussian simulations, and conclude that only around 0.2%
of them present such a cold spot. Excluding this spot, the remaining map is
compatible with Gaussianity and even the excess of kurtosis in [188], is found
to be due to this spot. Finally, we study whether the spot causing the observed
deviation from Gaussianity could be generated by systematics or foregrounds.
None of them seem to be responsible for the non-Gaussian detection.

2.1 Introduction

The work carried out in this chapter is a continuation of a previous paper [188]
where a non-Gaussian detection in the WMAP 1-year data was reported, us-
ing the Spherical Mexican Hat Wavelet (SMHW). Convolving the data with the
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SMHW, an excess of kurtosis was found at scales around 4◦, involving a size
on the sky close to 10◦. The deviation from Gaussianity presented an upper tail
probability of 0.4%. This deviation was localised in the southern hemisphere
and an extremely cold spot at b = −57◦, l = 209◦, was regarded as a possible
source of the non-Gaussianity. Our aim is to localise the non-Gaussianity, spec-
ifying whether this spot (hereafter the Spot) alone is the origin of the detection,
and to study all the spots of the data in order to quantify how atypical the Spot
under a Gaussian model is.

Following the same procedure as in [188], we have produced 10000 Gaussian
simulations with the purpose of checking the Gaussianity of the data. Start-
ing with the cosmological parameters estimated by the WMAP team (Table 1
of [170]), we have calculated the C` using CMBFAST [161]. We have generated
random Gaussian a`m of CMB realizations and convolved them with the ade-
quate beam for each receiver. After transforming from harmonic to real space,
uncorrelated Gaussian noise realizations have been added, taking into account
the number of observations per pixel (Nj(x)) and the noise dispersion per ob-
servation (σ0 j). At this point the simulations were degraded to Nside = 256
and the Kp0 mask has been applied. Finally, monopole and dipole have been
subtracted outside the mask

In the present work we have studied the spots above or below a given threshold
ν, therefore we have normalised the data and the simulations, dividing each
map by its dispersion, after subtracting the mean.

Data and simulations have been convolved with the SMHW at different scales,
to obtain the SMHW coefficient maps analysed in this work. The study has also
been performed in the data and simulations previous to the convolution with
the SMHW. These maps are referred to as maps in real space, at scale Ro.

We have considered the following six estimators: number of maxima, number
of minima, number of hot spots, number of cold spots, number of hot pixels
(hot area) and number of cold pixels (cold area). All of them are referred to a
particular threshold; thus maxima, hot spots and hot pixels lie above a thresh-
old ν, whereas number of minima, cold spots and cold pixels lie below −ν. The
analysis has been done in seven regions: all sky, northern hemisphere, southern
hemisphere, Northeast (b > 0, l < 180), Northwest (b > 0, l > 180), Southeast
(b < 0, l < 180) and Southwest (b < 0, l > 180). Each region has its own
dispersion and has to be normalised separately.
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2.2 The analysis

The first step in our analysis is the convolution of data and simulations with the
SMHW at 15 scales (R1 = 13.7, R2 = 25, R3 = 50, R4 = 75, R5 = 100, R6 = 150,
R7 = 200, R8 = 250, R9 = 300, R10 = 400, R11 = 500, R12 = 600, R13 = 750,
R14 = 900 and R15 = 1050 arcmin). Since the convolution mixes up pixels of the
masked region with unmasked pixels, the resulting map has many corrupted
SMHW coefficients. This effect involves a loss of efficiency, so we applied an
additional mask as explained in [188], extending the Kp0 mask to 2.5 R. The
results in [188] were shown to be quite independent of the definition of this
extended mask. For each map we have calculated the estimators on the seven
previously described regions. The chosen thresholds are ±2.0, ±2.5, ±3.0, ±3.5,
±4.0 and ±4.5. In the figures we have represented only absolute values for the
thresholds, recalling that for cold spots and minima, values lie below a negative
threshold, whereas hot spots and maxima values lie above a positive threshold.

Once the estimators were calculated for data and simulations, we proceeded to
establish acceptance intervals at significance levels α (32%,5% and 1%). There-
fore we have sorted the 10000 values of each estimator into ascending numbers
and excluded 10000α/2 values from each tail of the distribution. The two lim-
iting values, corresponding to simulations 1 + 10000α/2 and 10000(1 − α/2)

define the acceptance interval containing a probability of 1 − α. The remaining
probability is α/2 above and below the interval. In all figures this acceptance
intervals are plotted, the 32% interval corresponds to the inner band, the 5%
interval to the middle band and the 1% significance level, to the outer one.

The results for the different regions are presented in the next three subsections.

2.2.1 All sky, North and South

Deviations from Gaussianity have been detected at scales R5, R8 and R9. For
threshold 3.0, the results are represented in Figure 2.1. At scale R5 the hot area
lies outside the 1% acceptance interval. However we have studied this case
carefully, noting that this threshold is the only one where data lie outside the
intervals, whereas the number of hot spots and number of maxima do not de-
part from Gaussianity, even at this scale. Dividing the sky into two hemispheres
we checked that this was not a localised effect either. Even contiguous scales
were compatible with Gaussianity, hence we concluded that this non-Gaussian
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Figure 2.1 This figure shows from left to right and top to bottom, number of maxima,

number of minima, number of hot spots, number of cold spots, hot and cold area for

each of the considered scales at threshold 3.0. Scale R0 corresponds to real space. The

combined map values are plotted as asterisks. The acceptance intervals for the 32%

(inner), 5% (middle) and 1% (outer) significance levels, given by the 10000 simulations

are also plotted. Non-Gaussianity is found at scales R5 in the hot area, R8 and R9 in the

cold area. At other scales the data always lie at least within the 1% acceptance band.

For scale R5 the deviation occurs only for this threshold and scale whereas scales R8

and R9 show a more significant detection.
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feature was not significant.

On the contrary, in the case of cold areas, deviations are observed at scales R8

and R9 at several thresholds as can be seen in Figure 2. We represent in Figure
2.2 the number of cold spots, cold area and number of minima, for all con-
sidered thresholds at scales R8 and R9, in order to observe what is happening
there with more detail. The number of minima and cold spots was exactly one
at thresholds 4.0 and 4.5, reaching the borderline of our 1% acceptance interval.
For the number of cold spots, at threshold 4.0 for scale R8 and thresholds 3.5
and 4.0 for scale R9, the 5% and 1% acceptance intervals coincide. This can hap-
pen when the number of spots is very low. Consider for example a binomial
distribution where the number of spots can only take values 0 or 1. The way
we define the acceptance intervals determines that for such cases some of these
intervals must coincide. The most striking non-Gaussian signature was found
for the cold area at scales R8 and R9 where the data exhibited an extremely high
number of cold pixels at thresholds over 3. The cold area lies outside the 1%
acceptance interval at thresholds above 3.0 in the two scales presented in Figure
2.2.

At thresholds 4.0 and 4.5 the mentioned observations reveal that the deviation
from Gaussianity is only due to one particular spot, which reaches a minimum
value of −4.7σ at (b = −57◦, l = 209◦) and scale R9. At lower thresholds several
spots contribute to the observed deviation. A precise analysis of the Spot is
presented in the following sections. The data suggest that we are dealing with
a very cold and big spot. These results agree with the results reported in [188],
since the non-Gaussianity has been detected at the same scales. The hot spots
did not show any non-Gaussian evidence. Furthermore, subtracting the cold
pixels from the hot pixels, a strong hot-cold asymmetry was revealed at scales
R8, R9 and R10, see Figure 2.3. The lower tail probabilities displayed in Table
2.1 show non-Gaussian values of up to 99.85%.

Our purpose was to locate the non-Gaussian sources. We studied the north-
ern and southern hemispheres separately, expecting to find non-Gaussian re-
sults in the southern hemisphere because the Spot is located there. Results pre-
sented in Figure 2.4 show that the northern hemisphere is compatible with the
Gaussian simulations whereas the southern hemisphere shows a clear devia-
tion from the acceptance intervals. To show the North-South asymmetry, the
number of hot and cold pixels in the South were subtracted from the Northern
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Figure 2.2 Number of minima, number of cold spots and cold area are shown for scale

R8 at the left column and scale R9 at the right column. As in figure 2.1 the asterisks

represent the combined WMAP data, and the acceptance intervals for the 32% (inner),

5% (middle) and 1% (outer) significance levels, given by the 10000 simulations are also

shown. The data lie outside the acceptance intervals for the area, at thresholds over 3.0.

The borderline of the 5% and 1% acceptance intervals coincide at some high thresholds

for the number of spots, because at this scales the number of spots is very low.
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Figure 2.3 Hot-cold asymmetry, in the area. The excess of cold pixels at scales R8, R9

and R10 happens at high thresholds. Data and acceptance intervals are represented in

the same manner as in previous figures.
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Figure 2.4 Cold area in the northern and southern hemispheres at scales R8 and R9. The

southern hemisphere shows a non-Gaussian behaviour. Again we represent data and

acceptance intervals as in Figure 2.1.
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Figure 2.5 The two upper panels represent the North-South asymmetry for hot and

cold area, at scale R8 and the two panels below, the mentioned asymmetries at scale

R9. The southern hemisphere shows an excess of cold pixels. Acceptance intervals and

data are represented as in previous figures.
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Scale threshold probability

R8 3.0 0.37%

3.5 0.26%

4.0 0.44%

4.5 0.65%

R9 3.0 0.39%

3.5 0.15%

4.0 0.19%

4.5 0.22%

R10 3.0 18.22%

3.5 1.04%

4.0 0.48%

Table 2.1 Lower tail probabilities of having the hot-cold asymmetry (in the number of

pixels) of our data under a Gaussian model, at different scales and thresholds. Most

of the values are below 1%. At scale R10 and threshold 4.5 the number of hot and cold

pixels are both zero, because the threshold is too high and therefore we do not show

this threshold for the mentioned scale.

ones. Results are presented in Figure 2.5. Deviations from Gaussianity can
be clearly observed in the number of cold pixels at thresholds 3.0 and above.
Previous works such as [188], [61] or [81] have already reported North-South
asymmetries, which are confirmed here.

The marked observed asymmetry, prompted us to divide the sky into four re-
gions with the purpose of studying a Southeast-Southwest asymmetry.

2.2.2 Four regions

We analysed four regions independently by splitting each hemisphere into two
parts, l < 180 (East) and l > 180 (West). The results presented in Figure 2.6
clearly reveal the location of the non-Gaussian signatures. The Southwest is the
only region where the data lie outside the acceptance intervals. As expected, the
region containing the Spot is not compatible with Gaussianity, whereas the other
three regions are compatible with a Gaussian behaviour. Note that although in
[62] the ILC weights were found to have particular values in this region, this
does not affect our results since we use the combined, cleaned Q-V-W map.
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Figure 2.6 Cold area in four regions, scales R8 and R9. The only non-Gaussian region is

the southwest. The acceptance intervals are plotted as in Figure 2.1.
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Figure 2.7 Histogram of all biggest cold spots, threshold 3.0, scales R8 and R9. The

vertical line represents the Spot.

In the next section we quantify the significance of the Spot.

2.2.3 The Spot

Our aim in this section is to quantify the probability of finding a spot like the
one found at (b = −57◦, l = 209◦) in a Gaussian, homogeneous and isotropic
random field, and to check whether the map without the Spot is compatible
with Gaussianity or not. Comparing the Spot with the biggest cold spot of each
simulation we can estimate the probability of observing such a spot for the
Gaussian model. We show the histograms with the biggest cold spot of each
simulation at threshold 3.0 and scales R8 and R9 in Figure 2.7. The results
for all thresholds are summarized in Table 2.2. Note that some simulations
do not have any spots at high thresholds and hence they do not appear in the
histograms but we take them into account to estimate the probabilities. All
probabilities are below 0.7%. The lowest value is 0.18%.

At this point we can make the hypothesis that the data could be explained as
the sum of a Gaussian, homogeneous and isotropic random field, plus a non-
Gaussian spot which is not generated by this field. With the purpose of check-
ing our hypothesis, we have compared the cold area of data and simulations,
at scales R8, R9 and thresholds 3.0, 3.5 where the data present more than one
spot. First we have estimated the upper tail probabilities of finding the total
cold area (including all cold spots), counting how many simulations present
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Scale threshold probability

R8 3.0 0.34%

3.5 0.32%

4.0 0.41%

4.5 0.65%

R9 3.0 0.38%

3.5 0.21%

4.0 0.18%

4.5 0.22%

Table 2.2 Upper tail probabilities of having the Spot under a Gaussian model, at different

scales and thresholds. All probabilities are smaller than 1%.

Scale threshold P with Spot P without Spot

R8 3.0 0.18% 14.79%

3.5 0.28% 18.28%

4.0 0.45% -

4.5 0.65% -

R9 3.0 0.39% 30.53%

3.5 0.18% 17.68%

4.0 0.19% -

4.5 0.22% -

Table 2.3 Upper tail probabilities of having the cold area measured in the data, under

a Gaussian model The third column displays the probabilities considering the Spot and

the right column shows the probabilities subtracting the Spot from the data. At thresh-

olds 4.0 an 4.5 only the Spot is present, hence it makes no sense considering probabilities

without the Spot.
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Figure 2.8 Histogram of all cold areas, threshold 3.0, scales R8 and R9. The data without

the Spot (line on the left) are compatible with Gaussianity, whereas the data with the

Spot (line on the right), are non-Gaussian with probabilities 99.82% and 99.61% at this

threshold.

a greater or equal cold area, obtaining very low values (see Table 2.3). If we
subtract the Spot from the cold area in the data, and calculate again the proba-
bilities, we appreciate how the remaining area is compatible with Gaussianity,
since the upper tail probabilities grow in a factor of 100. This result is repre-
sented in Figure 2.8. The line on the right hand side is the total cold area of
the data whereas the one on the left hand side is the area remaining after sub-
tracting the Spot. The increase in probability can easily be appreciated. Here
we should have considered that we were using fewer pixels in the data than
in the simulations because the Spot has been subtracted only in the data. But
since these pixels represent only about 0.5% of the total pixels at scales R8 and
R9, we can neglect them, without modifying substantially the results. Hence
regarding the Spot as a non-Gaussian outlier, the remaining data are compatible
with Gaussianity.

To finish this section, we want to remark some characteristics of the Spot. Before
convolving the combined map, the Spot appears as several smaller, resolved
spots with a minimum temperature of −398µK at (b = −56◦, l = 210◦). The
average value of the four most prominent spots, listed in table 2.4 is −348µK.
However, these four spots are not exclusively responsible for the Spot, since
removing them, the mean value of the remaining pixels forming the Spot, is
close to −1σ. We have filtered the combined map with a Gaussian of scale 4◦,
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Combined WMAP

Amplitude (µK) Position (b, l) area (ν = −2)

-346 (−60◦, 213◦) 46

-398 (−56◦, 210◦) 67

-331 (−54◦, 211◦) 42

-317 (−56◦, 203◦) 88

Gaussian (4◦)

Amplitude (µK) Position (b, l) area (ν = −2)

-73 (−57◦, 209◦) 699

Table 2.4 Before filtering the combined map, the Spot appears resolved in several spots.

At the top we show three characteristic values of the most prominent spots, namely

the area below threshold -2, amplitude and position of the minimum. Filtering with a

Gaussian of 4◦ all these spots are convolved, becoming one big spot. The characteristics

of this spot are shown at the bottom.

the characteristic scale given by the SMHW analysis. the Spot appears with an
amplitude of −78µK at (b = −56◦, l = 210◦) as summarized in Table 2.4.

2.2.4 Skewness and kurtosis

At scales R8 and R9, the kurtosis presented non-Gaussian values in [188]. We
have repeated the analysis of [188], masking the Spot in the wavelet coefficient
maps, to show to which extent the Spot is responsible for the excess of kurtosis.
The masked pixels, were the pixels of the Spot lying above threshold 3.0 at scale
R8. The results are presented in Figure 2.9. The stars represent the data and
the circles, the data without the Spot. By subtracting the Spot, the decrease of
the kurtosis is clearly observed, being now compatible with Gaussianity. The
acceptance intervals are the same as in [188], and they were not recalculated
masking the pixels of the Spot in the simulations, since the number of masked
pixels is negligible with respect to the total number of pixels. However the de-
crease in the kurtosis is so huge, that a slight modification of the intervals would
not affect our conclusions. The skewness is still compatible with Gaussianity.
Note that the Spot was masked after convolving with the wavelets. Masking
the Spot before convolving, the decrement of the kurtosis is even higher. This
results show again the Gaussian behaviour of the data without the Spot. Hence
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Figure 2.9 This figure shows the values of skewness (left) and kurtosis (right) for all

the considered scales. The combined map values are plotted as stars and as written

in [188], at scales R8 and R9 they lie outside the three acceptance intervals, which are

represented as in previous figures. Masking those pixels of the Spot which are above

threshold 3.0 at scale R8, we obtain the results represented by circles. The huge decre-

ment of the kurtosis makes the data compatible with Gaussianity.

we can conclude that the excess of kurtosis is due to the Spot.

2.3 Sources of non-Gaussianity

Although the analysis of [188] showed that systematics, foregrounds and vari-
ations of the power spectrum were not responsible for the non-Gaussian effect
shown in the kurtosis, we wanted to check again their influence in the non-
Gaussian results obtained in the present analysis.

2.3.1 Systematics

First we studied the effects of systematics related to instrumental features (noise
and beam), generating four sets of 10 simulations. The first two sets are normal
simulations with noise and beams. In the third set we made the same simu-
lations as in the first set but without noise, and in the fourth set we took the
simulations of the second but without beam. Comparing the first and the third
set, we can see how the noise affects the number of pixels in a spot or the to-
tal cold area, and comparing sets two and four, we check the influence of the
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Figure 2.10 Area of the Spot for all receivers, at threshold 3.0 and scales R8 and R9. The

line represents the combined map values whereas the other symbols denote the differ-

ent receivers. The Spot is detected in all receivers, hence no rare receiver is generating

the non-Gaussian signal.

beams. We have compared the spots and the total area of these sets at scales R8

and R9, and threshold 3.0. In all cases the mean relative variation of the area
of one spot was around 2% and the mean relative variation of the total area in
a simulation around 1%. This values are negligible and confirm that noise and
beams do not play a significant role in our results, although the number of con-
sidered simulations is not very high. The previous results in [188] support our
conclusions.

Another possible source of non-Gaussianity could be the influence of any rare
receiver. We have analysed the spots detected by the 8 Q-V-W receivers, Q1,
Q2, V1, V2, W1, W2, W3 and W4, independently. The results for scales R8 and
R9 are plotted in Figure 2.10. Although W2 detects less pixels than the other
receivers, all of them detect the Spot, and are close to the line representing the
values of the combined map. Hence we verify that our detection is not due to
any deficient receiver.

