UNIVERSIDAD AUTÓNOMA DE MADRID Facultad de Ciencias Físicas Departamento de Física Teórica

THE LAMBDA ORIONIS STAR FORMING REGION.

Spectroscopic Characterization.

Amelia Bayo Arán Madrid, 2009

UNIVERSIDAD AUTÓNOMA DE MADRID

Facultad de Ciencias Físicas (Departamento de Física Teórica)

THE LAMBDA ORIONIS STAR FORMING REGION.

Spectroscopic Characterization.

Memoria para obtener el título de Doctor en Ciencias Físicas que presenta Amelia Bayo Arán dirigido por el

Dr. David Barrado y Navascués

en el

Laboratorio de Astrofísica Espacial y Física Fundamental (INSTITUTO NACIONAL DE TÉCNICA AEROESPACIAL)

> y supervisado por Dr. Carlos Eiroa de San Francisco

> > Madrid, Junio 2009

A Carlos y a mis padres... y a esa particular familia del LAEFF.

v

Agradecimientos

Una vez me dijo un amigo muy sabio que no debería esperar hasta el último momento para escribir los agradecimientos de la tesis; que al fin y al cabo es un trabajo (el realizado durante el doctorado) que uno desarrolla en última instancia para uno mismo, y durante el cual las implicaciones personales son constantes. Por todo esto, él pensaba que los agradecimientos no deberían de escribirse simplemente para "salir del paso" sino para realmente reflejar esa componente humana que toda tesis tiene detrás.

También es cierto que al margen de darme este consejo tan bueno no me advirtió del respeto que impone sentarse frente al papel y ordenar todas las ideas que vienen a la cabeza cuando uno piensa en la gente que ha contrubuido de uno u otro modo al desarrollo de esta tesis. Y el temor más que considerable a olvidarse de nombrar diréctamente a alguien que claramente merezca agradecimiento.

Lógicamente tengo que empezar por mi familia, mis padres, que con su ejemplo me han demostrado que para conseguir lo que realmente uno quiere (una vez que sepa qué es exactamente lo que quiere) "sólo" son necesarios dos ingredientes: la ilusión y el trabajo duro. Gracias por confiar tanto en mí y por apoyarme en decisiones no muy estándares que puede que no encajen en el ideal de vida que la mayoría de los padres tienen para sus hijos. Pero sobre todo gracias por hacerme saber cuado creíais que estaba equivocada con el mismo cariño con el que habéis celebrado mis decisiones acertadas.

La siguiente persona en la "lista" resulta obvio; gracias Carlos por ser mi compañero, mi mejor amigo, mi crítico más duro, el que conoce todas mis caras y aun así no se mueve de mi lado, quien sabe pintarlo todo de colores.

Gracias también a David, por ser mucho más que mi director, por trasmitir la pasión que sientes por lo que haces, por haber sabido sacar lo mejor de mí fomentando al mismo tiempo mi independencia y porque claramente sin tí esta tesis no existiría.

Gracias a este grupo tan completo y divertido que ha sabido ensamblar David: María, Nuria, Aina, Pablo y Belén. María, mi hermana desde hace casi cinco años; gracias por las charlas más interesantes que he tenido en este tiempo tanto de ciencia como de la vida; gracias por ser una compañera de despacho excepcional y una persona de la que aprender a cómo tomarse las cosas con buen ánimo. Gracias Nuria por ser tan especial, por todo el entusiasmo que trasmites, por contestar a mis preguntas con la sencillez del que entiende lo realmente importante de las cosas. Gracias Aina y Belén por tener siempre comentarios positivos, por valorar mi optinión y mis preguntas y por tener siempre que lo he necesitado un momento para mi. Gracias Pablo por inyectar una dosis de inocencia e ilusión que a veces uno pierde cuando se agobia con fechas límite y demás aspectos que no son tan importantes cuando uno recuerda como bien dices que nuestro trabajo es muy bonito.

Gracias a Benjamín por tantas cosas... porque combinas un corazón enorme con una sabiduría reposada, eres el maestro que todos deberíamos encontrarnos en la escuela y luego de

adultos, para poder aprovechar todas tus cualidades. Gracias principalmente por haberme dado ejemplo para ser mejor persona.

Gracias a todos los que hicísteis del LAEFF un sitio tan especial (Bruno, Concha, Itziar, Daniel y tantos otros) y a los que así lo seguís manteniendo (Margie, Ignacio, Raúl, Sergio, Carlos, Albert, Miriam, Santi, Mauro, Iñaki, Julia, María, Enrique, Miguel, Daid, Jorge, no quisera dejarme a nadie). Cuando uno llega a trabajar aqui por primera vez bastan unas horas para que se sienta relajado y con la confianza de pedir ayuda en cualquier momento... y eso, se agradece mucho.

A mi parecer, durante la tesis, especialmente al final de la misma, uno necesita que la gente de su alrededor sea paciente y, en cierto modo, le mimen. No puedo pasar por alto el apoyo que mis amigas "del cole" me han dado todo este tiempo. Muchas gracias Lara, Esther y Marian, por ser mi familia en Madrid.

Por último, y con la pena y la seguridad de que olvido dar las gracias a gente a la que debiera; muchas gracias a la gente que ha hecho que mis dos visitas de trabajo a Pasadena se hayan convertido probablemente en dos de las mejores experiencias vitales que he tenido. En especial muchas gracias a John por lo tantísimo que he aprendido de él; por enseñarme con su ejemplo que en este trabajo hay que ser concienzudo y estar muy seguro de poder explicar bien todas las conclusiones a las que uno llegue. Muchas gracias a Sylvain, porque desde el primer momento me brindó su ayuda y por ser una de esas personas que sabes que te acompañarán para toda la vida.

Amelia Bayo Arán,

14 de Junio de 2009

List of contents

Li	st of I	ligures	xiii
Li	st of T	Fables	xvii
Re	esume	n	1
Ab	Abstract		
1	Intro 1.1 1.2 1.3 1.4	Oduction Star Formation Theory 1.1.1 Low-mass Star Formation and Young Stellar Objects classification Stellar Spectral Classification The Lambda Orionis Star Forming Region Previous Observations 1.4.1 The Aim of this Thesis	5 6 9 13 14 18
2	The 2.1 2.2	Photometric and X-Ray Surveys Colinder 69	21 21 55
3	Coll	inder 69: the Central Cluster	71
	3.1 3.2 3.3	A test for the VOSA methodology. Spectral Energy Distribution analysis of the candidate members from the CFHT1999 survey	72 73 73 74 74 74 74 78 88 88 88 95 96 99

		3.3.5 Particular sources:	114
		3.3.5.1 Accretion:	114
		3.3.5.2 Binarity	119
		3.3.5.3 Membership	120
		3.3.5.4 Variability	123
	3.4	Low resolution near-infrared spectroscopy	124
		3.4.1 Estimating infrared spectral types: Water vapour indices and templates.	124
		3.4.2 Estimating surface gravities	125
	3.5	The spatial distribution of the members.	126
	3.6	The Hertzsprung–Russell diagram of Collinder 69.	130
	3.7	The Initial Mass Function of Collinder 69.	130
	3.8	Conclusions	133
4	The	dark cloud Barnard 35	149
	4.1	Previous Surveys	149
	4.2	Spectroscopy for the Barnard 35 sample	150
		4.2.1 Spectral type determination	150
		4.2.2 Rotational velocities estimation.	152
		4.2.3 H α and other emission lines: accretion, activity and outflows	159
		4.2.4 Youth indicators using Alkali: Li λ 6708 Å and NaI λ 8200 Å	162
	4.3	The spatial distribution of the members.	166
	4.4	The Hertzsprung-Russell diagram of Barnard 35.	166
	4.5	Conclusions	169
5	The	dark cloud Barnard 30	173
	5.1	Previous Surveys	173
	5.2	Spectroscopy for the Barnard 30 sample	173
		5.2.1 Spectral type determination	174
		5.2.2 Rotational velocities estimation	174
		5.2.3 H α and other emission lines: accretion activity and outflows	181
		5.2.4 Youth indicators using Alkali: Li λ 6708 Å, KI λ 7700 Å and NaI λ 8200 Å	184
	5.3	The spatial distribution of the members	185
	54	The Hertzsprung-Russell diagram of Barnard 30	189
	5.5	Conclusions	189
6	Con	clusions	195
	6.1	Collinder 69	195
	6.2	Barnard 35	196
	6.3	Barnard 30	196
7	Con	clusiones	197
	7.1	Collinder 69	197
	7.2	Barnard 35	198
	7.3	Barnard 30	198
Li	st of p	publications	201

A	Observations and data reduction	203
	A.1 Medium and high-resolution optical spectroscopy	203
	A.2 Low resolution Optical spectrocopy	204
	A.3 Low resolution Near Infrared spectrocopy	205
B	Automating the measurement of line properties.	209
С	Virtual Observatory SED Analyser	213
С	Virtual Observatory SED Analyser C.1 Synthetic photometry.	213 216

List of Figures

1.1	Schematic overview of the current theory of the formation of low-mass stars	7
1.2	Bolometric luminosity vs. temperature (T _{bol} or T _{eff}) diagram after Young et al.	
	(2005); Dunham et al. (2008)	8
1.3	Spectral identifications for a M dwarf member of the Chamaleon I Dark Cloud	10
1.4	Optical spectral sequence of L dwarf types.	12
1.5	The optical/near-infrared spectrum of Gl 229B.	13
1.6	IRAS false colour image of the Lambda Orionis Star Formin Region	14
1.7	The Lambda Orionis Star Forming Region as seen in H α	15
1.8	Cartoon, taken from Dolan & Mathieu (2002), showing the possible evolution of	
	the Lambda Orionis Star Forming Region.	17
2.1	Layout of photometric surveys in Collinder 69	22
2.2	Layout of X-ray survey in Collinder 69	44
2.3	I-J vs. J-[3.6] color-color diagram that allows the identification of contamination	
	by quasars.	45
2.4	Layout of photometric surveys in Barnard 35	56
2.5	Layout of photometric surveys in Barnard 30	57
3.1	[R-I] and [I-K] vs. T_{eff} (obtained with VOSA) diagrams for the candidate members	
	of C69	75
3.2	T_{eff} forced fits to the SED of LOri055	76
3.3	Comparison of different bolometric corrections (including the one provided by	
	VOSA).	77
3.4	Best fit achieved with VOSA for two sources showing infrared excess	78
3.5	HR diagram including the "problematic" candidates.	79
3.6	Best fit achieved with VOSA for LOri162, a possible L field dwarf	80
3.7	Spectral type determination by comparison with templates	89
3.8	Correlation of different indices with spectral types.	91
3.9	Spectral sequence determined for different instrumental set-ups	92
3.10	Example of $vsin(i)$ estimation.	96
3.11	Dependence (independence) of the line measurements with the spectral resolution.	97
3.12	Detail around H α and Li I of the FLAMES spectra of LOri038 adapted to a variety	
	of spectral resolutions.	98
3.13	$H\alpha$ equivalent width versus effective temperature for Collinder 69 confirmed mem-	
	bers	101

3.14	FLAMES Collinder 69 field of view.	102
3.15	Mass accretion rate vs. stellar mass for a wide range of stellar masses	103
3.16	IRAC color-color diagram including information about the nature of the disk and	
	the H α emission of the sources.	104
3.17	Effective temperature vs. IRAC SED slope of the confirmed and candidate mem-	
	bers to Collinder 69 including information about the nature of the disk and the H α	
	emission of the sources.	105
3.18	Detail around Li I λ 6708Å	106
3.19	Lithium equivalent width versus the spectral type for new members of Collinder 69	107
3.20	Lithium equivalent width provided in Sacco et al. (2008) versus the values mea-	
	sured in this work.	108
3.21	Determination of the gravity.	109
3.22	T_{eff} vs EW(NaI) for members and non-members of Collinder 69	110
3.23	No veiling detected in the accreting sources from our LRIS low-resolution spectra.	118
3.24	Variable H α emission detected on LOri080.	118
3.25	Double peaked structure in the H α emission of C69WI1-9288 and C69WI1-2708.	120
3.26	LOri075, a marginally resolved spectroscopic binary.	121
3.27	Candidates discarded as members based on the Na I λ 8200 doublet	122
3.28	Infra-red spectral type determination.	126
3.29	Surface gravity determination.	127
3.30	Spatial distribution of members of Collinder 69.	128
3.31	Spatial distribution of weak line and classical TTauri stars and substellar analogs.	129
3.32	HR diagram of the confirmed (spectroscopically) and highly reliable (photometric)	-
	candidate members.	131
3.33	Relationship between the masses derived from T_{eff} and L_{bol} .	132
3.34	IMF derived for Collinder 69 (I).	134
3.35	IMF derived for Collinder 69 (II).	135
3.36	IMF derived for Collinder 69 (III).	136
3.37	IMF derived for Collinder 69. Comparison with the σ Ori cluster.	137
4.1	Spectral type determination by comparison with templates	151
4.2	Absorption lines used for spectral classification.	153
4.3	Spectral sequence of Barnard 35 candidate members	154
4.4	Veiling spectrum of DM244.	155
4.5	Veiling spectrum of DM244 (II)	155
4.6	$H\alpha$ equivalent width versus effective temperature for Barnard 35 confirmed mem-	
	bers	160
4.7	Mass accretion rate vs. stellar mass for a wide range of stellar masses in Barnard 35	.161
4.8	IRAC colour-colour diagram including information about the nature of the disk	
	and the H α emission of the sources	162
4.9	Detail on the Li I absorption line and H α emission for DM248 and DM244	163
4.10	Lithium equivalent width versus the effective temperature of members of Barnard	
	35 in Dolan & Mathieu (2001)	164
4.11	T_{eff} vs EW(NaI) for members and non-members of Barnard 35	165
4.12	Spatial distribution of members of Barnard 35	167

4.13	HR diagram of the confirmed (spectroscopically) and highly reliable (photometric) candidate members of Barnard 35	168
5.1	Spectral sequence for members of Barnard 30 observed with CAFOS	175
5.2 5.3	CaH index versus spectral type for late K and M dwarfs	176
	date members	177
5.4	Mass accretion rate vs. stellar mass for a wide range of stellar masses in Barnard 30	183
5.5 5.6	$H\alpha$ equivalent width versus spectral type for Barnard 30 confirmed members Detail on the Li I absorption line and $H\alpha$ emission for sources observed at high	184
	resolution.	185
5.7	Lithium equivalent width versus the spectral type for members of Barnard 30	186
5.8	Projectesd rotational velocity estimations for Barnard 30 members	187
5.9	Projected rotational velocity versus H α equivalent width	187
5.10	Spatial distribution of members of Barnard 30	188
5.11	HR diagram of the confirmed (spectroscopically) and highly reliable (photometric)	
	candidate members of Barnard 30	190
A.1	Spectrophotometry of the sample of field targets.	207
B .1	Example of measured forbidden lines and othe accretion signposts	211
C.1	Work-flow scheme.	218
C.2	Input data interface in VOSA.	219
C.3	Catalogues query form.	219
C.4	Catalogues query output.	220
C.5	Theoretical models query form	220
C.6	Fits results.	221
C.7	Graphical output.	222
C.8	Summary of the 20 best fits found by VOSA for LOri086	223
C.9	Graphical output from VOSA for a source with infrared excess (LOri048)	223
C.10	Isochrones and evolutionary tracks query form.	224
C.11	HR diagram of the members of C69 without detected infrared excess	225

List of Tables

2.1	Photometry for the DM members of Collinder 69	26
2.2	Disk properties of the DM members not in common with Barrado y Navascués	
	et al. (2004b, 2007b)	27
2.3	Candidate members of the Collinder 69 cluster	28
2.4	Membership for the previously selected candidate members of Collinder 69	32
2.5	Photometry for the new candidate members of the Collinder 69 cluster. $1^{\circ} \times 1^{\circ}$	
	Spitzer survey.	36
2.6	Membership for the new sources with IR excess from the $1^{\circ} \times 1^{\circ}$ Spitzer Survey in	•
	Collinder 69.	38
2.7	Photometry for the new candidate members of Collinder 69 from the SUBARU \sim	
	Survey.	40
2.8	Optical and infrared photometry for the X-ray sources of Collinder 69 East	47
2.9	Disk properties, physical parameters and membership citeria of the X-ray sources	
	in the Collinder 69 East field	50
2.10	Optical and infrared photometry for the X-ray sources of Collinder 69 West	52
2.11	Disk properties, physical parameters and membership citeria of the X-ray sources	
	in the Collinder 69 West field.	54
2.12	Photometry for the Dolan and DIL members of Barnard 35	59
2.13	Disk properties of the previously known members of Barnard 35	60
2.14	Photometry for the new candidate members of Barnard 35 from the Spitzer Survey.	61
2.15	Disk properties of the new candidate members of Barnard 35 selected from the	
	Spitzer survey.	62
2.16	Photometry for the DM and DIL members of Barnard 30	63
2.17	Disk properties of the previously known members of Barnard 30	65
2.18	Photometry for the new candidate members of Barnard 30 from the Spitzer Survey.	67
2.19	Disk properties of the 66 new candidate members of Barnard 30 selected from the	
	Spitzer data	69
3.1	Example of the photometric data for our sources.	72
3.2	Stellar parameters derived for Barrado y Navascués et al. (2004b) candidates	81
3.3	Physical properties of the Colinder 69 candidate members derived by Maxted et al.	
	(2008)	86
3.4	Sacco et al. (2008) measurements derived for 49 of the Barrado y Navascués et al.	
	(2004b) candidate members	87
3.5	Collinder 69 optical spectroscopic campaigns.	88

3.6	Optial Spectral Indices used for C69 candidate members	90
3.7	Parameters derived from for the MIKE sample.	92
3.8	Parameters derived for the LRIS (low resolution spectra) sample	93
3.9	Parameters derived for the LRIS (medium resolution spectra) sample	93
3.10	Parameters derived for the TWIN sample.	93
3.11	Parameters derived for the CAFOS sample.	94
3.12	Parameters derived for the FLAMES sample.	94
3.13	Temperature scale derived from our spectroscopic data of Collinder 69	95
3.14	Properties of the sources showing Li variability.	108
3.15	Equivalent width of the main lines observed in the spectra obtained with MIKE .	111
3.16	Equivalent width of the main lines observed in the spectra obtained with LRIS in	
	the lowest resolution used.	112
3.17	Equivalent width of the main lines observed in the spectra obtained with LRIS in	
	medium resolution.	113
3.18	Equivalent width of the main lines observed in the spectra obtained with B&C and	
	parameters derived	114
3.19	Equivalent width of the main lines observed in the spectra obtained with TWIN	115
3.20	Equivalent width of the main lines observed in the spectra obtained with CAFOS.	116
3.21	Equivalent width of the main lines observed in the spectra obtained with FLAMES	117
3.22	Possible variable sources.	124
3.23	Collinder 69 near infrared spectroscopic campaigns	124
3.24	Parameters derived from the near-infrared spectroscopy	126
3.25	Summary of the parameters derived in this work for Collinder 69 candidate mem-	
	bers and comparison with previous studies.	138
4.1	Permand 25 options experimental experimental	150
4.1	Equivalent width of the main lines observed in the spectre obtained with CAEOS	156
4.2	Parameters derived for the CAEOS sample	150
4.5 1 1	Summary of the parameters derived in this work for Barnard 35 candidate mem-	156
4.4	bers and comparison with previous studies	170
		170
5.1	Barnard 30 optical spectroscopic campaigns.	174
5.2	Equivalent width of the main lines observed in the spectra obtained with Hamilton	
	at LICK	178
5.3	Equivalent width of the main lines observed in the spectra obtained with CAHA/TWI	IN179
5.4	Equivalent width of the main lines observed in the spectra obtained with CAHA/CAH	FOS 180
5.5	Equivalent width of the main lines observed in the spectra obtained with Lick/KAST	
	and parameteres derived	181
5.6	Parameters derived for the Lick/Hamilton sample	182
5.7	Parameters derived for the CAHA/TWIN sample.	182
5.8	Parameters derived for the CAHA/CAFOS sample.	182
5.9	Summary of the parameters derived in this work for Barnard 30 candidate mem-	
	bers and comparison with previous studies.	191

Resumen

La región de formación estelar λ Orionis, situada en la cabeza de Orión, forma parte de la nube molecular de Orión pero situado a unos 15 grados al Norte del centro del complejo (con una declinación ~10°). La estrella λ Ori es el miembro más brillante del cúmulo central Collinder 69. Éste es un cúmulo abierto compacto y bien definido. Otras dos asociaciones algo menores se encuentran situadas cerca de Collinder 69 y están asociados a las nubes moleculares Barnard 30 y Barnard 35.

En el infrarrojo medio y a 21 cm, λ Ori marca el centro de burbuja circular de cuatro grados de diámetro formada por polvo y gas y que se cree que es el resultado de los vientos estelares procedentes de los miembros más masivos del cúmulo o por una explosión de supernova cuyo progenitor habría sido el miembro más masivo del cúmulo.

Las propiedades de estas tres asociaciones son muy diversas. Collinder 69 es un cúmulo muy rico con una estrella de tipo espectral O (la propia λ Ori – O8III), aproximadamente una docena de estrellas tipo B y un buen número de estrellas de baja masa y enanas marrones; sin embargo Barnard 30 y Barnard 35 parecen estar formados exclusivamente de estrellas de baja masa. Además la frecuencia de estrellas TTauri Clásicas en las asociaciones en torno a Barnard 30 y Barnard 35 parece ser mucho más elevada que la de Collinder 69. Así, la región de formación estelar λ Ori conforma el perfecto laboratorio para estudiar los procesos formación estelar.

La motivación de esta tesis es estudiar y comparar las propiedades de los miembros individuales de estas tres regiones, en particular la evolución de los discos y su dependencia con la masa estelar.

Hemos recopilado una gran variedad de observaciones espectroscópicas a muy diferentes resoluciones que nos han permitido establecer la pertenencia al cúmulo de un gran número de fuentes y el estudio detallado de las propiedades de las fuentes que albergan discos, así como de aquellas (mas evolucionadas) que ya carecen de ellos. Hemos estudiado objetos desde Clase I/II (cuando la protoestrella central está rodeada de un disco y embebida en una envoltura de gas y polvo)) a Clase II (CTTs, en las que la envoltura ya ha desaparecido pero el disco de acrecimiento aun perdura), y Clase III (WTTs, cuando el disco ya ha desaparecido). Al comparar estos resultados para las distintas asociaciones queremos abordar cuestiones que pudieran tener dependencia con el entorno como la frecuencia de discos y la estructura radial de los mismos en función del entorno.

Abstract

The Lambda Orionis Star Forming Region is part of the Orion molecular cloud complex, it is located about 15 degree north of the center of the complex ($\delta \sim 10$ degrees). λ Ori, itself is the brightest member of Collinder 69, a well-defined, compact open cluster at the center of the star forming region. Two other already identified and somewhat smaller clusters lie near Collinder 69 and are associated with the Barnard 30 and Barnard 35 molecular clouds.

At mid-infrared wavelengths and 21 cm, λ Ori marks the center of a four degree diameter circular shell of gas and dust thought to be the result of winds from the high mass stars in the cluster or from a supernova whose progenitor was the highest mass member of the cluster.

The properties of these three associations are quite diverse. Collinder 69 is quite rich, with one O star (λ Ori itself) and of order a dozen B stars and a well-populated sequence of lowmass stars and brown dwarfs whereas the Barnard 30 and Barnard 35 associations appear to be almost entirely composed of low-mass stars. Moreover, the fraction of Classical TTauri low-mass stars in the Barnard 30 and Barnard 35 clusters seems to be much higher than that of Collinder 69. Thus, we believe that the λ Ori star-forming region can serve as a valuable testbed for star formation studies.

It is the comparative properties of the individual members of these three regions what leads the work presented here. In particular, the evolution of the disks and its dependence with the stellar mass.

We have gathered a wide variety of spectroscopic observations with very different resolutions. These spectra have allowed us to stablish membership to the various associations and the detailed study of the properties of sources harbouring disks as well as those (more evolved) that have cleared them. We have analyzed spectra from sources at different evolutionary stages; from Class I/II (when the central protostar is surrounded by a disk and still embedded within a dust/gas envelope), to Class II (or Classical T Tauri stars, where the envelope has disappeared but the accretion disk remains), and Class III (weak line T Tauri stars, when only a fast rotating star remains). By comparing these results for the three associations, we aim to address the questions of the frequency and radial structure of circumstellar disks as a function of environment.

Chapter 1

Introduction

"...one is forced to wonder where it will lead to, if everyone who works on stellar spectra also introduces a new classification..." (Nils Duner, 1899).

1.1 Star Formation Theory

The formation of stars and planetary systems constitutes one of the basic problems of modern Astrophysics. The development of new instrumentation and observational techniques has provided a large body of observational data, allowing a deeper understanding of earlier stages of the evolution of stars and planets. Nevertheless, there still remain many open questions.

Whilst there is a generally accepted evolutionary scheme (see Section 1.1.1) for the formation of low mass stars (more numerous than high-mass stars, perhaps with longer formation phases, and closer parent molecular clouds), the analogue processes involving both ends of the Initial Mass Function (hereafter IMF) are not well understood yet.

The discovery of the first brown dwarfs in 1995 (very low mass objects characterized by the lack of stable hydrogen burning in their interior, typically masses below $0.072M_{\odot}$) led to a debate on the formation mechanism of this type of objects that is still open nowadays. Padoan & Nordlund (2002) argued that brown dwarfs form via "turbulent fragmentation" (the same mechanism as more massive stars), while Reipurth & Clarke (2001) suggested that brown dwarfs may be stellar embryos ejected from newborn multiple systems before they accreted enough mass to start hydrogen burning (in this model, the truncation of the disks is explained by dynamical interactions). Studies of disk accretion, rotation and activity (and the relationship between classic indicators of activity such as H α and these phenomena) in young brown dwarfs could help to distinguish between the former scenarios.

On the other edge of the mass spectrum, high-mass star formation plays a very important role from the perspective of the momentum, mass, and energy input to the interstellar medium by such stars (see Massey 2003 and Bromm & Larson 2004); they take part in both the heating and cooling of the ISM but the question of their mechanism of formation remains open (from an observational point of view, the high dust extinction makes it difficult to observe high-mass stars during critical early formation phases, besides, they are rare and evolve quickly). Do massive stars form similarly to low-mass stars but with enhanced accretion rates, or are there different processes taking place, like the coalescence and merging of intermediate-mass protostars in the very center of star-forming clusters?

1.1.1 Low-mass Star Formation and Young Stellar Objects classification

In the current paradigm, stars are born within molecular clouds, which are accumulations of gas and dust. These clouds are initially supported against gravitational collapse by a combination of thermal, magnetic, and turbulent pressures (Shu et al. 1987; Mouschovias 1991). Nevertheless, molecular clouds can fragment in smaller and denser cores, where the presence of gravitational instabilities yields a collapse of the cloud material (Shu et al. 1987, and references therein).

The processes that take place after the initial gravitational collapse are very likely to depend on the mass of the system. Focussing on the low-mass regime; the gas of molecular clouds contains an initial amount of angular momentum (Goodman 1993), which must be conserved during the collapse of the core. Due to this conservative phenomenon, the infalling matter encounters a centrifugal barrier in a plane perpendicular to the angular momentum vector, and the cloud material tends to be deposited on a that plane, yielding the formation of a rotating disk and a central protostar (Terebey et al. 1984; Shu et al. 1987). After the collapse phase, where most of the infalling material is deposited onto the disk, an accretion phase begins, in which part of the disk mass is accreted onto the central protostar. This step requires both the transfer of mechanical energy (to keep the stability in a Keplerian disk when material falls onto orbits located closer to the protostar). See an schematic overview of the complete process of formation of low-mass stars and a time scale estimation of the different phases in Fig. 1.1

This thesis concerns the study of the spectroscopic properties of Young Stellar Objects (hereafter YSOs) at different evolutionary states. The first attempt to empirically study the nature of youngest/embedded low-mass YSOs relied on infrared observations. The dust conforming the surrounding envelope reprocesses the energy emitted by the central pre-stellar object, and therefore a significant fraction of their luminosity is emitted in the infrared.

Lada (1987) and Adams et al. (1987) proposed a classification scheme of low-mass YSOs based on the morphology of their Spectral Energy Distributions (SEDs) in contrast with blackbodies at these long wavelengths (between $\lambda = 2.2$ and 100 μ m). The observed slope $\alpha_{IR} = d \log(\lambda F_{\lambda})/d \log(lambda)$ was interpreted as a proxy of the evolutionary status of the object under study from Class I (deeply embedded objects) to Class III objects (young- or pre-main sequence

Figure 1.1: Evolution from Pre-Stellar Cores to Class III sources. On the sides of the cartoon (after Shu et al. 1987), we have represented typical SEDs of the objects at different stages of their evolution (Lada 1987; Andre & Montmerle 1994).

stars).

Several years later, Andre et al. (1993) extended this classification scheme to even younger sources. They proposed to study the relation of the bolometric luminosity of the embedded YSOs with their submillimeter and millimeter continuum emission (L_{smm}/L_{bol}) and $L_{mm}/L_{bol})$ as a proxy for the ratio of stellar and envelope masses $(M_{env}/M_*, which decreases with protostel$ $lar age). The new category of sources, the Class 0 (with largest <math>L_{smm}/L_{bol}$ and L_{mm}/L_{bol} ratios), would correspond therefore to the youngest protostars, and might have a phase lifetime of ~ 10⁴ years according to Andre & Montmerle (1994).

In this context, the definition of the Bolometric Temperature (T_{bol}) by Myers & Ladd (1993); the temperature of a blackbody having the same mean frequency as the observed SED; allowed a parametrization of this evolutionary scheme. Chen et al. (1995) proposed the following ranges of T_{bol} for each evolutionary stage: $T_{bol} < 70$ K for Class 0 sources (characterized by the presence of powerful and collimated molecular outflows and compact centimeter radiocontinuum emission, Margulis & Snell 1989 and Bontemps et al. 1996), $70 < T_{bol} < 650$ K for Class I

Figure 1.2: Bolometric luminosity vs. temperature (T_{bol} or T_{eff}) diagram after Young et al. (2005); Dunham et al. (2008). The 50 sources compiled by Dunham et al. (2008) showing some evidence for being embedded low luminosity sources, are shown as filled black squares. The black dotdashed lines show the evolutionary tracks for the three models considered by Young et al. (2005). The short-dashed black lines show the evolutionary tracks for three models considered by Myers et al. (1998). The crosses correspond to Taurus members and the vertical magenta dashed lines show the Class 0–I and Class I–II T_{bol} boundaries from Chen et al. (1995). Members from the 5 Myr Collinder 69 cluster are included as solid circles (Barrado y Navascués et al. 2007b), as well as isochrones from Baraffe et al. (1998), blue lines. The red diamond coresponds to the coldest and least luminous brown dwarf binary candidate by Burgasser et al. (2008).

sources (invisible in the optical, with less powerful and collimated outflows than the previous phase and faint near-infrared emission associated to hotter dust closer to the central protostar), $650 < T_{bol} < 2800$ K for Class II sources (characterized by showing near-IR emission and H α emission lines) and higher temperatures for Class III sources (post- T Tauri stars where the gas of theirs disks has already been disipated almos completely). See Fig. 1.1 for a representation of the typical SEDs associated to each of these classes, and Fig 1.2 for a log(L_{bol}) vs. log(T_{bol}) evolutionary diagram for embedded objects (Myers & Ladd 1993).

1.2 Stellar Spectral Classification

Classification is an important first step in the characterization of any population. It enables us to study the global properties of a group of similar objects and generalize to larger, and perhaps undetected, members. A fundamental attribute of astronomical classification is that it is based on observations; i.e., the way objects appear morphologically, photometrically, or spectroscopically.

Stellar spectral classification has been in practice for nearly 150 years, and calibration of spectral classes to temperature and luminosity scales has provided both crucial insight into the internal physics of stars, their history and evolution, and into the properties of the Galaxy and extragalactic systems.

The classical stellar sequence of Morgan et al. (1943), the most widely accepted classification scheme, originates from the temperature-based sequence first used in the Henry Draper catalog (Pickering 1890), and luminosity discriminants initially identified by Maury & Pickering (1897). It extends the main sequence from hot O–type stars to cool M dwarfs. With the advent of more sensitive optical and near-infrared detectors and large-scale surveys, including the Two Micron All Sky Survey (Skrutskie et al. 2006, hereafter 2MASS), the Sloan Digital Sky Survey (York et al. 2000, hereafter SDSS), and the Deep Near-Infrared Survey of the Southern Sky (Epchtein et al. 1999, hereafter DENIS), cooler stars and brown dwarfs have now been identified. As a result, two new spectral classes have been introduced, the L (Kirkpatrick et al. 1999 and Martín et al. 1999) and T (Burgasser 2002; Burgasser et al. 2002) classes, which are extensions of the main stellar sequence into the brown dwarf regime.

This Thesis is focused on the study of the coolest candidate members of the Lambda Orionis Star Forming Region. These objects (photometrically selected) are expected to have spectral types in the range from M dwarfs to even T dwarfs (although some K dwarfs are also present in our sample). Therefore we present below a description of the typical features that characterize each of these spectral types:

• M dwarfs:

The most obvious features in the optical spectra of these sources are the molecular bands of TiO (and VO for the latest types, M7 and later) and the atomic lines of Ca II, Na I, and K I.

In the case of M dwarfs, the Ca II triplet is much weaker than in M supergiant spectra but on the other hand, they present much stronger lines of the Na I and K I doublets (Kirkpatrick et al. 1999). The latter, at 0.7665 and 0.7699 μ m, shows two trends, broadening with later spectral type down to M7/7.5, but becoming narrower (lower equivalent widths) at spectral types M8 and M9.

On the other hand, the spectra in the near-infrared domain are dominated by deep broad absorption bands of H₂O (particularly at 1.4 and 1.85 μ m), but have many other strong features, both molecular and atomic. The spectral identifications shown in Fig. 1.3 have been extracted from Jones et al. (1994). There are some features that scale with temperature (Jones et al. 1994), such as the water bandhead at 1.34 μ m, the 2.05-2.15 μ m gradient and the CO bandhead at 2.29 μ m; the FeH at 0.99 μ m and VO at 1.2 μ m. The fact that water vapour in the Earth's atmosphere also contributes with a substantial absorption at these wavelengths hampers the analysis to some extent. However, the higher temperatures in the stellar atmospheres mean that the associated steam bands are broader than the terrestrial absorption, so the wings are accessible for measurement (and will be used in Section 3.4.1 with infrared spectral typing purposes). The loci of the deep telluric atmospheric absorptions in Fig. 1.3 are labelled with an asterisk, these parts of the spectrum have been flattened for graphical purpouses. Other features are gravity sensitive such as the K I 1.169 and 1.177 μ m and 1.244 and 1.252 μ m doublets, and Na I 1.138 and 1.140 μ m (Reid et al. 2001).

M dwarfs cover an effective temperature (T_{eff}) range from ~ 4500 K down to ~ 2000 K (Casagrande et al. 2008), and although they are among the most common stars in our stellar neighbourhood, they are also among the least understood; in particular, the evolution of the angular momentum and their internal structures are still open questions.

Figure 1.3: Spectral identifications for a M dwarf member of the Chamaleon I Dark Cloud.

• L dwarfs:

The L spectral class is comprised of a mix of stars and brown dwarfs (depending on the age). This class covers a $T_{\rm eff}$ range from ~ 2000–2200 K down to ~ 1300–1700 K (Kirkpatrick et al. 1999, 2000; Basri et al. 2000; Leggett et al. 2001), corresponding to luminosities $L_{bol} \sim 4 \times 10^{-4}$ to 3×10^{-5} L_{\odot} (Burrows et al. 1997).

In the optical, the spectra are characterized by weakening bands of TiO and VO (dominant features in previously described M dwarfs, become progressively weaker still detectable in L3 dwarfs and mostly disappear by L5-6) and strengthening bands of FeH, CrH, CaH, as the dominant molecular features. Those bands reach maximum strengths at mid-L types, before weakening in the latest L dwarfs, where H_2O provides the most prominent molecular absorption at ~9300 Å.

As the molecular bands decrease in strength, a number of atomic lines become significantly more prominent. The resonance lines due to Rb (0.7800/0.7948 μ m) and Cs (0.8521/0.8943 μ m) are discernible in the early L dwarfs, and grow in strength throughout the sequence (Kirkpatrick et al. 1999; Martín et al. 1999). The same tendency has been observed for the K I doublet at 0.7665 and 0.7699 μ m. As stated before, these lines become narrower at spectral types M8 and M9. However, that trend reverses between M9.5 and L0, and the lines broaden substantially until, by spectral type L5, the separate cores are indistinguishable (Reid et al. 2000).

Li I (doublet at 0.6708 μ m) is also evident in L dwarfs (and M dwarfs) with masses below 0.065 M_{\odot} (see Rebolo et al. 1992 for a detailed explanation of the *lithium test*).

As stated before, classification schemes for L dwarfs in the red optical have been defined by Kirkpatrick et al. (1999); Martín et al. (1999), see Fig. 1.4.

The near-infrared spectra of these objects show similarities with those of M dwarfs; they also are dominated by broad absorption bands of H_2O and CO, with the water bands increasing in strength through spectral type L.

The main atomic line features are due to neutral Na (1.14 μ m) and K (two doublets at 1.169/1.177 μ m and 1.244/1.253 μ m). The Na I line shows relatively little variation in strength with increasing spectral type from M8 to at least L5. The 1.17 μ m K lines have individual equivalent widths rising steadely from M8 to L5, before dropping sharply in strength in the later L dwarfs. The 1.25 μ m doublet is somewhat stronger, but shows identical behaviour (Reid et al. 2000).

• T dwarfs:

As brown dwarfs cool through spectral types M and L, their spectra change reflecting differences in the composition of their atmospheres. The most dramatic change at near-infrared wavelengths occurs at temperatures between 1400 and 1200 K, where methane takes over from carbon monoxide as the dominant repository of carbon. In this very cool domain, the

Figure 1.4: Optical spectral sequence of L dwarf types (Kirkpatrick et al. 1999, 2000).

T spectral class is comprised of brown dwarfs that exhibit CH₄ absorption bands between 1.0 and 2.2 μ m (see 1.5).

The presence of the methane bands, broad H₂O features, and collision-induced (CIA) H₂ absorption radically alter the spectral energy distributions of T dwarfs, and near-infrared colours become increasingly blue (J-Ks $\sim 0 \pm 0.1$ mag, similar to those of A stars) as compared to L dwarfs. These distinctions led Kirkpatrick et al. (1999) to propose a second class, which at that time was solely occupied by the first unequivocal brown dwarf, Gliese 229B (Nakajima et al. 1995; Oppenheimer et al. 1995).

A series of flux ratios designed to measure the strengths of the more prominent near-infrared features, notably CH_4 and H_2O have been devised independently by Burgasser (2002) and Geballe et al. (2002). The two T dwarf spectral classification schemes derived from those indices are almost identical.

Figure 1.5: The optical/near-infrared spectrum of Gl 229B (from Oppenheimer et al. 1995).

1.3 The Lambda Orionis Star Forming Region

One of the most interesting Star Forming Regions (SFR) is associated to the O8III star λ Orionis (located at ~400 pc, Murdin & Penston 1977), the head of the Orion giant. It comprises both recently formed stars from 0.2 M_{\odot} to 24 M_{\odot} (beloging to the central cluster Collinder 69) and dark clouds actively forming stars (Barnard 30 and Barnard 35). Although due to its properties (morphology, distance, reddening, size), the Lambda Orionis Star Forming Region (LOSFR) seems to be an ideal laboratory to test star formation theories, until recently, it had not been very well studied.

The λ Orionis OB association lies at ~ 15° North of the center of the complex inside a fossil giant molecular cloud, and it anchors a tight knot of 11 OB stars, centered within a 40 pc diameter ring of dense molecular gas and dust (detected by Zhang et al. 1989 making use of the Infrared Astronomical Satellite, IRAS, see Fig 1.6 for a false colour image created from the IRAS images). This ring is complementary to a shell of neutral hydrogen discovered previously by Wade (1958). Estimates for the total mass of the ring are of the order $10^4 M_{\odot}$. At the begining of the 80s, Duerr et al. (1982) carried out an H α emission survey identifying three stellar clusters centered around the dark clouds Barnard 30 and Barnard 35 (located whithin this ring and separated from λ Ori by 2.°2 and 2.°7), and λ Ori, respectively. Those clusters were later confirmed from a statistical point of view by Gomez & Lada (1998). These three regions have been studied intensively by our group during the last five years (see Fig 1.6 for an scheme of their location and Fig 1.7 for a clear view of the abundant H α emission detected in the Region). Collinder 69 is a well-defined, compact open cluster. It is quite rich, with one O star (λ Ori itself) and of order a dozen B stars (Duerr et al. 1982) and a well-populated sequence of low-mass stars and brown dwarfs whereas Barnard 30 and Barnard 35 are somewhat smaller and mainly formed by low mass stars.

Figure 1.6: IRAS false colour image of the Lambda Orionis Star Formin Region (100 μ m red, 60 μ m green, 12 μ m blue). The loci of the three regions studied in this thesis have been highlighted.

1.4 Previous Observations

Prior to our study, several groups have published different studies focused on a variety of aspects of the SFR, such as the initial discovery, studies on the distance, an H α survey, analysis of

Figure 1.7: An image of the Lambda Orionis Star Forming Region taken with a narrow filter cetered in H α . The positions of the candidates members of Colinder 69, Barnard 30 and Barnard 35 studied in this thesis have been highlighted with blue and red dots. The image has been taken from the "H-alpha Full Sky Map" (see Finkbeiner 2003); a composite of the Virginia Tech Spectral line Survey (VTSS) in the north and the Southern H-Alpha Sky Survey Atlas (SHASSA) in the south with a pixel scale of 2.5' and a resolution (FWHM) of 6'. Note the complex structure seen in H α due to a large extent to the ionizan front induced bu Lambda Orionis itself.

the IRAS data and photometric and spectrospic searches. Regarding photometry and spectroscopy, a summary follows:

- Photometry: Morales-Calderón (2008), Dolan & Mathieu (1999, 2001, 2002) among others. In this last set of studies, the authors collected moderately deep photometry (VRI filters) reaching $I_C = 14.5$ (about 0.5 M_{\odot} for 5 Myr age) in an area about 8 squared degrees centered on the OB association, discovering a significant population of low-mass stellar members.
- Spectroscopy: The first comprehensive surveys for PMS stars in the λ Ori region were based on H α objective prism surveys. As an example, Duerr et al. (1982) surveyed about 100 square degrees centered on λ Ori.

More spatially limited spectroscopic surveys have detected a few H α emission stars not previously found in the objective prism surveys. Dolan & Mathieu (2001) found ~25 new stars with large H α equivalent widths and strong H α emission has also been detected from candidate substellar members in the very deep survey for young stars of Barrado y Navascués et al. (2004b).

Other surveys with the goal to study youth (based on the presence of Li I absorption line at 6707 Å for late-type stars) and kinematics (via radial velocities determination) of the possble members of the Lambda Orionis Star forming region have been carried out. Dolan & Mathieu (2001) surveyed ~3600 stars located radially in the LOSFR; and based on the lithium absorption and radial velocities of the sources in their sample, thay concluded that the stars showing strong Li I absorption were kinematically associated with a mean velocity typical of the Orion association.

More recently, Sacco et al. (2008) and Maxted et al. (2008), performed parallel studies of members of the σ Ori and λ Ori clusters (both simmilar clusters the first one thoughtly studied by González Hernández et al. 2008; Zapatero Osorio et al. 2008; Scholz et al. 2009; Caballero et al. 2009; Bouy et al. 2009b, and references therein). With very high resolution optical spectroscopy (different instrumental set-ups and slightly different sample of candidates), they derived radial velocities and combined that information with the study of Li I absorption and H α emission to establish membership to the clusters. Whilst the Sacco et al. (2008) study was mainly focused on the comparison of the properties of the accretion and disk population on both clusters (concluding that the differences might be caused either by the high–mass stars present in the λ Ori cluster or differences in age). Maxted et al. (2008) focused on the determination of the fraction of spectroscopic binaries in the young very low mass domain (a key issue when trying to understand which physical mechanism rules the formation of these very low mass stars); which was found to be significantly different from the one estimated for more massive stars in the same Star Forming Region.

Further and more detailed discussion on the results achieved with these surveys will be provided in Chapters 2, 3 and 4.

The distance derived by Dolan & Mathieu (1999) for the LOSFR is 450 ± 50 pc; larger than both the distance derived by Murdin & Penston (1977) and the value derived from Hipparcos (Perryman et al. 1997) for the five stars in the central area, 380 ± 30 pc. According to Dolan & Mathieu (2002), the turnoff age for the massive stars is of order 6 Myr (see also Murdin & Penston 1977 for another age determination based on the massive stars, 4 Myr), although the star formation history might be more complex as suggested by Dolan & Mathieu (2001).

According to Dolan & Mathieu, the star formation rate was relatively slow for a few million years, then accelerated up until about 1 to 2 Myr ago. At that point, the highest mass star in Collinder 69 became a supernova and dispersed the molecular gas in the immediate vicinity of Collinder 69, and partially disrupted the nearby molecular clouds associated with Barnard 35 and to a lesser extent Barnard 30. The ring of gas and dust is then the current location of the swept up gas from the SN and O star winds. Over the lifetime of the Collinder 69 cluster (but particularly

Figure 1.8: Cartoon, taken from Dolan & Mathieu (2002), showing the possible evolution of the Lambda Orionis Star Forming Region. If this hypothesis is correct, the star formation in the external dark clouds, was induced by a SN which took place few million years ago in the central region fo the Orionâs Head, in Collinder 69.

in its earliest phase), the OB stars photoevaporated much of the circumstellar material around the low-mass stars in the cluster such that by the present time, few of them have active accretion disks. The low-mass stars else where in the region did not have their circumstellar gas "cooked" in this fashion, thus explaining the higher rate of CTTs in Barnard 30 and Barnard 35 found by these authors. Figure 1.8 shows a cartoon from Dolan & Mathieu (2002) showing this scenario.

However, as emphasized by Lada et al. (2000), even for the Trapezium cluster which is denser and has a larger population of OB stars, 80-85 have circumstellar disks as inferred from L-band excesses (as opposed to a significantly lower apparent disk fraction using JHK or using $H\alpha$ as a disk surrogate, as was done by Dolan & Mathieu). Therefore, are the low mass stars in the Collinder 69 cluster completely diskless, or do they have disks which are not detectable by an $H\alpha$ survey such as 1 AU inner holes?

1.4.1 The Aim of this Thesis

If the supernova hypothesis is correct, the λ Ori complex shows interesting peculiarities since there might be a direct link between spatial location in the complex and the history of star formation.

Besides, λ Orionis represents an unique environment to study star formation due to its diversity, proximity (~400 pc), age range (~2–6 Myr), and the low extinction affecting the internal area of the ring (E(B-V)=0.12).

Thus we have conducted several observational campaigns to carry out a comprehensive study in three of its associations (Collinder 69, Barnard 35 and Barnard 30). The observations on which this thesis is based include optical and near-infrared spectroscopy at very different resolutions of candidate members photometrically selected by Morales-Calderón (2008). In particular, we have collected medium and high resolution optical spectroscopy and low resolution infrared spectroscopy for candidate members to Collinder 69. Medium and high resolution optical spectroscopy for candidate members to Barnard 35 and Barnard 30 was also carried out.

With this wealth of data we want to study a number of properties, namely the membership and the Initial Mass Function, accretion and circumstellar disk evolution of very low-mass stars and brown dwarfs. All the collected data will allow us to: (a) build the most complete census of members of the three regions up to date; (b) study possible differences in the properties between the disks in the three clusters (study disk evolution); (c) confirm members in the different regions to well below the hydrogen burning mass limit (HBL, the substellar border line at ~0.072 M_{\odot}, Baraffe et al. 1998); (d) try to shed some light on the formation mechanism of brown dwarfs.

This thesis is organized as follows: in the next chapter we briefly present the photometric surveys that led to the main part of the lists of candidate members studied spectroscopically as well as the most recent X-ray survey of Collinder 69. In chapter 3 we analyze the candidate members to Collinder 69 establishing their membership and studying their properties. In chapters 4 and 5 we follow a similar scheme, this time targeting the dark clouds Barnard 35 and Barnard 30. Finally,
in chapter 6 we present the conclusions achieved.

With this thesis we intend to improve our understanding of the star formation, in particular the evolution of the disks around low mass stars.

Chapter 2

The Photometric and X-Ray Surveys

Our group has been involved in the past ten years in a very ambitious project to study the different associations within the Lambda Orionis Star Forming Region. The first step to be performed in order to achieve this goal is the characterization of the physical properties of the objects that have been formed in those associations.

Thus, a comprehensive photometric study of this complex Star Forming Region is mandatory to select the most probable candidate members belonging to each association. While this kind of study can be biased towards members showing infrared excess (specially when basing our selection criteria on IRAC data); the analysis of X-rays data has revealed to be a very efficient tool to unveil the weak-line TTaury population of star forming regions. Therefore, the combination of both kinds of analysis should provide us with a fairly complete list os candidate members. Once this step has been accomplished, a detailed spectroscopic analysis of the individual sources will provide us with estimations of their physical properties (such as effective temperatures, surface gravities, presence of outflows, accretion rates, etc.).

The details of the exhaustive photometric surveys performed on the three regions studied in this thesis can be found in Morales-Calderón (2008), and those of the Collinder 69 X-ray data on Barrado et al 2009, in prep. A brief summary follows:

2.1 Colinder 69

Collinder 69 is the central cluster of the Lambda Orionis Star Forming Region, it is associated to the eponymous λ Ori star, and it is also the most thoroughly studied association within the SFR. We have carried out a number of photometric observations in this region, from the optical to mid-IR, using different ground-based and space observatories. Figure 2.1 shows the layout of these observations.

• Optical data:

Figure 2.1: Layout of observations in Collinder 69. Thick green rectangles represent the Spitzer fields obtained with Spitzer (long-dashed: IRAC, and short-dashed: MIPS). Black rectangle define the area covered by our optical CFHT1999 survey. Red and yellow boxes represent the near-IR surveys for Omega 2000 and INGRID respectively. Blue thick rectangle represents the Subaru survey. Young stars, identified by Dolan & Mathieu (1999, 2001), appear as crosses (WTTs) and solid circles (CTTs). IRAS 100 μ m contours are plotted in magenta.

– The CFHT1999 Survey: On September 29th and 30th, 1999, we used the Canada-France-Hawaii Telescope (CFHT) 12K mosaic camera and the Cousins R and I filters to perform a survey around the star λ Orionis. This instrument covers a projected area on the sky of 42'×28', with a scale of about 0.2 "/pix (black rectangle in Figure 2.1).

The data were collected under photometric conditions. The reduction was performed with the standard pipeline, and the extraction of the aperture photometry was carried out within the IRAF¹ environment. Two different sets of exposures were obtained, with short and long exposure times. In the first case, we exposed during 10 seconds for each filter, whereas the exposure times were 600 and 900 seconds, Cousins I and R filters, respectively, for the second set. With this method, we increased the dynamical range, and our photometry overlaps with previously published data in these filters.

The limiting magnitude for these data is $I_{Limit} \sim 24.0$ mag while completeness is achieved at $R_{Complete} \sim 22.75$ mag and $I_{Complete} \sim 22.75$ mag, based on the drop in the number of detected objects for each interval in the Ic and Rc filters (Wainscoat et al. 1992; Santiago et al. 1996). For cluster members, the faint limit is set by $R_{Complete} \sim 22.75$ mag at (R - I) = 2.5, corresponding then to $I_{Complete,cluster} \sim 20.2$ mag.

- The Subaru2006 Survey: In addition to the CFHT1999 survey, in November 2006 we performed a very deep survey using the Subaru Prime Focus Camera (Suprime-Cam – Miyazaki et al. (2002)) mounted at the Subaru 8 m telescope at the summit of Mauna Kea, Hawaii. Suprime-Cam is a mosaic of ten 2048×4096 CCDs, located at the prime focus of Subaru Telescope, which covers a 34'× 27' field of view with a pixel scale of 0.20'' (blue rectangle in Figure 2.1). The aim of the survey was to perform a very deep search of the less massive members of Collinder 69 with the goal of trying to detect the end of the IMF (ie, the minimum mass for direct collapse, fragmentation and formation of a "pre-stelar" core).

Observations were performed in service mode in the i' and z' filters. We obtained 9 cycles of 5 positions and 136 sec/position in the i' band totalling 6120 sec of observation and 3 cycles of 6 positions and 180 sec/position in the z' band totalling 3240 sec of observation. The images were reduced in the standard way using IRAF but we did use a routine inside the data reduction package for Suprime-Cam (SDFRED) to fix the distortion found in the images. We have performed aperture photometry with an aperture of 2 pixels and, since no standard stars were observed during the run, we used our CFHT1999 data to calibrate our photometry. Only the I data were calibrated. The completeness limits can be estimated at $I_{Complete} \sim 25.5$ mag, and $Z_{Inst,Complete} \sim 24.5$ mag. For a DUSTY 5Myr isochrone (Chabrier et al. 2000), and the distance and stan-

¹IRAF is distributed by National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract to the National Science Foundation, USA

dard extinction for the cluster, an I magnitude of 25.5 mag corresponds to ~7 $M_{Jupiter}$ for a COND 5Myr isochrone, more appropriate for this range of temperatures, the completeness limit is located at 3 $M_{Jupiter}$.

- Near Infrared photometry: 2MASS provides near infrared data down to a limiting magnitude of J=16.8, H=16.1, and Ks=15.3 mag. We have performed additional near-IR surveys to provide deeper photometry for objects with large errors in 2MASS JHKs, or without this type of data due to their intrinsic faintness.
 - INGRID Survey: This survey was performed in November 2002 and February 2003 with the 4.5 m William Herschel Telescope (El Roque de los Muchachos Observatory at La Palma, Spain), and the near-IR camera, INGRID which has a field-of-view of ~4.1'×4.1'. Observations were designed with a double goal, on the one hand, we wanted to obtain deep near-IR photometry and we observed the area around λ Orionis creating a grid (See Figure 2.1 where the yellow boxes represent the INGRID pointings) and, for each position, we took five individual exposures of 60 seconds each, with small offsets of a few arcsec, thus totalling 5 minutes. Essentially, we have observed about 2/3 of the CFHT 1999 optical survey region in J (in the area around the star and west of it), with some coverage in H and K. On the other hand, as our second goal, we devoted a whole night in the 2003 run, with a five-hour time-span, to observe a small area just South of the λ Ori star in the J band (thick yellow box in Figure 2.1), looking for short term variability. The individual 60 seconds exposures were processed, aligned and combined into single 5 minutes. In total, we collected 51 of such five-minute images.