2.3.2 Foregrounds

Non-Gaussianity can be generated by foregrounds due to synchrotron, free-free
and thermal dust emissions. All foregrounds show a clear frequency depen-
dence and hence if our spot is generated by foregrounds its area should also
be frequency dependent. Therefore, in Figure 2.11 we have compared the area
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Figure 2.11 Frequency dependence of the area of the Spot, at thresholds over 3.0 and

scales R8 and R9. The lines represent the combined map values. From top to bottom

thresholds 3.0 (asterisks), 3.5 (diamonds), 4.0 (stars) and 4.5 (squares) are plotted. The

circles are the values for the map K − 2.65Ka, where the synchrotron emission should

be canceled. These circles are close to the combined map values, hence synchrotron

emission is not the cause of the Spot.

of the Spot for each channel, namely K(22.8 GHz), Ka(33.0 GHz), Q(40.7 GHz),
V(60.8 GHz) and W(93.5 GHz) at scales R8 and R9 and thresholds over 3. The
horizontal lines denote the combined map values, whereas the other symbols
correspond to the area of the Spot at different thresholds for each channel.

The first two channels are not foreground corrected and so they may not match
the results of the other channels and of the combined map. In fact as can be seen
in Figure 2.11 both channels deviate slightly from the horizontal lines, repre-
senting the combined map values. Since these channels are not foreground
corrected, we can attribute the deviation to the synchrotron radiation, which
dominates at these frequencies. The synchrotron emission is expected to grow
a factor 2.65 from 33 GHz to 23 GHz,1 hence if we subtract 2.65 times the Ka-
map from the K one, we get rid of the contaminating emission. Considering
Figure 2.11, we confirm that the circles corresponding to K-2.65Ka are very
close to the combined map values.

These results support the conclusions reached in [188] regarding the influence
of foregrounds in the non-Gaussian detection The independence of the ampli-

1A power law is assumed for the frequency dependence of the synchrotron emission: Tsyn(ν) ∝

Tsyn(ν0)
(

ν/ν0

)−2.7
, as proposed in [18].
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tude of the Spot with frequency, was already shown in the mentioned paper.

2.3.3 Power spectrum dependence

Since several anomalies and asymmetries have been found in the low multi-
poles of the power spectrum, we should discuss to which extent the result de-
pends on the power spectrum. We have used the best fit WMAP power spec-
trum to perform the 10000 Gaussian simulations, but the uncertainties in the
cosmological parameters and hence in the power spectrum could affect our re-
sults. We have performed three sets of 50 simulations. The first set corresponds
to the best fit WMAP power spectrum. The other two sets were generated
with power spectra differing by ±1σ from the best fit WMAP power spectrum.
One corresponds to the ’lower limit’ power spectrum, obtained subtracting the
1σ error estimated by the WMAP team, and the other one to the ’upper limit’
power spectrum, adding the mentioned 1σ error to the best fit spectrum. Com-
paring the first set with the two others, we can study how the spots are affected
by the choice of different power spectra.

At scales R8 and R9, and threshold 3.0 the mean relative variation of the area
of a particular cold spot is much lower than 1%. Therefore, after these negligi-
ble variations, the significance of the Spot remains unchanged. Also in [188] a
negligible power spectrum dependence of the acceptance intervals was found
for the kurtosis. Hence the choice of different power spectra does not affect
significantly our results.

2.3.4 Intrinsic anisotropies

Once we have discarded systematics and foregrounds as the cause of our detec-
tion, other sources have to be considered. For instance the Sunyaev-Zeldovich
effect could produce a cold spot. This effect occurs in clusters, when high en-
ergetic electrons collide with CMB photons originating a decrement of the tem-
perature in our range of frequencies. Here arise two problems, namely the an-
gular scale and the amplitude of the Spot. The non-Gaussianity is found at scales
around 4◦ implying a size of about 10◦ on the sky. Observing in real space this
region, the Spot appears resolved in several smaller very cold spots with a mini-
mum temperature around −398µK. We have looked for any extragalactic object
which could cover this angular scale at coordinates near (b = −57◦, l = 209◦).
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We found a group of galaxies belonging to the local supercluster at a distance
of about 20 Mpc subtending a similar angle on the sky. Some of these galaxies
match the resolved spots observed in the data. However the mass and tem-
perature of the gas necessary to reach the amplitude of our spot, are similar to
the values found in rich clusters and therefore much higher than the amounts
estimated for groups of galaxies (see [175]). We would need a big cluster, such
as the Coma one, to reach such an amplitude and it should be near enough
to cover 10 degrees on the sky. In the neighborhood of (b = −57◦, l = 209◦)
no such object is found. This is in agreement with the WMAP results on fore-
grounds [18] where the Sunyaev-Zeldovich effect was found to be negligible
except for the most prominent nearby cluster, Coma, observed with a signal to
noise ratio of ≈ 2. Even more, we have also considered the ACO catalogue [1]
and the All-Sky ROSAT maps [168] at 0.1, 1.2 and 2 keV and neither any ACO
cluster nor any special X-ray emission was found at position of the Spot. How-
ever, the ROSAT maps present some particular problems: the brightest point
sources, as well as a large fraction of clusters, have been removed from it. In
addition, some small fractions of the sky were not observed and, unfortunately,
one of them is very close to our object.

Another possible source is the Rees-Sciama effect, [120], [119]. An extremely
massive and distant superstructure would be a clear candidate to cause a cold
and big secondary anisotropy. Even topological defects like global monopoles
or textures [183] could have cooled the CMB photons, to produce such spot.
Cosmic strings have characteristic scales around arcminutes, hence we do not
expect them to be behind this non-Gaussian detection.
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CHAPTER 3

Significance, morphology and
foreground contribution

The non–Gaussian cold spot in the 1–year WMAP data, described in the previ-
ous chapter, is analysed in detail in the present one. First of all, we perform a
more rigorous calculation of the significance of the non–zero kurtosis detected
in WMAP maps [188] in wavelet space, mainly generated by the Spot. We con-
firm the robustness of that detection, since the probability of obtaining this de-
viation by chance is 0.69%. Afterwards, the morphology of the Spot is studied by
applying Spherical Mexican Hat Wavelets with different ellipticities. The shape
of the Spot is found to be almost circular. Finally, we discuss if the observed
non–Gaussianity in wavelet space can arise from bad subtracted foreground
residues in the WMAP maps. We show that the flat frequency dependence of
the Spot cannot be explained by a thermal Sunyaev–Zeldovich effect. Based on
our present knowledge of Galactic foreground emissions, we conclude that the
significance of our detection is not affected by Galactic residues in the region of
the Spot. Considering different Galactic foreground estimates, the probability of
finding such a big cold spot in Gaussian simulations is always below 1%.

3.1 Introduction

In this chapter we focus on the Gaussianity studies provided in [188] and [43].
These are based on the Spherical Mexican Hat Wavelet (SMHW) technique pre-
viously described in this thesis. In [188] an excess of kurtosis was detected con-
volving the data with the SMHW at scales between 3◦ and 5◦. The deviation
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Figure 3.1 The combined and foreground cleaned Q–V–W WMAP map after convolu-

tion with the SMHW at scale R9. The position of the Spot is marked.

from Gaussianity presented an upper tail probability of 0.38% considering all
the sky and 0.11% in the southern hemisphere, analysing both Galactic hemi-
spheres independently. Performing an analysis of the spots [43], this deviation
was found to be due to a cold spot at galactic coordinates (b = −57◦, l = 209◦),
called the Spot (see Fig. 3.1). Assuming the Gaussian hypothesis, the upper tail
probability of having such a spot at a wavelet scale of 5◦ is 0.18%. These de-
tections were confirmed by other papers, also based on wavelets. The kurtosis
analysis of [188] was recalculated in [134] and [126] obtaining similar results.
In [32] higher criticism statistics were applied to maps in wavelet space. They
detect a deviation from Gaussianity, finding that some pixels of the Spot are
responsible for it.

One of the aims of this chapter is to re–analyse carefully the robustness of the
results in [188]. In this chapter 15 different wavelet scales and two estimators,
kurtosis and skewness were considered. Could it be that looking at that many
estimators, the deviation from Gaussianity just happened by chance?

Anyway, the origin of non-Gaussian signatures is in general still not clear and
controversial. Many scientists just believe that their findings are due to a defi-
cient subtraction of the Galactic foreground emissions, e.g. [35], [180]). Some
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others, e.g. [64], argue that foregrounds are unlikely to explain their results.

Considering the non–Gaussianity in wavelet space and related to the very big
and cold spot, several possibilities were discussed in [188] and [43], namely sys-
tematics, Galactic foregrounds, thermal Sunyaev–Zeldovich effect [173] (here-
after SZ effect), topological defects or gravitational effects [149], [119], [120].

A better knowledge of the Spot’s shape can help us to find out its origin. For
example, the Spot could be explained by considering topological defect models,
as suggested in [43]. In this context, if the Spot presents circular symmetry, it
could have been generated by a texture. Finding out the shape of the Spot, can
also inform us about a hypothetical gravitational potential that could be gener-
ating the non-Gaussian emission. A local second–order gravitational effect was
suggested in [181] as a possible origin of the Spot. These possibilities will be
discussed in future papers.

The easiest explanation assuming the widely accepted Gaussian hypothesis
would be a bad foreground subtraction of the data. Hence it should be the
first one to be tested. In [188] and [43] several tests were performed to discard
the foregrounds as a cause of the detection. The most important test is the fre-
quency dependence of the Spot, since the Galactic foregrounds have a strong
frequency dependence. The amplitude and the number of pixels of the Spot
have been shown to have a constant frequency dependence, as expected from a
cosmological origin. Nevertheless, some recent works seem to contradict these
conclusions. Recently, the non–Gaussianity results obtained with spherical wa-
velets were analysed in [115], concluding that the most possible source of the
non–Gaussian departures, are residual foregrounds. These conclusions do not
agree with the results presented in [188] and [43]. Also in [38] was suggested
that Galactic foregrounds could be behind our and other non-Gaussian features.

Other different explanations are suggested for the large scale asymmetries and
the non-Gaussian behaviour found in wavelet space. In [97] an anisotropic cos-
mological model, namely the Bianchi type VIIh is assumed. The best fit Bianchi
model introduces an additional CMB component, which presents a swirl pat-
tern. Looking at this pattern, a hot and a cold spot can be seen close to the center
of the swirl. The cold spot of the best fit model matches the Spot. Subtracting
the swirl pattern, the significance of the kurtosis deviation and other large scale
anomalies are largely reduced. Nevertheless a later work, [98], indicates the
incompatibility of the WMAP data with extended Bianchi models including a
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dark energy term. A possible incorrect dipole correction is pointed out in [69]
as a plausible explanation for some of the observed asymmetries. This hypoth-
esis is under examination but since the Spot has a much lower scale than the
dipole, we do not expect to be able to explain it in this way.

Considering the relevance of the issue and the present controversial debate, the
main part of this work is dedicated to investigate the origin of non–Gaussianity
found in wavelet space and, in particular a possible foreground contribution to
the Spot. Different techniques of foreground subtraction are taken into account.

Data and simulations are described in the previous chapter. In this chapter, the
study of the robustness of the non–Gaussian detection in wavelet space is dis-
cussed in Section 3.2; the morphology of the Spot in Section 3.3; the foreground
tests are presented in Section 3.4.

3.2 Robustness of the non–Gaussian detection in wavelet space

It is not trivial at all to determine how significant the non–Gaussian detections
are. Almost all analyses define the Spot as a highly significant deviation from
Gaussianity, but the given significance differs. Our aim in this section is to
find the probability of obtaining our observation by chance, assuming that the
Gaussian hypothesis is true. This probability is called p–value and will give us
the robustness of our findings. The p–value should not be confused with the
upper tail probability, which is the cumulated probability above the observed
value. Before entering in the discussion, let us summarise the obtained results
in previous works.

In the first work, [188] the skewness and the kurtosis of the data were compared
with those of 10000 Gaussian simulations, at 15 wavelet scales, between 13.7
and 1050 arcmin.

The deviation of the kurtosis with respect to the Gaussian hypothesis was found
to have an upper tail probability of 0.38% at wavelet scale R9 = 5◦. Considering
the Galactic hemispheres separately, the lowest upper tail probability appears
in the southern one and is 0.11% at scale R7 = 3.33◦, whereas the northern
hemisphere is compatible with Gaussianity.

Afterwards a spot analysis was performed in [43], using the same scales and
simulations as in [188]. The considered estimators were: number of spots,
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number of maxima and minima, and number of pixels above or below a given
threshold (hot or cold area). At the same scales where the kurtosis excess was
found in [188] and at high thresholds, the cold area shows up very low up-
per tail probabilities and the number of cold spots was just one. The lowest
probability, 0.18%, was obtained at scale R8 = 4.17◦. In this way the cold spot
located at (b = −57◦, l = 209◦) was discovered to be the one responsible for the
deviation from Gaussianity.

In [43] the area of the Spot was compared to the biggest spot of each simulation,
but only for scales R8 and R9. At these scales all the calculated probabilities
were lower than 0.65% (see Table 2 of [43]), being the lowest one 0.18% at scale
R9.

All these upper tail probabilities have been calculated counting how many sim-
ulations have higher or equal values of our estimator than the data at one par-
ticular scale. Since several scales and estimators were considered, these upper
tail probabilities do not tell us the p–value, i.e. probability of obtaining our ob-
servation by chance assuming that the Gaussian hypothesis is true. We have to
bear in mind that considering a large enough number of estimators and scales,
the probability of finding non–Gaussian features in any Gaussian simulation
would increase significantly.

We should therefore review our calculations. As for the area of the Spot only
two scales were considered, one could think that this would be the best esti-
mator to calculate the p–value. In all other cases we considered 15 scales and
several estimators However in the analyses after the detection of the non-zero
kurtosis, the choice of the scales was conditioned by this first finding. In [43]
only two scales were considered for the area of the Spot because there the kur-
tosis deviation was the largest. Hence we have to test the robustness with the
first detection, the deviation of the kurtosis. This deviation occurs mainly at
3 scales considering all the sky, and at 4 scales considering only the southern
hemisphere.

The p–value for the all–sky case, was calculated in [126] using a very conser-
vative approach. They search through 1000 Gaussian simulations to determine
the number of maps that have an equivalent or greater deviation than the max-
imum deviation found in the data. The obtained p–value was 4.97%.

This approach does not take into account that the deviation from Gaussianity
occurs at several consecutive scales. As already mentioned, in the all–sky case
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scales R7, R8 and R9 present a significant deviation from Gaussianity. The high-
est upper tail probability of these three scales is 0.67%.

In order to know how likely it is to find such a detection by chance, we have to
answer the following question: How many of the 10000 Gaussian simulations,
show up a higher or equal deviation in any three consecutive scales, and in any
of the two estimators, kurtosis and skewness? This number will give us the p–
value. In other words, we have to find how many simulations show skewness
or kurtosis values with upper or lower tail probabilities lower than 0.67% in
any three consecutive scales. The p–value we obtain is much lower than the
previous one and turns out to be 1.91%.

Anyway the most significant upper tail probability of the kurtosis was not ob-
tained in the all–sky case. Considering the northern and southern hemispheres
separately the deviation is highly significant at 4 scales, namely R6 = 2.5◦, R7,
R8 and R9. The highest upper tail probability of these four scales is 0.55%.
Now we search through the Gaussian simulations to find how many simula-
tions show skewness or kurtosis values with upper or lower tail probabilities
lower than 0.55% in any four consecutive scales and in any of the two hemi-
spheres. The p–value is now 0.69% proving that the kurtosis deviation from
Gaussianity is robust.

Dividing the sky into two hemispheres the significance is higher, since the de-
viation in the kurtosis is due to a localised spot. Anyway we cannot continue
dividing the sky in an unlimited number of regions, as the sample variance
increases. In our case we are still far away from this limit because each hemi-
sphere contains a large enough number of pixels.

However we should remind that calculating the exact significance of any non-
Gaussian analysis is not easy. In our present approach the calculation is more
rigorous but with an a-posteriori interpretation, i.e. given the fact that the data
deviate from Gaussianity at three consecutive scales, we calculate the probabil-
ity of obtaining a similar deviation in the simulations. The most important con-
clusion is that the Spot remains statistically robust, independently of the chosen
significance test.
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orientation ρ = 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

1 -8.14 -9.77 -11.04 -12.89 -14.55 -15.62 -16.09 -16.06

2 -5.49 -8.95 -11.07 -12.62 -13.90 -14.93 -15.65 -16.06

3 -3.60 -6.50 -8.38 -10.59 -12.56 -14.19 -15.37 -16.06

4 -2.37 -4.42 -7.28 -10.44 -12.91 -14.61 -15.62 -16.06

5 -5.67 -8.45 -11.18 -13.38 -15.00 -15.86 -16.16 -16.06

6 -3.35 -5.82 -9.46 -12.63 -14.83 -16.04 -16.33 -16.06

Table 3.1 Minimum temperature (µK) of the Spot after convolution of the WCM with

the ESMHW at scale R8 = 4.17◦.

3.3 Morphology of the Spot

As our detection was performed using the SMHW, which has axial symmetry,
the Spot is expected to be almost circularly symmetric when observed in wave-
let space. By convolving the map with the SMHW, we are in fact amplifying
all those underlying signals whose shape is similar to that of the SMHW, whe-
reas other signals are lowered. In particular the zero level is removed with the
SMHW since it is a compensated wavelet.

However the shape of the Spot could be not completely symmetric. In order
to characterise the Spot, we should construct an Elliptical Mexican Hat Wavelet
on the Sphere (ESMHW) to find out if there is any preferred direction which
amplifies even more the Spot. Information about the shape of the Spot would
help us to determine its possible origin. The ESMHW should have the same
properties as the SMHW but with an elliptic section instead of a circular one.

The Elliptical Mexican Hat Wavelet on the plane, is a generalisation of the sym-
metric 2D Mexican Hat Wavelet and therefore is proportional to the Laplacian
of an elliptical Gaussian function,

Ψ(x1, x2, a, b) ∝ ∆ exp

[

−
(

x2
1

2a2 +
x2

2
2b2

)]

(3.3.1)

∝
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a2 + b2 −
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b2

a2 x1
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b2 x2
2
)]

× exp

[

−
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x2
1

2a2 +
x2

2
2b2

)]

with two different scales a and b, 0 < b ≤ a < ∞. In order to compare with the
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SMHW, we define the scale R, and the axial ratio ρ, as follows

R ≡
√

ab (3.3.2)

ρ ≡ b
a

, (0 ≤ ρ ≤ 1). (3.3.3)

To obtain the Ellpitical Mexican Hat on the Sphere, we perform the stereo-
graphic projection [122] defined by (x) 7→ (θ, φ)

x1 = 2 tan
θ

2
cos φ (3.3.4)

x2 = 2 tan
θ

2
sin φ, (3.3.5)

where (θ, φ) are the polar coordinates on the sphere. The distance on the tangent
plane is given by y that is related to the polar angle (θ) through:

y ≡
√

x2
1 + x2

2 = 2 tan
θ

2
. (3.3.6)

The Jacobian of the transformation is

J = cos−4 θ

2
=

[

1 +
(y

2

)2
]2

. (3.3.7)

Hence we obtain

ΨS(θ, φ, a, b) =
16J√
2πN

[

a2 + b2 − k2y2
]

exp
(

−r2y2/2
)

, (3.3.8)

where k, r are defined as follows

k = ρ
√

1 −
(

1 − ρ4
)

sin2 φ (3.3.9)

r = b−1
√

1 − (1 − ρ2) cos2 φ, (3.3.10)

and N is the normalisation constant which has been chosen such that
∫

dθdφ sin θΨ2
S(θ, φ, a, b) = 1. (3.3.11)

Then we have convolved the ESMHW defined in Eq. (3.3.8) with the combined
and foreground cleaned map (WCM). We have chosen eight axial ratios ρ for
scale R8 = 4.17◦, and six equally spaced orientations of the ESMHW centered
on the Spot. In Table 3.1 we report the minimum temperature of the Spot after
the convolution with the different ESMHW.
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The value of the minimum temperature depends on how much the underlying
signal is amplified. If the spatial distribution of the signal matches the shape of
the considered wavelet, the amplification is higher. From Table 3.1 we see that
the minimum temperatures for low axial ratios are much lower than the others,
for all orientations. The minimum temperature of the Spot is reached at axial
ratios 1 or 0.875, being the differences between the six orientations small. These
results indicate that the Spot is essentially circular. Similar conclusions can be
obtained for scales R7 and R9.