All the data were processed and analyzed with IRAF, using aperture photometry. The detection limit can be estimated as $J_{Limit}=21.1$ mag and the completeness limit as $J_{Complete}=19.5$ mag. For a DUSTY 5 Myr isochrone (Chabrier et al. 2000), and the distance and standard extinction for the cluster, this limit correspond to 10 $M_{Jupiter}$.

- Omega2000 Survey: In October 2005 observations focused on the faint candidate members were obtained under a Director Discretionary program using the Calar Alto 3.5m telescope (CAHA, Almeria, Spain) and Omega2000 (15.36'×15.36' FOV). We collected observations in the J, H and Ks filters taking five individual exposures of 60 seconds each, with small offsets of a few arcseconds, totalling 5 minutes. The seeing was 1.2 arcsec. The areas observed are represented by red squares in Figure 2.1.

All the data were processed and analyzed with IRAF, using aperture photometry. The completeness limits for the survey are: $J_{Complete}=20$ mag, $H_{Complete}=19$, and $Ks_{Complete}=18$. For a DUSTY 5Myr isochrone (Chabrier et al. 2000), and the distance and standard extinction for the cluster, this limit correspond to 8 $M_{Jupiter}$.

• Spitzer mid-IR imaging: Our Spitzer data were collected during March 15 (Multiband Imaging Photometer for Spitzer – MIPS Rieke et al. (2004)) and October 11 (InfraRed Array Camera – IRAC Fazio et al. (2004)), 2004, as part of a Guaranteed Time Observation program (GTO, PID:37).

IRAC is a four channel camera which takes images at 3.6, 4.5, 5.8, and 8.0 μ m with a field of view that covers ~5.2'×5.2'. IRAC imaging was performed in mapping mode with individual exposures of 12 seconds "frametime" (corresponding to 10.4 seconds exposure times) and three dithers at each map step. In order to keep the total observation time for a given map under three hours, the Lambda Ori map was broken into two segments, each of size 28.75'×61.5' - one offset west of the star λ Ori and the other offset to the east, with the combined image covering an area of 57'×61.5', leaving the star λ Orionis approximately at the center. Each of the IRAC images from the Spitzer Science Center pipeline were corrected for instrumental artifacts using the IDL code provided by the Spitzer Science Center and then combined into mosaics at each of the four bandpasses using the MOPEX package (Makovoz & Khan 2005). Figure 2.1 shows the IRAC and MIPS pointings as green dashed and solid lines respectively.

The MIPS instrument was used to map the cluster with a medium rate scan mode and 12 legs separated by 302" in the cross scan direction. The total effective integration time per point on the sky at 24 μ m for most points in the map was 40 seconds, and the mosaic covered an area of 60.5'×98.75' centered around the star λ Orionis. Since there were no visible artifacts in the pipeline mosaics for MIPS 24 μ m we used them as our starting point to extract the photometry.

The new candidates to the cluster selected with these surveys, are shown in the tables from 2.6 to 2.7.

Table 2.1: Photometry for the DM members of Collinder 69 not in common with Barrado y Navascués et al. (2004b, 2007b).

Dolan ID	RA (J2000)	DEC (J2000)	V	R	Ι	J error	H error	Ks error	[3.6] error	[4.5] error	[5.8] error	[8.0] error	[24] error
3	05:33:51.70	+09:38:21.5	14.629	13.744	12.826	11.488 0.023	10.865 0.026	10.631 0.019	10.439 0.011			10.428 0.068	
5	05:34:02.00	+09:41:06.2	13.388	12.687	12.039	11.08 0.024	10.483 0.024	10.347 0.024	10.21 0.002	10.257 0.003	10.232 0.006	10.141 0.007	9.187 0.192
6	05:34:04.94	+09:57:03.8	16.064	15.05	13.947	12.5 0.022	11.727 0.024	11.336 0.021	10.879 0.002	10.598 0.003	10.229 0.006	9.538 0.005	6.935 0.023
7	05:34:05.53	+09:42:46.8	12.751	12.162	11.609	10.801 0.023	10.262 0.024	10.125 0.021	10.036 0.008	10.113 0.012		10.049 0.048	9.643 0.278
8	05:34:13.69	+09:29:19.8	13.573	12.965	12.388	11.403 0.026	10.9 0.023	10.731 0.021		10.648 0.003		10.56 0.009	
9	05:34:32.81	+09:59:30.9	14.211	13.463	12.776	11.839 0.027	11.227 0.026	11.059 0.021	10.91 0.003	10.929 0.004	10.92 0.009	10.894 0.012	
10	05:34:35.16	+09:27:49.2	16.907	15.772	14.374	12.77 0.024	12.067 0.024	11.857 0.025		11.591 0.005		11.573 0.025	
13	05:34:37.78	+09:31:52.9	15.438	14.53	13.63	12.325 0.026	11.659 0.026	11.437 0.022	11.29 0.003	11.315 0.004	11.27 0.011	11.197 0.013	
14	05:34:39.19	+09:52:55.4	15.091	14.167	13.307	12.072 0.027	11.36 0.023	11.186 0.022	11.0 0.003	11.039 0.003	10.96 0.009	10.915 0.013	
15	05:34:39.69	+09:41:46.1	15.845	14.818	13.877	12.656 0.023	11.974 0.023	11.808 0.027	11.63 0.003	11.66 0.005	11.6 0.014	11.58 0.019	
16	05:34:39.79	+10:06:22.1	16.079	15.017	13.859	12.366 0.024	11.663 0.023	11.429 0.019	11.22 0.003	11.248 0.004	11.13 0.01	11.136 0.017	
17	05:34:42.46	+10:11:54.3	13.529	12.746	12.029	10.973 0.024	10.324 0.024	10.182 0.021	10.079 0.009	10.128 0.013		10.553 0.065	
18	05:34:47.24	+10:02:43.0	14.009	13.254	12.517	11.436 0.023	10.804 0.026	10.636 0.023	10.53 0.002	10.544 0.003	10.52 0.007	10.434 0.009	11.001 0.725
19	05:34:48.44	+09:57:15.7	15.791	14.777	13.721	12.42 0.027	11.718 0.026	11.54 0.025	11.28 0.003	11.265 0.004	11.19 0.009	11.199 0.015	
21	05:34:49.91	+09:41:01.8	14.543	13.683	12.842	11.656 0.024	11.015 0.026	10.835 0.025	10.65 0.002	10.641 0.003	10.61 0.007	10.616 0.01	
22	05:34:50.44	+09:51:47.6	15.583	14.699	13.744	12.434 0.027	11.767 0.026	11.56 0.025	11.42 0.003	11.405 0.004	11.32 0.012	11.288 0.016	
23	05:34:53.74	+09:26:57.0	15.822	14.848	13.914	12.642 0.026	11.907 0.026	11.752 0.024		11.561 0.005		11.495 0.017	
24	05:35:06.04	+10:00:19.9	12.772	12.238	11.752	11.007 0.026	10.528 0.024	10.437 0.021	10.35 0.003	10.386 0.003	10.33 0.008	10.317 0.009	
25	05:35:06.93	+09:48:57.6	15.396	14.421	13.472	12.258 0.027	11.56 0.026	11.296 0.021	11.12 0.003	11.2 0.004	11.09 0.011	11.005 0.018	
26	05:35:08.31	+09:42:53.9	12.921	12.335	11.806	10.953 0.026	10.433 0.022	10.301 0.024	10.119 0.009		10.185 0.048	9.948 0.04	11.294 0.797
27	05:35:09.03	+09:26:59.7	16.381	15.219	13.877	12.442 0.026	11.734 0.022	11.489 0.021		11.243 0.004		11.17 0.015	
28	05:35:09.53	+09:32:09.1	14.066	13.376	12.727	11.725 0.024	11.115 0.022	10.99 0.024	10.841 0.003	10.861 0.003	10.852 0.008	10.789 0.013	
30	05:35:17.15	+09:51:11.5	16.46	15.317	14.156	12.798 0.023	12.056 0.024	11.835 0.021	11.694 0.004	11.604 0.004	11.616 0.016	11.671 0.025	
31	05:35:17.72	+09:23:44.6	13.495	12.808	12.174	11.385 -	10.951 0.051	10.712 -		10.572 0.003			10.513 0.387
32	05:35:18.37	+10:02:38.5	16.725	15.709	14.493	13.067 0.027	12.417 0.027	12.162 0.021	11.95 0.004	11.94 0.005	11.862 0.016	11.871 0.031	
34	05:35:21.46	+09:44:10.3	16.803	15.684	14.387	12.894 0.024	12.14 0.023	11.919 0.021	11.657 0.003	11.669 0.005	11.629 0.015	11.62 0.024	
35	05:35:22.18	+09:52:27.6	15.429	14.481	13.612	12.309 0.023	11.629 0.026	11.459 0.024	11.285 0.003	11.341 0.004	11.288 0.011	11.218 0.015	
37	05:35:28.96	+09:35:21.0	14.811	14.004	13.313	12.266 0.024	11.627 0.022	11.468 0.021	11.358 0.003	11.412 0.004	11.33 0.012	11.351 0.019	
40	05:35:35.71	+09:44:35.5	17.23	16.013	14.664	13.23 0.026	12.518 0.025	12.27 0.026	12.083 0.005	12.079 0.006	12.022 0.023	12.12 0.043	
42	05:35:48.60	+10:19:12.3	16.768	15.645	14.359	12.983 0.023	12.228 0.023	12.038 0.026	11.826 0.004	11.842 0.005	11.733 0.016	11.748 0.023	
43	05:35:49.35	+09:38:18.1	15.967	14.959	13.893	12.644 0.023	11.939 0.023	11.709 0.021	11.572 0.003	11.574 0.004	11.569 0.013	11.454 0.018	
45	05:35:54.32	+10:04:23.4	12.886	12.272	11.68	10.936 0.023	10.378 0.022	10.235 0.021	10.166 0.01	10.195 0.012	10.39 0.085	10.226 0.05	10./13 0.481
48	05:35:55.84	+09:56:21.8	16.851	15.69	14.392	13.011 0.024	12.237 0.025	11.94 0.024	11.418 0.005	11.188 0.005	10.905 0.009	10.313 0.008	7.624 0.032
52	05:35:59.54	+09:27:23.8	15.8/3	13.352	12.839	12.076 0.027	11.598 0.022	11.462 0.023		11.33/0.004		11.086 0.014	
53	05:36:02.87	+09:42:07.6	15.219	14.504	13.391	12.151 0.023	11.455 0.022	11.25 0.023	11.028 0.003	11.011 0.003	10.924 0.008	10.748 0.01	8.658 0.077
5/	05:36:18.56	+09:45:08.9	15.255	12.681	12.13	11.34 0.023	10.796 0.022	10.676 0.019	10.54 0.002	10.5 / 0.003	10.521 0.008	10.481 0.009	11.729 1.042
61	05:36:26.30	+09:51:14.0	16.515	15.294	14.189	12.800 0.020	12.155 0.022	11.951 0.027	11.824 0.004	11.808 0.005	11./3/ 0.013	11.791 0.023	
62	05:30:28.88	+09:54:27.1	10.5/5	12.022	14.204	12.895 0.029	12.108 0.025	10.282.0.010	0.021.0.008	0.812.0.01	0.721.0.026	8 078 0 022	 5 714 0 004
64	05:30:38.03	+09:40:50.8	15.708	13.023	12.338	12 412 0 020	11.601.0.025	11 418 0.024	7.951 0.008	7.613 0.01	7.751 0.050	0.976 0.023	5.714 0.004 9.271 0.052
64	05:30:38.00	+09:55:05.5	16.020	14.957	12.005	12.413 0.029	11.091 0.033	11.418 0.024	11.113 0.003	11.002 0.003	11,222,0,012	11.28.0.018	8.271 0.055
66	05:36:52.06	+10:05:51.8	13.138	14.737	13.740	10.809.0.020	10 212 0 022	10.046.0.020	9 937 0 002	9 961 0 002	0.018.0.005	9 866 0 005	 9 673 0 207
67	05.26.52.00	+09.54:02.4	15.174	12.490	14.062	12 512 0 022	11 841 0 022	11.665.0.024	5.557 0.002 11 407 0.004	11 282 0 005	7.710 0.003	11 282 0 019	5.075 0.207
68	05:30:32.05	+09:52:50.5	13 750	13.498	12 307	12.312 0.023	11.041 0.022	10.823.0.027	10 553 0 002	10.500.0.003	10.500.0.012	10.400.0.01	
69	05:36:54.84	+09.41.33.7	15.759	14 565	12.577	12 418 0 024	11 717 0 023	11 522 0.021	11 374 0 003	11 421 0 004	11 311 0 011	11 257 0.018	10.37/ 0.40/
70	05-36-57 40	+09:53:26.0	16.05	15.024	13.027	12.410 0.024	11 958 0 022	11.767.0.021	11 574 0.003	11.58.0.005	11 551 0.014	11 484 0 017	-
70	05.50.57.49	+07.33.20.0	10.05	15.024	13.711	12.095 0.028	11.936 0.025	11.707 0.021	11.574 0.004	11.36 0.003	11.551 0.014	11.404 0.017	

DM ID	Mass (M _☉) ⁴	Teff (K) ⁴	IRAC class ¹	SED slope	Disk Type ²	$W_{\lambda}(H\alpha) (\text{\AA})^3$	$W_{\lambda}(Li) (Å)^3$
3	0.34	3400	III	-	Diskless	3.18	0.44
5	1.30	4000	III	-2.75	Diskless	0.06	0.46
6	0.09	4000	II	-1.295	Thick	72.64	0.43
7	1.58	4000	III	-	Diskless	-0.12	0.42
8	1.30	3500	III	-	Diskless	-0.09	0.41
9	1.30	4400	III	-2.816	Diskless	0.74	0.40
10	0.29	4250	III	-	Diskless	5.97	0.51
13	0.73	3600	III	-2.721	Diskless	1.29	0.53
14	0.73	4000	III	-2.719	Diskless	2.28	0.57
15	0.73	3750	III	-2.764	Diskless	1.07	0.49
16	0.34	3750	III	-2.711	Diskless	5.45	0.61
17	1.19	5000	III	-	Diskless	0.25	0.47
18	1.01	4000	III	-2.725	Diskless	2.64	0.52
19	0.39	4750	III	-2.731	Diskless	2.07	0.56
21	0.73	3400	III	-2.794	Diskless	1.73	0.50
22	0.49	4500	III	-2.672	Diskless	2.37	0.54
23	0.49	3500	III	-	Diskless	2.04	0.53
24	1.72	3500	III	-2.783	Diskless	-1.07	0.30
25	0.73	4500	III	-2.672	Diskless	1.47	0.54
26	1.53	3600	III	-	Diskless	-0.39	0.35
27	0.28	3500	III	-	Diskless	3.64	0.59
28	1.30	4000	III	-2.777	Diskless	-0.35	0.47
30	0.34	4250	III	-2.828	Diskless	1.0	0.61
31	1.30	3600	III	-	Diskless	-0.01	0.42
32	0.39	3750	III	-2.732	Diskless	5.5	0.42
34	0.34	3700	III	-2.786	Diskless	2.64	0.49
35	0.73	4800	III	-2.744	Diskless	1.68	0.55
37	1.01	3000	III	-2.802	Diskless	0.08	0.43
40	0.39	4500	III	-2.865	Diskless	3.63	0.55
42	0.49	4750	III	-2.722	Diskless	2.94	0.58
43	0.46	3600	III	-2.707	Diskless	2.6	0.57
45	1.58	4750	III	-2.953	Diskless	-0.12	0.46
48	0.09	3000	Π	-1.572	Thick	8.61	0.58
52	1.53	3750	III	-	Diskless	-0.36	0.25
53	0.39	3700	III	-2.509	Transition	3.62	0.52
57	1.53	3500	III	-2.757	Diskless	-0.15	0.39
61	0.49	3300	III	-2.786	Diskless	4.23	0.56
62	0.46	3700	III	-2.761	Diskless	4.05	0.61
63	0.34	4500	Π	-1.78	Thick	4.76	0.54
64	0.23	3500	П	-2.019	Thin	2.52	0.45
65	0.46	4250	III	-2.742	Diskless	2.67	0.58
66	1.30	4000	III	-2.746	Diskless	1.0	0.55
67	0.34	4800	III	-2.811	Diskless	4.88	0.66
68	1.01	3750	III	-2.773	Diskless	-0.04	0.44
69	0.73	4500	III	-2.674	Diskless	0.49	0.51
70	0.49	4500	III	-2.731	Diskless	0.9	0.58

Table 2.2: Disk properties of the DM members not in common with Barrado y Navascués et al. (2004b, 2007b).

¹IRAC Class based on the IRAC [3.6]-[4.5] vs. [5.8]-[8.0] color-color diagram and in the SED of each object. ²Disk type based on the IRAC slope and SED shape

⁴Teff comes from the SED fitting performed with VOSA. The mass is estimated with Teff and a 5Myr Siess et al. isochrone

 $^{{}^{3}}W_{\lambda}(H\alpha)$ and $W_{\lambda}(Li)$ from Dolan & Mathieu (1999)

Table 2.3: Candidate members of the Collinder 69 cluster from Barrado y Navascués et al.(2007b).

Name ³	R error	I error	J error	H error	Ks error	[3.6] error	[4.5] error	[5.8] error	[8.0] error	[24] error	Mem ¹
LOri001	13.21 0.00	12.52 0.00	11.297 0.022	10.595 0.022	10.426 0.021	10.228 0.003	10.255 0.004	10.214 0.009	10.206 0.010		Y
LOri002	13.44 0.00	12.64 0.00	11.230 0.024	10.329 0.023	10.088 0.019	9.935 0.003	10.042 0.003	9.930 0.009	9.880 0.008		Y
LOri003	13.39 0.00	12.65 0.00	11.416 0.023	10.725 0.022	10.524 0.023	10.262 0.003	10.318 0.004	10.239 0.010	10.171 0.010		Y
LOri004	13.71 0.00	12.65 0.00	11.359 0.022	10.780 0.023	10.548 0.021	10.287 0.003	10.249 0.004	10.185 0.009	10.127 0.009		Y
LOri005	13.38 0.00	12.67 0.00	11.378 0.022	10.549 0.022	10.354 0.023	10.204 0.003	10.321 0.004	10.218 0.009	10.158 0.009		Y
LOri006	13.55 0.00	12.75 0.00	11.542 0.026	10.859 0.026	10.648 0.021	10.454 0.003	10.454 0.004	10.399 0.011	10.319 0.010		Y
LOri007	13.72 0.00	12.78 0.00	11.698 0.027	11.101 0.024	10.895 0.030	10.668 0.004	10.636 0.004	10.615 0.012	10.482 0.013		Y
LOri008	13.60 0.00	12.79 0.00	11.548 0.029	10.859 0.023	10.651 0.024	10.498 0.003	10.495 0.004	10.440 0.011	10.256 0.012		Y
LOri009	13.70 0.00	12.95 0.00	11.843 0.024	11.109 0.024	10.923 0.023	10.834 0.004	10.873 0.005	10.788 0.012	10.743 0.014		Y
LOri010	13.70 0.00	12.96 0.00	11.880 0.026	11.219 0.026	11.041 0.023	10.916 0.004	10.953 0.005	10.733 0.012	10.839 0.016		Y
LOri011	13.84 0.00	13.01 0.00	11.604 0.026	10.784 0.024	10.554 0.024	10.378 0.003	10.521 0.004	10.444 0.011	10.326 0.011		Y
LOri012	13.80 0.00	13.03 0.00	11.816 0.026	10.971 0.024	10,795 0.023	10.619 0.003	10.758 0.005	10.627 0.012	10.543 0.012		Y
LOri013	14.21 0.00	13.03 0.00	11.656 0.022	10.918 0.022	10.719 0.023	10.511 0.003	10.480 0.004	10.467 0.011	10.344 0.012		Y
LOri014	13.84 0.00	13.03 0.00	11.941 0.024	11.278 0.027	11.092.0.023	10.902 0.004	10.904 0.005	10.839 0.014	10.797 0.014		Y
LOri015	13 83 0 00	13 05 0 00	11 870 0 024	11 127 0 024	10 912 0 019	10 808 0 004	10 886 0 005	10 824 0 013	10 882 0 015		Y
LOri016	14 07 0 00	13 18 0 00	11.958.0.024	11 284 0 027	11 053 0 024	10.833.0.004	10.817.0.006	10 378 0 011	10 700 0 014		Ŷ
LOri017	13 99 0 00	13 19 0 00	12 188 0 024	11 482 0 023	11 323 0 021	11 165 0 005	11 206 0 006	11 173 0 017	11 072 0 019		Ŷ
LOri018	14 21 0 00	13 26 0 00	11 991 0 024	11 284 0 022	11.090.0.023	10 804 0 004	10 798 0 005	10 722 0 012	10.636.0.014		Ŷ
LOri019	14 33 0 00	13 31 0 00	12 019 0 026	11 316 0 024	11.057 0.021	10.880.0.004	10.866.0.005	10.767.0.013	10 788 0 018		v
LOri020	14.65 0.00	13 31 0 00	11 856 0 028	11 214 0 026	11.007 0.021	10.676.0.003	10.609.0.004	10 573 0 012	10.485.0.012		N
LOri021	14.05 0.00	13 38 0 00	12 258 0.027	11.560.0.026	11.025 0.027	11 129 0 004	11 107 0 005	11.081.0.016	11.065.0.012		v
LOni021	14.41.0.00	13 38 0.00	12.253 0.027	11.300 0.020	11.256.0.019	11.010.0.004	10.985.0.005	10 895 0 014	10.683.0.014		v
LOni022	14.43.0.00	13.44.0.00	12.102 0.025	11.411 0.022	11.150 0.017	11.010 0.004	11 114 0 005	11.071.0.015	10.033 0.014		v
LOni023	14.43 0.00	12 45 0.00	12.120.0.020	11.4/1 0.022	11.222.0.024	11.018.0.004	11.010.0.005	10.072.0.015	10.923 0.016		v
LO11024	14.45 0.00	13.45 0.00	12.159 0.050	11.440 0.020	11.223 0.028	10.668.0.004	10.674.0.004	10.572 0.013	10.576.0.012		v
LO11025	14.50 0.00	13.45 0.00	12.105 0.044	11.409 0.031	11.090 0.035	10.008 0.003	10.074 0.004	10.013 0.012	10.370 0.012		v
LO11020	14.37 0.00	13.47 0.00	12.040 0.028	11.324 0.024	11.092 0.023	11 205 0 005	11 206 0 006	11 227 0 016	11,170,0.025		v
LO11027	14.49 0.00	13.50 0.00	12.378 0.020	11.718 0.023	11.505 0.021	11.303 0.005	11.300 0.000	11.237 0.010	11.179 0.023		I V
LOH028	14.80 0.00	13.63 0.00	12.466 0.024	11.672 0.022	11.08/ 0.021	10.250.0.002	0.820.0.002	0 221 0 006	8 416 0 002	 5 694 0 007	I V
LOH029	14.89 0.00	13.09 0.00	12.210 0.020	11.400 0.027	11.071 0.019	11,208,0,007	9.830 0.003	9.321 0.000	8.410 0.005 10.007 0.022	3.084 0.007	I V
LO11030	14.95 0.00	13.74 0.00	12.427 0.027	11.080 0.020	11.428 0.021	11.206 0.007	11.137 0.007	11.119 0.019	10.997 0.023		I V
LOH031	14.90 0.00	13.75 0.00	12.412 0.028	11.654 0.023	11.442 0.028	11.206 0.004	11.188 0.006	11.150 0.015	11.079 0.016		Y V
LOH032	15.04 0.00	13.80 0.00	12.410 0.029	11./14 0.023	11.493 0.021	11.252 0.004	11.215 0.006	11.178 0.016	11.080 0.019		I V
LOri033	14.82 0.00	13.81 0.00	12.455 0.033	11.800 0.042	11.502 0.027	11.146 0.004	11.149 0.005	11.060 0.015	11.020 0.019		Y
LOri034	15.10 0.00	13.97 0.00	12.442 0.026	11.639 0.026	11.184 0.023	10.068 0.003	9.734 0.003	9.314 0.007	8.325 0.003	5.738 0.007	Y
LOri035	15.25 0.00	13.97 0.00	12.546 0.024	11.842 0.027	11.609 0.019	11.3/1 0.005	11.349 0.006	11.283 0.017	11.259 0.021		Y
LOri036	15.47 0.00	13.98 0.00	12.576 0.024	11.936 0.023	11.706 0.021	11.395 0.005	11.378 0.006	11.287 0.018	11.260 0.019		N
LOri037	15.17 0.00	13.99 0.00	12.459 0.024	11.727 0.026	11.492 0.021	11.302 0.005	11.309 0.006	11.198 0.016	11.180 0.018		Y
LOri038	15.10 0.00	14.01 0.00	12.684 0.030	11.954 0.029		11.455 0.005	11.320 0.006	10.9/0 0.014	9.857 0.008	6.211 0.010	Y
LOri039	15.25 0.00	14.02 0.00	12.755 0.030	12.004 0.023	11.775 0.023	11.523 0.005	11.534 0.007	11.434 0.018	11.373 0.025		Y
LOri040	15.38 0.00	14.06 0.00	12.553 0.024	11.877 0.022	11.594 0.024	11.364 0.005	11.319 0.006	11.231 0.017	11.218 0.025		Y
LOri041	15.55 0.00	14.10 0.00	12.500 0.024	11.856 0.023	11.587 0.027	11.255 0.004	11.187 0.006	11.131 0.015	11.123 0.021		Y
LOri042	15.31 0.00	14.14 0.00	12.813 0.027	12.099 0.026	11.853 0.023	11.604 0.005	11.633 0.007	11.546 0.019	11.479 0.025		Y
LOri043	15.46 0.00	14.16 0.00	12.707 0.024	12.021 0.026	11.741 0.024	11.512 0.005	11.496 0.007	11.408 0.019	11.393 0.024	8.479 0.102	Y
LOri044	15.39 0.00	14.17 0.00	12.924 0.024	12.318 0.024	12.065 0.023	11.837 0.006	11.804 0.007	11.751 0.023	11.674 0.024		N
										Continued on nex	t page

1	10.13	50.03	17 03	5.4.83	10.02	**				~	
Mem ¹	[24] error	[8.0] error	[5.8] error	[4.5] error	[3.6] error	Ks error	H error	J error	I error	R error	Name ³
Y		11.474 0.026	12.023 0.039	11.596 0.007	11.602 0.005	11.844 0.023	12.102 0.026	12.768 0.023	14.23 0.00	15.56 0.00	LOri045
N		11.763 0.032	11.787 0.024	11.852 0.008	11.906 0.006	12.252 0.026	12.478 0.026	13.033 0.023	14.36 0.00	15.64 0.00	LOri046
Y		11.342 0.025	11.303 0.017	11.400 0.006	11.474 0.005	11.827 0.026	12.097 0.031	12.732 0.026	14.38 0.00	15.91 0.00	LOri047
Y	8.119 0.087	10.920 0.018	11.448 0.020	11.521 0.008	11.612 0.006	11.932 0.026	12.196 0.029	12.887 0.027	14.41 0.00	15.78 0.00	LOri048
Y		12.427 0.057	12.043 0.027	11.992 0.009	12.004 0.006	12.253 0.023	12.592 0.029	13.173 0.027	14.50 0.00	15.77 0.00	LOri049
Y	7.268 0.029	9.537 0.007	10.529 0.011	11.089 0.005	11.471 0.005	11.955 0.031	12.236 0.027	12.877 0.027	14.54 0.00	15.90 0.00	LOri050
Y		11.919 0.035	11.969 0.024	11.995 0.008	12.017 0.006	12.285 0.021	12.559 0.022	13.266 0.024	14.60 0.00	15.91 0.00	LOri051
Y		11.791 0.029	11.764 0.022	11.863 0.008	11.917 0.006	12.192 0.019	12.454 0.024	13.117 0.023	14.63 0.00	15.93 0.00	LOri052
Y		11.862 0.034	11.886 0.022	11.954 0.008	11.995 0.006	12.278 0.027	12.521 0.023	13.173 0.032	14.72 0.00	16.08 0.00	LOri053
Y		11.862 0.038	11.805 0.025	11.948 0.009	11.974 0.006	12.271 0.027	12.509 0.022	13.189 0.024	14.73 0.00	16.19 0.00	LOri054
Y		11.902 0.038	12.015 0.029	12.038 0.009	12.044 0.006	12.253 0.026	12.477 0.026	13.184 0.026	14.76 0.00	16.12 0.00	LOri055
Y		$11.853 \ 0.032^2$	11.913 0.019 ²	$11.906\ 0.005^2$	$12.011\ 0.004^2$	12.267 0.029	12.567 0.026	13.211 0.029	14.87 0.00	16.43 0.00	LOri056
Y		11.992 0.033	11.988 0.030	12.078 0.009	12.177 0.007	12.487 0.030	12.773 0.023	13.412 0.024	15.04 0.00	16.63 0.00	LOri057
Y		12.637 0.072	12.172 0.032	12.269 0.010	12.332 0.007	12.643 0.027	12.935 0.022	13.521 0.024	15.06 0.00	16.57 0.00	LOri058
Y		12.679 0.066	12.218 0.030	12.270 0.009	12.317 0.007	12.682 0.032	12.884 0.026	13.574 0.026	15.10 0.00	16.57 0.00	LOri059
Y		12.377 0.051	12.408 0.041	12.418 0.011	12.423 0.008	12.663 0.029	12.961 0.030	13.598 0.030	15.14 0.00	16.56 0.00	LOri060
Y	8.047 0.046	10.730 0.015	11.519 0.019	11.851 0.008	12.052 0.006	12.525 0.027	12.833 0.026	13.533 0.023	15.15 0.00	16.58 0.00	LOri061
Y	7.834 0.035	11.306 0.021	12.153 0.030	12.246 0.009	12.370 0.007	12.725 0.027	13.005 0.030	13.634 0.029	15.16 0.00	16.62 0.00	LOri062
Y	6.055 0.010	10.397 0.014	11.768 0.028	11.368 0.007	11.666 0.006	12.663 0.030	13.066 0.029	13.756 0.029	15.34 0.00	16.80 0.01	LOri063
Y		12.245 0.053	12.378 0.034	12.489 0.011	12.486 0.008	12.846 0.029	13.098 0.025	13.782 0.026	15.34 0.00	16.78 0.01	LOri064
Y	8.424 0.075	12.641 0.063	12.494 0.032	12.504 0.011	12.526 0.008	12.843 0.027	13.123 0.029	13.820 0.024	15.37 0.00	16.89 0.01	LOri065
Y		12.578 0.072	12.196 0.039	12.170 0.010	12.221 0.007	12.654 0.029	12.901 0.026	13.506 0.024	15.40 0.00	17.12 0.01	LOri066
Y		12.786 0.071	12,702 0.046	12.727 0.014	12.794 0.010	13.102 0.036	13.356 0.027	14.000 0.033	15.53 0.00	17.05 0.01	LOri067
Y		$12.145\ 0.036^2$	$12.0290.016^2$	$12.246\ 0.006^2$	$12.348\ 0.005^2$	12.628 0.027	12.902 0.026	13.521 0.027	15.20 0.00	16.76 0.01	LOri068
Y		11.903 0.042	12.034 0.026	12.015 0.008	12.089 0.006	12.425 0.027	12.774 0.027	13.384 0.027	15.20 0.00	16.89 0.01	LOri069
Y		12.559 0.060	12.799 0.041	12.779 0.013	12.809 0.009	13.067 0.031	13.405 0.029	14.042 0.032	15.61 0.00	17.18 0.01	LOri070
Y		12 250 0 044	12 276 0 031	12 382 0 010	12 470 0 008	12 839 0 031	13 129 0 024	13 749 0 030	15 63 0 00	17 13 0 00	LOri071
N		11.718 0.037	11.836 0.026	11.860 0.008	11.993 0.006	12.631 0.027	12.944 0.032	13,554 0.026	15.35 0.00	17.00 0.00	LOri072
Y		12 162 0 031	12 187 0 029	12 274 0 009	12 376 0 007	12.715.0.027	12.992.0.023	13 644 0 028	15 28 0 00	16 84 0 01	LOri073
v		12 259 0 046	12.290.0.030	12.2710.000	12.312.0.007	12.710 0.024	13 088 0 025	13 663 0 026	15 39 0 00	17.03.0.01	LOri074
v		11 936 0 038	11 924 0 026	11 990 0 008	12.089.0.006	12.726 0.024	12 794 0 026	13 396 0 026	15 23 0 00	16 95 0.01	LOri075
v		12 754 0 072	12 669 0 048	12 843 0 014	12.005 0.000	13 201 0 032	13 527 0 027	14 216 0.027	15.81.0.00	17 39 0.01	LOri076
v		12.650.0.073	12.0020.048	12.043 0.014	12.761.0.000	13 109 0 035	13.416.0.027	14.031.0.027	15 89 0 00	17.45.0.00	L Ori077
v		12.050 0.075	12.700 0.040	12.717 0.012	12.761 0.009	13 286 0 0/0	13 503 0.027	14 227 0.041	15.020.00	17.45 0.00	LOri078
v		12.334 0.009 $12.724 0.048^{2}$	12.7690.048 12.8760078^{2}	12.074 0.014 12.970 0.008 ²	12.7000.009 $13.002.0.006^2$	13 338 0 030	13 536 0 032	14 221 0.032	16.00.0.00	17 51 0.00	LOri070
v	-	12.124 0.048	12.570 0.078	12.270 0.008	12 504 0 008	12 801 0 022	13 196 0 022	13 804 0 022	16.01.0.00	17 51 0.00	LOri080
v	 8 062 0 056	11 632 0 029	12.357 0.041	12.424 0.010	12.504 0.008	12.071 0.033	13.190 0.022	14 669 0.023	16.02.0.00	17.51 0.00	LOni081
v	6.002 0.030	12 820 0 100	12.030 0.030	12.300 0.010	12.020 0.008	13.209 0.037	13.092 0.032	14.009 0.032	16.02 0.00	17.01 0.00	LOH081
v		12.030 0.100	12.047.0.057	12.754 0.015	12.012.0.010	12 275 0 040	12 628 0.025	14.265.0.020	16.02 0.00	17.57 0.00	LOH062
I V		13.01/0.0/4	12.94/ 0.05/	12.940 0.013	13.012 0.010	13.375 0.040	13.038 0.035	14.205 0.030	16.02 0.00	17.30 0.00	LOR1083
I V		12.745 0.007	12.803 0.001	12.800 0.013	12.888 0.010	12.188 0.034	13.448 0.027	14.077 0.024	16.03 0.00	17.48 0.00	LOri084
1 V	8.089 0.056	11.510 0.029	12.090 0.028	12.315 0.010	12.584 0.008	13.233 0.02/	13.022 0.037	14.189 0.026	16.04 0.00	17.05 0.01	LOR085
Y		13.277 0.098	13.160 0.057	13.205 0.016	13.251 0.011	13.503 0.040	13.867 0.032	14.482 0.032	16.09 0.00	17.59 0.00	LOri086
Y		12.669 0.060	13.002 0.064	12.894 0.013	12.978 0.010	13.279 0.035	13.601 0.030	14.186 0.039	16.09 0.00	17.54 0.00	LOri087
Y		12.676 0.051	12.865 0.040	12.853 0.013	12.923 0.009	13.228 0.039	13.543 0.037	14.140 0.031	16.10 0.00	17.78 0.00	LOri088
Y		12.877 0.081	13.682 0.086	13.123 0.015	13.156 0.011	13.512 0.039	13.839 0.035	14.380 0.032	16.15 0.00	17.79 0.00	LOri089
Y		13.126 0.100	12.930 0.047	13.116 0.015	13.226 0.011	13.651 0.051	13.881 0.023	14.515 0.041	16.17 0.00	17.77 0.00	LOri090
Y		12.462 0.054	13.087 0.062	12.803 0.013	12.868 0.009	13.289 0.031	13.556 0.032	14.184 0.032	16.18 0.00	18.01 0.00	LOri091

Table 2.3 – Continued

	Т	able 2.3 – Con	tinued								
Name ³	R error	I error	J error	H error	Ks error	[3.6] error	[4.5] error	[5.8] error	[8.0] error	[24] error	Mem ¹
LOri092	17.84 0.00	16.19 0.00	14.441 0.030	13.841 0.038	13.537 0.040	13.158 0.011	13.053 0.014	13.517 0.087	12.992 0.089		Y
LOri093	17.82 0.00	16.21 0.00	14.462 0.030	13.836 0.039	13.604 0.052	13.169 0.011	13.104 0.015	13.256 0.073	12.982 0.098		Y
LOri094	18.03 0.00	16.28 0.00	14.404 0.034	13.802 0.030	13.425 0.038	12.955 0.009	12.994 0.014	13.184 0.058	12.894 0.085		Y
LOri095	17.96 0.00	16.35 0.00	14.564 0.033	13.913 0.029	13.613 0.048	13.247 0.012	13.278 0.017	13.176 0.067	13.340 0.138		Y
LOri096	18.02 0.02	16.37 0.00	14.627 0.038	13.965 0.037	13.638 0.047	13.039 0.010	12,732 0.013	12.527 0.045	12.029 0.039		Y
LOri098	18.12 0.00	16.40 0.00	14.647 0.037	13,985 0.045	13.682.0.039	13.393 0.012	13.301 0.016	13.284 0.075	13.182.0.115		Y
LOri099	18.14 0.00	16.42 0.00	14,709 0.034	14.074 0.035	13.676 0.043	13.421 0.013	13.335 0.018	13.211 0.069	13.352 0.124		Y
LOri100	18 08 0 00	16 43 0 00	14 768 0 044	14 044 0 042	13 821 0 044	13 446 0 012	13 325 0 017	13 163 0 066	13 318 0 123		Y
LOri101	18 14 0 00	16 48 0 00	15 019 0 038	14 372 0 044	14 110 0 066	13 763 0 015	13 627 0 021	13 860 0 105	13,475,0,153		N
LOri102	18 24 0 00	16 50 0 00	14 634 0 047	14 083 0 050	13 809 0 057	13 296 0 012	13 213 0 015	13 275 0 073	13 101 0 108		Y
LOri103	18 30 0 00	16 55 0 00	14 643 0 029	14.126.0.029	13 833 0 055	13.220 0.012	13 387 0.018	13 140 0 067	13 628 0 151		v
LOri104	18 48 0 03	16 71 0 01	14.667.0.030	14.126.0.025	13 721 0 042	13 143 0 011	12 877 0 014	12 694 0 055	11 762 0.035		v
LOni105	18 58 0.00	16 75 0 00	14.007 0.050	14.130 0.050	13 003 0 053	13 621 0 016	13 593 0 021	13 601 0 003	13 536 0 159		v
LOni106	18.38 0.00	16.75 0.00	14.776.0.043	14.161.0.057	12 742 0 045	12 205 0 012	12.067.0.014	12 558 0 045	11 822 0.024	 8 840 0 151	v
LOIII00	18.48 0.00	16.78.0.00	14.770 0.043	12 087 0 025	12 621 0 052	13.293 0.012	12.507 0.014	12.338 0.043	12 046 0 160	8.849 0.131	v
LOIII07	18.63 0.00	16.78 0.00	14.030 0.030	14.256.0.048	12.018.0.050	13.213 0.017	13.132 0.019	13.213 0.082	12 202 0 124		I V
LOIII08	18.04 0.00	16.80 0.00	14.840 0.055	14.230 0.048	13.918 0.050	13.498 0.015	13.464 0.018	13.387 0.073	13.303 0.124		I
LOH109	18.67 0.00	16.81 0.00	14.96 0.01	14.47 0.01	14.18 0.01	13.699 0.015	13.654 0.022	13.519 0.077	13.708 0.190		Y N
LOHIIO	18.54 0.00	16.82 0.00	15.045 0.051	14.475 0.056	14.144 0.060	13.798 0.016	13.796 0.026	14.01/0.130	13.454 0.177		IN N
LOriIII	18.88 0.00	16.86 0.00	14.801 0.038	14.165 0.043	13.786 0.051	13.419 0.012	13.330 0.017	13.601 0.082	13.664 0.185		Y
LOri112	18.72 0.00	16.87 0.00	14.991 0.042	14.358 0.048	14.148 0.062	13.412 0.013	13.335 0.017	13.334 0.079	13.299 0.145		Y
LOri113	18.71 0.00	16.99 0.00	15.18 0.01	14.62 0.01	14.30 0.01	13.723 0.017	13.579 0.021	13.263 0.070	12.448 0.054		Y
LOri114	18.99 0.00	17.06 0.00	15.092 0.044	14.389 0.053	14.006 0.064	13.502 0.015	13.414 0.020	13.525 0.096	13.051 0.108		Y
LOri115	18.80 0.00	17.08 0.00	15.449 0.047	14.821 0.068	14.594 0.104	14.083 0.017	14.012 0.030	13.942 0.119	13.346 0.131		Y
LOri116	19.05 0.01	17.17 0.00	15.343 0.057	14.573 0.055	14.411 0.082	13.977 0.017	13.847 0.024	14.340 0.190	13.614 0.141		Y
LOri117	19.24 0.01	17.21 0.00	15.10 0.01	14.36 0.01	14.17 0.01	13.418 0.018	13.102 0.024	13.063 0.105			Y
LOri118	19.10 0.01	17.23 0.00	15.269 0.044	14.686 0.064	14.181 0.057	13.430 0.013	13.251 0.016	12.844 0.045	12.178 0.043		Y
LOri119	19.11 0.00	17.30 0.00	15.26 0.01	14.74 0.01	14.41 0.01	13.568 0.014	13.492 0.019	13.408 0.088	13.590 0.170		Y
LOri120	19.23 0.00	17.34 0.00	15.335 0.050	14.770 0.059	14.337 0.087	13.878 0.015	13.688 0.020	13.458 0.086	12.783 0.070		Y
LOri121	19.12 0.00	17.37 0.00	15.533 0.060	15.093 0.086	14.748 0.099	14.336 0.019	14.310 0.031	14.053 0.144			Y
LOri122	19.31 0.00	17.38 0.00	15.428 0.066	14.852 0.060	14.462 0.080	14.096 0.018	13.973 0.027	14.315 0.190	13.659 0.174		Y
LOri124	19.30 0.04	17.45 0.01	15.661 0.073	15.059 0.082	14.778 0.112	$14.353\ 0.012^2$	$14.235\ 0.018^2$	$14.303\ 0.086^2$	13.976 0.126 ²		Y
LOri126	19.52 0.01	17.52 0.00	15.62 0.01	15.04 0.01	14.67 0.01	13.709 0.014	13.577 0.021	13.118 0.063	12.352 0.049		Y
LOri127	19.87 0.10	17.53 0.01	13.016 0.023	12.606 0.027	12.468 0.024	12.401 0.007	12.348 0.010	12.301 0.033	12.352 0.037		Ν
LOri128	19.53 0.01	17.58 0.00	15.624 0.077	15.099 0.087	14.769 0.109	14.150 0.021	14.115 0.031	14.327 0.254	13.956 0.209		Y
LOri129	19.51 0.01	17.59 0.00	15.383 0.056	14.816 0.072	14.526 0.102	13.625 0.014	13.317 0.016	13.194 0.058	12.598 0.057		Y
LOri130	19.44 0.01	17.63 0.00	15.731 0.059	15.265 0.092	14.735 0.110	14.408 0.013 ²	$14.382\ 0.020^2$	$14.041\ 0.077^2$	14.348 0.256 ²		Y
LOri131	19.79 0.01	17.78 0.00	15.429 0.054	14.900 0.063	14.380 0.090	13.991 0.017	13.909 0.025	13.865 0.119	13.344 0.106		Y
LOri132	19.99 0.01	17.82 0.00	15.583 0.067	14.962 0.078	14.913 0.145	14.173 0.019	14.087 0.025	14.076 0.140	13.630 0.129		Y
LOri133	19.68 0.01	17.83 0.00	16.290 0.101	15.900 0.167	15.378 0.203	15.066 0.032	14.941 0.041	15.077 0.312			Ν
LOri134	19.91 0.01	17.90 0.00	15.543 0.057	14.937 0.074	14.666 0.107	14.321 0.020	14.071 0.027	13.880 0.113	13.884 0.154		Y
LOri135	19.91 0.01	17.90 0.00	15.671 0.072	15.082 0.087	14.908 0.138	$14.334\ 0.014^2$	$14.166\ 0.018^2$	$14.171\ 0.113^2$	$13.871\ 0.108^2$		Y
LOri136	20.06 0.12	17.92 0.01	15.560 0.085	14.828 0.090	14.576.0.108	$14.139\ 0.016^2$	$14.224\ 0.023^2$	$13.9480.083^2$	$13.607.0.107^2$		Y
LOri137	19.89 0.08	17.96 0.09				16.454 0.073	16.789 0.270				N
LOri138	20.01.0.01	17.96.0.00	15 821 0 078	15 204 0 083	14 971 0 133	14 527 0 022	14 469 0 035	14 150 0 123			Y
L Ori 130	20.04 0.01	18 16 0.00	16 16 0 01	15 53 0.01	15.06.0.01	14 054 0 017	13 658 0 010	13 151 0 056	12 663 0 062		v
LOni140	20.04 0.01	18 21 0.00	15 081 0 079	15 224 0 080	14 750 0 112	14.034.0.017	13 704 0 022	13 200 0 066	12.005 0.002		v
LOri141	20.34 0.01	18 25 0.00	16.61.0.01	15.224 0.089	15 68 0.02	15 100 0.034	15.704 0.025	13.277 0.000	12.700 0.078		N
LOIII41	20.44 0.01	16.23 0.00	10.01 0.01	13.07 0.01	13.06 0.02	15.100 0.054	13.006 0.069				18
										Continued on ne	a page

	Т	able 2.3 – Con	tinued								
Name ³	R error	I error	J error	H error	Ks error	[3.6] error	[4.5] error	[5.8] error	[8.0] error	[24] error	Mem ¹
LOri142	20.34 0.01	18.27 0.00	16.25 0.01	15.58 0.01	15.26 0.01	14.705 0.028	14.674 0.041				Y
LOri143	20.32 0.01	18.30 0.00	16.11 0.01	15.61 0.02	15.23 0.01	14.835 0.015	14.896 0.023	14.765 0.089	14.553 0.126		Y
LOri144	20.24 0.11	18.30 0.11	17.69 0.02	16.90 0.02	16.55 0.03	16.476 0.094	16.424 0.184				N?
LOri146	20.88 0.26	18.60 0.02	16.230 0.107	15.470 0.110	14.936 0.128	$14.404\ 0.022^2$	$14.199\ 0.035^2$	$13.836\ 0.103^2$	$13.614\ 0.175^2$		Y
LOri147	20.54 0.01	18.60 0.00	16.58 0.02	15.93 0.02	15.62 0.02	15.348 0.023 ²	$15.675\ 0.048^2$	$15.1280.224^2$			Y?
LOri148	20.77 0.02	18.62 0.00	16.39 0.01	16.12 0.01	15.98 0.02	14.869 0.030	14.989 0.051	14.530 0.210			Y?
LOri149	21.07 0.02	18.95 0.00	99.99 0.00	88.88 0.00	16.97 0.02	$17.135\ 0.132^2$	16.829 0.099 ²				Ν
LOri150	21.29 0.03	19.00 0.00	16.656 0.152	16.134 0.197	15.560 0.214	15.015 0.032	15.133 0.070	14.942 0.390			Y
LOri151	20.98 0.02	19.00 0.00	17.40 0.02	16.76 0.02	16.52 0.04	15.801 0.056	15.716 0.103				Ν
LOri152	21.43 0.04	19.05 0.00	16.773 0.173	16.657 0.295	15.870 0.285	16.313 0.086	16.316 0.158				N?
LOri153	21.30 0.03	19.17 0.00	17.09 0.01	16.37 0.01	16.09 0.03	15.223 0.036	15.139 0.072				Y
LOri154	21.79 0.05	19.31 0.00	16.804 0.169	16.143 0.192	15.513 0.219	15.071 0.035	15.953 0.141				Y
LOri155	21.87 0.06	19.36 0.00	16.97 0.01	16.30 0.01	15.84 0.02	15.085 0.019 ²	$15.412\ 0.045^2$	$14.878\ 0.163^2$	14.517 0.183 ²		Y
LOri156	22.05 0.06	19.59 0.01	17.06 0.02	16.34 0.02	15.89 0.02	14.942 0.029	14.688 0.038	14.127 0.148	13.870 0.146		Y
LOri157	22.09 0.06	19.63 0.01	18.08 0.03	17.42 0.03	17.00 0.04	16.907 0.103	16.719 0.161				Ν
LOri158	22.07 0.05	19.67 0.01	18.59 0.03	17.86 0.05	17.61 0.08	$17.627\ 0.123^2$	$17.565\ 0.245^2$				N?
LOri159	22.25 0.06	20.01 0.01	18.21 0.02	17.62 0.05	17.47 0.09	16.422 0.089	16.627 0.207				N?
LOri160	22.82 0.13	20.29 0.02	18.11 0.03	17.14 0.02	16.38 0.03	15.669 0.052	15.384 0.079				Y
LOri161	23.09 0.19	20.34 0.01	17.71 0.02	16.90 0.02	16.51 0.03	16.361 0.122	16.451 0.249				Y
LOri162	23.22 0.51	20.42 0.02	17.64 0.03	16.90 0.09	16.52 0.04	15.675 0.062	15.733 0.112				Y
LOri163	22.96 0.24	20.42 0.02	17.86 0.04	17.02 0.08	16.76 0.05	15.666 0.062	15.904 0.119				Y
LOri164	23.11 0.17	20.44 0.01	18.75 0.04	18.17 0.05	18.31 0.13						Ν
LOri165	23.12 0.22	20.73 0.02	18.77 0.08	18.11 0.16	17.90 0.09	16.377 0.112	16.130 0.189				N?
LOri166	23.33 0.18	20.75 0.02	18.26 0.03	88.88 0.00	17.38 0.04	$16.655 \ 0.055^2$	$17.232\ 0.237^2$				Y?
LOri167	23.86 0.64	20.90 0.02	18.01 0.03	17.17 0.07	16.83 0.09	15.935 0.063	16.060 0.129				Y
LOri168	24.15 0.62	21.54 0.04	19.39 0.09	18.58 0.08	18.70 0.25						N?
LOri169	24.83 1.10	21.88 0.05	20.10 0.10	19.47 0.15	018.93 0.42						Y?
LOri170	25.41 2.61	22.06 0.07	20.35 0.20	19.20 0.20	019.39 0.46						N?

¹Final membership. ²2-pixel aperture radius used for the photometry due to the presence of nearby objects or hot pixels. ³LOri097 and LOri145 are artifacts. LOri123 is a non member and has uncertainties in its photometry.

 Table 2.4: Membership for the previously selected candidate members of Collinder 69 from

 Barrado y Navascués et al. (2007b).