3.4 Foreground contribution to the Non–Gaussian Spot

Our aim in this section is to study possible foreground contributions to the non–
Gaussian cold spot. In particular, we will focus on SZ and Galactic foregrounds.
Because of their different spectral behaviour respect to CMB, we expect to ob-
tain relevant information from a frequency analysis of the Spot.

It is important to remind that, since the convolution with a wavelet is a linear
operation, the frequency dependence of a component with no spatial variation
in its spectrum, is the same in wavelet space as in real space. Considering that
we will perform our analysis in a a small patch of the sky, we assume that there
are no significant variations in the spectral index even for synchrotron emission.

3.4.1 The Sunyaev–Zeldovich effect

The SZ effect causes a decrement in the temperature, for frequencies lower than
217 GHz. This effect occurs when CMB photons cross hot electron gas inside a
galaxy cluster, suffering inverse Compton scattering, where the electrons trans-
fer energy to the CMB photons. Hence several low frequency photons are pro-
moted to higher frequencies. For the WMAP frequencies, the SZ effect has a
negative contribution and has to be considered as a possible source for a very
cold spot as the one we are studying.

We already know that the huge size and very low temperature of the Spot are
very difficult to explain with the SZ effect [43]. In addition there are no observed
clusters in this region according to the ACO catalogue [1]. However it is worth
checking if the frequency dependence of the SZ effect is compatible with the
data, since an unobserved or dark cluster could be present in the mentioned
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region of the sky.

In Fig. 3.2 we plot the temperature at the center of the Spot (b = −57◦, l = 209◦)
at wavelet scale R8. Since the convolution with wavelets involves many pixels
in this region, only one pixel is representative for the entire spot. In the plot we
consider the values corresponding to the eight foreground cleaned, individual
assembly data: two for the Q and V bands and four for the W–band. We esti-
mate the error bars for these temperatures performing 1000 noise simulations
for each of the eight receivers, and convolving them with the SMHW at scale
R8. The standard deviation of the 1000 wavelet coefficients at the chosen pixel
plus the corresponding calibration error is the error bar for each receiver.

Fig. 3.2 does not show any evidence for a frequency dependence of the tem-
perature (the same is observed with the area of the Spot). In fact, assuming no
Galactic contamination in the Spot, we find that the CMB fit of the data, i.e.
∆TCMB = −16.09 ± 0.16µK, has a reduced chi–square of 1.00. In the figure, we
also represent the frequency spectrum for thermal SZ effect, that is in thermo-
dynamic temperature

∆TSZ(ν) =

[

hν

kB
coth

(

hν

2kBT0

)

− 4T0

]

yc, (3.4.1)

where T0 is the CMB temperature and yc the Compton parameter. It can be
clearly seen that the SZ alone does not fit the data (the reduced chi–square is
9.12). If we perform a CMB+SZ fit, the Compton parameter and hence the SZ
effect are compatible with zero. We can conclude that these results strongly
discard the SZ hypothesis, whereas the data fit very well to a constant CMB
value.

3.4.2 Relevance of Galactic foregrounds in the region of the Spot

In this section we discuss in detail the contribution of Galactic foregrounds in
the region of the Spot, both in real and in wavelet space. Some authors have
suggested that residues of Galactic foregrounds are supposed to be the most
likely source for the non–Gaussian behaviour observed in CMB maps obtained
from the WMAP data [35]; [115]; [180]. This is because their intensity distribu-
tion in the sky is strongly non–Gaussian, and there are still big uncertainties on
the Galactic emission at microwave wavelengths. Hence, our aim is to check if
this hypothesis is reliable. We focus only on the Spot region because, as pointed
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Figure 3.2 The temperature at the center of the Spot for channels Q, V and W at Scale

R8. CMB (solid line) and SZ (dashed line) are fitted to the data. The data at the same

frequency have been slightly offset in abscissa for readability.

out in [43], deviations from Gaussianity detected by all–sky statistics in wave-
let space (like kurtosis, number and area of cold spots) are mainly produced
by this region. Excluding the Spot area from those analyses makes the WMAP
data fully consistent with Gaussianity. The individual peculiarity of the Spot is
stressed in [43] for its dimension in the sky and for its very “cold” temperature.

To this purpose, we use templates of the different Galactic components in the
Spot region, extrapolated to the WMAP frequencies. For the free–free emission
we consider the Hα map of [68], with magnitudes corrected by the Galactic red-
dening E(B–V) map provided in [157]. The data are converted from Rayleigh
to antenna temperature using Eq. 11 of [54], assuming an electron temperature
of 7000K. As synchrotron template we use the Rhodes/HartRAO 2326–MHz
radio survey [99]. At this frequency the contribution of free–free is expected
to be low but not negligible and it is subtracted using the Hα map appropri-
ately scaled. Then, the Rhodes survey is extrapolated to higher frequencies by
a power law with spectral index −3. This value is in agreement with the av-
erage synchrotron spectral index observed in WMAP maps [18], [20]. It is also
the average spectral index found between 0.408 and 2.326 GHz in the Spot re-
gion. Respect to the Haslam map, used by WMAP team, the Rhodes survey

51



CHAPTER 3: SIGNIFICANCE, MORPHOLOGY AND FOREGROUND CONTRIBUTION

has the advantage of a higher resolution and frequency, providing a more reli-
able template for synchrotron at cosmological frequencies. Finally we consider
the full–sky map of thermal dust at 100µK generated in [157], extrapolated to
microwaves by the best two–component dust model (model 8) found in [67],
hereafter referred as FDS model.

In the last years some works seem to support the existence of spinning dust
emission at frequencies around 10–20 GHz [49], [192]. However this emission
could provide a significant contribution to the WMAP data only for the K and
Ka bands, whereas it quickly decreases at higher frequencies, becoming negli-
gible for the V and W bands [58]. Therefore, we neglect this emission because,
even if a contribution of spinning dust was present in the Spot region at K and
Ka bands, it would not affect the following analysis.

At the moment, the non–Gaussianity tests have been performed on the com-
bined and foreground cleaned Q–V–W map (WCM). In this map the Galactic
signal is removed by fitting simultaneously a set of external foreground tem-
plates to the residual Q–V–W maps [18]. However, in the literature, other
techniques have been employed to subtract Galactic foregrounds from WMAP
maps and to produce clean CMB maps. Therefore, using different and indepen-
dent maps can give us a further test to verify that the non–Gaussian deviations
observed in [188] and [43] are not dependent on the foreground–subtraction
technique. For example, in [18] a clean map was produced by a weighted in-
ternal linear combination (ILC) of the five frequency WMAP maps. In this way,
the resulting CMB map does not rely on external foreground templates, but
assumes that there are no spatial variations in the frequency spectrum of each
component and introduces complex noise properties. Following the same idea,
in [178] a CMB map is provided by an internal linear combination with weights
depending on frequency, latitude and angular scales. They found a good agree-
ment with the ILC map at large angular scales and no excess of power at ` < 100
due to foregrounds. However also the TCM map presents complex noise prop-
erties [62]. [178] derived also a Wiener filtered map. This map was built for
visualization purposes, as a best guess of how CMB looks like, and is not an
unbiased map.

Finally, a description of how to build MEM foreground estimates is given in
[18], even if they suggest not to apply the MEM solutions directly to CMB ana-
lyses because of their complicated noise and signal correlations. We obtain a
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MEM cleaned map, adding the eight not cleaned individual assembly maps,
for channels Q, V and W, and subtracting the MEM foreground estimates for all
these channels.

The WCM and ILC maps are not completely independent, as the latter has been
used in the foreground subtraction of the WCM map. Therefore, we shall focus
on WCM and TCM maps, i.e. the two independent and most reliable CMB
maps (leaving the ILC, Wiener and MEM solutions only as complementary test
in wavelet space, where the signal to noise ratio is higher).

The Spot in real space

Although the non–Gaussian deviations described in [188] and [43] are only ob-
served in wavelet space, our starting point is to study foreground behaviours
of the Spot region in real space. In [43] most important features found in real
space were four prominent cold spots with an amplitude higher than 2 times
the dispersion of the map. Their size, amplitude and position can be found in
Table 4 of [43]. Several tests have been performed in order to find non–Gaussian
features of the Spot, considering the total cold area in the region and the four re-
solved spots. However, all the tests give results compatible with Gaussianity.
Neither the total area in the region nor the four resolved spots are particularly
cold or big, compared to the simulations.

Fig. 3.3 shows a 22◦ × 22◦ area of the WCM centered at the Spot, as well as the
foreground templates scaled to the Q band. In the foreground templates we do
not observe any significant correlation with the WCM. What can be noticed is
that all three foreground emissions are low in the region of the Spot. This means
that after the convolution with the SMHW the foreground contribution will be
negative in this region.

In Fig. 3.4 we plot the expected mean and rms contribution of Galactic fore-
grounds at the five WMAP frequencies in the Spot region (extrapolating the tem-
plates as described above), compared to the WCM and TCM CMB estimates.
The values in Fig. 3.4 are in antenna temperature and the region of the Spot is
defined by a circle of 10◦ radius. If we focus on the total intensity (left plot),
the synchrotron emission (dot–dashed lines) is clearly the dominant Galactic
component at K and Ka bands, and it is still higher than the free–free emission
(dashed lines) in the Q band. On the contrary, when the rms amplitude of the
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Figure 3.3 Image showing an azimuthal projection of a 22◦ × 22◦ patch from HEALPix

maps with resolution nside = 256, in the region of the Spot. From top to bottom and

left to right, we have: the WCM map where the Spot can be seen; the H-alpha map;

the Rhodes/HartRAO 2326–MHz radio survey; and the FDS dust template. The three

foreground templates are scaled to channel Q, where the foreground contribution is

higher than in the V and W bands. The maps are in µK units and the labels on the

axes are in pixels of size 13.3 × 13.3 arcmin and the y–axis is oriented in the Galactic

North-South direction.

54



CHAPTER 3: SIGNIFICANCE, MORPHOLOGY AND FOREGROUND CONTRIBUTION

20 50 100
2

10

100

ν (GHz)

|<
T

A
>

| 
(µ

 K
)

20 50 100
2

10

100

ν (GHz)

rm
s(

T
A
 ,

µ 
K

)

Figure 3.4 Average temperature (left plot) and rms (right plot) in the Spot region, as

function of frequency. Foregrounds: synchrotron (dot–dashed line), free–free (long–

dashed line), dust (small dots), total Galactic signal (solid dark line). CMB (solid light

lines). Residual maps: WCM (crosses), TCM (triangles). Noise (big dots).

signal is taken into account, the free–free emission becomes dominant respect
to the synchrotron at all the WMAP frequencies. This means that in the Spot re-
gion, synchrotron emission is brighter than free–free but much more uniformly
distributed. Since in wavelet space uniform components are erased, we expect
the free–free radiation to be the dominant foreground in wavelet space. Any-
way, compared to the total rms signal in WMAP maps, the Galactic foreground
contribution seems to be relevant only at K and Ka bands, whereas at higher
frequencies its rms amplitude is always lower than the WMAP rms noise and
at least one order of magnitude lower than CMB. The contribution of dust emis-
sion, according to the FDS model, is very small, also at 94 GHz where it is the
most relevant Galactic foreground.

In order to compare with the CMB maps, we subtract the WCM and the TCM
from the not–cleaned WMAP data at each channel: the resulting maps should
include only foregrounds plus noise. The two residual maps provide nearly the
same average and rms value at all the frequencies, in a very good agreement
with our foregrounds (or foregrounds+noise) estimate. This is particularly evi-
dent at the low bands K and Ka, where Galactic foregrounds are more relevant.
This is not surprising for the WCM case, because it is based on the same tem-
plates for the dust and free–free emission as our estimation (although the syn-
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Figure 3.5 As in Fig. 3.4 but for the temperature at the center of the Spot in wavelet

space.

chrotron template is different). On the other hand, the agreement with the TCM
map confirms that the extrapolation of foreground templates is quite reliable.
Therefore, WCM and TCM methods seem to provide a good estimate of CMB
in the Spot region in spite of their completely different technique to subtract
foregrounds.

The Spot in wavelet space

We know that wavelets are able to amplify hidden non–Gaussian features, low-
ering the noise and removing constants. What can be deduced from the results
in [188] and [43] is that there is a spatial temperature variation in this region
which matches surprisingly well the shape of the SMHW, increasing its relative
signal respect to foregrounds and noise in wavelet space.

The contribution of foregrounds, already very low in the real space, is still re-
duced in wavelet space: it can be appreciated in Fig. 3.5, where we plot the
antenna temperature at the center of the Spot at scale R8.

Note that we plot absolute values because the CMB and foregrounds tempera-
tures are negative at the center of the Spot. In wavelet space the foregrounds can
show negative temperatures since the convolution with compensated wavelets
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removes the zero level. This means that also the foreground emissions at the
center of this region are lower than their average emission in the region (see
Fig. 3.3). Comparing the mean temperature in real space with the temperature
at the center of the Spot in wavelet space, we find that, while the CMB value is
reduced by a factor ∼ 5, the foreground signal is now a factor between 7 and 12
lower. This is a confirmation of goodness of an analysis in wavelet space. Also
the noise is strongly reduced and is always lower than the expected foreground
signal, which is clearly dominated by free–free emission. Finally, as in previous
figures, we show the residual temperature after subtraction of different CMB
maps from WMAP data. They are in a good agreement with our foregrounds
estimation.

The region of the Spot in the WCM is shown in Fig. 3.6 as it appears in wavelet
space at scale R8. Moreover, we report also the images of foreground templates,
scaled to the Q band. The distribution of foregrounds temperature in wavelet
space does not show any correlation with the Spot in CMB maps, although the
center of this region corresponds always to a negative value. The only fore-
ground whose spatial distribution resembles in some way the CMB spot is the
synchrotron emission. However it is very unlikely that a residue of a signal
which is two orders of magnitude lower than the total signal could be respon-
sible for the observed deviation from Gaussianity.

Can Galactic residues explain the non–Gaussian Spot in wavelet space?

Even if it seems unlikely from the previous sections, we investigate now the
possibility that a foreground residue in CMB maps could explain the non–
Gaussian signal found in wavelet space [188] and [43]. These papers performed
several tests in order to investigate if foregrounds can affect the results, but no
evidence of it has been found out. On the contrary, different arguments seem
to discard foregrounds as sources of the non–Gaussian signal in WMAP CMB
data: 1) the most significant one is probably the lack of frequency dependence
both in the kurtosis and in properties of the Spot; 2) the Spot is located in a
region with very low foreground emission, and their relative contribution is
reduced when we go from real space (where no deviations from Gaussianity
are found) to wavelet space; 3) similar results are found using totally indepen-
dent techniques to subtract foregrounds (e.g., WCM and TCM maps; see next
paragraphs). Let us see now more details for the different involved estimators.
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Figure 3.6 In this figure we show a 22◦ × 22◦ square centered at the minimum of the

Spot, for different maps at scale R8 = 4.17◦. The same maps as in Fig.3.3 are shown,

again scaled to channel Q, in the same units. Only the weak synchrotron emission

shows some correlation with the Spot, but its amplitude is two orders of magnitude

lower than the Spot. Therefore we do not expect it to be responsible for the observed

deviation from Gaussianity. Note that in all figures we see three small spots which

correspond to masked point sources.
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Figure 3.7 Comparison between kurtosis found in WCM and TCM clean maps (left

plot). In the right plot we compare the kurtosis values of the Q, V and W bands with

the WCM. The acceptance intervals for the 32% (inner), 5% (middle) and 1% (outer)

significance levels, given by the 10000 simulations are also plotted. Note that the figure

on the right is similar to Fig. 7 in [188], but the Q map values have been corrected since

they were slightly different due to an error in the construction of the Q map.

Kurtosis: this statistic has been deeply investigated in [188]. Here we want
only to stress some points. Contrary to what is expected if foregrounds con-
tamination is relevant, the distribution of kurtosis as function of wavelet scales
has the same pattern and amplitude in the WCM as well as in each single band
Q, V and W (see Fig.3.7, right plot). Moreover, a similar shape for the kurto-
sis distribution has been obtained from the TCM map (see Fig. 3.7, left plot).
The only relevant difference is noticed at the peak of the distribution, where the
amplitude of the kurtosis is higher, meaning an even more significant deviation
from Gaussianity.

Temperature at the center of the Spot: in wavelet space at scale R8, the Spot
presents an extremely negative temperature in its minimum. Considering the
WCM, the minimum has a temperature of ∼ −16.1µK, nearly 4.6 times the dis-
persion of that map. Considering 10000 Gaussian CMB simulations, the prob-
ability of finding a minimum of such amplitude or less at scale R8, is 0.75%.
No particular frequency dependence has been observed. In Table 3.2 the tem-
perature at the center of the Spot is also reported for the combined not–cleaned
WMAP map, (hereafter WNCM), and for maps cleaned by different techniques.
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Map T(µK) σ(µK) nσ = T/σ upper tail

probability

1% limit -4.52 1.00%

WNCM -16.39 3.55 -4.62 0.61%

WCM -16.12 3.52 -4.58 0.75%

TCM -15.84 3.47 -4.56 0.82%

ILC -16.30 3.54 -4.61 0.63%

WFM -13.87 3.01 -4.61 0.61%

MEM map -16.48 3.53 -4.67 0.44%

Local subtraction -15.63 3.52 -4.44 1.32%

Table 3.2 Temperature at the center of the Spot for different maps at scale R8. The values

are expressed in thermodynamic temperature and in terms of the dispersion of the

corresponding map. The last column gives the probability of having a lower or equal

minimum temperature under the Gaussian hypothesis. The “1% limit” is given by the

simulation whose minimum temperature has 1% upper tail probability compared to

the 10000 Gaussian simulations.