Name	SpT	Phot.Mem ¹	Mem ²	Mem ³	IRAC class ⁴	SED slope ⁵	Disk Type	Comment ⁶
LOri001	-	YYYYYY	Mem	Y	III	-2.8	Diskless	Ha- WHa(DM)=2.51 DM#01
LOri002	-	YYYYYYY	NM-	Y	III	-2.74	Diskless	-
LOri003	-	YYYYYYY	Mem	Y	III	-2.71	Diskless	Ha- WHa(DM)=3.35 DM#46 S08
LOri004	-	YYYYYYY	Mem	Y	III	-2.65	Diskless	-
LOri005	-	YYYYYYY	NM-	Y	III	-2.75	Diskless	-
LOri006	-	YYYYYYY	Mem	Y	III	-2.68	Diskless	-
LOri007	-	YYYYYYY	Mem	Y	III	-2.63	Diskless	-
LOri008	-	YYYYYYY	Mem	Y	III	-2.56	Diskless	Ha- WHa(DM)=1.65 DM#51
LOri009	-	YYYYYYY	Mem	Y	III	-2.71	Diskless	-
LOri010	-	YYYYYYY	Mem	Y	III	-2.69	Diskless	-
LOri011	-	YYYYYYY	NM-	Y	III	-2.70	Diskless	-
LOri012	-	YYYYYYY	NM-	Y	III	-2.70	Diskless	-
LOri013	-	YYYYYYY	Mem	Y	III	-2.66	Diskless	Ha- WHa(DM)=4.41 DM#04
LOri014	-	YYYYYYY	Mem	Y	III	-2.71	Diskless	Ha- WHa(DM)=1.45 DM#58
LOri015	-	YYYYYYY	Mem	Y	III	-2.89	Diskless	-
LOri016	-	YYYYYYY	Mem	Y	III	-2.58	Diskless	S08
LOri017	-	YYYYYYY	Mem	Y	III	-2.72	Diskless	Ha- WHa(DM)=0.80 DM#60
LOri018	-	YYYYYYY	Mem	Y	III	-2.63	Diskless	Ha- WHa(DM)=2.02 DM#56
LOri019	-	YYYYYYY	Mem	Y	III	-2.71	Diskless	-
LOri020	-	YYYYYYY	Mem	N ⁷	III	-2.63	Diskless	-
LOri021	-	YYYYYYY	Mem	Y	III	-2.76	Diskless	Ha- WHa(DM)=1.47 DM#25
LOri022	-	YYYYYYY	Mem	Y	III	-2.65	Diskless	Ha- WHa(DM)=4.39 DM#44 S08
LOri023	-	YYYYYYY	Mem	Y	III	-2.65	Diskless	Ha- WHa(DM)=1.95 DM#50
LOri024	-	YYYYYYY	Mem	Y	III	-2.67	Diskless	S08
LOri025	-	YYYYYYY	Mem?	Y	III	-2.72	Diskless	Ha- WHa(DM)=3.95 DM#59
LOri026	-	YYYYYYY	Mem	Y	III	-2.69	Diskless	Ha- WHa(DM)=6.07 DM#12 S08
LOri027	-	YYYYYYY	Mem	Y	III	-2.68	Diskless	-
LOri028	-	YYYYYYY	Mem?	Y	III	-2.67	Diskless	-
LOri029	-	YYYYYYY	NM-	Y	II	-0.72	Thick	Ha+ WHa(DM)=30.00 DM#36
LOri030	-	YYYYYYY	Mem	Y	III	-2.60	Diskless	S08
LOri031	M4.0	YYYYYYY	Mem	Y	III	-2.69	Diskless	Ha- WHa=3.8 DM#20 WHa(DM)= 3.45
LOri032	-	YYYYYYY	Mem	Y	III	-2.64	Diskless	Ha- WHa(DM)=6.83 DM#55
LOri033	-	YYYYYYY	Mem	Y	III	-2.68	Diskless	Ha- WHa(DM)=3.14 DM#39
LOri034	-	YYYYYYY	NM-	Y	II	-0.85	Thick	Ha+ WHa(DM)=10.92 DM#33 S08
LOri035	-	YYYYYYY	Mem	Y	III	-2.70	Diskless	Ha- WHa(DM)=4.13 DM#29 S08
LOri036	-	YYYYYYY	Mem	N ⁷	III	-2.67	Diskless	_
LOri037	-	YYYYYYY	Mem	Y	III	-2.67	Diskless	Ha- WHa(DM)=3.63 DM#11 S08
LOri038	-	Y – Y Y Y – –	Mem	Y	II	-1.00	Thick	Ha+ WHa(DM)=24.95 DM#02
LOri039	-	YYYYYYY	Mem	Y	III	-2.65	Diskless	Ha- WHa(DM)=3.59 DM#49 M08
LOri040	-	YYYYYYY	Mem	Y	III	-2.66	Diskless	Ha- WHa(DM)=3.90 DM#41 S08,M08
LOri041	-	YYYYYYY	Mem	Y	III	-2.69	Diskless	Ha- WHa(DM)=8.20 DM#38 S08,M08
LOri042	M4.0	YYYYYY	Mem	Y	III	-2.67	Diskless	Ha- WHa=4.3 DM#54 WHa(DM)= 4.22
LOri043	_	YYYYYYY	Mem	Y	Ш	-2.69	Transition	M08
LOri044	_	YYYYYY	Mem	N^7	III	-2.65	Diskless	-
		Conti	nued on nex	t page				

Table 2.4 – Continued

Name	SpT	Phot.Mem ¹	Mem ²	Mem ³	IRAC class ⁴	SED slope ⁵	Disk Type	Comment ⁶
LOri045	-	YYYYYYY	Mem	Y	III	-2.68	Diskless	S08
LOri046	-	YYYYYYY	Mem?	N^7	III	-2.67	Diskless	_
LOri047	-	YYYYYYY	Mem	Y	III	-2.68	Diskless	Ha- WHa(DM)=8.65 DM#47 M08
LOri048	-	YYYYYYY	Mem	Y	II	-2.07	Thin	S08,M08
LOri049	-	YYYYYYY	Mem	Y	III	-3.32	Diskless	_
LOri050	M4.5	YYYYYYY	Mem	Y	II	-0.60	Thick	200km WHa=15.6 S08,M08
LOri051	-	YYYYYYY	Mem	Y	III	-2.73	Diskless	M08
LOri052	-	YYYYYYY	Mem	Y	III	-2.68	Diskless	M08
LOri053	-	YYYYYYY	Mem	Y	III	-2.68	Diskless	S08,M08
LOri054	-	YYYYYYY	Mem	Y	III	-2.68	Diskless	M08
LOri055	M4.5:	YYYYYYY	Mem	Y	III	-2.68	Diskless	Ha- WHa=8.2 S08,M08
LOri056	M4.5:	YYYYYYY	Mem	Y	III	-2.68	Diskless	Ha- WHa=7.2 S08,M08
LOri057	M5.5	YYYYYYY	Mem	Y	III	-2.62	Diskless	Ha- WHa=8.4 S08
LOri058	M4.5:	YYYYYYY	Mem	Y	III	-3.16	Diskless	Ha- WHa=7.3 M08
LOri059	M4.5	YYYYYYY	Mem	Y	III	-3.23	Diskless	Ha- WHa=8.7 M08
LOri060	M4.5:	YYYYYYY	Mem	Y	III	-2.79	Diskless	Ha- WHa=4.1 S08,M08
LOri061	-	YYYYYYY	Mem	Y	II	-1.32	Thick	S08,M08
LOri062	-	YYYYYYY	Mem	Y	II	-1.66	Thick	S08,M08
LOri063	M4.5:	YYYYYYY	Mem?	Y	II	-1.58	Thick	Ha+FL WHa=12.8 S08,M08
LOri064	_	YYYYYYY	Mem	Y	III	-2.54	Diskless	M08
LOri065	-	YYYYYYY	Mem	Y	III	-2.97	Transition	M08
LOri066	-	YYYYYYY	Mem	Y	III	-3.25	Diskless	M08
LOri067	_	YYYYYYY	Mem	Y	III	-2.83	Diskless	M08
LOri068	M5.0	YYYYYYY	Mem?	Y	III	-2.57	Diskless	Ha+ WHa=16.6 S08,M08
LOri069	-	YYYYYYY	Mem?	Y	III	-2.65	Diskless	S08,M08
LOri070	-	YYYYYYY	Mem	Y	III	-2.57	Diskless	=
LOri071	M5.0	YYYYYYY	Mem	Y	III	-2.58	Diskless	Ha- WHa=8.0
LOri072	-	YYYYYYY	Mem?	N^7	III	-2.55	Diskless	-
LOri073	M5.0	YYYYYYY	Mem?	Y	III	-2.59	Diskless	Ha+? WHa=12.0 M08
LOri074	_	YYYYYYY	Mem?	Y	III	-2.78	Diskless	M08
LOri075	M5.5	YYYYYYY	Mem?	Y	III	-2.67	Diskless	Ha- WHa=9.4 WHa=9.4 S08,M08
LOri076	_	YYYYYYY	Mem	Y	III	-2.62	Diskless	S08.M08
LOri077	M5.0	YYYYYYY	Mem	Y	III	-2.72	Diskless	Ha- WHa=8.8 M08
LOri078	-	YYYYYYY	Mem	Y	III	-2.58	Diskless	M08
LOri079	-	YYYYYYY	Mem?	Y	III	-2.51	Diskless	S08,M08
LOri080	M5.5	YYYYYYY	Mem	Y	III	-2.55	Diskless	Ha+? WHa=14.3 S08,M08
LOri081	M5.5	ΝΥΥΥΥΥΥ	Mem+	Y	II	-1.70	Thick	Ha- WHa=4.2
LOri082	M4.5	YYYYYYY	Mem+	Y	III	-2.82	Diskless	Ha- WHa=8.6 M08
LOri083	_	YYYYYYY	Mem	Y	III	-2.85	Diskless	S08,M08
LOri084	-	YYYYYYY	Mem	Y	III	-2.71	Diskless	
LOri085	-	YYYYYYY	Mem	Y	II	-1.63	Thick	M08
LOri086	_	YYYYYYY	Mem	Y	III	-2.86	Diskless	M08
LOri087	M4.5	YYYYYY	Mem+	Y	III	-2.54	Diskless	Ha- WHa=6.7 S08,M08
LOri088	_	YYYYYY	Mem	Y	III	-2.58	Diskless	S08,M08
LOri089	M5.0	YYYYYYY	Mem	Y	III	-2.50	Diskless	Ha- WHa=5.1
LOri090	_	YYYYYY	Mem	Y	III	-2.69	Diskless	M08
LOri091	M5.5	YYYYYY	Mem	Y	III	-2.48	Diskless	Ha+? WHa=14.7 M08
		Conti	ued on nex	t page				

	Ta	ble 2.4 – Continue	d					
Name	SpT	Phot.Mem ¹	Mem ²	Mem ³	IRAC class ⁴	SED slope ⁵	Disk Type	Comment ⁶
LOri092	-	YYYYYYY	Mem	Y	III	-2.79	Diskless	S08,M08
LOri093	-	YYYYYYY	Mem	Y	III	-2.68	Diskless	S08,M08
LOri094	M5.5	YYYYYYY	Mem	Y	III	-2.82	Diskless	Ha- WHa=10.4 S08,M08
LOri095	M6.0	YYYYYY	Mem+	Y	III	-2.91	Diskless	Ha- WHa=7.3 S08,M08
LOri096	-	YYYYYYY	Mem	Y	II	-1.71	Thick	S08,M08
LOri098	M5.0	YYYYYY	Mem+	Y	III	-2.61	Diskless	Ha- WHa=12.9 M08
LOri099	M5.25	YYYYYY	Mem	Y	III	-2.74	Diskless	Ha- WHa=6.6
LOri100	M5.5	YYYYYY	Mem	Y	III	-2.67	Diskless	Ha+? WHa=13.1 S08,M08
LOri101	-	NN??YYY	Mem?	Ν	III	-2.6	Diskless	-
LOri102	-	YYYYYY	Mem?	Y	III	-2.65	Diskless	S08,M08
LOri103	-	YYYYYY	Mem?	Y	III	-2.31	Thin	M08
LOri104	-	YYYYYY	Mem	Y	II	-1.30	Thick	M08
LOri105	-	YYYYYY	Mem	Y	III	-2.75	Diskless	S08,M08
LOri106	M5.5	YYYYYYY	Mem	Y	II	-1.16	Thick	Ha+ WHa=54.0 S08,M08
LOri107	M6.0	YYYYYYY	Mem+	Y	III	-2.68	Diskless	Ha- WHa=11.7 M08
LOri108	-	YYYYYYY	Mem	Y	III	-2.61	Diskless	-
LOri109	M5.5	YYYYYYY	Mem	Y	III	-2.82	Diskless	Ha- WHa=10.1 M08
LOri110	M5.5	YYYYYYY	Mem	N^7	III	-2.52	Diskless	Ha- WHa=9.1
LOri111	-	YYYYYYY	Mem	Y	III	-3.19	Diskless	-
LOri112	-	YYYYYYY	NM-	Y	III	-2.72	Diskless	-
LOri113	M5.5	YYYYYYY	Mem	Y	II	-1.37	Thick	Ha+ WHa=22.0
LOri114	M6.5	YYYYYYY	Mem+	Y	II	-2.38	Thin	Ha- WHa=10.9 M08
LOri115	M5.0	YYYYYYY	NM+	Y	II	-2.02	Thin	Ha- WHa=8.5
LOri116	M5.5	YYYYYYY	Mem+	Y	III	-2.43	Diskless	Ha- WHa=11.1 M08
LOri117	M6.0	YYYYYYY	Mem	Y	-	-2.20	Thin	Ha+? WHa=22.9
LOri118	M5.5	YYYYYYY	Mem+	Y	II	-1.37	Thick	Ha- WHa=10.1 M08
LOri119	M5.5	YYYYYYY	NM?	Y	III	-2.85	Diskless	Ha+? WHa=12.7
LOri120	M5.5	YYYYYYY	Mem+	Y	II	-1.59	Thick	Ha- WHa=7.4 M08
LOri121	-	YYYY?YY	NM-	Y	-	-2.31	Diskless	-
LOri122	-	YYYYYYY	Mem	Y	III	-2.46	Diskless	M08
LOri124	M5.5	YYYYYYY	Mem?	Y	III	-2.56	Diskless	Ha- WHa=8.4 M08
LOri126	M6.5	YYYYYYY	Mem+	Y	II	-1.24	Thick	Ha+? WHa=26.2 M08
LOri127	_	NNNNNN	NM-	Ν	Ш	-2.78	Diskless	=
LOri128	_	YYYYYYY	Mem?	Y	III	-2.69	Diskless	_
LOri129	M6.0	YYYYYYY	Mem?	Y	II	-1.71	Thick	Ha+? WHa=12.1 M08
LOri130	M5.5	YYYYY?Y	Mem+	Y	Ш	-2.69	Diskless	Ha- WHa=8.7 M08
LOri131	_	YYYYYYY	Mem?	Y	II	-2.12	Thin	M08
LOri132	_	YYYYYN	NM-	Y	II	-2.25	Thin	=
LOri133	M4.5	NNN??NY	NM+	Ν	_	-2.91	Diskless	_
LOri134	M5.0	YYYY??Y	NM+	Y	III	-2.34	Thin?	_
LOri135	M7.0	YYYYYY?	Mem?	Ŷ	ш	-2.56	Diskless	Ha- WHa=15.5 M08
LOri136	_	YYYYYYY	Mem?	Y	ш	-2.17	Thin	_
LOri137	_	NN	?	N	_	_	_	_
LOri138	_	YYYYYYY	NM-	Y	-	-2.13	Thin	_
LOri139	M6 0	YYYYYYY	Mem+	Ŷ	П	-1.22	Thick	Ha+? WHa=197
LOri140	M7.0	YYYYYYY	Mem+	Ŷ	п	-1.40	Thick	Ha+WHa=72.8 M08
LOri141	M4.5	NN?NYYY	NM+	N	_	-5.35	Diskless	_
201111		Conti	nuad on nor	t page		2.00	21010000	

	10	Solution Continued						
Name	SpT	Phot.Mem ¹	Mem ²	Mem ³	IRAC class ⁴	SED slope ⁵	Disk Type	Comment ⁶
LOri142	_	YYYYYY	Mem?	Y	-	-	-	-
LOri143	M6.5	YYYYYYY	Mem+	Y	III	-2.59	Diskless	Ha+ WHa=35.7 M08
LOri144	-	NNNNNY	?	N?	-	-	-	-
LOri146	-	YYYYYYY	Mem	Y	III	-1.90	Thin	M08
LOri147	M5.5	Y Y ? N ? N Y	NM+	Y?	-	-2.41	Thin	-
LOri148	-	YNYYYN	NM-	Y?	-	-2.19	Thin	-
LOri149	-	- N N N - N -	?	Ν	-	-	-	-
LOri150	M8.0	YYYYYYY	Mem+	Y	-	-2.72	Diskless	Ha- WHa=15.6
LOri151	M5.5	NNN?YYY	NM?	Ν	-	-	-	-
LOri152	-	YYNNNNY	NM-	N?	-	-	-	-
LOri153	-	? Y Y Y Y Y Y Y	?	Y	-	-	-	-
LOri154	M8.0	YYY?YYY	Mem+	Y	-	-	-	Ha- WHa=16.9
LOri155	M8.0	YYYYYYY	Mem+	Y	III	-2.03	Thin	Ha+? WHa=38.0
LOri156	M8.0	YYYYYYY	Mem+	Y	III	-1.54	Thick	Ha+ WHa=101.7
LOri157	-	NNNNNY	?	Ν	-	-	-	-
LOri158	-	NNNNNY	?	N?	-	-	-	-
LOri159	-	NNNYYN	?	N?	-	-	-	-
LOri160	-	NYYYYY	?	Y	-	-	-	-
LOri161	M8.5	YYYYYYY	Mem+	Y	-	_	_	Ha+ WHa=123
LOri162	-	YYYYYYY	?	Y	-	-	-	-
LOri163	-	YYYYYYY	?	Y	-	-	-	-
LOri164	-	N N N	?	Ν	-	_	_	-
LOri165	M7.5	NNYYYY?	NM?	N?	-	-	-	-
LOri166	-	? ? Y N Y Y ?	?	Y?	-	_	_	-
LOri167	-	YYYYYYY	?	Y	-	-	-	-
LOri168	-	N N Y	?	N?	-	-	-	-
LOri169	-	N N	?	Y?	-	_	_	-
LOri170	-	N N	?	N?	-	-	-	-

Table 2.4 – Continued

¹Membership is Ivs(I-J); Ivs(I-K); Ivs(I-3.6); Ivs(I-4.5); Jvs(J-3.6);Kvs(K-3.6); Jvs(J-K).

²Membership as in Barrado y Navascués et al. (2004b).

³Final membership.

⁴Final classification after IRAC CCD –[3.6]-[4.5] vs. [5.8]-[8.0] and visual inspection of the SED.

⁵IRAC slope after Lada et al. (2006)

 $^{^{6}}$ Ha+ = W(Halpha) above the saturation criterion. Ha- = W(Halpha) below the saturation criterion. 200km = width of Halpha equal or larger than this value. WHa(DM) =

from Dolan & Mathieu. S08 = confirmed membership in Sacco et al. (2008). M08 = confirmed membership in Maxted et al. (2008)

⁷Non member based on Maxted et al. (2008); Sacco et al. (2008)

Table 2.5: Photometry for the new candidate members of Collinder 69. 1°×1° Spitzer survey.

Name	RA (J2000)	DEC (J2000)	V	R error	I error	J error	H error	Ks error	[3.6] error	[4.5] error	[5.8] error	[8.0] error	[24] error
C69EI1-10336	05:35:50.93	+09:38:56.8	18.699	17.176 0.0	15.55 0.0	13.994 0.028	13.285 0.033	13.057 0.038	12.491 0.0050	12.301 0.0060	12.119 0.02	11.702 0.026	9.072 0.102
C69EI1-10963	05:35:55.56	+10:15:12.4	17.578	16.648 0.0	15.702 0.0	14.794 0.076	13.939 0.078	13.429 0.066	12.828 0.0090	12.825 0.012	12.801 0.032	12.168 0.033	-
C69EI1-114	05:36:56.16	+09:31:22.8	16.341	15.118 0.0	13.781 0.0	12.212 0.026	11.521 0.023	11.301 0.023	10.742 0.0030	10.547 0.0030	10.223 0.0070	9.632 0.0040	7.034 0.019
C69EI1-11529	05:35:49.35	+10:05:39.3	17.757	16.962 0.001	16.383 0.001	15.25 0.054	14.627 0.067	14.382 0.099	13.784 0.0090	13.443 0.011	13.21 0.036	12.834 0.046	-
C69EI1-11541	05:35:44.43	+09:45:52.1	-	16.94 0.001	15.774 0.001	13.807 0.026	13.085 0.025	12.705 0.027	12.38 0.0050	12.157 0.0060	11.91 0.017	11.181 0.016	7.888 0.041
C69EI1-11637	05:35:45.14	+09:51:37.9	-	20.498 0.008	19.551 0.007	18.358 0.033	17.35 0.036	16.53 0.038	14.787 0.016	14.043 0.014	13.319 0.035	12.514 0.045	8.939 0.084
C69EI1-12304	05:35:41.24	+09:53:24.1	16.249	15.648 0.002	15.037 0.002	14.158 0.032	13.725 0.039	13.482 0.041	13.057 0.0070	12.989 0.0090	12.692 0.034	10.058 0.0080	7.219 0.02
C69EI1-12787	05:35:39.76	+10:01:27.5	17.566	16.608 0.0	15.734 0.0	14.779 0.101	13.973 0.115	13.432 0.083	12.622 0.02	12.578 0.019	11.156 0.015	9.358 0.0080	5.471 0.0050
C69EI1-13002	05:35:37.21	+09:56:51.7	18.541	17.057 0.0	15.602.0.0	13.723 0.026	13.027 0.023	12.538 0.024	11.717 0.0040	11.442.0.0040	11.287 0.011	10.756 0.011	7.884 0.04
C69EI1-13542	05:35:28.27	+09:36:04.5	15.207	14.65 0.0	14,165,0.0	13.342 0.029	12.984 0.022	12.847 0.029	12.817 0.0060	12.721 0.0070	13,506 0.054	12.757 0.04	_
C69EI1-13667	05:35:31.81	+09.54.01.9	14 991	14 193 0 001	13 534 0 001	12 579 0 026	11 994 0 025	11 82 0 026	11 703 0 0040	11 721 0 0050	11 641 0 019	11 568 0 022	9 182 0 116
C69EI1-13824	05:35:34.96	+10:11:07.9	_	_	-	-	-	-	13 535 0 0080	12 418 0 0070	11 574 0 013	10 565 0 011	7 1 0 019
C69EI1-14424	05:35:28.45	+10:02:27.5	17.18	15 686 0 003	14 472 0 001	13 151 0 029	12 446 0 025	12 157 0 029	11 721 0 0040	11 5 0 0040	11.126.0.01	10.297.0.0070	7 052 0 023
C69EI1-14609	05:35:25.34	+09:54:47.7	_	17 274 0 008	15 816 0 003	14 095 0 024	13 47 0 023	13 136 0 034	12 614 0 0060	12 333 0 0060	11 989 0 019	11 108 0 012	6 721 0 019
C69EI1-15980	05:35:16.48	+09:54:37.3	_	20.08.0.074	18 91 0 033	16 714 0 164	15 345 0 117	14 611 0 108	13 547 0 012	13 381 0 015	12 496 0 027	9 848 0 0070	7 775 0 047
C69EI1-16121	05:35:09.73	+09:30:37.0	18 444	17 773 0.0	16 915 0.0	16 214 0 113	15 349 0 125	14.651.0.112	13,632,0.01	13 289 0 012	12.490 0.027	10 418 0 0090	7 199 0 028
C69EI1-16472	05:35:08 33	+09:35:53.6	10.444	17.775 0.0	10.915 0.0	14 314 0 029	13 727 0 033	13 406 0 038	12 948 0 0070	12 767 0 0080	12.816.0.035	11 884 0 025	8 247 0 054
C60EI1-16578	05:35:12.27	+09:55:13.2	-	-	16.069.0.005	14 183 0 036	13.45.0.04	13 014 0 036	12.064.0.0090	11 714 0 0080	11 422 0 017	10.938.0.015	7 339 0 081
C60EI1 16821	05:25:14.88	+09.55.15.2	-	-	10.007 0.005	14.105 0.050	15.45 0.04	15.014 0.050	14 044 0 025	12 041 0.018	12 252 0.040	12 421 0 045	8 500 0 002
C60EI1 2220	05.26.48.88	+10.12.29.0	-	-	-	-	-	-	12 804 0 0060	12 542 0.0070	13.253 0.049	11.28.0.018	8.555 0.055
C60E11-2229	05:26:42.56	+09:55:42.4	-	-	-	14.222 0.037	15.0 0.051	13.310 0.047	12.804 0.0080	12.342 0.0070	12.109 0.018	12 556 0.020	8.799 0.110 10.842 0.514
C09E11-3042	05:36:43.30	+09.55.15.8	-	-	-	15.894 0.077	15.132 0.097	14.747 0.100	14.118 0.012	13.719 0.013	13.339 0.04	12.330 0.039	7,572,0,044
C69EI1-3154	05:36:43.29	+09:57:01.8	-	-	-	16.812 0.19	15.040 0.140	14.84 0.139	13.985 0.015	13.791 0.017	13.338 0.043	10.455 0.0080	1.572 0.044
C69EI1-5465	05:36:36.04	+09:34:54.6	-	-	-	14.855 0.052	14.319 0.051	14.011 0.062	15.516 0.0080	13.34 0.01	13.182 0.042	12.432 0.034	10.279 0.321
C69EI1-5574	05:36:37.72	+09:44:43.3	-	-	-	-	-	-	16.77 0.071	13.972 0.021	11.579 0.015	9.221 0.0040	-
C69EI1-4/61	05:36:32.17	+09:53:16.7	13.099	12.727 0.001	12.319 0.001	11.607 0.026	11.237 0.022	11.154 0.023	11.114 0.0030	11.115 0.0030	11.121 0.01	11.085 0.015	9.224 0.122
C69EI1-6036	05:36:20.09	+09:39:31.7	-	-	-	14.36 0.032	13.693 0.033	13.43 0.046	12.936 0.0060	12.678 0.0070	12.548 0.024	12.121 0.023	10.537 0.47
C69EI1-6539	05:36:15.48	+09:34:45.5	-	-	-	-	-	-	14.416 0.016	13.289 0.011	12.242 0.026	11.105 0.014	7.455 0.023
C69EI1-7021	05:36:23.84	+10:21:25.9	-	-	-	-	-	-	13.358 0.0080	12.412 0.0070	11.514 0.015	10.556 0.01	7.426 0.025
C69EI1-7070	05:36:13.97	+09:42:17.2	-	19.361 0.004	18.722 0.004	-	-	-	15.152 0.027	14.363 0.022	13.437 0.047	11.851 0.027	8.093 0.045
C69EI1-7312	05:36:19.27	+10:10:24.5	-	-	-	-	-	-	14.097 0.011	13.22 0.011	12.323 0.022	11.305 0.019	8.093 0.04
C69EI1-7620	05:36:11.23	+09:46:26.4	18.39	17.28 0.0	15.856 0.0	13.596 0.029	12.553 0.027	12.063 0.024	11.403 0.0030	11.037 0.0030	10.715 0.0080	10.399 0.008	8.306 0.058
C69EI1-790	05:36:55.33	+09:46:48.0	17.515	16.358 0.0	14.95 0.0	13.571 0.032	12.875 0.035	12.497 0.03	12.081 0.0040	11.871 0.0050	11.629 0.013	10.89 0.013	8.631 0.071
C69SEI1-2889	05:36:09.38	+10:01:25.4	10.301	9.977 0.0	9.646 0.0	9.11 0.021	8.826 0.046	8.69 0.021	8.556 0.0040	8.535 0.0060	8.547 0.017	8.348 0.012	6.718 0.015
C69SEI1-4253	05:35:19.03	+09:54:55.4	11.848	11.288 0.0	10.769 0.0	9.887 0.027	9.378 0.026	9.141 0.024	8.808 0.0050	8.714 0.0060	8.627 0.018	8.367 0.011	5.87 0.0080
C69SEI1-4263	05:35:16.68	+09:46:39.6	-	-	-	7.83 0.024	7.851 0.033	7.941 0.034	7.93 0.0030	7.99 0.0040	7.992 0.014	7.984 0.01	5.732 0.0090
C69SWI1-496	05:35:02.98	+09:56:04.8	8.307	8.146 0.0	8.141 0.0	10.026 0.0010	9.833 0.0010	9.616 0.0010	9.413 0.0070	9.479 0.0090	9.454 0.032	9.363 0.025	7.34 0.036
C69SWI1-937	05:34:48.56	+09:30:57.2	10.437	10.282 0.0	10.12 0.0	9.864 0.023	9.788 0.024	9.729 0.024	9.677 0.0070	9.654 0.011	10.074 0.048	9.587 0.031	6.984 0.104
C69WI1-10971	05:33:49.38	+09:46:19.3	13.97	13.534 0.001	13.046 0.001	12.513 0.023	12.27 0.022	12.193 0.024	12.123 0.0040	12.105 0.0060	12.094 0.017	12.038 0.024	10.379 0.524
C69WI1-12378	05:33:42.56	+10:03:48.0	-	-	-	16.667 0.155	15.675 0.149	14.77 0.112	13.806 0.01	13.166 0.011	12.573 0.025	11.113 0.016	8.076 0.053
C69WI1-1322	05:34:55.61	+09:32:02.7	-	-	-	14.819 0.043	14.228 0.052	13.951 0.068	13.28 0.0080	13.18 0.011	13.02 0.041	12.199 0.035	-
C69WI1-1388	05:34:55.24	+09:32:04.1	-	-	-	12.65 0.032	12.002 0.027	11.819 0.033	11.59 0.0040	11.554 0.0050	11.55 0.015	11.503 0.02	8.698 0.235
C69WI1-14892	05:33:21.96	+10:02:02.0	-	-	-	14.222 0.035	13.596 0.039	13.312 0.039	12.911 0.0060	12.704 0.0080	12.426 0.025	11.864 0.025	9.836 0.282
C69WI1-15281	05:33:22.12	+10:15:51.9	17.508	16.98 0.0	16.36 0.0	15.557 0.084	15.204 0.115	14.631 0.108	13.831 0.01	13.542 0.013	13.022 0.046	10.4 0.012	6.783 0.016
C69WI1-15377	05:33:15.14	+09:50:30.1	17.505	16.291 0.0	14.706 0.0	12.949 0.028	12.287 0.029	11.876 0.028	11.446 0.0030	11.238 0.0040	11.071 0.01	10.608 0.011	8.162 0.053
C69WI1-15404	05:33:11.77	+09:36:58.6	17.371	16.586 0.0	15.968 0.0	14.972 0.062	14.329 0.076	13.802 0.077	13.264 0.0080	13.341 0.014	13.137 0.049	12.719 0.05	-
C69WI1-15496	05:33:19.45	+10:11:57.0	-	-	-	-	-	-	15.009 0.024	14.131 0.02	13.141 0.046	12.2 0.043	8.937 0.138
										Continue	d on next page		

	Table	2.5 - Continued											
Name	RA (J2000)	DEC (J2000)	V	R error	I error	J error	H error	Ks error	[3.6] error	[4.5] error	[5.8] error	[8.0] error	[24] error
C69WI1-2261	05:35:00.38	+10:16:35.8	15.03	14.513 0.0	14.018 0.0	13.325 0.029	13.021 0.03	12.884 0.03	12.82 0.0060	12.804 0.0090	13.22 0.049	12.806 0.048	-
C69WI1-2303	05:34:55.63	+09:57:58.2	-	16.593 0.006	15.197 0.002	13.708 0.032	12.959 0.026	12.735 0.035	12.49 0.0050	12.427 0.0060	13.08 0.046	12.314 0.037	-
C69WI1-2708	05:34:52.59	+09:55:50.0	-	-	-	13.407 0.03	12.563 0.027	12.164 0.022	11.3 0.0030	10.967 0.0040	10.66 0.0080	10.151 0.008	7.102 0.019
C69WI1-306	05:35:03.89	+09:41:09.5	15.384	14.704 0.0	14.018 0.0	13.001 0.027	12.441 0.025	12.316 0.026	12.18 0.0050	12.237 0.0060	12.15 0.025	11.283 0.015	-
C69WI1-3226	05:34:43.82	+09:34:09.8	-	-	-	15.838 0.092	15.082 0.096	14.431 0.104	13.7 0.014	13.591 0.017	13.64 0.045	13.165 0.062	-
C69WI1-4232	05:34:45.88	+10:08:01.5	14.348	13.488 0.001	12.791 0.001	11.742 0.027	11.118 0.023	10.951 0.023	10.82 0.0030	10.888 0.0040	10.82 0.0090	10.752 0.012	8.893 0.097
C69WI1-4614	05:34:40.12	+09:56:43.7	-	19.261 0.009	18.424 0.008	16.363 0.165	15.455 0.142	14.631 0.126	13.47 0.01	13.341 0.014	12.41 0.031	9.619 0.006	6.767 0.012
C69WI1-4897	05:34:32.18	+09:31:58.0	14.957	14.486 0.0	14.04 0.0	13.313 0.024	12.907 0.027	12.868 0.035	12.78 0.0060	12.433 0.0060	13.46 0.058	12.747 0.048	-
C69WI1-6018	05:34:27.62	+09:46:33.9	18.471	17.728 0.0	16.944 0.0	16.429 0.125	15.662 0.188	14.798 0.127	13.74 0.012	13.565 0.015	13.23 0.043	10.443 0.009	8.817 0.086
C69WI1-6412	05:34:22.95	+09:39:52.1	-	-	-	-	-	-	14.34 0.014	13.319 0.011	13.07 0.045	11.202 0.017	7.758 0.031
C69WI1-6820	05:34:23.33	+09:52:15.2	14.821	14.218 0.001	13.605 0.001	12.85 0.023	12.444 0.03	12.288 0.024	12.21 0.0040	12.22 0.0060	12.18 0.024	12.232 0.04	8.983 0.109
C69WI1-7152	05:34:17.70	+09:39:22.4	-	-	-	14.094 0.032	13.512 0.03	13.157 0.034	12.57 0.0050	12.298 0.0060	11.95 0.018	11.271 0.019	9.685 0.28
C69WI1-718	05:35:07.76	+10:06:28.2	18.196	17.495 0.0	16.677 0.0	16.462 0.15	15.306 0.136	15.089 0.158	13.78 0.01	13.677 0.018	12.93 0.035	10.259 0.009	6.755 0.014
C69WI1-7809	05:34:21.38	+10:15:56.7	-	-	-	14.817 0.039	14.267 0.048	13.833 0.054	13.26 0.0070	12.978 0.0090	12.75 0.035	12.303 0.037	-
C69WI1-9288	05:34:03.91	+09:52:12.3	17.394	16.116 0.003	14.96 0.002	13.001 0.024	12.05 0.024	11.551 0.024	10.775 0.0020	10.585 0.0030	10.422 0.0070	9.873 0.006	7.635 0.042
C69WI1-9696	05:34:02.05	+09:58:16.5	-	20.593 0.009	19.8 0.009	17.62 0.015	-	-	14.671 0.017	14.103 0.02	13.518 0.046	12.489 0.04	8.577 0.069
C69WI1-9847	05:33:55.00	+09:33:05.3	16.271	15.342 0.0	14.41 0.0	13.232 0.023	12.607 0.026	12.357 0.029	12.195 0.0040	12.221 0.0060	12.188 0.021	10.947 0.011	-

Name	Mass ⁵	Phot.Mem ¹	Mem ³	IRAC class ⁴	SED slope	Disk Type
C69EI1-114	0.70	YYYYYYY	Y	II	-1.552	Thick
C69EI1-790	0.28	YYYYYYY	Y	II	-1.486	Thick
C69EI1-2229	0.17	Y Y Y Y Y Y -	Y	II	-1.2	Thick
C69EI1-3042	0.04	Y Y Y Y Y Y -	Y	II	-1.069	Thick
C69EI1-3154	-	N? Y Y G G G -	Ν	I/II	1.156	Thick
C69EI1-3465	0.11	Y Y Y Y Y Y Y -	Y	II	-1.622	Thick
C69EI1-3574	-	N? Y Y G -	Ν	I	5.778	Thick
C69EI1-4761	-	? ? T Y Y Y N	N?	III	-2.808	Thin
C69EI1-6036	0.16	Y ? Y Y Y Y -	Y	II	-1.937	Thin
C69EI1-6539	-	N? - Y Y Y G -	Ν	I	0.953	Thick
C69EI1-7021	0.16	N? - Y Y Y Y -	Y?	I	0.374	Thick
C69EI1-7070	-	N? - Y Y Y G N	Ν	I	0.953	Thick
C69EI1-7312	-	N? - Y Y Y G -	N	1	0.372	Thick
C69EI1-7620	0.27	YTTYYYY	Y	II	-1.691	Thin
C69EI1-10336	0.20	YYYYYY	Y	11	-1.943	Thin
C69EI1-10963	-	YYYYN	N	11	-2.104	Thin
C69EI1-11529	-	Y Y Y Y N	N	111	-1.//1	Thick
C69E11-11541	-	IIIIIN Nº VVVCN	N/	11 11	-1.4//	Thick
C69EI1-11057	_	NºYYGGVN	N	1/11	0.544	Thick
C69EI1-12504	_	Nº Y Y Y G V N	N	1/11	1 14	Thick
C69EI1-12/07	0.25	YYYYYYY	Y	II	-1.771	Thick
C69EI1-13542	_	?YN	N	П	-2 994	Diskless
C69EI1-13667	_	? ? T Y Y Y N	N	ш	-2.666	Diskless
C69EI1-13824	0.1	N? - Y Y Y Y -	Y?	I	0.523	Thick
C69EI1-14424	0.37	YYYYYYY	Y	II	-1.195	Thick
C69EI1-14609	0.19	YYYYYYN?	Y	II	-1.12	Thick
C69EI1-15980	-	N? Y Y G G G -	Ν	I/II	1.461	Thick
C69EI1-16121	-	N? Y Y G G G N	Ν	I/II	0.843	Thick
C69EI1-16472	0.16	Y Y Y Y Y Y Y -	Y	II	-1.7	Thick
C69EI1-16578	0.18	Y Y Y Y Y Y -	Y	II	-1.562	Thick
C69EI1-16821	-	N? - Y Y Y G -	Ν	I	0.0030	Thick
C69SEI1-2889	3.05	? ? T Y Y Y Y	Y	III	-2.615	Transition
C69SEI1-4253	1.94	? T T Y Y Y Y	Y	III	-2.341	Transition
C69SEI1-4263	5.68	? ? T Y Y Y -	Y?	III	-2.891	Transition
C69WI1-10971	-	? ? T Y Y Y N	N	III	-2.744	Diskless
C69WI1-12378	-	N?YYYG-	N	I	0.212	Thick
C69WI1-1322	0.11	Y Y Y Y -	Y		-1.615	Thick
C69WII-1388	0.52	? T T Y Y Y -	Y		-2.746	Transition
C69WI1-14892	0.17	YYYYYY- Navycccn	Y	11	-1.635	Thick
C69WI1-15281	- 0.42	N/IIGGGN	N	1/11	1.052	Thin
C69WI1-153//	0.42	TITITI VVVVN	I N	ш	-1.090	Thin
C69WI1-15404	_	N ² -YYYG-	N	T	0.415	Thick
C69WI1-2261	_	? Y Y Y N	N	III	-2.936	Diskless
C69WI1-2303	_	? Y Y Y N	N	ш	-2.827	Diskless
C69WI1-2708	0.31	ΥΥΥΥΥΥ-	Y	II	-1.531	Thick
C69WI1-306	_	Y Y Y Y N	Ν	III	-1.818	Thin
C69WI1-3226	-		Ν	II	-2.275	Thin
C69WI1-4232	1.05	? ? T Y Y Y Y	Y	III	-2.737	Transition
C69WI1-4614	-	N? Y Y G G G N	Ν	I/II	1.646	Thick
C69WI1-4897	-	? Y N	Ν	-	-3.121	Diskless
C69WI1-6018	-	N? Y Y G G G N	Ν	I/II	0.87	Thick
C69WI1-6412	-	N? - Y G Y G -	Ν	Ι	0.563	Thick
C69WI1-6820	-	? T T Y Y Y N	Ν	III	-2.851	Diskless
C69WI1-7152	0.19	Y Y Y Y Y Y -	Y	II	-1.346	Thick
C69WI1-718	-	$N? \mathrel{Y} Y \mathrel{G} G \mathrel{G} N$	Ν	I/II	1.236	Thick
C69WI1-7809	0.11	Y Y Y Y -	Y	II	-1.757	Thick
C69WI1-9288	0.41	YYYYYYY	Y	II	-1.824	Thin
C69WI1-9696	-	N? - Y Y Y G N	N	II	-0.346	Thick
C69WI1-9847	-	Y G G Y N	N	I/II	-1.448	_
C69SWI1-496	1.90	? - T Y Y Y Y	Y	III	-2.769	Transition
C69SW11-937	1.94	? Y Y Y N	Y?	111	-2.854	Transition
			Continued	on next page		

Table 2.6: Membership for the new sources with IR excess from the $1^\circ\times1^\circ$ Spitzer Survey in Collinder 69.

	Т	able 2.6 - Continu	ed			
Name ¹	Mass ⁵	Phot.Mem ²	Mem ³	IRAC class ⁴	SED slope	Disk Type

¹IDs of our targets. E: East part; W: West part; S: photometry from shallow mosaics; I1: coordinates taken from the first IRAC band.

²Membership is 3.6vs(3.6-8.0); H-Ksvs(Ks-24.0); (3.6-8.0)vs(8.0-24.0); (4.5-5.8)vs(5.8-8.0); (3.6-5.8)vs(4.5-8.0); 4.5vs(4.5-8.0); IvsR-I. Y: probable member; Y?: possible member; N:non member; N?: possible non member; G: contaminant; -: not enought data for evaluation.

³Final membership.

⁴Final YSO classification based on the (3.6-4.5)vs(5.8-8.0) diagram and the SED.

⁵Mass estimate using the J magnitude and a 5 Myr isochrone from Baraffe et al. (1998). The [3.6] magnitude was used for objects that lack 2MASS information and for objects with brighter than $J\sim10$ mag, the 5 Myr Siess et al. (2000) isochrone was used.

ID RA(J2000) DEC(J2000) Ic eIc Ic - Z eΖ J eJ H eH Ks eKs [3.6] e[3.6] [4.5] e[4.5] [5.8] e[5.8] [8.0] e[8.0] ccd1-016078 05:36:53.18 +10:01:57.7 19.011 0.002 1.205 0.002 16.369 0.042 15.825 0.055 ccd2-009766 05:36:03.33 +09:44:51.6 18.476 0.002 1.206 0.002 17.047 0.218 15.759 0.156 17.009 0.0 15.638 0.025 15.826 0.044 - ccd2-024918 05:36:10.63 +09:52:48.4 18.969 0.002 1.256 0.002 17.366 0.006 16.817 0.008 16.59 0.009 15.999 0.038 16.123 0.076 - ccd3-005774 05:35:36.32 +09:43:16.0 19.463 0.003 1.324 0.003 17.226 0.011 16.579 0.011 16.282 0.026 16.759 0.093 16.228 0.127 - ccd3-006362 05:35:54.10 +09:43:36.4 20.317 0.004 1.562 0.003 - -- -- -16.321 0.057 16.279 0.084 - -- -1.322 0.004 18.163 0.033 17.46 0.044 17.747 0.126 16.606 0.109 ccd3-007031 05:35:55.71 +09:43:58.020.105 0.004 16.564 0.148 ccd4-005127 05:35:57.43 +09:56:24.5 21.252 0.007 1.585 0.005 18.549 0.013 17.793 0.017 17.225 0.014 16.451 0.037 16.228 0.065 - ccd5-002230 05:36:33.33 +09:54:58.122.054 0.012 1.59 0.01 19.808 0.083 19.617 0.169 18.757 0.237 - -17.988 0.045 16.487 0.073 0.005 17.513 0.087 16.693 0.05 ccd5-008530 05:36:24.19 +09:58:43.121.417 0.008 1.632 18.948 0.039 - -- -16.959 0.09 ccd8-005864 05:35:18.79 +09:43:36.6 21.505 0.008 1.459 0.006 18.565 0.037 18.004 0.041 17.548 0.087 16.676 0.121 15.107 0.025 ccd8-014467 05:35:07.49 +09:49:33.4 18.957 0.002 1.351 0.002 16.591 0.009 16.018 0.01 15.567 0.013 15.159 0.04 ccd8-021927 05:35:14.16 +09:54:08.120.778 0.016 1.53 0.005 17.93 0.027 17.073 0.022 16.672 0.031 16.042 0.034 16.385 0.091 16.443 0.007 14.659 0.143 ccd9-001365 05:35:09.10 +09:54:36.1 18.845 0.006 1.391 0.002 15.853 0.006 15.557 0.01 15.081 0.023 15.001 0.031 - ccd9-005320 05:35:10.76 +09:56:06.5 18.426 0.027 0.009 16.101 0.016 15.503 0.011 15.039 0.009 13.975 0.047 13.913 0.06 12.385 0.166 13.347 0.224 1.166

17.706 0.009

16.919 0.009

16.516 0.01

15.988 0.045

15.965 0.068

ccd9-007028

05:35:18.34

+09:56:51.6

20.469 0.008

1.495

0.005

Table 2.7: Photometry for the new candidate members of Collinder 69 from the SUBARU Survey.

• X-ray data:

We obtained two *XMM-Newton* observations of Collinder 69. The observations were centered East and West of the bright star λ Ori (see Fig.2.2).

The prime instrument EPIC (*European Photon Imaging Camera*; see Jansen et al. (2001), Turner et al. (2001), and Strüder et al. (2001)) was operated in full-frame mode. The Optical Monitor (OM; Mason et al. (2001)) was scheduled for several consecutive imaging exposures in the V and B bands.

- EPIC:

Both observations were analysed with the *XMM-Newton* Science Analysis System (SAS) pipeline, version 7.0.0. We created a photon events list with the metatasks EPCHAIN and EMCHAIN for EPIC/pn and EPIC/MOS respectively. There was some loss of observing time due to high background. We selected good time intervals (GTIs) using a filter that cuts out times of high background maximizing the overall signal-to-noise. The C69 E field is almost unaffected, but the effective exposure time reduces to only ~ 15 ksec for C69 W. The data were further filtered for pixel patterns, and events at the boundary of individual CCD chips or near bad pixels or outside the field-of-view (FOV) were removed.

Images with a pixel size of 5" were binned from the cleaned events list. We performed source detection on the images in four energy bands using standard SAS tools. The most suitable boundaries of the energy bands depend on the spectral shape of the X-ray sources which is not known a priori. We have tested various bounds for the energy bands, and after inspection of the results from source detection made the following choice for the soft (*S*), medium (*M*), hard (*H*) and broad (*B*) bands: S = 0.5 - 1.0 keV, M = 1.0 - 2.0 keV, H = 2.0 - 7.3 keV, and B = S + M + H.

For the source detection process we proceeded in two steps. First, all EPIC instruments were analysed separately as described above. To evaluate the relative sensitivity of the detectors we computed separately for each energy band the ratio of count rates measured by EPIC/pn and EPIC/MOS, $(C_{pn}/C_{MOS})_i$ with i = S, M, H, B, for bright sources detected with all three instruments. The median of these values were used to scale the exposure maps of EPIC/pn for the joint analysis of all three instruments. Then, the source detection procedure was applied to the combined files of all three instruments.

Our final X-ray catalog contains all sources detected in the merged data ('EPIC sources'), plus all sources detected in the individual instruments that are not within 10" of an EPIC source. Detection in one detector but not in the combined data may occur, e.g. if the source is located outside the FOV, near a chip gap, or in a region of low exposure (such as a bad column) in one or more of the instruments. This yields 112

sources in the merged EPIC data of C69-E and 52 sources for C69-W. The X-ray coordinates of the final source list have been cross-correlated with the 2MASS catalog, and a boresight correction was computed as the median of the astrometric offsets in RA and DEC.

- OM:

The OM was operated in Full Frame imaging mode at high/low-resolution. For the C69-W field one V band exposure is available, and for the C69-E field there are five consecutive exposures with the V and B filters.

The OM data were reduced with the SAS metatask OMICHAIN with default parameters. This task performs all basic data reduction steps, including flat-fielding, identification of bad pixels, modulo-8 fixed pattern correction, and source detection with aperture photometry. The final output of the pipeline is a combined OM source list that contains for each source the average Johnson magnitude of all exposures in a given filter, i.e. in our case the average *B* magnitude of exposures 007, 008 and 010 and the average *V* magnitude of exposures 006 and 009.

We corrected the absolute positions of the detections by cross-correlating the OM source list with the 2MASS catalog (Skrutskie et al. 2006). A search radius of 3''was used and only OM sources with $\geq 15 \sigma$ detection significance were considered for the astrometry. Subsequently, the OM coordinates of all detected sources were shifted by the median position offset. Each exposure yielded approximately 1000 detections. Standard (Johnson) magnitudes are automatically extracted by the SAS tools if observations are performed in more than one band, allowing to calculate the colour. Since we obtained only V band data for C69-W, the OMICHAIN pipeline does not provide standard magnitudes. However, we can make use of the C69-E data to calibrate the V band photometry for the OM detections in C69-W. For the OM sources in the C69-E field we verified that a linear transformation with the B - V colour reproduces the standard magnitudes derived by the SAS tools, $V_{\text{ins}} = V_{\text{std}} + \kappa_{\text{V}} \cdot (B - V)_{\text{std}} = V_{\text{std}} + CF_{\text{V}}$, and we determined the average coefficient $\langle \kappa_V \rangle$. In order to compute standard magnitudes $V_{\rm std}$ from the instrumental magnitudes V_{ins} measured in the C69-W field, we assume for all objects the mean colour observed in the East field, $\langle B - V \rangle = 1.04 \pm 0.35$. The conversion factor derived in this way is $CF_V = 0.03 \pm 0.02$, where the uncertainty reflects the statistical errors of $\langle \kappa \rangle$ and $\langle B - V \rangle$ of the C69-E field. Note that the transformation factor $CF_{\rm V}$ is almost negligible.

For the search for optical/IR counterparts to the X-ray sources we used the previously mentioned surveys as well as published data from Dolan & Mathieu (1999, 2001, 2002). This compilation includes all presently known solar-type and low-mass members of C69, and a large catalog of photometric measurements (VR_cI_c) carried out in the field around the cluster, without any membership selection (Table 4 of Dolan & Mathieu 2002).

We have searched for optical and infrared counterparts for our X-ray detections, using a radius of 5.1 arcsec. Since the XMM-Newton positions have a moderate uncertainty, we have included the optical and infrared photometry of all sources within this radius from the nominal position of the X-ray source, and extracted accurate positions for all these objects. When there was ambiguity in the optical or infrared identification, after visual inspection, these possibilities were identified by a letter denoting whether the optical or infrared source is close to the fiducial center –c, or south –s, north –n, west –w– or east –e. Therefore, we have compiled a master catalog with all the sources which are present in at least one of the mappings (optical, near-IR or mid-IR) and extrated the photometry from these surveys. This information is provided in Tables 2.8 and 2.10 (East and West fields, respectively).

We have found multiple counterparts for several X-ray sources within our search radius. Although we are confident that the closest optical/IR counterpart provides the correct identification of the X-ray source, we have considered these secondary counterparts and assessed both the cluster membership and the source of the X-ray emission. For the selection of counterparts that were detected in a given passband in more than one of the catalogs and/or surveys we proceed as follows: For the blue side of the optical range (B and V), we listed first the data coming form the OM; otherwise, the V magnitude from D&M is listed. For the reddest portion of the optical range (R_c and I_c), we have chosen first the data from Barrado y Navascués et al. (2007b) (i.e., candidate members detected in Barrado y Navascués et al. 2004b). Then, we have selected the photometry from Dolan & Mathieu (1999, 2001) (i.e., members based on photometry and spectroscopy). If the X-ray source is not present in any of those catalogs, we first look for an optical counterpart in the CFHT1999 survey (only for objects with $I_c>13.2$ mag, and if it does not appear there, at the database from Dolan & Mathieu (2002), which is shallower but covers a much larger area. For the near-infrared photometry (JHKs), we have prioritized the data coming from deep image acquired with Omega2000 in November 2007 (J>17.2 mag). If no data have been recored, we selected the photometry coming from Omega2000 taken in October 2000, shallower (J>13.0 mag) but covering a much larger area. Otherwise, data from the 2MASS All Sky Survey are listed.

We have applied different criteria to our X-ray sources to assess membership; the process is explained in detail in Barrado y Navascués et al (2009), in prep. In short, our criteria are based on combinations of optical and near-infrared color-color and color-magnitude diagrams (see Fig. 2.3 for an example); analysis of the overall shape of the Spectral Energy Distributions (SED) built, and theoretical model fits to those SEDs. The final list of good candidate members contains 70 objects which correspond to 67 X-ray sources (four have possible companions within the XMM-Newton pointing uncertainty, which might be the actual source of the X-ray emission). Out of these 67 detections, 31 were already presented in Barrado y Navascués et al. (2004b, 2007b), whereas another 16 where listed in Dolan & Mathieu (1999, 2001). Thus, we have uncovered

Figure 2.2: The young cluster Collinder 69, with all the collected data. The black retangle respresents the CFHT1999 RI_c survey, the red squares the near-IR data (*JHKs*) from Omega2000 (thick lines for the deep image), whereas the IRAC mapping is represented with dashed, cyan lines. Finally, our two XMM-Newton FOVs are located with blue, dotted squares. O and B stars are represented by four-point stars, with increasing size related to increasing brightness. Our final cluster candidate members are represented as solid circles (blue for Y+ or confirmed, cyan for Y or probable, and green for Y? or possible).

Figure 2.3: I-J vs. J- [3.6] color-color diagram that allows the identification of contamination by quasars. Previously known members of Collinder 69 from Dolan & Mathieu (1999) and Barrado y Navascués et al. (2004b, 2007b) are displayed as crosses and open cirles (for Class II members). Quasars observed by the SWIRE team (Lonsdale et al. 2003) appear as magenta asterisks. Data corresponding to our XMM study are shown as open magenta inverted triangle (for quasars), solid blue triangle (for possible quasars) and solid blue circles (others, probable stars). This effective diagram, nicknamed quasar-killer, was first defined in Bouy et al. (2009a).

20 new candidate members plus the three possible companions to more massive objects. One of them, namely LOri025, is a confirmed members of the cluster with a possible fainter companion.

The known cluster member LOri113 is very close to the source C69-X-W032, although it is not the closest. Since our general criterion to identify the X-ray detection with an optical and/or infrared source is the proximity, we do not believe they correspond to the same source and assumed that this source does not belong to the Collinder 69 cluster.

We note that there is a dichotomy in the distribution of X-ray sources (clearly visible on Fig. 2.2 and 3.31. While 48 members are located to the East of the central star λ Ori, there are only 20 to the West of this O8III star. This fact was already discussed in Barrado y Navascués et al. (2007b) in the context of the distribution of members with circumstellar disks and will be revisited in Section 4.3. In any event, our final cluster members have been displayed on Figure 2.2 as solid circles (blue for Y+ or spectroscopically confirmed, cyan for Y or probable based on photometric criteria, and green for Y? or possible also based on photometry).

Table 2.8: Optical and infrared photometry for the X-ray sources of Collinder 69 East.