The WNCM is obtained by combining the not cleaned data in the same way as
the WCM. We estimate the significance of the deviation from Gaussianity and
we find that it is always below the 1% upper tail probability, independently of
the technique used to subtract Galactic foregrounds.

Nevertheless, the difference in temperatures between the observed tempera-
ture and the one giving an upper tail probability of 1% are ≈ 0.2µK for TCM
and WCM maps, lower or of the same order than noise and foregrounds con-
tribution (see Fig. 3.5). We can conclude that this test gives a less robust non–
Gaussian detection compared to kurtosis and area tests. For example, subtract-
ing our Galactic signal estimate in the Spot region, from the WNCM, we see that
the upper tail probability is slightly above 1%. As in this case we do not know
the σ of the cleaned map, since our estimation is local, we use the σ of the WCM
map (see the last row of Table 3.2).

Area of the Spot: a stronger deviation from Gaussianity is observed from the
dimension of the Spot area. Considering only pixels with lower temperatures
than 3 times the dispersion of the map, the Spot covers a region of the sky of
diameter ≈ 8◦ at wavelet scale R8. Based on the WCM map, the analysis in
[43] showed that the probability of having a spot as big as this one in Gaussian
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Figure 3.8 Frequency dependence of the area of the Spot, at thresholds 3.0 (asterisks), 3.5

(diamonds) and 4.0 (circles), at scale R8. The horizontal lines represent the combined

map values. The area is almost frequency independent. Note that this figure is similar

to Fig. 11 in [43], but the Q map values have been corrected since they were slightly

lower due to an error in the construction of the Q map.

simulations is always smaller than 0.65% for thresholds between 3 and 4.5σ.
Moreover, the area of the Spot has a similar dimension at all the WMAP fre-
quencies. This can be observed in Fig. 3.8. We report in Table 3.3 the dimension
in pixels of the Spot area in the different clean maps with the corresponding
upper tail probability: for all the considered maps, this probability is around
0.2–0.4%. Contrary to the minimum temperature estimator, if we subtract our
local foreground estimate from the not cleaned maps, the upper tail probability
of the detection still remains widely below 1%. Even if two times the estimate
is subtracted, the upper tail probability is still around 1%. However the strong
frequency dependence of this map in Q–V–W bands is incompatible with the
observations (see Table 3.4). If we try to explain the Spot as a combination of
CMB plus bad subtracted foregrounds, the frequency dependence must be flat
once the contaminating foregrounds are subtracted.

Finally, we discuss the possibility of having a residual foreground contamina-
tion in the clean WMAP maps that is constant at the Q, V and W bands. Be-
cause of their opposite spectral behaviour, we can find a linear combination
of free–free and dust emission with a small variation between 40 and 94 GHz.
We consider the possibility that the foreground amplitude estimated from the
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Map σ(µK) Npixels(T > 3 σ) upper tail

probability

1% limit 831 1.00%

WNCM 3.55 990 0.32%

WCM 3.52 975 0.34%

TCM 3.48 970 0.36%

ILC 3.54 1023 0.22%

WFM 3.01 984 0.33%

MEM 3.53 1011 0.26%

Local subtr. 3.519 924 0.45%

Table 3.3 Area and significance of the Spot for different maps at scale R8. The areas

are the number of pixels colder than three times the standard deviation of the corre-

sponding map. The first row of the table stands for the simulation whose biggest spot

presents a 1% upper tail probability compared to the biggest spot of each of the 10000

simulations.

templates is significantly underestimated. Assuming free–free to be underesti-
mated by a 20% and dust by a 120%, we obtain a nearly constant residue. In this
case, the total residue would be 0.19, 0.14 and 0.20µK at 41, 61 and 94 GHz re-
spectively. These values are not incompatible with possible errors in templates
and in their extrapolation to microwave frequencies [54]; [67]. Now, our local
foregrounds estimate plus the constant residue is subtracted from the unclean
spot region. Results are reported in Table 3.4. Even subtracting two times the
flat residue, we do not obtain any relevant reduction in the significance of the
non–Gaussian detection(see last two rows in Table 3.4).
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Map/Band Q V W

Local subtraction 909 947 949

2×Local subtraction 763 886 909

Local + flat residue subtr. 878 926 923

Local +2×flat residue subtr. 860 915 903

Table 3.4 Area of the Spot (in pixels) after local subtraction of foregrounds. The only

time where the significance of the area can be reduced below the 1% limit (831 pixels)

occurs subtracting two times the local foreground estimation at the Q band. However

the remaining spot shows a clear frequency dependence which can not correspond to

a clean CMB spot. The other three cases show an almost flat cleaned spot, but its size

is higher than the 1% limit given by the Gaussian simulations.
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CHAPTER 4

The non-Gaussian Cold Spot in the
3-year WMAP data

The non-Gaussian cold spot detected in wavelet space in the WMAP 1–year
data, is detected again in the coadded WMAP 3–year data at the same position
(b = −57◦, l = 209◦) and size in the sky (≈ 10◦). The present analysis is based
on several statistical methods: kurtosis, maximum absolute temperature, num-
ber of pixels below a given threshold, volume and Higher Criticism. All these
methods detect deviations from Gaussianity in the 3–year data set at a slightly
higher confidence level than in the WMAP 1–year data. These small differences
are mainly due to the new foreground reduction technique and not to the re-
duction of the noise level, which is negligible at the scale of the spot. In order
to avoid a posteriori analyses, we recalculate for the WMAP 3–year data the sig-
nificance of the deviation in the kurtosis. The skewness and kurtosis tests were
the first tests performed with wavelets for the WMAP data. We obtain that the
probability of finding an at least as high deviation in Gaussian simulations is
1.85%. The frequency dependence of the spot is shown to be extremely flat.
Galactic foreground emissions are not likely to be responsible for the detected
deviation from Gaussianity.

4.1 Introduction

The recently released 3–year WMAP data with higher signal to noise ratio is
key to confirm or disprove the anomalies found in the 1-year WMAP data.

In the 3–year papers, the WMAP team [90] re-evaluates potential sources of
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systematic errors and concludes that the 3–year maps are consistent with the
1–year maps. The exhaustive polarization analysis enhances the confidence on
the accuracy of the temperature maps. The ΛCDM model continues to provide
the best fit to the data.

A Gaussianity analysis of the 3–year data is performed in [171]. No depar-
ture from Gaussianity is detected based on the one point distribution function,
Minkowski functionals, the bispectrum and the trispectrum of the maps. The
authors do not re-evaluate the other statistics showing asymmetries or non–
Gaussian signatures in the 1–year data.

The aim of this chapter is to check the results of the previous chapters and [188],
[43], [32], [44]. All these analyses were based on wavelet space. In particular the
data were convolved with the Spherical Mexican Hat Wavelet (SMHW). Convo-
lution of a CMB map with the SMHW at a particular wavelet scale increases the
signal to noise ratio at that scale. Moreover, the spatial location of the different
features of a map is preserved.

An excess of kurtosis was detected in the 1–year WMAP data [188] compared
to 10000 Gaussian simulations. This excess occurred at wavelet scales around
5◦ (angular size in the sky of ≈ 10◦). The excess was found to be localized in
the southern Galactic hemisphere. A very cold spot, called the Spot, at galactic
coordinates (b = −57◦, l = 209◦), was pointed out as the possible source of this
deviation.

In chapter 2 we showed that indeed the Spot was responsible for the detection.
The number of cold pixels below several thresholds (cold Area) of the Spot was
unusually high compared to the spots appearing in the simulations. Compat-
ibility with Gaussianity was found when masking this spot in the data. The
minimum temperature of the Spot was as well highly significant.

In chapter 3 we confirmed the robustness of the detection and analysed the
morphology and the foreground contribution to the Spot. The Spot appeared
statistically robust in all the performed tests, being the probability of finding a
similar or bigger spot in the Gaussian simulations less than 1%. The shape of the
Spot was shown to be roughly circular, using Elliptical Mexican Hat Wavelets
on the sphere. Moreover the foreground contribution in the region of the Spot
was found to be very low. The Spot remained highly significant independently
of the used foreground reduction technique. In addition the frequency depen-
dence of the Spot was shown to be extremely flat. Even considering large errors
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in the foreground estimation it was not possible to explain the non-Gaussian
properties of the Spot.

Higher Criticism statistics (hereafter HC) were applied to the 1–year maps [32]
after convolving them with the SMHW. This method provided a direct detec-
tion of the Spot. The HC values appeared to be higher than 99% of the Gaussian
simulations.

Note that although the Spot has not been detected in real space, this structure
exists but is hidden by structures at different scales. The convolution with the
SMHW at the appropriate scale, amplifies the Spot, making it more prominent.

Several attempts have been made in order to explain the non-Gaussian nature
of this cold spot. According to [181] local second–order gravitational effects
could produce the Spot. In [95] the possibility of explaining the Spot and other
large scale anomalies by local compensated voids was considered. In [97] and
[33] an anisotropic Bianchi VIIh model was assumed, showing that it could
explain the excess of kurtosis and the HC detection as well as several large
scale anomalies. On the other hand, A further work [129] still detects non-
Gaussianity in the Bianchi corrected maps. The analysis in [98] proved the in-
compatibility of the extended Bianchi models including the dark energy term
with the 1–year data. A finite cosmology model which would explain the Spot
and the low multipoles in the angular power spectrum has been developed in
[2]. Up to date there are no further evidences of the validity of any of the above
suggested explanations.

Our paper is organized as follows. We discuss the changes in the new WMAP
data release and the simulations in Section 4.2. The analysis using all the men-
tioned estimators is described in Section 4.3. In Section 4.4, the significance of
our findings is discussed. We analyse the frequency dependence of the Spot in
Section 4.5, and our discussion is presented in Section 4.6.

4.2 WMAP 3–year data and simulations

Most of the 1–year Gaussianity analyses were performed using the WMAP
combined, foreground cleaned Q–V–W map (hereafter WCM) described in the
introduction of this thesis. CMB is the dominant signal at these bands and
noise properties are well defined for this map. The de-biased Internal Linear
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Figure 4.1 Image showing an azimuthal projection of a 22◦ × 22◦ patch from the WCM

HEALPix map with resolution nside = 256, centered on the Spot and in µK. In the first

row we have the 1–year and 3–year images of the Spot in real space, whereas in the

second row the Spot is shown at wavelet scale R9. The image is divided in 1024 × 1024

pixels and the y-axis is oriented in the Galactic north-south direction.

Combination map, (DILC) proposed by the WMAP team, estimates the CMB
on the whole sky. However its noise properties are complicated and regions
close to the Galactic plane will be highly contaminated by foregrounds. Fur-
thermore, evidences for the foreground contamination of the DILC are found
in [36]. Therefore we will still use the more reliable WCM in the 3–year data
analysis. Some changes of the 3–year temperature analysis with respect to the
1–year one are described in [90]. Coadding the three years of observations re-
duces the instrumental noise. The 3–year maps have ≈ 3 times lower variance.
Refinements in gain calibration and beam response models have been imple-
mented and a new foreground reduction technique has been used. The latter
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seems to provide a better correction than the one applied to the first year data.
As discussed in [44] the Galactic foreground estimation is a very important is-
sue in Gaussianity analyses. The exclusion masks defined in [18] have not been
modified, except for the inclusion of 81 new point sources in the kp0 mask. This
mask excludes the highly contaminated pixels close to the Galactic plane.

Despite these changes the 3–year maps have been found to be consistent with
the 1–year maps by the WMAP team.

A very careful analysis was perfomed [188], [43] in order to study the power
spectrum and noise dependence of the kurtosis and cold Area estimators. Con-
sidering different power spectra within the 1σ error band of the 1–year data,
the differences in the significance of the kurtosis were found to be negligible
(see Figure 11 in [188]). The Area of a particular spot was neither affected by
the power spectrum (see section 5.3 in [43]). The results were almost noise in-
dependent. The convolution with the SMHW reduces considerably the noise
contribution. Even if similar results are expected, we perform 10000 Gaussian
simulations of the 3–year coadded data following the same steps as for the 1–
year simulations. The only differences between the 3–year and the 1–year sim-
ulations are a lower noise contribution and a very slight variation in the power
spectrum used to generate the simulations. For a detailed description of the
simulation pipeline, see section 2 of [188].

4.3 Analysis

Our aim in this section is to repeat the same tests performed in [188], [43], [32]
and [44] but with the 3–year data. Then we will compare the new results to
the old ones. One can see the region of the Spot in real and wavelet space at
scale 5◦ for both releases of the WMAP data in Figure 4.1. In real space the 3–
year data image appears clearly less noisy, whereas the wavelet space images
present only very small differences.

In [188], data and simulations were convolved with the SMHW at 15 scales,
namely (R1 = 13.7, R2 = 25, R3 = 50, R4 = 75, R5 = 100, R6 = 150, R7 = 200,
R8 = 250, R9 = 300, R10 = 400, R11 = 500, R12 = 600, R13 = 750, R14 = 900
and R15 = 1050 arcmin). We will use the same 15 scales in our present analysis,
considering those estimators where non-Gaussianity was found in the 1–year
data, namely kurtosis, Area, Max, HC and a new one, the volume. The defi-
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nitions of each estimator will be given in the following subsections. Analyses
were also performed in real space, which will be referred as wavelet scale zero.
In real space, the data are found to be compatible with Gaussian predictions

In the following subsections we will give the upper tail probabilities of the data
at one particular scale. The upper tail probability is the probability that the
relevant statistic takes a value at least as large as the one observed, when the
null hypothesis is true.

In section 4.4 we will give a more rigorous measure of the significance, consid-
ering the total number of performed tests to calculate the p-value of the Spot.
The p-value is the probability that the relevant statistic takes a value at least as
extreme as the one observed, when the null hypothesis is true. In our case, the
null hypothesis is the Gaussianity of the temperature fluctuations.

4.3.1 Kurtosis

Given a random variable X, the kurtosis κ is defined as κ(X) =
E[X4]

(E[X2])2 − 3. In
[188] the kurtosis of the wavelet coefficients was compared to the acceptance
intervals given by the simulations. In Figure 4.2 the kurtosis of the 1–year data
are represented by asterisks and the 3–year data by circles. Hereafter we will
use these symbols to represent 1–year and 3–year data. Both are plotted ver-
sus the 15 wavelet scales. Scale 0 corresponds to real space. The acceptance
intervals given by the simulations will be plotted in the same way in all figures:
the 32% interval corresponds to the inner band, the 5% interval to the middle
band and the 1% acceptance interval, to the outer one. As expected, the accep-
tance intervals remain almost unchanged with respect to those obtained from
1–year simulations. This will happen as well for all the other estimators. The
3–year kurtosis values follow the same pattern as the 1–year ones, confirming
the initial results. However there are slight differences at the scales where the
deviation is detected, being the kurtosis even higher in the 3–year data. The
most significant deviation from the Gaussian values, occurs at scale R9 = 5◦.
In Table 4.1 we list the kurtosis values at scale R9, considering the 1–year data
as published in 2003, the 1–year data release applying the changes in the data
analysis described in [90], and the coadded 3–year data. The biggest difference
is found between both releases of the 1–year data. The kurtosis value of the
1–year data increases ≈ 7%. This may be due to the new foreground reduction
technique. As expected the noise reduction due to coadding the three years
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Data kurtosis probability

1–year data (2003) 0.836 0.38%

1–year data (2006) 0.895 0.28%

3–year data 0.915 0.23%

Table 4.1 Middle column: kurtosis values at scale R9 for different maps. Right column:

probability of obtaining a higher or equal kurtosis value in Gaussian simulations.
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Figure 4.2 WCM kurtosis values for the 1–year (asterisks) and the 3–year data (circles).

The acceptance intervals for the 32% (inner), 5% (middle) and 1% (outer) significance

levels, given by the 10000 simulations are also plotted.

of observations, implies a much lower increase in the kurtosis, since the noise
contribution in wavelet space is very small. The upper tail probabilities (i.e. the
probabilities of obtaining higher or equal values assuming the Gaussian hy-
pothesis) are given in the right column of Table 4.1. Hereafter we will compare
the first release of the 1–year data with the 3–year data.

Analysing both Galactic hemispheres separately, we obtain the results presented
in Figure 4.3. Again the kurtosis follows the same pattern as in the 1–year
results. As expected, the deviation appears only in the southern hemisphere
and it is slightly higher in the 3–year data. The upper tail probability obtained
in [188] was 0.11% at scale R7 in the southern hemisphere, whereas now we
have 0.08% again at scale R7. The deviation from Gaussianity is localised in the
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Figure 4.3 As in Figure 4.2 but for the northern (left plot) and southern (right plot)

Galactic hemispheres.

southern hemisphere because the Spot is responsible for it (see [43]).

4.3.2 Maximum statistic

Given n individual observations Xi, Max is defined as the largest (absolute)
observation :

Maxn = max{|X1|, |X2|, . . . , |Xn|}.

The very cold minimum temperature of the Spot, was shown to deviate from the
Gaussian behaviour in [188]. In this work and in [43], [44] the minimum tem-
perature estimator was used to characterise the Spot whereas in [32] the chosen
estimator was Max. As Max is a classical and more conservative estimator, we
will use it in the present paper instead of the minimum temperature. Our n
observations correspond to values in real or wavelet space (normalized to zero
mean and dispersion one). The Spot appears to be the maximum absolute ob-
servation of the data at scales between 200 and 400 arcmin. In Figure 4.4, the
1–year and 3–year WMAP data values of Max are compared to those obtained
from the simulations. As for the kurtosis, both data releases show very similar
results. The data lie outside the 1% acceptance interval at scales R9 and R10. The
3–year data show slightly higher values than the 1–year data at these scales. In
particular, the upper tail probability for the 1–year data was 0.56%, whereas for
the 3–year data we obtain 0.38% at scale R9.
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Figure 4.4 Maximum absolute observation versus the 15 wavelet scales. Again the

circles represent the 3–year data and the asterisks the 1–year data. The bands represent

the acceptance intervals as in previous figures.

4.3.3 Area

We define the hot Area as the number of pixels above a given threshold ν and
the cold Area as the number of pixels below a given threshold −ν. The thresh-
old is given in units of the dispersion of the considered map.

In [43] the total cold Area of the 1–year data was found to deviate from the
Gaussian behaviour at scales R8 and R9 and thresholds above 3.0 (see Figures 1
and 2 in [43]).

The large cold Area of the Spot was found to be responsible for this deviation
[43]. Such a big spot was very unlikely to be found under the Gaussian model
at several thresholds (see Table 2 of [43]).

In the present paper we will define the Area as the maximum between hot and
cold Area at a given threshold and scale. As for the Max estimator, we obtain
in this way a more conservative estimator since the Spot will be compared to the
biggest spot in each simulation no matter if it is a cold or a hot spot.

However the Area still deviates from the Gaussian behaviour as can be seen
in Figure 4.5. The most significant deviation is again found at scale R9 and
thresholds above 3.0.
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ure 4.2
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Figure 4.6 Histogram of all biggest spots of the simulations at threshold 3.0 and scale

R9. The dashed vertical line represents the Spot in the 1–year data and the solid one

represents the Spot in the 3–year data.