Name	RA (J2000)	DEC (J2000)	В	V	Rc	Ic	J	Н	K	[3.6]	[4.5]	[5.8]	[8.0]	[24]
C69-X-E-001 I	05:35:55.43	+09:56:31.5	15.730 0.010	14.43 0.00	13.50 0.00	12.57 0.00	11.416 0.023	10.725 0.022	10.524 0.023	10.262 0.003	10.318 0.004	10.239 0.010	10.171 0.010	
C69-X-E-002 I	05:36:32.03	+09:44:20.3			20.040 0.049	19.440 0.052				16.471 0.071	15.587 0.049	14.446 0.131	13.186 0.058	
C69-X-E-003 M	05:37:00.84	+09:49:04.5		12.409 0.000	11.869 0.000	11.357 0.000	10.585 0.024	10.152 0.025	9.990 0.023	9.928 0.002	9.924 0.002	9.908 0.005	9.846 0.005	
C69-X-E-004 I	05:35:57.97	+09:54:32.8	16.144 0.010	14.855 0.010	13.913 0.010	12.939 0.010	11.548 0.029	10.859 0.023	10.651 0.024	10.498 0.003	10.495 0.004	10.440 0.011	10.256 0.012	
C69-X-E-005 c	05:36:27.90	+09:55:27.5			21.556 0.021	20.688 0.019	19.311 0.056	18.085 0.046	17.472 0.079	15.89 0.042	15.608 0.053	14.677 0.121	14.006 0.134	
" w	05:36:27.69	+09:55:27.1			22.394 0.047	21.401 0.036	20.258 0.144	19.194 0.121	19.055 0.345	16.626 0.089	16.815 0.146			
C69-X-E-006 I	05:36:20.49	+09:52:19.3	16.472 0.010	15.036 0.000	14.163 0.000	13.326 0.000	12.188 0.024	11.482 0.023	11.323 0.021	11.165 0.005	11.206 0.006	11.173 0.017	11.072 0.019	
C69-X-E-007 c	05:36:19.02	+10:03:50.9		14.872 0.000	13.980 0.000	13.096 0.000	11.941 0.024	11.278 0.027	11.092 0.023	10.902 0.004	10.904 0.005	10.839 0.014	10.797 0.014	
C69-X-E-008 I	05:36:18.55	+09:45:09.4		13.255 0.000	12.681 0.000	12.130 0.000	11.340 0.023	10.796 0.022	10.676 0.019	10.540 0.002	10.570 0.003	10.521 0.008	10.481 0.009	
C69-X-E-009 I	05:35:19.07	+09:54:54.5					9.887 0.027	9.378 0.026	9.141 0.024	8.894 0.002	8.727 0.002	8.626 0.003	8.354 0.002	5.871 0.009
C69-X-E-010 c	05:35:54.31	+10:04:23.3		12.890 0.000	12.280 0.000	11.690 0.000	10.936 0.023	10.378 0.022	10.235 0.021	10.144 0.002	10.132 0.002	10.099 0.006	10.053 0.008	
C69-X-E-011 c	05:36:20.18	+09:44:02.1		15.188 0.000	14.201 0.000	13.122 0.000	12.163 0.044	11.409 0.051	11.090 0.033	10.668 0.003	10.674 0.004	10.613 0.012	10.576 0.012	
" e	05:36:20.31	+09:44:02.7			15.307 0.003	14.181 0.001								
C69-X-E-012 I	05:36:09.42	+10:01:26.1	14.618 0.010	13.015 0.010			9.110 0.021	8.826 0.046	8.690 0.021	8.708 0.002	8.553 0.001	8.528 0.003	8.328 0.002	6.703 0.016
C69-X-E-013 I	05:36:23.09	+09:45:15.8					6.900 0.024	6.468 0.047	6.345 0.021					6.311 0.009
C69-X-E-014 I	05:35:51.34	+09:55:10.9	17.505 0.010	15.69 0.00	14.64 0.00	13.45 0.00	12.102 0.023	11.411 0.022	11.156 0.019	11.010 0.004	10.985 0.005	10.895 0.014	10.683 0.014	
C69-X-E-015 I	05:36:10.09	+10:01:58.4			21.337 0.015	20.606 0.013	19.223 0.053	18.590 0.072	17.896 0.115	15.437 0.031	15.388 0.055	13.126 0.090	13.272 0.108	
C69-X-E-016 I	05:36:16.59	+09:50:48.7	16.807 0.010	15.314 0.000	14.369 0.000	13.356 0.000	11.991 0.024	11.284 0.022	11.090 0.023	10.804 0.004	10.798 0.005	10.722 0.012	10.636 0.014	
C69-X-E-017 I	05:36:18.85	+09:51:35.3	17.798 0.010	16.607 0.000	15.453 0.000	14.026 0.000	12.488 0.024	11.872 0.022	11.687 0.021	11.439 0.005	11.417 0.006	11.348 0.017	11.297 0.021	
C69-X-E-018 M	05:36:47.11	+10:05:51.8		15.738 0.000	14.757 0.000	13.746 0.000	12.454 0.026	11.744 0.022	11.546 0.026	11.360 0.003	11.363 0.004	11.332 0.013	11.280 0.018	
C69-X-E-019 M	05:36:57.50	+09:53:26.0		16.050 0.000	15.020 0.000	13.910 0.000	12.695 0.028	11.958 0.023	11.767 0.021	11.574 0.004	11.580 0.005	11.551 0.014	11.484 0.017	
C69-X-E-020 I	05:36:16.43	+09:59:25.4	14.128 0.010	11.785 0.000	11.172 0.000	10.570 0.000	9.729 0.024	9.303 0.023	9.147 0.019	9.154 0.002	9.041 0.002	9.014 0.004	8.993 0.003	
C69-X-E-021 c	05:36:40.04	+10:04:34.2					20.181 0.111	19.036 0.107	18.478 0.212	16.204 0.046	15.73 0.057	14.53 0.098		
" w	05:36:39.81	+10:04:33.7					19.944 0.090	19.313 0.141	19.705 0.620	17.067 0.094	16.604 0.114			
C69-X-E-022 I	05:36:09.31	+09:47:03.7	18.220 0.010	16.46 0.00	15.33 0.00	13.94 0.00	12.410 0.029	11.714 0.023	11.493 0.021	11.252 0.004	11.215 0.006	11.178 0.016	11.080 0.019	
C69-X-E-023 I	05:35:47.55	+09:45:50.6					11.359 0.022	10.780 0.023	10.548 0.021	10.287 0.003	10.249 0.004	10.185 0.009	10.127 0.009	
" o	05:35:43.26	+09:59:56.4			20.728 0.009	19.895 0.010	18.920 0.020	18.048 0.025	17.320 0.016	16.024 0.066	14.817 0.032		13.012 0.065	
C69-X-E-025 I	05:36:26.30	+09:51:14.3	18.037 0.010	16.313 0.000	15.294 0.000	14.189 0.000	12.866 0.026	12.153 0.022	11.931 0.027	11.824 0.004	11.808 0.005	11.737 0.013	11.791 0.023	
C69-X-E-026 -	05:36:33.38	+09:58:02.9					19.568 0.069	18.219 0.054	17.390 0.073	15.665 0.037	15.275 0.043	14.363 0.121		
C69-X-E-027 c	05:36:28.93	+09:54:27.1	18.220 0.010	16.573 0.000	15.461 0.000	14.204 0.000	12.893 0.029	12.108 0.023	11.945 0.024	11.771 0.004	11.762 0.005	11.667 0.016	11.697 0.023	
" n	05:36:28.90	+09:54:32.4				20.650 0.178	19.121 0.050	18.540 0.071	18.141 0.153					
C69-X-E-028 c	05:35:57.65	+09:47:34.7	17.128 0.010	15.68 0.00	14.65 0.00	13.55 0.00	12.221 0.027	11.471 0.022	11.290 0.024	11.090 0.004	11.114 0.005	11.071 0.015	10.928 0.018	
C69-X-E-029 c	05:35:34.83	+10:00:35.3		15.873 0.000	14.801 0.000	13.608 0.000	12.455 0.033	11.800 0.042	11.502 0.027	11.146 0.004	11.149 0.005	11.060 0.015	11.020 0.019	
C69-X-E-030 I	05:36:02.93	+09:42:06.2		15.220 0.000	14.300 0.000	13.390 0.000	12.151 0.023	11.455 0.022	11.250 0.023	11.028 0.003	11.011 0.003	10.924 0.008	10.748 0.010	8.643 0.077
C69-X-E-031 M	05:36:52.68	+09:52:56.3		16.690 0.000	15.500 0.000	14.060 0.000	12.512 0.023	11.841 0.022	11.665 0.024	11.407 0.004	11.382 0.005	11.367 0.012	11.382 0.018	
C69-X-E-032 -	05:35:37.90	+09:44:10.1					18.058 0.026	17.211 0.022	16.320 0.025	15.041 0.042	14.281 0.030	13.774 0.110	12.609 0.051	8.584 0.080
C69-X-E-033 I	05:35:59.46	+09:50:18.6			23.114 0.073	22.164 0.060	19.881 0.037	19.564 0.081	18.767 0.054	17.441 0.119	16.425 0.103			
C69-X-E-034 c	05:35:22.21	+09:52:27.6		15.430 0.000	14.480 0.000	13.610 0.000	12.309 0.023	11.629 0.026	11.459 0.024	11.308 0.003	11.373 0.004	11.313 0.011	11.243 0.016	
" w	05:35:22.02	+09:52:25.8					18.780 0.017	18.268 0.028	18.219 0.042					
C69-X-E-035 c	05:35:39.49	+09:50:33.1		16.76 0.00	15.54 0.00	14.05 0.00	12.553 0.024	11.877 0.022	11.594 0.024	11.364 0.005	11.319 0.006	11.231 0.017	11.218 0.025	
C69-X-E-036 I	05:35:30.47	+09:50:34.5		17.22 0.00	15.87 0.00	14.23 0.00	12.500 0.024	11.856 0.023	11.587 0.027	11.255 0.004	11.187 0.006	11.131 0.015	11.123 0.021	
C69-X-E-037 c	05:35:51.99	+09:50:29.8	20.124 0.010	18.396 0.010	16.780 0.010	15.340 0.010	13.782 0.026	13.098 0.025	12.846 0.029	12.486 0.008	12.489 0.011	12.378 0.034	12.245 0.053	
C69-X-E-038 c	05:35:27.20	+09:53:10.7			20.516 0.088	19.738 0.064	18.333 0.014	17.425 0.014	16.621 0.010	15.254 0.032	14.905 0.039	14.349 0.097	13.796 0.106	
" w	05:35:27.06	+09:53:10.4					19.986 0.054	19.474 0.084	18.714 0.062					
C69-X-E-039 -	05:36:56.41	+09:53:38.1								16.282 0.060	15.901 0.068			
C69-X-E-040 M	05:36:50.26	+09:54:23.8	19.039 0.089	17.428 0.000	16.207 0.000	14.756 0.000	13.237 0.024	12.534 0.022	12.304 0.024	12.096 0.004	12.064 0.005	12.009 0.019	12.086 0.034	
										Continued	on next page			

	Tal	ble 2.8 – Continue	d											
Name	RA (J2000)	DEC (J2000)	В	V	Rc	Ic	J	Н	Κ	[3.6]	[4.5]	[5.8]	[8.0]	[24]
C69-X-E-041 M	05:37:10.18	+09:55:27.0		16.720 0.000	15.640 0.000	14.300 0.000	12.857 0.024	12.081 0.022	11.768 0.024					6.988 0.048
C69-X-E-042 M	05:36:46.22	+09:53:14.4					7.358 0.019	7.130 0.033	7.050 0.026			6.994 0.002	7.002 0.001	7.082 0.017
C69-X-E-043 I	05:35:49.99	+09:57:52.4			22.309 0.028	21.606 0.041	20.341 0.052	19.307 0.069	18.702 0.053	16.779 0.111	16.272 0.110			
C69-X-E-044 +	05:36:26.79	+09:49:19.0								16.749 0.074	15.874 0.067			
C69-X-E-045 +	05:35:30.57	+09:54:29.2			22.75 0.000	22.75 0.000	21.855 0.216	20.511 0.207	19.410 0.105					
C69-X-E-046 g	05:35:33.40	+09:51:47.8			22.75 0.000	22.178 0.058	20.503 0.062	19.273 0.061	18.213 0.035	16.476 0.061	16.050 0.099			
C69-X-E-047 M	05:36:54.54	+09:53:26.7					14.524 0.032	13.928 0.045	13.668 0.043	13.269 0.008	13.177 0.010	13.215 0.049	13.069 0.059	
C69-X-E-048 -	05:36:50.74	+09:54:05.3					21.00 0.000	19.75 0.000	18.75 0.000					
C69-X-E-049 I	05:35:48.86	+09:49:23.9			21.801 0.024	20.856 0.019	20.069 0.045	19.398 0.068	18.788 0.059	17.029 0.104	16.594 0.136			
C69-X-E-050 I	05:36:17.46	+10:01:39.4			21.635 0.023	20.710 0.015	21.00 0.000	19.75 0.000	18.75 0.000					
C69-X-E-051 I	05:35:57.35	+09:58:27.1			20.688 0.008	19.956 0.009	19.669 0.029	18.867 0.041	18.139 0.030	15.710 0.036	15.560 0.054	14.186 0.126	13.245 0.087	
C69-X-E-052 I	05:35:20.84	+09:47:27.2		17.904 0.000	17.235 0.000	16.513 0.000	15.105 0.003	14.393 0.002	14.184 0.004	14.137 0.011	14.095 0.018	14.015 0.067		
C69-X-E-053 I	05:36:13.99	+09:53:05.5			23.627 0.108	22.750 0.096	21.359 0.128	020.75 0.000	19.524 0.103	17.619 0.129	16.788 0.127			
C69-X-E-054 I	05:36:12.15	+10:00:57.4	19.048 0.010	17.451 0.010	15.910 0.010	14.600 0.010	13.266 0.024	12.559 0.022	12.285 0.021	12.017 0.006	11.995 0.008	11.969 0.024	11.919 0.035	
C69-X-E-055 I	05:35:52.52	+09:48:31.7	19.348 0.010	17.710 0.010	16.190 0.010	14.730 0.010	13.189 0.024	12.509 0.022	12.271 0.027	11.974 0.006	11.948 0.009	11.805 0.025	11.862 0.038	
C69-X-E-056 -	05:36:44.14	+09:52:05.4					21.011 0.315	19.800 0.214	18.230 0.151		15.998 0.135			
C69-X-E-057 M	05:36:49.28	+09:58:20.0	13.300 0.011	12.028 0.010	11.304 0.000	10.712 0.000	9.897 0.026	9.294 0.022	9.191 0.024	9.167 0.002	9.151 0.002	9.098 0.004	9.088 0.003	
C69-X-E-058 M	05:36:54.86	+09:50:25.0		15,540 0,000	14.570 0.000	13.630 0.000	12.418 0.024	11.717 0.023	11.522 0.021	11.374 0.003	11.421 0.004	11.311 0.011	11.257 0.018	
C69-X-E-059 +	05:36:14.86	+09:52:05.6			022.75 0.000	022.75 0.000	021.25 0.000	020.75 0.000	019.75 0.000					
C69-X-E-060 c	05:36:08.78	+09:56:21.4					12.206.0.026	11.572.0.022	11.439 0.021	11.375 0.004	11.388 0.004	11.362 0.013	11.295 0.016	
"n	05:36:09.19	+09:56:22.7			20.499 0.017	19.679 0.008	20.293 0.058	20.148 0.152	19.048 0.088					
C69-X-E-061 I	05:35:56.70	+10:01:52.6			21.160 0.012	20.419 0.014	19,995 0.093	18.893 0.089	18.448 0.194	16.113 0.053	15.391 0.047			
C69-X-E-062 I	05:36:02 79	+10:05:39.3					11 386 0 024	11 018 0 026	10.923.0.021	10.857.0.003	10 887 0 004	10 842 0 008	10 859 0 013	
C69-X-E-063 I	05:35:54.62	+10:01:52.1			23 006 0 059	21 992 0 055	20.671.0.176	19.917.0.218	18 508 0 194	16 768 0 095	16.062.0.097			
C69-X-E-064 I	05:35:22 18	+09:53:58.4			15 607 0 003	14 428 0 001	13 083 0 027	12 380 0 027	12 137 0 024	12 021 0 004	11 893 0 006	11 865 0 016	11 853 0 028	
C69-X-E-065 M	05:35:38.12	+09:53:16.3					13 201 0 026	12.500 0.027	12.197 0.024	12 249 0 004	12 446 0 007	13 342 0 044	12 410 0 046	
C69 X E 066 I	05:35:38 25	+10:01:03.0			20 554 0 103	19 866 0 074	15.201 0.020	12.025 0.027	12.477 0.020	15 713 0 035	14 846 0 032	13 828 0.068	12 717 0 064	8 498 0 075
C69-X-E-067 I	05:36:08.63	+00.53.20.2	13 754 0 010	12 941 0 010	20.554 0.105	17.000 0.074	11 184 0 026	10.943.0.022	10.847.0.023	10 770 0 002	10.770.0.003	10.768.0.009	10.761.0.011	0.470 0.075
C69-X-E-068 M	05:36:20.21	+09:56:02.8	14 758 0.010	13 810 0 010	13 363 0 000	12 915 0 000	12 281 0 027	12 013 0 023	11 910 0 023	11 848 0 004	11 875 0 005	11 523 0.013	11 807 0 031	
C60 X E 060 a	05.25.51.71	+09.50.02.0	16.622.0.010	15.010 0.010	14 720 0 001	14.111.0.001	12.261 0.027	12.013 0.025	12 601 0.020	12 572 0 005	12 502 0.007	12 522 0.024	12.54.0.04	
C60 X E 070 +	05:26:12:50	+09.55.54.0	10.032 0.010	13.499 0.010	14.729 0.001	14.111 0.001	021 00 0 000	010 75 0 000	018 75 0 000	12.575 0.005	12.393 0.007	12.555 0.024	12.34 0.04	
C09-A-E-070 +	05:36:15:50	+10.01.10.3			12.050.0.001	12 270 0 001	12 212 0 026	11 (01 0 025	11,556,0,026					
C69-X-E-0/1 C	05:35:29.21	+09:46:32.3			15.950 0.001	13.279 0.001	12.313 0.026	11.691 0.025	11.556 0.026	11.448 0.003	11.479 0.004	11.441 0.013	11.352 0.02	7.565 0.055
C69-X-E-0721	05:36:27.46	+09:45:25.8		17.605 0.000	16.443 0.000	14.921 0.000	13.436 0.032	12.763 0.023	12.537 0.027	12.284 0.004	12.274 0.007	12.170 0.021	12.233 0.034	
C69-A-E-0731	05:30:11.34	+09:39:40.3	17.109 0.010	10.241 0.010	13.700 0.002	13.144 0.002	14.090 0.002	14.322 0.002	14.217 0.004	15.907 0.01	15.932 0.017	15.8 0.001	13.004 0.1	
C09-A-E-074 -	05:36:33.30	+09:54:25.9					18.371 0.028	17.237 0.022	10.334 0.034	13.330 0.040	15.577 0.076		15.749 0.140	
C60 X E 077	05:35:32.52	+09:57:55.0			22.10/ 0.033	21.416 0.031	20.19/ 0.047	19.089 0.091	19.118 0.0//	17.103 0.086	10.344 0.114			
C09-X-E-070-	05:36:46.30	+09:54:46.8					20.068 0.127	18.940 0.093	18.651 0.239					
C09-X-E-0//g	05:36:01.15	+09:58:45.6	19.569 0.010	17.003 0.010	16.675 0.000	15./3/ 0.000	14.806 0.073	13.8/1 0.096	13.490 0.074	12.683 0.009	12.700 0.012	12.588 0.034		
C69-X-E-0781	05:36:27.06	+09:51:35.1			17.770 0.010	16.170 0.010	14.515 0.041	13.881 0.023	13.651 0.051	13.226 0.011	13.116 0.015	12.930 0.047	13.126 0.100	
C69-X-E-0791	05:35:21.43	+09:49:56.9			16.120 0.010	14.760 0.010	13.184 0.026	12.477 0.026	12.253 0.026	12.044 0.006	12.038 0.009	12.015 0.029	11.902 0.038	
C69-X-E-080 -	05:36:57.65	+10:03:16.0								15.369 0.027	14.687 0.026	14.340 0.130	12.994 0.069	8.939 0.103
C69-X-E-081 c	05:35:55.64	+09:50:53.7	19.069 0.010	17.41 0.00	16.08 0.00	14.41 0.00	12.732 0.026	12.097 0.031	11.827 0.026	11.474 0.005	11.400 0.006	11.303 0.017	11.342 0.025	
"е	05:35:55.79	+09:50:51.1			19.464 0.005	18.307 0.003								
C69-X-E-082 I	05:35:57.06	+09:46:53.0	18.315 0.010	16.79 0.00	15.63 0.00	14.18 0.00	12.755 0.030	12.004 0.023	11.775 0.023	11.523 0.005	11.534 0.007	11.434 0.018	11.373 0.025	
C69-X-E-083 c	05:36:46.91	+09:56:22.3					19.663 0.075	18.949 0.092	18.475 0.181	17.245 0.091	16.526 0.104	15.3 0.277	13.707 0.105	
" n	05:36:46.84	+09:56:25.2					19.204 0.050	18.541 0.063	18.845 0.253	17.513 0.127				
C69-X-E-084 I	05:35:35.76	+09:44:35.4		17.230 0.000	16.010 0.000	14.660 0.000	13.230 0.026	12.518 0.025	12.270 0.026	12.083 0.005	12.079 0.006	12.022 0.023	12.120 0.043	
										Continued	on next page			

	Tal	ble 2.8 – Continue	ed .											
Name	RA (J2000)	DEC (J2000)	В	V	Rc	Ic	J	Н	K	[3.6]	[4.5]	[5.8]	[8.0]	[24]
C69-X-E-085 +	05:36:13.86	+09:52:31.0					22.373 0.293	21.927 0.694	21.067 0.409					
C69-X-E-086 M	05:36:53.10	+09:50:19.4	20.109 0.220	18.503 0.010			13.760 0.024	13.099 0.027	12.841 0.029	12.598 0.005	12.542 0.008	12.391 0.028	12.407 0.042	
C69-X-E-087 c	05:35:49.46	+10:04:34.5			23.026 0.063	22.104 0.065				16.714 0.054	15.746 0.037	15.039 0.169	13.878 0.108	
" s	05:35:49.33	+10:04:32.2			23.799 0.138	22.583 0.095								
C69-X-E-088 n	05:36:30.11	+09:43:39.5			22.071 0.028	21.284 0.026				17.48 0.101	17.465 0.199			
" s	05:36:30.59	+09:43:29.4			18.723 0.003	17.968 0.002				16.17 0.043	16.12 0.075			
C69-X-E-089 -	05:36:56.92	+09:52:53.8								16.991 0.107	16.448 0.130			
C69-X-E-090 g	05:35:43.89	+09:56:02.8			22.058 0.027	21.452 0.043	20.083 0.043	19.129 0.057	18.406 0.039	16.646 0.059	15.922 0.06			
C69-X-E-091 I	05:36:31.53	+09:45:01.4			18.120 0.010	16.400 0.010	14.647 0.037	13.985 0.045	13.682 0.039	13.393 0.012	13.301 0.016	13.284 0.075	13.182 0.115	
C69-X-E-092 M	05:37:10.40	+09:51:27.3					13.053 0.024	12.482 0.023	12.161 0.021					
C69-X-E-093 I	05:35:25.48	+09:47:41.7			20.722 0.008	20.171 0.010	19.240 0.023	18.403 0.028	18.036 0.030	16.338 0.041	15.967 0.055	14.656 0.087	13.727 0.069	
C69-X-E-094 I	05:35:51.66	+10:06:35.8			21.110 0.013	20.071 0.011				15.970 0.043	15.654 0.067			
C69-X-E-095 -	05:36:55.99	+09:52:04.9								16.334 0.054	15.432 0.055		13.724 0.135	
C69-X-E-096 c	05:36:10.37	+10:00:19.2	19.906 0.010	18.225 0.010	16.570 0.010	15.060 0.010	13.521 0.024	12.935 0.022	12.643 0.027	12.332 0.007	12.269 0.010	12.172 0.032	12.637 0.072	
C69-X-E-097 M	05:37:15.66	+09:57:50.0					16.374 0.130	15.676 0.168	14.744 0.123					
C69-X-E-098 M	05:36:25.01	+09:41:31.3					15.168 0.054	14.439 0.049	14.183 0.065	13.935 0.010	13.862 0.013	13.756 0.071	13.782 0.127	
C69-X-E-099 g	05:36:14.25	+09:47:47.6			21.943 0.029	20.852 0.018	19.216 0.022	18.164 0.022	17.320 0.016	15.904 0.040	15.405 0.050			
C69-X-E-100 -	05:36:34.86	+09:58:40.3					021.00 0.000	019.75 0.000	018.75 0.000					
C69-X-E-101 -	05:36:40.15	+09:48:36.2												
C69-X-E-102 c	05:35:30.57	+09:56:14.7			18.823 0.003	18.027 0.002	17.069 0.005	16.338 0.005	16.240 0.007	15.529 0.035	15.482 0.06	15.04 0.216	15.103 0.478	
" e	05:35:30.70	+09:56:13.9			21.055 0.019	19.819 0.008	18.385 0.012	17.670 0.015	17.411 0.018					
" s	05:35:30.68	+09:56:12.3			20.931 0.013	20.281 0.012	19.339 0.027	18.598 0.035	18.057 0.032	15.364 0.032	15.026 0.043	14.328 0.116	13.556 0.104	
C69-X-E-103 c	05:35:32.60	+09:56:10.9			22.566 0.068	21.410 0.031	20.170 0.052	19.023 0.060	18.285 0.046	17.444 0.302	17.261 0.349			
" s	05:35:32.61	+09:56:06.5				22.463 0.085	20.737 0.079	19.816 0.097	18.789 0.061	16.985 0.116	17.053 0.254			
" w	05:35:32.27	+09:56:07.6			22.246 0.054	20.781 0.017	19.180 0.021	18.156 0.024	17.266 0.015	15.609 0.038	15.702 0.077			
C69-X-E-104 c	05:35:55.57	+09:52:10.1	19.186 0.010	17.563 0.010	16.179 0.004	14.856 0.002	13.431 0.001	12.732 0.001	12.436 0.001	12.286 0.005	12.255 0.006	12.194 0.02	12.115 0.033	
" e	05:35:55.77	+09:52:08.9					19.331 0.032	18.951 0.058	18.637 0.057					
C69-X-E-105 M	05:36:55.43	+10:01:10.7					14.058 0.028	13.439 0.036	13.099 0.031	12.808 0.007	12.787 0.009	12.813 0.029	12.657 0.050	
C69-X-E-106 I	05:36:00.68	+09:41:11.6					19.958 0.116	18.538 0.083	17.601 0.086	16.353 0.039	15.02 0.032	13.94 0.062	12.979 0.065	
C69-X-E-107 I	05:35:59.37	+09:53:32.4			19.690 0.005	18.717 0.004	17.646 0.012	16.816 0.013	16.554 0.035	16.248 0.055	16.088 0.079			
C69-X-E-108 -	05:36:33.88	+10:01:08.9					021.00 0.000	019.75 0.000	18.805 0.270	17.077 0.141	16.129 0.082			
C69-X-E-109 c	05:36:10.87	+10:00:53.0			22.224 0.032	21.599 0.033	021.00 0.000	019.75 0.000	18.75 0.000	17.082 0.076	16.571 0.109	15.93 0.287		
" e	05:36:10.98	+10:00:53.1			22.952 0.095	21.346 0.026	20.146 0.114	19.332 0.141	18.551 0.204	17.726 0.119				
" w	05:36:10.65	+10:00:53.3			20.583 0.010	19.625 0.006	19.018 0.043	18.112 0.048	18.75 0.000	17.191 0.095				
C69-X-E-110 -	05:36:44.54	+09:59:26.1					021.00 0.000	019.75 0.000	18.75 0.000					
C69-X-E-111 I	05:36:21.32	+09:53:49.9		14.401 0.000	14.068 0.000	13.720 0.000	13.231 0.001	13.010 0.001	12.932 0.002	12.817 0.006	12.814 0.008	12.996 0.041	13.207 0.061	
C69-X-E-112 -	05:37:05.46	+09:56:09.9												