Figure 4.6 shows the histogram of the biggest spot of each simulation compared
to the 1–year and 3–year Area of the Spot at scale R9 and threshold 4.0. The
Spot is more prominent in the 3–year data and only very few simulations show
bigger spots. The upper tail probabilities obtained at scale R9 for 1–year and 3–
year data are presented in table 4.2. As in the previous estimators, the 3–year
data are in general slightly more significant. The new and more conservative
definition of the Area estimator reduces the upper tail probability of the Spot
although it is still widely below 1%.

threshold probability 1–year data probability 3–year data

3.0 0.68% 0.63%

3.5 0.36% 0.37%

4.0 0.34% 0.27%

4.5 0.44% 0.35%

Table 4.2 Upper tail probabilities of having a spot with higher or equal Area as the Spot

assuming the Gaussian model, at scale R9 and different thresholds.
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threshold probability 1–year data probability 3–year data

3.0 0.51% 0.45%

3.5 0.33% 0.38%

4.0 0.32% 0.27%

4.5 0.44% 0.35%

Table 4.3 As Table 4.2, but for the Volume.

4.3.4 Volume

From the previous subsections we know that the Spot is extremely cold and it
has a large Area at thresholds above 3.0. The best estimator to characterise the
Spot would be therefore the volume. Hence we define the volume referred to a
particular threshold as the sum of the temperatures of the pixels conforming a
spot at this threshold. In Table 4.3 we compare the probability of finding a spot
with higher or equal Volume as the data, assuming the Gaussian hypothesis.
The values are very similar to those obtained for the Area estimator. Values for
the Volume are slightly more significant and they show less variations with the
threshold.

4.3.5 Higher Criticism

The HC statistic proposed in [57] was designed to detect deviations from Gaus-
sianity that are caused by either a few extreme observations or a small pro-
portion of moderately extreme observations. Moreover, the statistic provides
a direct method to locate these extreme observations by means of HC values
calculated at every individual data point.

For a set of n individual observations Xi from a certain distribution (Xi nor-
malized to zero mean and dispersion one), HC is defined as follows. The Xi

observed values are first converted into p-values: p(i) = P{|N(0, 1)| > |Xi|}.
After sorting the p-values in ascending order p(1) < p(2) < . . . < p(n), we de-
fine the HC at each pixel with p-value pi, by:

HCn,i =
√

n
∣

∣

∣

∣

i/n − p(i)
√

p(i)(1 − p(i))

∣

∣

∣

∣

,

We compute the values of the HC statistic of the 3–year WCM in real and in
wavelet space. The obtained values of the HC statistic are presented in Fig-
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Figure 4.7 Higher Criticism values of the 1–year WCM (asterisks) and the 3–year WCM

(circles). The acceptance intervals are plotted as in previous figures.

ure 4.7. These values correspond to the maximum of the HC values found at
the individual pixels. As in previous figures, circles denote the results obtained
from the 3–year WCM, asterisks those from the 1–year WCM and the bands
represent the acceptance intervals. As one can see in the Figure, the data in wa-
velet space are not compatible with Gaussian predictions at scales R8 and R9 at
the 99% c.l. This is in agreement with the result obtained in [32] for the 1–year
WMAP data although there the HC values at scale R8 were just below the 99%
c.l. The upper tail probabilities for the 1–year and 3–year maximum HC values
at scale R9, are 0.56% and 0.36% respectively. The map of HC values at scale R9

is presented in Figure 4.8. It is clear that the pixels responsible for the detected
deviation from Gaussianity are located at the position of the Spot. Convolution
with the wavelet causes the observed ring structure in the HC map. Figure 4.9
shows a blowout image of the Spot as it appears at scale R9 in the wavelet map
and in the HC map.

4.4 Significance

In the previous section, the upper tail probabilities of each estimator at scale R9

were given. All the considered estimators showed the lowest upper tail proba-
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Figure 4.8 Higher Criticism of the 3–year WCM at scale R9.
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Figure 4.9 Image projected as in Figure 4.1, showing the 3–year WCM map (upper

panel) and the Higher Criticism map (lower panel), both at scale R9.

78



CHAPTER 4: THE NON-GAUSSIAN COLD SPOT IN THE 3-YEAR WMAP DATA

bility at scale R9. However these are not rigorous measures of the significance
of the Spot, since the number of performed tests is not taken into account. In this
section we will recalculate the p-value of the deviation in the kurtosis found in
[188] and discuss the issue of a posteriori significances.

When an anomaly is detected in a data set following a blind approach, usu-
ally several additional tests are performed afterwards to further characterize
the anomaly. In most of these cases, the only reason these tests have been per-
formed is the previous finding of the initial anomaly. If another anomaly would
have been detected, other followup tests would have been performed. Hence
these followup tests have not been performed blindly and should not be taken
into account to calculate the significance of the initial detection.

This issue was already discussed in [44] and [126]. Both papers recalculated the
significance of the excess of kurtosis in the 1–year WCM found in [188]. The
excess of kurtosis was found performing a blind test, since no model was used
and no previous findings conditioned the choice of the scales. Since 15 wave-
let scales and two estimators (skewness and kurtosis) were considered, a total
sum of 30 tests were performed. Three of these tests detected a strong devia-
tion from Gaussianity. Scales R7, R8 and R9 presented upper tail probabilities
0.67%, 0.40% and 0.38% in the 1–year data. This fact was taken into account
in [44], but it was not in [126]. The latter searched through the simulations in
order to find how many of them showed a higher or equal deviation than the
maximum deviation of the data, ignoring that the data showed a high deviation
at two adjacent scales. The p-value found in this way was 4.97% whereas in [44]
1.91% was obtained taking into account that the data deviate at three consecu-
tive scales. It is also interesting to note that, when both Galactic hemispheres
were considered independently, a p-value of 0.69% was found [44], although
this could be considered as a followup test.

Some readers could find that the three-consecutive-scales criterion is an a pos-
teriori choice since we look first at the data and given that they deviate at three
consecutive scales, we then calculate from the simulations how probable this
is. Therefore we should consider a new test which eliminates this a posteriori
choice. We fix a priori a significance level which is the 1% acceptance interval
given in all figures, and count for each estimator (skewness and kurtosis) how
many scales lie outside, no matter if they are consecutive or not. Then we search
through the simulations how many show at least that many scales outside the
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Estimators p-value

kurtosis 0.86%

skewness + kurtosis 1.85%

Max 11.64%

Area 3.0 3.27%

Area 4.0 1.09%

Higher Criticism 3.48%

Table 4.4 p-values for different estimators.

1% acceptance interval as the data.

Applying this test to the 3–year WCM, we find that scales R8 and R9 lie out-
side the 1% acceptance interval and scale R7 lies on the border for the kurtosis
estimator as can be seen in Figure 4.2. Searching through the simulations how
many deviate in three scales either in the skewness or in the kurtosis estimator,
we find a p-value of 1.85%, which is still below the p-value obtained for the
1–year data with the three-consecutive-scales criterion.

As already discussed we should not include the followup tests in a rigorous
significance analysis. However it is difficult to assess if some of these tests
would have been performed or not without the first finding [188]. In fact, the
area and maxima analyses are very intuitive and simple. If the blind analysis
in [188] had been performed on those estimators instead of using skewness
and kurtosis, then the significance would be different. We should distinguish
between those tests which are clearly followup tests, because the only reason
they have been performed is the initial detection, and other tests which just
have been performed after the initial detection, but could have been performed
before.

Hence we apply our new robustness test to kurtosis, Max, Area at thresholds
3.0 and 4.0 and Higher Criticism separately. Note that whereas the first two
estimators are two-sided, the Area and Higher Criticism are one sided estima-
tors. The p-values obtained in this way are listed in Table 4.4. The kurtosis and
Area at threshold 4.0 show p-values around 1%, Higher Criticism and Area at
threshold 3.0 around 3%. On the contrary the Max estimator does not show a
significant deviation from Gaussianity according to this robustness test.

The most conservative and reliable value is the 1.85% figure since it is not
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Figure 4.10 Kurtosis values for the Q, V and W bands, compared to the 3–year WCM

values.

suspicious of being obtained through a posteriori analyses. Nevertheless it is
still noticeable that the followup tests performed in [43], [44], [32] and in the
present paper, confirm the initial finding with a very similar significance. Even
if strictly speaking these should not be taken into account for establishing the
significance of the Spot, they confirm the robustness of the detection.

4.5 Frequency dependence

In this section we will analyse the frequency dependence of the previously ana-
lysed estimators. A flat frequency dependence is characteristic of CMB, whe-
reas other emissions such as Galactic foregrounds show a strong frequency de-
pendence. Figure 4.10 shows that the kurtosis has almost identical values at the
three foreground cleaned channels, namely Q,V and W. Same behaviour was
observed in the 1–year data (see Figure 7 in [44]). Strong frequency dependent
foreground emissions are unlikely to produce the detected excess of kurtosis.

The frequency dependence of the temperature at the center of the Spot, i.e. at
the pixel where the temperature of the Spot is minimum in the WCM map, is
presented in Figure 4.11. The error bars of the 1–year data have been estimated
performing 1000 noise simulations as explained in section 5.1 of [44]. As the
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noise variance is ≈ 3 times lower in the 3–year data, we estimate the new error
bars simply by dividing the old ones by

√
3. No frequency dependence is found

for the new data set in agreement with the results for the 1–year data. Max,
Area and HC values at different frequencies (see Figure 4.12, Figure 4.13 and
Figure 4.14) show a very low relative variation compared to the 3–year WCM.

All these results confirm the analysis performed in section 5 of [44] where the
data were found to fit a flat CMB spectrum. The present analysis confirms the
disagreement between the conclusions in [44] and those in [115] where Galac-
tic foregrounds were considered to be the most likely source for non-Gaussian
features found with spherical wavelets.

4.6 Discussion

In [171] several reasons are enumerated to be cautious about the different anoma-
lies found in the WMAP data: Galactic foregrounds or noise could be generat-
ing the non-Gaussianity, and in addition most of the claimed detections are
based on a posteriori statistics. Also spatial variations of the noise variance and
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Figure 4.12 Maximum absolute observation for the Q, V and W bands, compared to the

3–year WCM values.
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Figure 4.14 Higher Criticism values for the Q, V and W bands, compared to the 3–year

WCM values.

1/ f noise could affect some of the performed analyses. They suggest several
tests to be done using difference maps (year 1 - year 2, year 2 - year 3, etc.) and
multi-frequency data.

We have tried to address all those points for the Spot. The a posteriori analysis
is one of the most important issues raised in [171], since it is very difficult to
get completely rid of it. Most analyses perform many tests and it is not easy
to assess how many of them are followup tests and which is the probability
of finding an anomaly by chance. As discussed in section 4.4 a very careful
analysis shows that the Spot remains statistically significant at least at the 98%
confidence level, without using any a posteriori statistics.

In addition the Spot was proved to remain highly significant no matter which
foreground reduction technique was used [44]. These results are confirmed in
the present paper. The new foreground reduction used in the 3–year data en-
hances slightly the significance of our detection. Moreover the multi-frequency
analysis of the previous section shows an even flatter frequency dependence of
the Spot.

As already discussed in previous sections the noise does not affect significantly
our wavelet analysis. In fact the coadded 3–year results are very similar to those
obtained with the 1–year data of the new data release. No significant cold spot
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is observed based on the analysis of the three difference maps (year 1 - year 2,
year 2 - year 3, and year 1 - year 3). Moreover Figure 4.11 shows that even the
particularly 1/ f contaminated W4 Difference Assembly shows almost the same
result as all the other Difference Assemblies.
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CHAPTER 5

Possible detection of a texture

As we have mentioned in previous chapters, recent observations in many cos-
mological fields tend to support the standard inflationary model which pre-
dicts the CMB anisotropies to be a Gaussian and isotropic random field, whe-
reas alternative cosmological models such as non-standard inflation or topolog-
ical defect models predict non-Gaussian features in the CMB. Unified theories
of high energy physics typically predict the production of topological defects
[101], [191] after a symmetry-breaking phase transition in the early Universe.

The Wilkinson Microwave Anisotropy Probe (WMAP) 1-year data [17], mea-
sured the CMB fluctuations with high accuracy and in a first approach [103],
these were found to be consistent with the Gaussian predictions. Further analy-
ses revealed asymmetries or non-Gaussian features which have been confirmed
[51], [41], [65], [111], [193] in the 3-year WMAP data [90]. One of these features
is the very cold spot in the southern hemisphere [188], [43],[44], [45] whose
origin is still unclear.

Here we show that the spot described in the previous chapters could be pro-
duced by a topological defect, namely a texture, and find the size and ampli-
tude of the spot and the implied abundance of textures to be consistent with
that interpretation.

If confirmed, this detection of a cosmic defect will provide direct information
about physics at energies well beyond any conceivable terrestrial experiment,
and could affect the cosmological parameters which determine the content, age
and evolution of the Universe.
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5.1 Introduction

The spot is found at Galactic coordinates (b = −57◦, l = 209◦), and has an
angular radius in the sky of ≈ 5◦. It was detected as a significantly non-
Gaussian event on the CMB sky convolved with the Spherical Mexican Hat
Wavelet (SMHW) [188], [43],[44], [45], an optimal tool for enhancing such fea-
tures. The first analysis [188] used 15 different wavelet scales and two estima-
tors, skewness and kurtosis. The kurtosis deviates significantly from Gaussian
simulations at scales of ∼ 5◦. The spot was identified as the main cause of the
deviation from Gaussianity, using the area estimator [43]. It has a flat spectrum,
inconsistent with either Galactic foregrounds or the Sunyaev-Zeldovich effect
[44]. The spot was confirmed in the 3-year WMAP data [45]. It was shown that,
without any a posteriori assumption, the probability of such a high deviation in
Gaussian simulations is around 1.85%. While the statistical significance is not
conclusive, the cold spot is clearly an unusual feature, and a number of radical
explanations have already been proposed [181], [96], [98], [25].

In this chapter we consider the possibility that the spot may be due to a cosmic
texture [183]. Textures were proposed in 1989 as one of a zoo of possible de-
fects which might have formed at symmetry breaking phase transitions in the
early Universe. The idea that such defects seeded the formation of large scale
structure was pursued at that time as an alternative to the standard inflation-
ary paradigm, until it was decisively refuted in the mid 1990s. Nevertheless,
it remains of great interest to search for cosmic defects, quite independently of
their role in structure formation, since their observation would provide direct
information about physics at the unification scale.

5.2 Textures

A texture forms whenever a continuous global non-Abelian symmetry is spon-
taneously broken [183]. If the broken symmetry is local, i.e., gauged, the texture
describes the vacuum structure and it is not of interest to observations in the late
Universe. However, if the broken symmetry is of the simpler, global variety then
cosmic texture forms, leading to interesting observable effects in the late Uni-
verse, and especially in the CMB sky. The standard model of particle physics
includes both types of textures: the electroweak vacuum is a three-sphere and
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hence supports local textures. Pions are the Goldstone bosons associated with
the breaking of an approximate global symmetry relating the up and down
quarks, which would be exact if their masses were zero. The example given be-
low is a generalization of this case, illustrating the point that texture formation
does not require fundamental Higgs fields.

In theories like string theory, which are based on local symmetries, global sym-
metries are not expected to be exact. However, in some extra-dimensional se-
tups, especially those involving branes and large extra dimensions, approximate
global symmetries do emerge naturally from gauge symmetries, and these can
behave, for cosmological purposes, just like fundamental global symmetries
[184].

One specially interesting class of models are theories of a continuous family
symmetry, in particular SU(3), which is a natural choice since there are three
families of elementary particles. In this case, the symmetry cannot be gauged,
because it would then be anomalous. Furthermore, it is quite natural for this
symmetry to be spontaneously broken at the GUT scale, in which case global
texture is potentially observable in the CMB sky [100].

As a simple example of global non-Abelian symmetry breking, consider N
Dirac fermions coupled to a Yang-Mills theory, with no Higgs fields. In the con-
fining phase, SU(N) chiral symmetry is spontaneously broken. In cosmology, a
symmetry-breaking transition would occur in the early Universe, resulting in a
random field pattern which would progressively become ordered. As the Uni-
verse expands, the gradient energy in the symmetry-breaking field (or order
parameter) is redshifted away: the initial, random configuration evolves in a
scaling manner where the field progressively orders itself on a scale set by the
Hubble horizon. If the vacuum manifold possesses a nontrivial topology (for
texture, a nontrivial third homotopy group π3), then in some regions of space
there will be a topological obstruction to field ordering. In such regions, the
only way for ordering to occur is for the winding configuration to draw itself
together and collapse down to a microscopic scale, so that the field gradients be-
come strong enough to pull the field off the vacuum manifold and over the po-
tential energy barrier. The shrinking down and unwinding processes of texture
knots would continue into the late Universe. An unwinding knot would lead
to a concentration of stress-energy in spacetime and a time-dependent gravita-
tional potential. CMB photons passing through such a region would receive a
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red– or blue–shift with an amplitude set by the fundamental symmetry break-
ing scale φ0 [183].

5.2.1 CMB spots produced by textures

Unwinding events may be approximated by a spherically symmetric scaling
solution [183], on comoving scales r < κτ where κ is a fraction of unity and τ

is the conformal time when the texture unwinds. Such events lead to hot and
cold spots on the CMB sky:

δT
T

(θ) = ±ε
1

√

1 + 4( θ
θC

)2
, (5.2.1)

with angular separation θ, and parameters,

ε = 8π2Gφ2
0, (5.2.2)

θC ≡ 2
√

2κ
(1 + z)

E(z)
∫ z

0
dz̄

E(z̄)
(5.2.3)

where E(z) =
√

ΩM(1 + z)3 + ΩΛ (ΩM and ΩΛ stand for matter and dark en-
ergy density parameters respectively). Following the discussion in [117], we
truncate the profile of the temperature beyond its half-maximum by matching
its value and derivative to a Gaussian: θC is then equal to the standard deviation
of the matching Gaussian.

The expected number of hot and cold spots due to textures, with an angular
size larger than some θC (measured in radians), is given by

Nspot =

∫

dτ
dn
dτ

4π(τ0 − τ)2
∫ κτ

θC(τ0−τ)
2dr, (5.2.4)

where the number of texture unwindings per comoving volume per confor-
mal time is (dn/dτ) = ντ−4, with ν ≈ 2 as measured in numerical simula-
tions. Here, τ0 is the present conformal time and the factor 4π(τ0 − τ)2 is the
comoving area of the sphere of currently detected CMB photons at the confor-
mal time τ when the texture unwinds. If the unwinding event is inside the
sphere, the photons “fall in" to an outgoing spherical shell of stress-energy and
a blue spot is produced. Whereas if the event is outside the sphere, the pho-
tons “climb out" of the ingoing shell and a red spot is produced. The upper
limit r < κτ is imposed to account for the finite size of the region described by
the single-texture scaling solution, and the factor two accounts for hot and cold
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spots. The angular scale subtended by the resulting hot or cold spots is given
(in the small angle approximation, and assuming a spatially flat Universe) by
θ = r/(τ0 − τ). If we consider spots larger than some size θC, this imposes the
lower limit r > θC(τ0 − τ) and the r integral is nonzero only for conformal times
τ > τ0θC/(κ + θC).

We shall be interested in the regime where θC
<∼ κ, in which case the integral

simplifies to

Nspot ≈
4π

3
ν

κ3

θ2
C

. (5.2.5)

The number of hot and cold spots of angular radius between θC and θC + dθC is
just the differential of the previous Equation, namely

dNspot

dθC
=

8πν

3
κ3

θ3
C

, (5.2.6)

It follows that the expected fraction of the sky covered by spots of angular ra-
dius greater than θC is

fsky =
〈A〉
4π

≈
∫ 1

θC

dθπθ2 2νκ3

3θ3 =
2πνκ3

3
ln(1/θC), (5.2.7)

where we approximated the upper limit, where the small angle approximation
breaks down, as unity. Setting ν = 2, κ = 0.1 and θC = 1◦ we obtain fS = 0.017.

Recent high-resolution simulations of SU(2) textures (performed by N. Turok
and V. Travieso) show that the unwinding textures are smaller, and far more
abundant, than was observed in low-resolution simulations conducted over a
decade ago 1. The unwinding knots are typically a tenth of the horizon size,
hence κ ≈ 0.1. The comoving number density n per conformal time τ scales as,
dn/dτ = ντ−4, but with ν ≈ 2, far higher than earlier estimates [169].

5.3 Analysis

We perform a Bayesian analysis (e.g. [93]) to give the posterior probability
ratio, ρ, for the existence of this kind of texture-template in the combined,
foreground–cleaned map (hereafter WCM) of the three–year WMAP data re-
lease [90]. Computing the posterior probability ratio, we can find the Hypoth-
esis, Hi, best describing the data, D through a set of parameters, Θi. In our

1Movies are available at http://www.damtp.cam.ac.uk/user/ngt1000/
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case the null hypothesis, H0, describes the data as a Gaussian, homogeneous,
and isotropic random field (CMB) plus the noise of the WMAP data. The alter-
native hypothesis, H1 describes the data as CMB plus noise and an additional
template, T, given by a physical model, in our case a topological texture with
parameters ε and θC.

Bayes’ Theorem states:

P(Θ|D, H) =
P(D|Θ, H)P(Θ|H)

P(D|H)
, (5.3.1)

where P(Θ|D, H) is the posterior probability distribution of the parameters,
P(D|Θ, H) the likelihood, P(Θ|H) the prior and P(D|H) the Bayesian evi-
dence. We redefine the notation, being the evidence E, the likelihood L, and
the prior Π. The evidence provides normalisation of the posterior and is the
average of the likelihood with respect to the prior:

Ei = P(D|Hi) =

∫

Li(Θi|Hi)Π(Θi)dΘi, (5.3.2)

which naturally incorporates an Occam factor favouring the hypothesis with
fewer parameters.

The posterior probability ratio:

ρ ≡ P(H1|D)

P(H0|D)
=

E1
E0

P(H1)

P(H0)
, (5.3.3)

can be used to decide beween both hypotheses. The alternative hypothesis is
favoured when ρ > 1 and rejected otherwise. The a priori probability ratio
for the two models, P(H1)/P(H0), is given in our case by the fraction of sky
covered by textures.

To compute the Bayesian evidence ratio we need the likelihood and normalised
priors. The likelihood function is:

L ∝ e−
χ2
2 , (5.3.4)

where

χ2 = (D − T)TN−1(D − T), (5.3.5)

and N is the generalised noise matrix including CMB and noise. To compute
N, the CMB and the noise contributions have to be worked out. The calcula-
tion of the latter is straightforward since the number of observations per pixel
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is known. In order to obtain the CMB contribution, we calculate the correla-
tion function for the WCM taking into account the pixel and beam effects. As
a complementary test we calculate the CMB correlation matrix through 70,000
Gaussian simulations. Comparing our results obtained from the WCM correla-
tion function with those obtained using simulations, the errors are negligible.

As a conservative prior on ε, we choose 0 ≤ ε ≤ 10−4, the COBE-normalised
amplitude [144], [15], [60]. In order to obtain the prior for the scale parameter θC

we normalise Equation (5.2.6) to unity between θmin and θmax. Photon diffusion
would smear out textures smaller than a degree or so, so we set θmin = 1◦. At
large scales textures are rare: we set θmax = 15◦.

Our template fitting is performed in a circular area of 20◦ radius centered at
Galactic coordinates (b = −57◦, l = 209◦). We use the WCM in the HEALPix
pixelization scheme [73] with resolution parameter Nside = 64. Since the scale
of the cold spot we are interested in is around 5◦ (diameter of ∼ 10◦) this res-
olution is good enough and reduces the number of pixels used in the template
fitting. Excluding from the analysis the point sources masked in the three year
kp0 mask, the total number of pixels considered is 1438. Although the angular
size of the cold spot is about 10◦ we have to consider at least a 20◦ radius patch
to take into account the whole neighborhood for the fit. The Spherical Mexi-
can Hat Wavelet (SMHW) convolves all the pixels in this region and they could
contribute in an important way to the detected structure.

Performing the template fitting, we find ρ ≈ 2.5 > 1, favouring the existence of
the texture. The data, the best fit template and their difference are presented in
Figure (5.1).

Choosing different extrapolations of the temperature profile of Equation 5.2.1,
as an exponential or a SMHW, we obtain ∆lnE values between 4.7 and 5.2,
which still give ρ > 1. The best fit amplitude and scale are ε = 7.7 × 10−5

and θC = 5.8◦. Marginalising the likelihood, we find θC = 6.0 ± 2.6◦ and
ε = 7.5+3.9

−3.8 × 10−5 at 95% confidence. The likelihood decreases fast enough
at scales near θmin or θmax that the results do not depend on small variations
of those limits, as can be seen in Figure (5.2). The value of ε inferred in this
way from a single extreme event is biased by the detection of signals with
high noise, i.e., large Gaussian fluctuations. To check this we generated 500
Gaussian CMB simulations and added one texture spot to each, with ampli-
tude ε = 4 × 10−5, within the upper limits ε < 5 × 10−5 inferred from the
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Figure 5.1 Azimuthal projection of a 43◦ × 43◦ patch of the WCM, centered at (b =

−57◦, l = 209◦) (Top). The best fit texture template is shown in the central panel, and

the WCM subtracting the texture template is presented at the bottom. The units shown

in the colorbars are µK and the resolution is Nside = 256. The y-axis points to the

Galactic north pole. (The template is available on request)
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Figure 5.2 Likelihood for the template fit using the analytic formula with Gaussian

extrapolation. The prior limit on the amplitude is marked by a dotted white line.

observed CMB anisotropy spectrum [21]. After performing a template fit, we
select the spots with high posterior probability ratios, ρ > 1. The mean am-
plitude obtained from these spots is ε ≈ 7.9 × 10−5, hence there is significant
overestimation. Moreover, a more realistic model of textures would predict
some dispersion in the spot strength, with stronger spots caused by asymmet-
rical, multiple, or moving texture events. Again, selecting the strongest spot
would lead to a biased value of ε.

The ρ ≈ 2.5 result favours significantly the texture hypothesis. However, be-
cause we selected the spot centre a posteriori, we should also test whether promi-
nent Gaussian CMB spots show such high values of ρ. Following the same se-
lection procedure for 1000 Gaussian simulations, we find that prominent CMB
spots show typical values of ρ ≈ 0.14 < 1, and only ∼ 5.8% of the simulations
show ρ > 2.5. This percentage may decrease by performing an all sky analysis
since most of these CMB spots appear in simulations with low kurtosis and as
mentioned before the kurtosis of the data show a higher significance [45].

In order to further analyse the CMB signal from textures, we generate 1000
texture plus Gaussian CMB and noise simulations, and repeat the analyses per-
formed on the Gaussian simulations with no textures. Considering that we ob-
serve one 5.8◦ texture in about half the sky (due to the extended Galactic mask),
Equation (5.2.6) predicts around 68 hot and cold spots above θmin = 1◦. Adopt-
ing this phenomenological normalisation, we generate 68 spots per simulation
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with the distribution given by Equation (5.2.6) using θmin = 1◦ and θmax = ∞

and random sign and position on the sky. The spot profile is as used above, and
the amplitude is set to ε = 4 × 10−5.

With textures added to the Gaussian CMB simulations with WMAP noise and
beams, we repeat the previously performed skewness and kurtosis analysis
[188], [45]. As there are on average the same number of hot and cold spots, the
skewness is little affected. However, on the contrary, the kurtosis is increased so
the anomalously high kurtosis of the data at scales around 5◦ is actually com-
patible with the Gaussian CMB plus textures interpretation (see Figure (5.3)).

It follows from Equation (5.2.6) that the number of spots of scale θC or above
is 4πνκ3/(3θ2

C) ≈ 0.8 for θC ≈ 5.8◦, consistent with the single observed spot.
From the discussion below Equation (5.2.1), the observed texture unwound at
z ∼ 6, after the reionisation of the intergalactic medium and potentially within
reach of very deep galaxy or quasar surveys.
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Figure 5.3 Kurtosis values for the 15 considered wavelet scales. The bands represent

the 68% (red), 95% (green) and 99% (magenta) acceptance intervals given by 10000

simulations of Gaussian CMB (upper panel) and Gaussian CMB plus textures (lower

panel). The WCM data (circles) show deviation from the expected values compared

to Gaussian simulations, but are fully consistent with the Gaussian CMB plus textures

interpretation at all scales. The scales are (R1 = 13.7, R2 = 25, R3 = 50, R4 = 75,

R5 = 100, R6 = 150, R7 = 200, R8 = 250, R9 = 300, R10 = 400, R11 = 500, R12 = 600,

R13 = 750, R14 = 900 and R15 = 1050 arcmin)
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Conclusions

The detection of a non-Gaussian cold spot in the CMB sky has been presented
in this thesis. A method based on spherical wavelets has been applied to the
WMAP 1-year and 3-year data in order to study the Gaussianity of the CMB
anisotropies. Gaussianity is a key issue to discriminate between different cos-
mological models. The cold spot is found at Galactic coordinates b = −57◦, l =

209◦ and covers around 10◦ on the sky. The probability of finding such a spot in
Gaussian simulations is anomalously low. A conservative value for this proba-
bility is 1.85%. This calculation avoided any a priori consideration as discussed
in Chapter 4. As the applied method was blind, a hard work has been done to
investigate the origin of the anomaly. After discarding instrumental noise and
foregrounds we focused on a particular model, cosmic textures. Calculating
the posterior probability ratio of that hypothesis over the Gaussian hypothesis,
we conclude that the Spot could be the first detection of a topological defect,
namely a collapsing texture. If confirmed, this could have a far reaching im-
pact since the inclusion of textures in the cosmological model could affect the
present estimation of the cosmological parameters. In addition the detection of
a topological defect, provides a unique link to the physics of the early Universe
and high energy physics. Other radical explanations have been proposed to ex-
plain The Spot, such as voids or Sunyaev-Zeldovich effect. However in a work
we are currently carrying out, these hypotheses seem to be disfavoured due to
the large angular size of The Spot, which is incompatible with both hypotheses.
Let us summarise the conclusions of each chapter of this thesis.
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6.1 Chapter 2

Motivated by the non-Gaussianity found in the WMAP 1-year data using the
SMHW, we have performed an analysis of the spots in the SMHW coefficients
map, aimed to locate possible contributors in the sky. An extremely cold and
big spot is detected. This spot, (The Spot), is seen in the SMHW coefficients at
scales around 4◦ (implying a size of around 10◦ on the sky) and at Galactic coor-
dinates b = −57◦, l = 209◦. The probability of having such spot for a Gaussian
model at a particular scale is of only ≈ 0.2%, which implies that, if intrinsic, the
Spot has not been originated by primary anisotropies in the standard scenario
of structure formation since standard inflation predicts Gaussian fluctuations in
the matter energy density and therefore in the CMB temperature fluctuations.
When this spot is not considered in the analysis the rest of the data seem to be
consistent with Gaussianity.

In order to identify the source of the Spot we have performed several tests re-
lated to systematic effects and foregrounds. We have checked that uncertainties
in the noise or in the beam response have a negligible effect in our results at the
relevant wavelet scales. Looking at the maps corresponding to the different re-
ceivers, we see a clear consistency in the area, amplitude and position of The
Spot. Hence our detection is not due to any deficient receiver. In relation to
the possible foregrounds contribution, we have looked for possible frequency
dependences in the amplitude and area of the Spot. Again both quantities show
a nice consistency with a constant line in the range from 23 to 94 GHz. Whereas
the Galactic foregrounds show a very different frequency dependence with re-
spect to the constant behaviour, the SZ effect does not separate much from it
in that frequency range. A comparable spot could be produced either by the
Coma cluster at a much closer distance, or by several rich clusters at the actual
distance of Coma. We have checked that no nearby rich cluster of galaxies is
located in the position of the Spot.

Finally, intrinsic fluctuations cannot be rejected as the source of the Spot. In
particular, a massive and distant super-structure could in principle produce
a decrement as the one observed through the Rees-Sciama effect [119]. This
massive structure (of order of at least 1016M�) should be placed far enough be-
cause otherwise it would have been detected previously. Alternatively, more
speculative possibilities are topological defects (monopoles or textures) or non-
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standard inflationary scenarios. Even more, a combination of secondary and
primary anisotropies, cannot be rejected as the source of our non-Gaussian spot.
For instance a possibility could be a combination of the Sunyaev-Zeldovich ef-
fect with a Sachs-Wolfe plateau.

6.2 Chapter 3

In this chapter we address the issue of the origin of non–Gaussian behaviours
observed in the WMAP data. In particular, a non–zero kurtosis in the distri-
bution of wavelet coefficients was detected in [188] at angular scales ranging
from 3◦ to 5◦. This non–Gaussian signal is mainly generated by the presence of
a very cold spot in the southern hemisphere, at Galactic coordinates b = −57◦

and l = 209◦ [188], [43]. Its dimension (≈ 8◦) and temperature in wavelet space
makes this spot quite exceptional compared to Gaussian CMB simulations: less
than 1% of the simulations have spots with similar characteristics.

As a first step, we have verified the robustness of the deviation from Gaus-
sianity in the kurtosis. We have performed a test taking into account the es-
timators used in that detection (skewness and kurtosis) and the number of
consecutive wavelet scales presenting a significant deviation from Gaussian-
ity, namely 4 considering only the southern hemisphere. The significance for
the non–Gaussian detection remains still high: we obtained that only 0.69% of
the simulations have equal or higher deviation of skewness or kurtosis at any
four consecutive scales and in any of the Galactic hemispheres.

Afterwards we studied the morphology of the Spot using Elliptical Mexican Hat
Wavelets on the sphere. We observed that the maximum amplification of the
Spot temperature is obtained for almost isotropic Mexican Hat Wavelets, mean-
ing that the shape of the underlying signal is essentially circular. This result
does not discard for instance topological defects like textures or a gravitational
potential with a circular shape as possible explanations.

Finally, we focus on the possible foreground contamination of the Spot region
in the clean WMAP maps, considering the SZ effect or bad–subtracted Galactic
foregrounds. The SZ effect is clearly discarded by the flat frequency depen-
dence of the Spot temperature. The Galactic foregrounds case requires a more
detailed analysis, since a hypothetical foreground mixing could provide a flat
foreground contribution.
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In wavelet space, the contribution of Galactic foregrounds in the region of the
Spot is extremely low, at least one order of magnitude less than CMB at the Q,
V and W bands. The dominating foreground is the free–free emission at all
WMAP frequencies except at the W band where free–free is at the same level as
dust emission and below the noise level.

If the non–Gaussian analysis is affected by unsubtracted Galactic foregrounds,
we would expect that the non–Gaussian detection is more significant at fre-
quencies where the foreground emission is more relevant. But neither the kur-
tosis nor the area and amplitude of the Spot are more significant at the Q band,
i.e. the band where the Galactic contribution is higher respect to the V and W
bands. In addition we obtain very similar results from CMB maps produced by
completely independent foregrounds subtraction techniques (e.g. WCM and
TCM).

Because of the large uncertainties in Galactic emission at microwave frequen-
cies, we have even considered the possibility that our templates provide an im-
portant underestimate of foregrounds. Nevertheless, the possibility of having
a strong and frequency independent foreground residue, which could explain
the non-Gaussian nature of the Spot, is very unlikely.

According to our knowledge on Galactic emissions, we can conclude that there
is no evidence for a relevant contribution of unsubtracted foregrounds in the re-
gion of the sky which is responsible for the non–Gaussian detection in wavelet
space.

6.3 Chapter 4

In this chapter we repeat the analyses that detected the non-Gaussian cold spot
called the Spot at (b = −57◦, l = 209◦) in wavelet space in the 1–year of WMAP
data, using the recently released 3–year WMAP data. The previous works [188],
[43], [32] and [44] found the Spot to deviate significantly from the Gaussian be-
haviour. The Spot was detected using several estimators, namely kurtosis, Area,
Max and HC. This work confirms the detection applying all these estimators to
the recently published 3–year WMAP data. At scale R9, the upper tail probabil-
ities of all these estimators when applied to the 3 year WMAP data are smaller
than the corresponding ones for the first year WMAP data. This is mostly due
to the improved foreground reduction of the data. We calculate the probabil-
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ity of finding such a deviation from Gaussianity considering only skewness
and kurtosis since these were initially used in [188] following a blind approach.
Therefore excluding followup tests which could be considered as a posteriori
analyses we obtain a p-value of 1.85%. Moreover, the Spot appears to be almost
frequency independent. This result reinforces the previous foreground analy-
ses performed in [44]. It is very unlikely that foregrounds are responsible for
the non-Gaussian behaviour of the Spot. Comparing the WMAP single year sky
maps, we conclude that the noise has a very low contribution to our wavelet
analysis as already claimed in [188], [43]. The next chapter will be aimed at
finding the origin of the Spot. As discussed in the introduction several possibil-
ities have been considered, based on Rees-Sciama effects [149],[119], [120] and
inhomogenous or anisotropic universes. Also topological defects [183], [59] as
textures could produce cold spots. New and more detailed analyses are re-
quired in order to answer that question.

6.4 Chapter 5

We have investigated the hypothesis that the Spot is due to a cosmic texture and
find the abundance, size and amplitude of the Spot to be consistent with that
interpretation.

Using an analytical approximation of the temperature profile produced by a
cosmic texture, we apply a template fit finding a posterior probability ratio
favouring the existence of an underlying texture-like template centered at (b =

−57◦, l = 209◦) with amplitude around 4 × 10−5 and scale ∼ 5◦. The posterior
probability ratio for the most prominent Gaussian spots is higher than the ob-
served one in ∼ 5% of the simulations. This is of an interesting, although not
yet compelling, statistical significance.

The symmetry breaking scale corresponding to the observed amplitude is φ0 ≈
8.7 × 1015GeV. The existence of textures would not only help to discriminate
between different fundamental physical theories of the unification of particles
and forces, also the values of the cosmological parameters could be affected
significantly.

Further observational tests might refute or strengthen the texture hypothesis.
First, if the observed spot is due to a texture, there would be almost no associ-
ated CMB polarization. In contrast, if the spot is a rare statistical fluctuation in
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the primordial density perturbation, we would expect a correlated polarization
signal, namely a preference for a radial pattern of CMB polarization around it.
On these scales, for adiabatic perturbations with standard recombination, al-
most half the polarization signal is correlated with the temperature anisotropy
[42].

A second important prediction of the texture model is that there should be
many smaller spots, with a distribution given by Equation (5.2.6). These would
be masked or confused by the background adiabatic, Gaussian signal where
it has maximal power, at θ ∼ 1◦ − 2◦. Nevertheless, each spot would deviate
from the expected polarization-temperature correlation and a combined all-sky
measurement might reveal a difference from Gaussian, adiabatic perturbations
due to many small texture spots.

The analytical model of texture-induced anisotropies used here is an idealiza-
tion. A more careful study will require an ensemble of full sky texture CMB
maps along the lines of previous works [144], [15], [60], but with far higher res-
olution to properly represent the non-Gaussianity. Such a study now appears
feasible: the prospect that the observed spot, and perhaps other non-Gaussian
anomalies, represent the first observations of topological defects in the Universe
provides strong motivation.

6.5 Future Work

Many follow up tests have to be performed in order to confirm the possible
detection of the texture as discussed in the previous section. Performing an
ensemble of full sky texture CMB maps could allow to better compare with
the detected deviation from Gaussianity. Moreover, a full sky Bayesian analysis
can better determine the posterior probability ratio. Furthermore, analysing the
polarization data can confirm or reject the texture hypothesis.

The comparison with other possible explanations such as huge voids or Sunyaev-
Zeldovich effect, is already in progress. Both explanations seem to be dis-
favoured due to the large angular size of the Spot.

The Bianchi-like template detected in the WMAP data [25] and mentioned in
Chapters 3 and 4 was also related to the Spot. A further work to be performed
is to check whether the Spot is the main cause for this detected template.
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Resumen en castellano

7.1 Introducción

La radiación de fondo cósmico microondas (RFCM) es la radiación electromag-
nética más antigua que recibimos y, por tanto, una herramienta única para es-
tudiar el origen del Universo.

La RFCM es uno de los pilares básicos de la teoría del Big-Bang, formulada en
1948 por George Gamow y sus colaboradores [5]. Según dicha teoría, el Uni-
verso se habría originado hace miles de millones de años, partiendo de una
temperatura y densidad increíblemente elevadas. La teoría del Big-Bang ex-
plicaba la produccíon de núcleos ligeros y su abundancia relativa, así como
la expansión del Universo que había sido observada por E. Hubble en 1929
[94]. Además, Gamow predijo la existencia de una radiación isótropa de unos
5 K, que procedería del Universo caliente y primordial. La baja temperatura de
dicha radiación sería debida a la expansión del Universo.

Cuando Gamow hizo esta predicción aún no se había detectado la RFCM por
lo que es considerada una de las pruebas más convincentes de su teoría. Casi
dos décadas más tarde Penzias y Wilson [145] detectaron casualmente la RFCM
y R. Dicke, P.J.E. Peebles, P.G. Roll, & D.T. Wilkinson [53] supieron interpretarla
como la radiación predicha por Gamow.

Desde el momento en que se produjo este descubrimiento, una gran cantidad
de experimentos han sido diseñados para estudiar la RFCM. La primera mis-
ión espacial dedicada a este fin, fue la misión COBE (COsmic Background Ex-
plorer) de la NASA cuyo satélite se lanzó en 1989. Dos de sus investigadores
principales, G.S. Smoot (investigador principal del experimento Differential Mi-
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crowave Radiometer, DMR) y J. Mather (investigador principal del experimento
Far Infrared Absolute Spectrophotometer, FIRAS) recibieron el premio Nóbel de
física en 2006. COBE-FIRAS demostró que la RFCM tiene un espectro de cuerpo
negro casi perfecto [125] correspondiente a una temperatura de T0 = 2.725 K.
Restando a los datos esta temperatura media así como una componente dipolar
debida a nuestro movimiento local, COBE-DMR detectó unas pequeñas ani-
sotropías en la RFCM, del orden de ∆T/T0 ∼ 10−5 [167], (ver Figuras 1.2 y
1.1) en perfecto acuerdo con las predicciones de la teoría del Big-Bang. El Uni-
verso primordial es la fuente ideal de radiación térmica necesaria para pro-
ducir un espectro de cuerpo negro y además Harrison [85], Peebles & Yu [143],
y Zel’dovich [195] predijeron la existencia de inhomogeneidades del orden de
∼ 10−5 − 10−4.

En los años 90 las anisotropías fueron medidas cada vez con mayor precisión a
través de experimentos terrestres o de globos aerostáticos. En 2000 los experi-
mentos BOOMERanG [48] y MAXIMA [79] determinaron que la mayor poten-
cia de las fluctuaciones se aprecia a escalas angulares de aproximadamente un
grado. Junto a otras observaciones astronómicas estos resultados indicaban que
la geometría del Universo es casi plana. En los siguientes años hubo varios ex-
perimentos que midieron también las anisotropías con buena resolución como
el Very Small Array (VSA) [71], Cosmic Background Imager (CBI) [163], Archeops,
Arcminute Cosmology Bolometer Array Receiver (ACBAR) [106], o el Degree Angu-
lar Scale Interferometer (DASI) [78], que fue el primer experimento en detectar la
polarización de las anisotropías.

En 2003 se publicaron los resultados del primer año de observación del satélite
Wilkinson Microwave Anisotropy Probe (WMAP) [17] de la NASA. Este satélite
midió las anisotropías de la RFCM a todo el cielo con gran precisión y resolu-
ción. Un análisis detallado de dichas anisotropías permite estimar los parámet-
ros cosmológicos (ver Tabla 1.1) que determinan la edad, geometría y composi-
ción del Universo. Estos análisis son por tanto de gran importancia para la
cosmología. El modelo que mejor se ajusta a los datos es el modelo estándar,
Λ-materia oscura fría [171]. Las observaciones de estructura a gran escala y su-
pernovas también concuerdan con este modelo por lo que a veces es denomi-
nado como modelo concordante. En él se supone un Universo sin curvatura y
con una expansión acelerada causada por la constante cosmológica, Λ, también
denominada energía oscura por su origen desconocido. Según las observaciones

106



CHAPTER 7: RESUMEN EN CASTELLANO

de supernovas y RFCM la energía oscura representa ∼ 74% de la densidad de
energía del Universo. La mayor parte de la energía restante se encuentra en
forma de materia oscura fría, que es materia no bariónica y no relativista de
composición desconocida. La materia oscura no emite ni refleja radiación y no
ha sido observada directamente aunque su existencia ha sido probada por sus
efectos gravitatorios. Sólo el 4% de la energía del Universo es debida a materia
bariónica ordinaria.

Sin embargo la composición y condiciones físicas del Universo primitivo eran
muy distintas. Si extrapolamos hacia atrás la expansión del Universo, alcan-
zamos temperaturas y densidades infinitas hace unos 14 000 millones de años.
Esta singularidad es la llamada Big-Bang. Hasta 10−43 segundos (tiempo de
Planck) después del Big-Bang los efectos cuánticos de la gravedad, que aún
no se conocen, son dominantes y por tanto las leyes de la física dejan de fun-
cionar en esta época. A partir de un segundo después del Big-Bang, las leyes
de la física funcionan y podemos entender y describir lo ocurrido entonces. El
Universo era muy homogéneo e isótropo, siendo su temperatura y presión tan
altas que causaron una rápida expansión del Universo y su consiguiente enfri-
amiento.

Algunas teorías afirman que 10−35 segundos después del Big-Bang el Universo
pasó por una transición de fase que provocó una expansión exponencial del
Universo. Este proceso es conocido cómo inflación y sería el causante de que el
Universo sea plano, homogéneo e isótropo a gran escala.

Al finalizar la inflación, el Universo estaba formado por un plasma de quarks
y gluones. Posteriormente, gracias al enfiramiento debido a la expansión del
Universo, se formaron los bariones.

Sin embargo los átomos no se formaron hasta varios miles de años después, ya
que radiación y materia estaban interaccionando continuamente impidiendo
que se juntaran electrones y protones, y no dejando escapar a los fotones. Cu-
ando la temperatura del Universo bajó hasta ∼ 3000 K, la tasa de interacción
era suficientemente baja para permitir la formación de átomos y el escape de
los fotones. Este desacoplo entre radiación y materia ocurrió unos 375 000 años
después del Big-Bang. Los fotones emitidos en ese momento desde todos los
puntos de forma isótropa, constituyen la RFCM que recibimos hoy después de
viajar por el espacio durante casi 14 000 millones de años.

Como el Universo era en aquella época muy homogéneo e isótropo, medimos
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en promedio la misma radiación de fondo en cualquier dirección del cielo ob-
servable. Los fotones que observamos fueron emitidos en la Superficie de Última
Dispersión hace ≈ 14 000 millones de años. Las fluctuaciones de densidad pre-
sentes en aquel momento, quedaron impresas en la RFCM.

El satélite PLANCK de la agencia espacial europea (ESA) se lanzará el año 2008
y medirá las anisotropías de la RFCM con una precisión y resolución sin prece-
dentes. Además su amplio rango de frecuencias que va desde 30 a 857 GHz
permitirá identificar mejor las emisiones contaminantes de la Galaxia. Se es-
pera que la misión PLANCK confirme los resultados de WMAP, mida escalas
angulares aún sin explorar y mejore las medidas de polarización.

Las anisotropías de la RFCM se clasifican atendiendo al momento en que se
originaron en primarias y secundarias.

• Anisotropías Primarias, se generaron en la Superficie de Última Dispersión.
La física del plasma de bariones y fotones causa estas anisotropías. La
presión de radiación de los fotones compite con la atracción gravitatoria
de los bariones, creando oscilaciones acústicas. A gran escala domina el
efecto Sachs-Wolfe [151] debido a variaciones en el potencial gravitatorio,
mientras que a pequeña escala los efectos de amortiguamiento debido al
espesor finito de la superficie de última dispersión o a la difusión [164]
son los dominantes.

• Anisotropías secundarias, se producen entre la superficie de última dis-
persión y el observador. Son debidas a interacciones de los fotones de la
RFCM con gas caliente o potenciales gravitatorios. El efecto gravitatorio se
denomina efecto Sachs-Wolfe integrado (ISW). Hay dos tipos de efecto ISW
el temprano y el tardío. El primero ocurre poco después de que los fotones
abandonen la superficie de última dispersión y es debida a la evolución
de los potenciales gravitatorios cuando el Universo deja de estar domi-
nado por la radiación para estar dominado por la materia. El ISW tardío
se produce por cambios en el potencial cuando la constante cosmológica
empieza a gobernar la dinámica de la expansión. Si el ISW es debido a
la evolución no lineal de una estructura que colapsa, también se conoce
como efecto Rees-Sciama [149], [120].

La reionización del Universo después de la recombinación genera electrones
libres que interaccionan con los fotones de la RFCM produciendo aniso-

108



CHAPTER 7: RESUMEN EN CASTELLANO

tropías secundarias. Las primeras poblaciones de estrellas de población
III y quásares, emiten radiación reionizando el Universo de forma global
[72]. La reionización local se produce al formarse cúmulos de galaxias. El
gas caliente atrapado en su interior contiene electrones altamente energéti-
cos que distorsionan el espectro de la RFCM al interaccionar con los fo-
tones por efecto Compton inverso [174]. Este efecto es denominado efecto
Sunyaev-Zeldovich térmico cuando la energía de los electrones es debida a
su temperatura y efecto Sunyaev-Zeldovich cinemático cuando es debido a
la velocidad peculiar del cúmulo.

El efecto lente gravitatoria es otro efecto que produce anisotropías secun-
darias [121]. Es causado por supercúmulos de gran masa que desvían
gravitatoriamente la trayectoria de los fotones de la RFCM.

7.1.1 Datos de WMAP

El Wilkinson Microwave Anisotropy Probe (WMAP, [17]) es un satélite de la
NASA que fue lanzado en 2001. Está situado en el punto lagrangiano Sol-Tierra,
L2 a unos 1.5 millones de kilómetros de la Tierra.

Los radiómetros de WMAP miden temperaturas diferenciales de la RFCM a 5
frecuencias distintas: banda K (22.8 GHz, 1 ensamblaje diferencial), banda Ka
(33.0 GHz, 1 ensamblaje diferencial), banda Q (40.7 GHz, 2 ensamblajes diferen-
ciales), banda V (60.8 GHz, 2 ensamblajes diferenciales) y banda W (93.5 GHz,
4 ensamblajes diferenciales).

La resolución angular va desde 0.9 a 0.2 grados y la sensibilidad esta alrededor
de 1 mK s1/2. La pixelización utilizada para todos los mapas es la Hierarchi-
cal, Equal Area and iso-Latitude Pixelization (HEALPix, [73])1, con parámetro de
resolución Nside.

Los parámetros cosmológicos obtenidos con estos datos se dan en la tabla 1.1.

El equipo de WMAP recomienda utilizar un mapa (WCM, ver Figura 1.4) com-
binación de los canales Q, V y W pesados por el ruido para análisis cosmológi-
cos, ya que las bandas K y Ka están dominadas por radiación contaminante de
la Galaxia.

Desafortunadamente existen muchos tipos de radiación contaminante, que han
1http://www.eso.org/science/healpix/
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de ser entendidos y sustraídos de los mapas. Una vez hecho esto, el monopolo
y el dipolo residual han de ser restados.

7.1.2 Contaminantes

La señal de la RFCM nos llega mezclada con emisiones contaminantes de la
Vía Láctea y extragalácticas. Entre las radiaciones contaminantes provenientes
de la Galaxia destacan la radiación sincrotrón, la radiación de free-free y la de
polvo. La dependencia frecuencial de los contaminantes Galácticos (en un cierto
rango de frecuencias), suele expresarse como T ∼ νβ, donde β se denomina
índice espectral.

La radiación sincrotrón se produce cuando los electrones de los rayos cósmi-
cos son acelerados en campos magnéticos y su índice espectral varía entre -2.6
y -3.1. La radiación free-free es emitida cuando chocan electrones e iones. Su
índice espectral es -2.15 a frecuencias superiores a 10 GHz. Los granos de polvo
interestelar absorben radiación ultravioleta, reemitiendo en el infrarrojo y mi-
croondas. Su índice espectral está entre 1.5 y 2.5 en el rango de frecuencias de
WMAP.

En la Figura 1.5 se ve la variación con la frecuencia y la intensidad estimada de
los contaminantes a las frecuencias de WMAP.

Objetos extragalácticos como quásares, galaxias, núcleos galácticos activos o
galaxias que emiten en el infrarrojo, también emiten radiación microondas.
Al ser objetos muy lejanos, aparecen como fuentes puntuales en los mapas de
RFCM. Las más brillantes pueden tener una contribución importante y deben
ser excluidas. El equipo de WMAP ha identificado y enmascarado cientos de
fuentes puntuales. Recientemente se ha dado un nuevo catálogo de fuentes
utilizando métodos basados en ondículas [116].

Para eliminar los píxeles más afectados por contaminación, el equipo de WMAP
propone utilizar máscaras. La máscara kp0 es la más conservadora y excluye
alrededor del 23% de los píxeles incluyendo unos centenares de fuentes pun-
tuales.
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7.1.3 Gaussianidad

La Gaussianidad de las anisotropías de la RFCM es una predicción testable de
los modelos inflacionarios más simples [74], [9]. Las fluctuaciones cuánticas de
vacío del campo inflacionario tienen una distribución Gaussiana. La inflación
amplifica estas pequeñas fluctuaciones de vacío, creando las semillas para la
formación de estructura en el Universo. Las anisotropías de la RFCM se rela-
cionan con las fluctuaciones de energía a través de las ecuaciones de Einstein-
Boltzmann linearizadas, y por tanto su distribución también es Gaussiana (ver
Liddle & Lyth [114]). Incluso en estos modelos puede haber pequeñas desvia-
ciones de la Gaussianidad debido a efectos no lineales de segundo orden. Sin
embargo en el modelo estándar estas desviaciones son totalmente desprecia-
bles, mientras que en la inflación no-estándar (ver [13]) la no-Gaussianidad es
apreciable.

Los modelos de defectos topológicos [191] también producen rasgos no- Gaus-
sianos en la RFCM. Las teorías unificadas de física de altas energías, predicen la
producción de defectos topológicos durante una transición de fase con ruptura
de simetría, en el Universo primordial. Dependiendo del orden, O(N), de la
simetría que se rompe, pueden aparecer distintos tipos de defectos. Las pare-
des de dominio son membranas dos dimensionales que aparecen al romperse
una simetría discreta, de orden 1; si la simetría que se rompe es de orden 2, ax-
ial, aparecen cuerdas cósmicas unidimensionales; en el caso de una ruptura de
simetría esférica (orden 3) se forman defectos puntuales llamados monopolos,
y finalmente las texturas se crean después de romperse una simetría de orden
4. Los defectos topológicos son fenómenos de altísima energía que dejan su
huella en la RFCM. Cada defecto produce un tipo de anisotropía característica.
Por ejemplo las texturas producen manchas calientes y frías en la RFCM.

Otra predicción de la inflación es la isotropía, homogeneidad y planitud del
Universo, debido a la drástica expansión inflacionaria. Topologías no triviales
[107] o modelos anisotrópicos del Universo producirían un patrón de aniso-
tropías característico. Por ejemplo un modelo homogéneo y anisótropo con
vorticidad, produciría una anisotropía espiral en la RFCM. Las topologías no
triviales también podrían generar señales que producen desviaciones de la Ga-
ussianidad e isotropía.

El estudio de la Gaussianidad de la RFCM permite por tanto discriminar entre
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distintos modelos cosmológicos.

Como la mayoría de los estudios de no-Gaussianidad son ciegos, es decir no
dependientes de un modelo concreto, hay que realizar un gran esfuerzo para
identificar el origen de una posible desviación de la Gaussianidad ya que hay
muchas posibles causas. Además de las no-Gaussianidades primordiales, la
mayoría de las anisotropías secundarias son no-lineales y por tanto no- Gaus-
sianas. Lo mismo ocurre con los contaminantes y el ruido instrumental.

En los últimos años con la llegada de las medidas de precisión de la RFCM
se han realizado numerosos análisis de Gaussianidad, utilizando infinidad de
herramientas matemáticas. Dependiendo de la no-Gaussianidad que se quiera
detectar, se deberá usar una u otra herramienta. Algunas de las más usadas
son: funcionales de Minkowski, funciones de correlación, bispectro, trispectro,
correlaciones de fase y ondículas.

En experimentos anteriores a WMAP no se encontró ninguna desviación de la
Gaussianidad que fuese intrínseca. En los datos de WMAP se está debatiendo
el origen de varias anomalías, como por ejemplo: alineamientos y simetrías en
multipolos bajos; asimetrías en la potencia de las fluctuaciones entre los hem-
isferios eclípticos; alineamiento de manchas de la RFCM; y la que presentamos
en esta tesis, una mancha extraordinariamente fría en el hemisferio sur, la man-
cha, [43], [44], [45], [46]. La mancha fue considerada como posible anomalía en
[188] y confirmada después por [43], [32], [44] y [45], [46] en los datos del tercer
año de medida de WMAP. La herramienta utilizada en estos análisis es la On-
dícula Esférica de Sombrero Mejicano (Spherical Mexican Hat Wavelet, SMHW)
que describimos más abajo.

Todas estas asimetrías, excepto la mancha, están relacionadas con el plano eclíp-
tico por lo que se sospecha que puedan ser debidas a un efecto sistemático por
determinar.

En esta tesis discutiremos en detalle el posible origen de la mancha. Como vere-
mos en el capítulo 6, podría ser la primera detección de un defecto topológico.

Ondículas

Una función se puede expresar mediante una transformada de Fourier como
una suma de funciones sinusoidales. Análogamente, con una transformación
de ondícula se representa una función como combinación de ondículas, que
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son funciones matemáticas diferentes de las sinusoidales. La diferencia fun-
damental es que las ondículas están localizadas tanto en el tiempo como en
la frecuencia mientras que la transformada de Fourier sólo está localizada en
frecuencia.

La transformación de ondículas permite dividir una función dada en diferentes
componentes, cuya escala coincide con la de la ondícula hija que es una copia
trasladada y dilatada de una onda finita llamada ondícula madre.

Las transformadas de ondículas se pueden agrupar en discretas como la ondí-
cula de Haar [75], y continuas como la ondícula esférica de sombrero mejicano
(Spherical Mexican Hat Wavelet, SMHW). Actualmente se usan un buen número
de ondículas en campos tan diversos como reducción de datos, análisis de imá-
gen, geofísica, óptica, acústica,... y astrofísica.

En los últimos años se han publicado numerosos trabajos sobre la RFCM us-
ando ondículas. Se pueden utilizar en separación de componentes [179], [28],
[185],[186], [187],[70], [116], para eliminar ruido instrumental [153], [154], análi-
sis de correlación [189], [130], y estudios de Gaussianidad [139], [92], [4], [10],
[11], [126], [128], [193], [190] además de los citados más abajo para el caso par-
ticular de ondículas con simetría esférica. Las ondículas incrementan el co-
ciente señal-ruido permitiendo la detección de señales no-Gaussianas débiles.
Además permiten localizar la señal no-Gaussiana y conocer su escala angular.

En nuestro caso la ondícula apropiada es la SMHW [6], que es una proyección
estereográfica de la ondícula de sombrero mejicano en el plano (ver Figura 1.6).

La SMHW se ha aplicado en estudios de Gaussianidad para los datos de COBE,
[29], [31].

En esta tesis, presentamos un análisis de Gaussianidad de los datos de WMAP
con la SMHW, escrito en [43], [44], [45], [46]. En otros trabajos como [188], [134],
y [32] también se ha utilizado la SMHW.

La SMHW amplifica eficientemente los rasgos no-Gaussianos en la esfera [122].
La ondícula madre de la SMHW es:

ΨS(y, R) =
1√

2πN(R)

[

1 +
(y

2
)

2]2[
2 −

( y
R
)

2]
e−y2/2R2

, (7.1.1)

donde R es la escala y N(R) la constante de normalización:

N(R) ≡ R
√

1 + R2/2 + R4/4. (7.1.2)
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La distancia en el plano tangente, y, se relaciona con el ángulo polar (θ) como:
y ≡ 2 tan θ/2. La SMHW es la proyección estereográfica de la ondícula de
sombrero mejicano que es a su vez la laplaciana de una Gaussiana.

Por tanto, en esta tesis exponemos un análisis de Gaussianidad de los datos de
WMAP realizado con ondículas en la esfera. A continuación presentamos un
resumen de los capítulos.

7.2 Capítulo 2

En este capítulo se analiza una mancha extremadamente fría y grande, la man-
cha, en los datos del primer año de observación del satélite WMAP. Este trabajo
es una continuación de un artículo anterior [188] en el que se detectaba una
desviación de la Gaussianidad con un método basado en la SMHW (ver in-
troducción). Aquí estudiamos las manchas a distintos umbrales en los mapas
de coeficientes de ondícula, considerando seis estimadores distintos: número
de máximos y mínimos, número de manchas calientes y frías y número de
píxeles calientes y fríos. A escalas de la SMHW alrededor de 4◦ (10◦ en el
cielo), los datos se desvían del comportamiento Gaussiano. El análisis se re-
aliza en todo el cielo, hemisferio norte, hemisferio sur y en cuatro cuadrantes
por separado. Demostramos que la mancha situada en las coordenadas galác-
ticas (b = −57◦, l = 209◦) es incompatible con la hipótesis de Gaussianidad.
Comparando dicha mancha con la más grande de cada una de las 10 000 simula-
ciones Gaussianas, vemos que para la escala de 5◦ sólo 0.2% de las simulaciones
presentan una mancha igual o más grande que la de los datos. Excluyendo esta
mancha del análisis, el resto del mapa sí es compatible con las simulaciones
Gaussianas y el exceso de kurtosis encontrado en [188] también desaparece.
Finalmente analizamos si la mancha podría ser debida a algún tipo de ruido in-
strumental o emisión contaminante y concluimos que éstos no parecen ser la
causa de la detección.

7.3 Capítulo 3

Aquí se estudia en detalle la mancha encontrada en el capítulo anterior en los
datos del primer año de WMAP. En primer lugar se calcula rigurosamente la
significación del exceso de kurtosis detectado en los mapas de WMAP por [188]
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tras convolucionarlos con la SMHW. Como vimos en el capítulo anterior este
exceso de kurtosis es debido en gran medida a la mancha. Confirmamos que
la detección es robusta y encontramos que la probabilidad de encontrar esta
desviación por azar es 0.69%. Después analizamos la morfología de la mancha
convolucionando los datos con SMHW con distintas elipticidades. La forma
de la mancha es casi circular. Finalmente discutimos si la no-Gaussianidad ob-
servada podría ser debida a emisiones contaminantes mal sustraídas. Demos-
tramos que la dependencia frecuencial de la mancha es muy plana y por tanto
no puede ser explicada por el efecto Sunyaev-Zeldovich térmico. Según los
conocimientos actuales de los contaminantes Galácticos, los residuos en la re-
gión de la mancha no pueden afectar significativamente a la detección.

7.4 Capítulo 4

En este capítulo analizamos la mancha que habíamos detectado en los datos del
primer año de WMAP, con los datos del tercer año de observación de dicho
satélite. Con estos nuevos datos volvemos a detectar la mancha en la misma
posición (b = −57◦, l = 209◦) y tamaño (≈ 10◦ en el cielo). En este trabajo
hemos utilizado diversos métodos y estimadores siempre basados en la SMHW.
Analizamos la kurtosis, la temperatura máxima absoluta, el número de píxeles
por encima de un umbral dado, el volumen y el Higher Criticism. Todos ellos
detectan una desviación de la Gaussianidad con una significación ligeramente
más alta que la encontrada en los datos del primer año. Este ligero aumento
es debido a la nueva técnica para eliminar las emisiones contaminantes de la
Galaxia y no a la reducción de ruido instrumental que es despreciable a la escala
de la mancha. Para evitar análisis a posteriori que puedan falsear la significación
de la mancha, recalculamos la significación de la kurtosis para los datos del ter-
cer año de WMAP. Esta vez consideramos un test a priori, antes de mirar los
datos, para skewness y kurtosis que fueron los primeros estadísticos que se us-
aron en el análisis con la SMHW. Obtenemos que la probabilidad de encontrar
una desviación mayor o igual en simulaciones Gaussianas es 1.85%. La depen-
dencia frecuencial de la mancha es aún más plana que en los datos del primer
año. Por tanto, es improbable que la contaminación Galáctica sea responsable
de la desviación de la Gaussianidad.
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7.5 Capítulo 5

En este capítulo consideramos la posibilidad de que la mancha sea producida
por un defecto topológico, una textura. Las teorías unificadas, predicen la for-
mación de defectos en una transición de fase en el Universo temprano. La rup-
tura de simetría asociada a la transición de fase habría provocado la forma-
ción de defectos topológicos altamente energéticos que dejaron su huella en la
RFCM. Realizamos un test de hipótesis bayesiano para ver si el perfil de la man-
cha coincide con el perfil analítico aproximado de una mancha generada por
una textura. Encontramos un cociente de probabilidades a posteriori favorable
a la hipótesis de tener una textura más el campo Gaussiano frente a la de tener
solamente un campo Gaussiano. La amplitud y el tamaño de la mancha son
consistentes con esta interpretación y el número esperado de texturas también
lo es. Para ver como afecta el modelo de texturas a nuestro análisis de kurto-
sis de los coeficientes de ondículas, simulamos texturas con un perfil analítico
que es una aproximación del real y las añadimos a simulaciones Gaussianas.
La kurtosis de los datos es ahora totalmente compatible por lo que la anomalía
quedaría explicada de esta manera.

7.6 Conclusiones

En esta tesis presentamos la detección de una mancha fría en la RFCM. Hemos
aplicado un método basado en ondículas esféricas a los datos de WMAP del
primer y tercer año para testar su Gaussianidad. La Gaussianidad es un rasgo
clave para discriminar entre distintos modelos cosmológicos. Las coordenadas
galácticas de la mancha son b = −57◦, l = 209◦ y su tamaño angular es de unos
10◦ en el cielo. La probabilidad de encontrar una mancha así en simulaciones
Gaussianas es muy baja. Como el test aplicado a los datos era ciego, hubo
que realizar un duro trabajo para intentar identificar el origen de la anoma-
lía. Después de descartar el ruido instrumental y los contaminantes galácticos,
analizamos un modelo concreto, el de texturas cósmicas. Tras calcular el co-
ciente de probabilidades a posteriori entre el modelo con texturas y el Gaus-
siano, concluimos que la mancha podría ser la primera detección de un defecto
topológico. Por tanto su origen sería debido a una textura colapsando. De con-
firmarse, este resultado tendría consecuencias importantes, ya que al incluir
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texturas en el modelo cosmológico la estimación de los parámetros cosmológi-
cos podría verse afectada. Además la detección de defectos topológicos es de
gran importancia para las teorías de física de altas energías y del Universo prim-
itivo. También se han dado otras posibles explicaciones para la mancha como
vacíos o cúmulos a través del efecto Sunyaev-Zeldovich. Sin embargo en un
trabajo que estamos realizando ahora, estas hipótesis parecen descartarse por
la gran escala angular de la mancha que es incompatible con estos dos modelos.

A continuación pasamos a resumir las conclusiones de cada uno de los capítu-
los de esta tesis:

7.6.1 Capítulo 2

Motivados por la desviación de la Gaussianidad encontrada en los datos del
primer año de WMAP usando la SMHW, hemos realizado un análisis de las
manchas en los mapas de coeficientes de ondícula. Hemos detectado una man-
cha extremadamente fría y grande a escalas de ≈ 4◦ con coordenadas galácticas
b = −57◦, l = 209◦. La probabilidad de encontrar tal mancha a una escala conc-
reta en simulaciones Gaussianas es de ≈ 0.2%, indicando que si es intrínseca
sería incompatible con el modelo estándar ya que éste predice fluctuaciones
Gaussianas en la RFCM. Si excluimos la mancha de nuestro análisis, el resto del
mapa parece ser compatible con Gaussianidad.

Para determinar el origen de la mancha hemos realizado numerosos tests rela-
cionados con contaminación instrumental o galáctica. Comprobamos que los
efectos del ruido instrumental y de la antena son despreciables a las escalas
a las que aparece la mancha. Además la detección aparece en todos los detec-
tores del satélite. La mancha parece ser independiente de la frecuencia mientras
que los contaminantes galácticos presentan una dependencia frecuencial fuerte.
Sin embargo no podemos descartar aún el efecto Sunyaev-Zeldovich producido
por cúmulos ya que la dependencia frecuencial de éste es más débil que la de
los contaminantes galácticos. Una mancha parecida podría ser originada por
un cúmulo parecido al de Coma pero a una distancia más cercana, o bien por
varios cúmulos ricos a la distancia a la que se encuentra Coma. Sin embargo
hemos comprobado que en la dirección de la mancha no se encuentra ningún
cúmulo de galaxias.

Concluimos por tanto que las fluctuaciones intrínsecas no pueden ser descar-
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tadas como causantes de la mancha. En concreto una estructura muy ma-
siva y distante podría producir una mancha como la observada a través del
efecto Rees-Sciama [119]. Esta estructura debería estar muy alejada ya que
sino habría sido observada ya. Otras posibilidades serían defectos topológi-
cos (como monopolos o texturas) o inflación no-estándar. Otra posibilidad
sería una suma de una fluctuación Gaussiana de RFCM con el efecto Sunyaev-
Zeldovich.

7.6.2 Capítulo 3

En este capítulo hemos analizado en primer lugar la robustez estadística de la
desviación de la Gaussianidad en la kurtosis de coeficientes de ondícula. Te-
niendo en cuenta todos los tests realizados, vemos que solo 0.69% presentan
una desviación igual o mayor que los datos en 4 escalas consecutivas de un
hemisferio cualquiera.

En segundo lugar hemos estudiado la morfología de la mancha usando ondícu-
las elípticas en la esfera. Observamos que la amplificación máxima en temper-
atura se obtiene para ondículas casi isótropas, por lo que la forma de la mancha
subyacente es casi circular. Este resultado no descarta hipótesis como defectos
topológicos (como texturas) o potenciales gravitatorios con forma circular.

Por último nos centramos en la posible contaminación Galáctica o de efecto
Sunyaev-Zeldovich en la región de la mancha observada. Vemos que el efecto
Sunyaev-Zeldovich por si sólo es incompatible con la dependencia frecuencial
plana que presenta la mancha. Una combinación de contaminantes galácticos
podría dar lugar a una contribución independiente de la frecuencia, por lo que
analizamos este caso con más detalle.

En el espacio de coeficientes de ondícula, la contribución de los contaminantes
galácticos es extremadamente baja en las bandas Q, V y W. La que más con-
tribuye es la emisión free-free excepto en la banda W donde está al mismo nivel
que el polvo aunque por debajo del ruido instrumental.

El hecho de que la kurtosis y el área sean iguales en la banda Q, donde la con-
taminación residual es más alta que en la V y W, indica que los contaminantes
no juegan un papel importante en el origen de la mancha.

Además obtenemos resultados independientes de la técnica utilizada para sub-
straer la contaminación e incluso sobreestimando la contaminación residual es
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altamente improbable llegar a explicar la mancha con emisión Galáctica.

7.6.3 Capítulo 4

En este capítulo hemos repetido los análisis realizados con los datos del primer
año de WMAP para los datos del tercer año, recientemente publicados. Varios
trabajos anteriores [188], [43], [32] y [44] detectaron una mancha no Gaussiana
usando distintos estimadores como la kurtosis, el área, Max y HC, siempre
basados en ondículas en la esfera. Aquí confirmamos la detección aplicando
todos estos estimadores a los datos del tercer año de WMAP. La nueva técnica
utilizada para restar la contaminación galáctica hace que la significación de la
detección sea aún mayor.

Para evitar cualquier consideración a posteriori aplicamos un nuevo test para
calcular la probabilidad de que la desviación sea debida a una fluctuación es-
tadística del modelo Gaussiano. El valor que obtenemos para dicha probabili-
dad es 1.85%. Además, la mancha es aún menos dependiente de la frecuencia
descartando así la contaminación galáctica como posible explicación. Vemos
que el ruido instrumental también es prácticamente despreciable para nuestro
análisis. En el siguiente capítulo analizaremos más en detalle el posible origen
de la mancha basándonos en un modelo de defectos topológicos.

7.6.4 Capítulo 5

Hemos investigado la posibilidad de que la mancha sea debida a una textura
cósmica, encontrando que la escala, amplitud y el número de manchas esper-
adas son consistentes con esta interpretación.

Usando una aproximación analítica del perfil de temperatura generado por una
textura, realizamos un test de hipótesis bayesiano. Calculamos el cociente de
probabilidad a posteriori entre el modelo con y sin textura siendo el resultado
favorable a la existencia de una textura centrada en b = −57◦, l = 209◦.

Para testar el modelo de texturas a todo el cielo hemos simulado texturas con el
perfil analítico y la distribución de escalas teórica. Comprobamos que la kurto-
sis de los datos que resultaba ser incompatible con las simulaciones Gaussianas,
ahora es consistente con las simulaciones con texturas. Además las manchas
más pequeñas que se han añadido no introducen nuevas incompatibilidades
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con los datos.

Si la mancha es debida a una textura, podemos inferir que la escala de ruptura
de simetría es φ0 ≈ 8.7 × 1015GeV, que es del orden de las predicciones de las
teorías unificadas. El redshift al que se encontraría la textura es z ≈ 6 dentro de
los límites de los más profundos muestreos de galaxias.

Futuras observaciones pueden confirmar o refutar esta hipótesis. En primer lu-
gar las texturas apenas producen polarización en la RFCM mientras que si la
mancha es debida a una fluctuación Gaussiana, debería verse un patrón radial
de polarización. A estas escalas alrededor del 50% de la polarización está cor-
relacionada con la temperatura. Además el modelo de texturas predice muchas
manchas pequeñas que no detectamos posiblemente por estar mezcladas con
las manchas Gaussianas que alcanzan su potencia angular máxima alrededor
de 1◦ − 2◦. Sin embargo medidas precisas de la polarización a estas escalas
podrían revelar una desviación respecto a las predicciones para la correlación
entre temperatura y polarización, confirmando la existencia de texturas.

Por otra parte el modelo analítico utilizado aquí es una aproximación por lo que
sería deseable realizar un estudio a todo el cielo con simulaciones de texturas a
alta resolución para comprobar nuestros resultados.

7.7 Trabajo futuro

Para comprobar la posible detección de una textura hemos de realizar varias
pruebas. Utilizando simulaciones de texturas a alta resolución podremos con-
trastar de manera más exacta la desviación de la Gaussianidad medida en los
datos. Además un análisis bayesiano a todo el cielo puede determinar mejor el
cociente de probabilidades a posteriori. También un estudio de la polarización
puede confirmar o rechazar la detección de la textura.

Estamos trabajando en comparar la hipótesis de la textura con otras como gran-
des vacíos o el efecto Sunyaev-Zeldovich. Estas alternativas parecen ser menos
probables debido al gran tamaño angular de la mancha.

El patrón de anisotropías predicho por un modelo de Bianchi que fue detectado
en los datos de WMAP [25] también está relacionado con la mancha, como dis-
cutimos en los capítulos 3 y 4. Otro trabajo a realizar es el estudio de la relación
entre la mancha y dicho patrón.
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