Name	T a	I.,	FluxTot	eFlux	FracE	IRAC	Diek?	Ha?	DM	ByN	Mem (ByN)	Final
C69-X-E-001 I	4000	0.8184	1 641e-10	1 886e-12	0.519	III	No.	Ha-	046	003	Y Y	Y+
C69-X-E-002 I	4500	0.0018	3.618e-13	4.461e-15	0.252	I	-	_	_	-	-	NM
C69-X-E-003 M	5000	2.3562	4.725e-10	6.502e-12	0.580	Ш	_	_	_	_	-	Y
C69-X-E-004 I	3750	0.6704	1.344e-10	1.114e-12	0.496	Ш	No	Ha-	051	008	Y	Y+
C69-X-E-005 c	3750	0.0006	1.238e-13	2.656e-15	0.518	Π	-	-	_	-	-	NM+
" w	3750	0.0002	5.378e-14	2.672e-15	0.466	?-	-	-	-	-	-	NM+
C69-X-E-006 I	4000	0.4176	8.375e-11	9.989e-13	0.520	III	No	Ha-	060	017	Y	Y+
C69-X-E-007 c	4000	0.5081	1.019e-10	1.346e-12	0.519	III	No	Ha-	058	014	Y	Y+
C69-X-E-008 I	4750	1.1487	2.303e-10	2.894e-12	0.561	III	-	-	057	-	-	Y+
C69-X-E-009 I	4750	4.2826	8.588e-10	3.533e-12	0.171	III	T?	-	-	-	-	Y?
C69-X-E-010 c	4750	1.6856	3.380e-10	4.256e-12	0.581	III	-	-	045	-	-	Y+
C69-X-E-011 c	4000	0.4452	8.928e-11	2.174e-12	0.519	III	No	Ha-	059	025	Y	Y+
" e	-	-	-	-	0.000	?-	-	-	-	-	-	Y?
C69-X-E-012 I	3750	4.3396	8.702e-10	7.670e-12	0.374	III	T?	-	-	-	-	Y?
C69-X-E-013 I	5500	82.106	1.646e-08	6.517e-11	0.132	?-	-	-	-	-	-	Y
C69-X-E-014 I	3750	0.3874	7.770e-11	8.367e-13	0.499	III	No	Ha-	044	022	Y	Y+
C69-X-E-015 I	4000	0.0005	1.161e-13	2.564e-15	0.492	III	-	-	-	-	-	NM+
C69-X-E-016 I	3750	0.4499	9.022e-11	1.011e-12	0.494	III	No	Ha-	056	018	Y	Y+
C69-X-E-017 I	3700	0.2450	4.914e-11	5.190e-13	0.475	III	No	-	-	028	Y	Y+
C69-X-E-018 M	3750	0.3023	6.062e-11	7.314e-13	0.496	III	-	-	065	-	-	Y+
C69-X-E-019 M	3750	0.2448	4.909e-11	6.220e-13	0.498	ш	-	-	070	-	-	Y+
C69-X-E-020 I	5000	4.8647	9.755e-10	1.235e-11	0.562	Ш	-	-	-	-	-	Y
C69-X-E-021 c	1900	0.0002	4.776e-14	2.218e-15	0.368	?-	-	-	-	-	-	NM?
" w	4750	0.0004	8.149e-14	2.187e-15	0.168	?-	-	-	-	-	-	NM
C69-X-E-022 I	3700	0.2765	5.545e-11	6.656e-13	0.471	III	No	Ha-	055	032	Y	Y+
C69-X-E-023 I	4500	1.0271	2.059e-10	8.054e-13	0.191	III	No	-	-	004	Y	Y+
" 0	4000	0.0010	2.049e-13	1.353e-15	0.467	?-	-	-	-	-	-	NM+
C69-X-E-025 I	3750	0.2030	4.071e-11	5.046e-13	0.530	111	-	-	061	-	-	Y+
C69-X-E-026 -	1900	0.0005	1.003e-13	2.261e-15	0.383	?	-	-		-	-	NM?
C69-X-E-027 c	3750	0.1887	3.785e-11	4.979e-13	0.504		-	-	062	-	-	Y+
n Cro V E 020	3300	0.0005	1.113e-13	4.286e-15	0.393	?-	-	-	-	-	-	NM
C69-X-E-028 c	3750	0.3633	7.286e-11	8.930e-13	0.496		NO	Ha-	050	023	Y	Y+
C69-X-E-029 C	3/50	0.3027	6.0/1e-11	1.141e-12	0.499		NO	на-	039	033	r	Y+
C69-X-E-0301	4000	0.4031	8.084e-11	9.252e-15	0.517	111	-	-	053	-	-	Y+ V
C69-A-E-031 M	1000	0.2479	4.9/10-11	3.136e-15	0.404	T	-	-	007	-	-	1 + NM2
C69-A-E-032 -	2100	0.0015	3.119e-13	2.4896-15	0.358	1	-	-	-	-	-	NM /
C69-X-E-034 c	4000	0.0002	4.940e-14	8.616e-13	0.412	·	-	-	035	-	-	V_
°. w	5000	0.0012	2 541e-13	0.260e-16	0.156	2	-	_	055	_	-	NM
	3500	0.2490	4 994e-11	5.114e-13	0.455	.– III	No	Ha-	041	040	v	V+
C69-X-E-035 C	3200	0.2415	4.844e-11	5 103e-13	0.440	ш	No	Ha-	038	040	v I	1 + V+
C69-X-E-037 c	3400	0.0763	1 531e-11	1 325e-13	0.446	ш	Thin	_	-	064	Y	Y+
C69-X-E-038 c	3750	0.0016	3 283e-13	4 909e-15	0.436	п	_	_	_	_	-	NM+
" w	2100	0.0002	4.137e-14	9.191e-16	0.361	?_	_	_	_	_	_	NM?
C69-X-E-039 -	_			_	0.000	?_	_	_	_	_	-	NM?
C69-X-E-040 M	3600	0.1304	2.614e-11	2.726e-13	0.463	Ш	_	_	_	_	-	Y
C69-X-E-041 M	3700	0.2019	4.048e-11	4.223e-13	0.463	?-	_	_	071	_	-	Y+
C69-X-E-042 M	7250	98.800	1.981e-08	2.967e-11	0.066	?-	_	_	_	-	-	Y
C69-X-E-043 I	4000	0.0002	5.002e-14	1.108e-15	0.490	?-	-	_	-	_	-	NM+
C69-X-E-044 +	-	_	_	_	0.000	?-	-	-	_	-	-	NM?
C69-X-E-045 +	4000	0.0001	2.038e-14	1.944e-15	0.509	?-	-	-	-	-	-	NM
C69-X-E-046 g	3100	0.0002	4.994e-14	1.140e-15	0.452	?-	-	-	-	-	-	NM+
C69-X-E-047 M	4500	0.0565	1.133e-11	7.842e-14	0.190	III	-	-	-	-	-	NM
C69-X-E-048 -	-	-	-	-	0.000	?-	-	-	-	-	-	NM?
C69-X-E-049 I	4250	0.0003	7.081e-14	1.135e-15	0.465	?-	-	-	-	-	-	NM+
C69-X-E-050 I	-	-	-	-	0.000	?-	-	-	-	-	-	NM?
C69-X-E-051 I	4750	0.0007	1.508e-13	1.100e-15	0.462	Π	-	-	-	-	-	NM+
C69-X-E-052 I	3750	0.0268	5.374e-12	1.036e-13	0.548	?-	-	-	-	-	-	NM
C69-X-E-053 I	3700	0.0001	2.086e-14	6.740e-16	0.323	?-	-	-	-	-	-	NM+
C69-X-E-054 I	3500	0.1445	2.897e-11	2.036e-13	0.444	III	No	-	-	051	Y	Y+
C69-X-E-055 I	3300	0.1422	2.851e-11	2.114e-13	0.433	III	No	-	-	054	Y	Y+
C69-X-E-056 -	1900	0.0001	3.157e-14	2.268e-15	0.387	?-	-	-	-	-	-	NM?
C69-X-E-057 M	4750	4.1627	8.347e-10	1.049e-11	0.582	III	-	-	-	-	-	Y
C69-X-E-058 M	4000	0.3147	6.311e-11	7.483e-13	0.519	III	-	-	069	-	-	Y+
C69-X-E-059 +	-	-	-	-	0.000	?-	-	-	-	-	-	NM?
C69-X-E-060 c	4750	0.5334	1.069e-10	4.101e-13	0.195	III	-	-	-	-	-	NM?
" n	6250	0.0009	1.922e-13	1.518e-15	0.350	?-	-	-	-	-	-	NM
C69-X-E-061 I	4250	0.0005	1.109e-13	2.478e-15	0.448	?-	-	-	-	-	-	NM+
C69-X-E-062 I	5500	1.2955	2.597e-10	7.729e-13	0.145	III	-	-	-	-	-	NM?
									C	ontinued o	on next page	

Table 2.9: Disk properties, physical parameters and membership citeria of the X-ray sources in the Collinder 69 East field.

	Table	2.9 – Conti	nued									
Name	T _{eff}	L _{bol}	FluxTot	eFlux	FracF.	IRAC	Disk?	Ha?	DM	ByN	Mem (ByN)	Final
C69-X-E-063 I	3750	0.0001	3.434e-14	2.372e-15	0.510	?-	-	-	-	-	-	NM+
C69-X-E-064 I	3750	0.1598	3.204e-11	2.231e-13	0.485	III	-	-	-	-	-	Y
C69-X-E-065 M	4750	0.2038	4.088e-11	1.722e-13	0.173	I/I	-	-	-	-	-	NM
C69-X-E-066 I	2800	0.0028	5.769e-13	4.986e-15	0.130	Ι	-	-	-	-	-	NM?
C69-X-E-067 I	5500	1.4050	2.817e-10	1.143e-12	0.258	III	-	-	-	-	-	NM?
C69-X-E-068 M	5750	0.5800	1.163e-10	1.408e-12	0.548	III	-	-	-	-	-	NM
C69-X-E-069 c	4500	0.1842	3.694e-11	1.925e-13	0.562	III	-	-	-	-	-	NM
C69-X-E-070 +	-	-	-	-	0.000	?-	-	-	-	-	-	NM?
C69-X-E-071 c	4500	0.4083	8.189e-11	4.224e-13	0.502	III	-	-	-	-	-	NM?
C69-X-E-072 I	3600	0.1070	2.145e-11	2.805e-13	0.467	III	-	-	-	-	-	Y
C69-X-E-073 I	5500	0.0656	1.317e-11	2.450e-14	0.552	III	-	-	-	-	-	NM
C69-X-E-074 -	1900	0.0013	2.608e-13	2.375e-15	0.363	?—	-	-	-	-	-	NM?
C69-X-E-075 I	4000	0.0002	5.130e-14	1.112e-15	0.461	?—	-	-	-	-	-	NM+
C69-X-E-076 -	3700	0.0003	6.155e-14	2.274e-15	0.294	?—	-	-	-	-	-	NM
C69-X-E-077 g	4000	0.0412	8.270e-12	3.632e-13	0.546	?-	-	-	-	-	-	NM+
C69-X-E-078 I	3400	0.0398	7.992e-12	8.215e-14	0.412	III	No	-	-	090	Y	Y+
C69-X-E-079 I	3700	0.1408	2.824e-11	2.276e-13	0.429	III	No	Ha-	-	055	Y	Y+
C69-X-E-080 -	-	-	-	-	0.000	Ι	-	-	-	-	-	NM?
C69-X-E-081 c	3300	0.1923	3.857e-11	4.823e-13	0.451	III	No	Ha-	047	047	Y	Y+
" e	-	-	-	-	0.000	?-	-	-	-	-	-	NM?
C69-X-E-082 I	3700	0.2106	4.224e-11	5.246e-13	0.472	III	No	Ha-	049	039	Y	Y+
C69-X-E-083 c	2500	0.0002	5.547e-14	2.072e-15	0.382	Ι	-	-	-	-	-	NM
" n	4500	0.0007	1.495e-13	2.074e-15	0.185	?-	-	-	-	-	-	NM
C69-X-E-084 I	3700	0.1366	2.741e-11	3.182e-13	0.470	III	-	-	040	-	-	Y+
C69-X-E-085 +	2100	2.2810	4.574e-15	6.951e-16	0.357	?-	-	-	-	-	-	NM?
C69-X-E-086 M	3200	0.0697	1.399e-11	1.110e-13	0.336	III	-	-	-	-	-	Y?
C69-X-E-087 c	1600	0.0006	1.388e-13	8.233e-16	0.111	Ι	-	-	_	_	-	NM?
" s	-	_	-	-	0.000	?-	-	-	_	_	-	NM?
C69-X-E-088 n	4000	0.0003	6.342e-14	1.214e-15	0.321	?-	-	-	_	_	-	NM
" s	4000	0.0060	1.217e-12	1.863e-15	0.254	?-	-	-	-	-	-	NM
C69-X-E-089 -	-	-	-	_	0.000	?-	-	-	-	-	-	NM?
C69-X-E-090 g	4000	0.0003	6.232e-14	1.169e-15	0.483	?-	-	-	-	-	-	NM+
C69-X-E-091 I	3200	0.0350	7.037e-12	8.351e-14	0.407	III	No	Ha-	-	098	Y	Y+
C69-X-E-092 M	1400	0.1090	2.186e-11	1.771e-13	0.382	?-	_	_	_	_	-	NM?
C69-X-E-093 I	4250	0.0007	1.597e-13	1.149e-15	0.465	п	_	_	_	_	-	NM+
C69-X-E-094 I	3750	0.0009	1.947e-13	1.151e-15	0.284	?-	_	_	_	_	-	NM
C69-X-E-095 -	_	_	-	-	0.000	?-	_	_	_	_	-	NM?
C69-X-E-096 c	3300	0.0971	1.949e-11	1.499e-13	0.450	III	No	Ha-	_	058	Y	Y+
C69-X-E-097 M	1900	0.0068	1.378e-12	6.340e-14	0.352	?-	_	_	_	_	-	NM?
C69-X-E-098 M	4000	0.0271	5.453e-12	6.402e-14	0.236	ш	_	_	_	_	-	NM
C69-X-E-099 g	3200	0.0007	1.405e-13	1.166e-15	0.432	?_	_	_	_	_	-	NM+
C69-X-E-100 -	_	_	_		0.000	?_	_	_	_	_	-	NM?
C69-X-E-101 -	_	_	_	-	0.000	?_	_	_	_	_	-	NM?
C69-X-E-102 c	4250	0.0051	1.040e-12	1.682e-15	0.464	ш	_	_	_	_	-	NM
"e	3750	0.0011	2.334e-13	1.362e-15	0.464	?_	_	_	_	_	-	NM
"s	4250	0.0006	1 389e-13	1 264e-15	0.468	п	_	_	_	_	_	NM+
C69-X-E-103 c	3700	0.0003	6.380e-14	1.353e-15	0.451	?_	_	_	_	_	-	NM+
"s	3000	0.0001	3,200e-14	9,353e-16	0.394	?–	_	_	_	_	-	NM+
" w	3100	0.0007	1.434e-13	1.278e-15	0.424	?_	_	_	_	_	-	NM+
 C69-X-E-104 c	3700	0.1130	2.267e-11	1.984e-14	0.472	III	_	_	_	_	-	Y
"e	1200	0.0003	6.359e-14	9.886e-16	0.365	?_	_	_	_	_	-	Ŷ
- C69-X-E-105 M	3300	0.0565	1.134e-11	1.001e-13	0.300	III	_	_	_	_	-	• Y?
C69-X-E-106 I	1900	0.0003	7.684e-14	2.450e-15	0.381	I	_	_	_	_	-	NM?
C69-X-F-107 I	4000	0.0028	5 726e-13	2.7336-15	0.470	1 ?_	_	_	_	_	-	NM
C69-X-F-108 -	1800	0.0020		2., 550-15	0.000	?_	_	_	_	_	-	h NM?
C69-X-E-100 c	4250	0.0001	4 830e-14	7 980-16	0.363	?_	_	_	-	-	-	NM+
сол-д-107 с " е	3700	0.0002	6.030-14	2 5630-15	0.303	 ?_	_	_	-	-	-	NM+
	4000	0.0005	0.0370-14	2.3030-13	0.409		-	-	_	_	-	NM
W C60 X E 110	4000	0.0011	2.3300-13	2.3290-13	0.408	: 2	-	-	-	-	-	NM2
C60-X-E-111 I	-	0.3009	- 6.034e-11	1 5850-12	0.000	:- Ш	-	-	-	-	-	NM
C60-X-E-111	0250	0.5009	0.0340-11	1.3636-12	0.520	2	-	-	-	-	-	NM2
C07-A-E-112 -	-	-	-	-	0.000		-	-	-	-	-	1 1 1 1 1 1

Table 2.10: Optical and infrared photometry for the X-ray sources of Collinder 69 West.

Name	RA (J2000)	DEC (J2000)	В	V	Rc	Ic	J	Н	Κ	[3.6]	[4.5]	[5.8]	[8.0]	[24]
C69-X-W-001 c	05:34:06.87	+10:01:01.6		11.929 0.010			10.194 0.024	9.736 0.027	9.589 0.021	9.526 0.002	9.546 0.002	9.506 0.004	9.447 0.005	
" n	05:34:06.61	+10:01:04.4												
C69-X-W-002 c	05:34:36.20	+09:53:43.8		15.91 0.00	14.77 0.00	13.53 0.00	12.046 0.028	11.324 0.024	11.092 0.025	10.882 0.004	10.833 0.005	10.811 0.014	10.742 0.013	
" n	05:34:36.48	+09:53:48.7			18.613 0.016	17.940 0.014	17.008 0.008	16.562 0.015	16.526 0.029					
C69-X-W-003 I	05:33:56.34	+09:53:56.6		15.69 0.010	14.490 0.000	13.130 0.000	11.656 0.022	10.918 0.022	10.719 0.023	10.511 0.003	10.480 0.004	10.467 0.011	10.344 0.012	
C69-X-W-004 I	05:33:47.18	+09:55:38.4		14.162 0.010	13.343 0.003	12.514 0.011	11.297 0.022	10.595 0.022	10.426 0.021	10.228 0.003	10.255 0.004	10.214 0.009	10.206 0.010	
C69-X-W-005 c	05:34:32.81	+09:59:31.7		14.21 0.00	13.46 0.00	12.77 0.00	11.839 0.027	11.227 0.026	11.059 0.021	10.939 0.003	10.964 0.004	10.924 0.009	10.918 0.013	
" s	05:34:32.62	+09:59:26.9			16.271 0.004	15.722 0.003	15.163 0.002	14.874 0.004	14.749 0.007					
" w	05:34:32.36	+09:59:31.0			18.057 0.012	17.458 0.011	16.722 0.006	16.370 0.014	16.236 0.025					
C69-X-W-006 I	05:34:39.18	+09:52:55.0		15.090 0.000	14.170 0.000	13.310 0.000	12.072 0.027	11.360 0.023	11.186 0.022	11.006 0.003	11.039 0.003	10.961 0.009	10.915 0.013	
C69-X-W-007 c	05:34:28.12	+09:48:48.1		17.419 0.000	16.157 0.000	14.802 0.000	13.319 0.022	12.588 0.023	12.397 0.027	12.218 0.005	12.228 0.006	12.159 0.016	12.279 0.03	
" e	05:34:28.47	+09:48:47.9					19.300 0.048	18.510 0.073	17.606 0.070	15.815 0.045	15.971 0.086			
C69-X-W-008 c	05:33:49.96	+09:50:37.2		16.03 0.00	15.05 0.00	13.94 0.00	12.684 0.030	11.954 0.029	77.777 0.000	11.455 0.005	11.320 0.006	10.970 0.014	9.857 0.008	6.211 0.010
" n	05:33:49.81	+09:50:40.5			16.522 0.004	15.873 0.003	14.852 0.002	14.319 0.003	14.139 0.005	13.558 0.011	13.584 0.011	13.069 0.036	11.827 0.024	
C69-X-W-009 c	05:34:04.17	+10:00:48.3		13.056 0.010			11.496 0.024	11.166 0.027	11.120 0.027	11.083 0.003	11.078 0.004	11.057 0.011	11.054 0.013	
" s	05:34:04.43	+10:00:41.8			15.083 0.002	14.390 0.001	13.364 0.001	12.707 0.001	12.490 0.001	12.72 0.008	12.722 0.009	12.788 0.037	12.678 0.04	
C69-X-W-010 c	05:34:02.01	+09:58:18.2			19.495 0.004	18.684 0.004	17.602 0.015			14.747 0.017	14.171 0.02	13.548 0.041	12.452 0.033	8.616 0.072
" e	05:34:02.13	+09:58:16.3			20.593 0.009	19.800 0.009	18.672 0.038							
C69-X-W-011 c	05:34:05.54	+09:42:46.6		12.750 0.000	12.160 0.000	11.610 0.000	10.801 0.023	10.262 0.024	10.125 0.021	10.079 0.002	10.11 0.003	10.01 0.006	10.005 0.007	
" s	05:34:05.83	+09:42:41.0					17.709 0.020	17.021 0.026	16.687 0.048					
C69-X-W-012 I	05:34:04.87	+09:57:06.2		16.06 0.00	15.05 0.00	13.95 0.00	12.500 0.022	11.727 0.024	11.336 0.021	10.879 0.002	10.598 0.003	10.229 0.006	9.538 0.005	6.926 0.024
C69-X-W-013 c	05:34:35.58	+09:59:44.3		16.420 0.000	15.250 0.000	13.930 0.000	12.459 0.024	11.727 0.026	11.492 0.021	11.302 0.005	11.309 0.006	11.198 0.016	11.180 0.018	
" n	05:34:35.65	+09:59:51.9			21.531 0.019	20.792 0.024	19.498 0.059	18.650 0.097	18.759 0.225					
C69-X-W-014 c	05:33:50.44	+10:04:20.9		11.883 0.010			9.232 0.030	9.021 0.030	8.894 0.024	8.949 0.002	8.883 0.002	8.854 0.003	8.841 0.003	7.956 0.050
" w	05:33:49.87	+10:04:21.0					14.884 0.308	14.401 0.308	14.166 0.236	13.82 0.059	13.835 0.072	13.571 0.074	13.738 0.166	
C69-X-W-015 I	05:34:08.38	+09:51:25.0		16.826 0.019	15.390 0.010	14.170 0.010	12.924 0.024	12.318 0.024	12.065 0.023	11.837 0.006	11.804 0.007	11.751 0.023	11.674 0.024	
C69-X-W-016 -	05:33:12.95	+09:49:38.9								16.815 0.093	16.346 0.117			
C69-X-W-017 -	05:33:36.97	+09:56:35.7								17.259 0.126	16.598 0.107			
C69-X-W-018 I	05:34:18.31	+09:52:38.0		15.136 0.010	14.306 0.001	13.613 0.001	12.723 0.022	12.207 0.023	12.022 0.024	11.941 0.004	11.933 0.006	11.866 0.016	11.862 0.028	
C69-X-W-019 M	05:33:42.57	+10:03:47.8		19.404 0.166			16.667 0.155	15.675 0.149	14.770 0.112	13.806 0.010	13.166 0.011	12.573 0.025	11.113 0.016	8.055 0.052
C69-X-W-020 I	05:33:51.18	+09:46:42.4					9.479 0.023	9.224 0.022	9.153 0.023	9.242 0.002	9.111 0.002	9.098 0.004	9.079 0.003	
C69-X-W-021 -	05:33:40.58	+10:02:39.1								15.984 0.036	15.500 0.047		13.845 0.142	
C69-X-W-022 -	05:33:43.13	+10:10:12.4												
C69-X-W-023 I	05:34:39.25	+10:01:29.3			15.470 0.010	13.980 0.010	12.576 0.024	11.936 0.023	11.706 0.021	11.395 0.005	11.378 0.006	11.287 0.018	11.260 0.019	
C69-X-W-024 c	05:34:11.77	+09:57:03.9		17.406 0.032	15.930 0.010	14.630 0.010	13.117 0.023	12.454 0.024	12.192 0.019	11.917 0.006	11.863 0.008	11.764 0.022	11.791 0.029	
" s	05:34:11.85	+09:56:58.8			21.053 0.156	20.027 0.085	18.543 0.027	17.855 0.045	17.879 0.105	15.873 0.054				
C69-X-W-025 c	05:34:02.41	+10:07:05.7			21.630 0.023	20.519 0.015	19.291 0.058	18.562 0.085	18.621 0.205	16.898 0.091				
" e	05:34:02.74	+10:07:06.7			21.767 0.019	21.151 0.025	19.684 0.082	18.729 0.097	17.743 0.093	16.408 0.047	15.637 0.05	15.564 0.23		
" w	05:34:02.25	+10:07:05.2			20.746 0.012	19.435 0.006	18.087 0.021	17.348 0.031	16.831 0.040	16.602 0.065	16.781 0.164			
C69-X-W-026 -	05:33:03.93	+10:02:06.4												
C69-X-W-027 M	05:33:23.98	+09:57:07.7		16.579 0.014	15.965 0.000	15.427 0.000	14.582 0.035	14.134 0.047	13.996 0.046	13.936 0.011		13.860 0.063	13.724 0.131	
C69-X-W-028 M	05:33:35.32	+10:08:26.1					16.138 0.101	15.389 0.120	14.876 0.098	14.400 0.015	14.219 0.020	13.876 0.068	13.359 0.082	
C69-X-W-029 M	05:33:15.15	+09:50:30.2		17.505 0.028	16.291 0.000	14.706 0.000	12.949 0.028	12.287 0.029	11.876 0.028	11.446 0.003	11.238 0.004	11.071 0.010	10.608 0.011	8.106 0.052
C69-X-W-030 c	05:34:01.31	+09:56:35.3			19.796 0.005	19.123 0.005	18.890 0.050			15.736 0.034	14.598 0.021	13.543 0.055	12.6 0.052	
" e	05:34:01.87	+09:56:33.1			20.830 0.010	19.729 0.007	18.589 0.036			17.14 0.099				
C69-X-W-031 M	05:33:26.96	+10:01:39.5					16.826 0.179	16.006 0.202	15.238 0.135	14.381 0.019	13.840 0.019	13.313 0.055	12.306 0.042	
	-	-						-		Continued	on next page.			

	Table 2.1	0 - Continued												
Name	RA (J2000)	DEC (J2000)	В	V	Rc	Ic	J	Н	Κ	[3.6]	[4.5]	[5.8]	[8.0]	[24]
C69-X-W-032 c	05:33:48.30	+10:01:43.5		18.410 0.030	17.227 0.001	16.064 0.001	14.471 0.054	13.827 0.060	13.465 0.063	13.084 0.007	13.048 0.01	13.067 0.042	13.35 0.085	
" e	05:33:48.38	+10:01:42.1			16.802 0.001	15.928 0.001				13.274 0.008	13.184 0.011	13.2 0.05	13.307 0.085	
" s	05:33:48.38	+10:01:36.3			23.159 0.103	21.993 0.070								
" w	05:33:47.91	+10:01:39.6			18.710 0.010	16.990 0.010	15.162 0.048	14.576 0.060	14.268 0.082	13.723 0.017	13.579 0.021	13.263 0.070	12.448 0.054	
" z	05:33:48.09	+10:01:36.2			99.999 9.999	22.532 0.125								
C69-X-W-033 +	05:33:42.71	+09:58:02.2												
C69-X-W-034 M	05:33:27.83	+10:04:20.2		16.411 0.010	15.520 0.000	14.718 0.000	13.647 0.028	12.948 0.032	12.752 0.030	12.596 0.005	12.643 0.008	12.649 0.033	12.621 0.049	
C69-X-W-035 -	05:33:14.08	+09:55:45.3								17.128 0.128				
C69-X-W-036 M	05:33:40.33	+09:51:59.3		14.596 0.010	14.088 0.000	13.577 0.030	12.799 0.024	12.435 0.022	12.392 0.027	12.205 0.005	12.222 0.006	12.227 0.021	12.325 0.042	
C69-X-W-037 M	05:33:32.98	+09:57:38.5		17.354 0.029	16.388 0.000	15.228 0.013	14.046 0.029	13.293 0.036	13.070 0.032	12.896 0.006	12.945 0.009	12.880 0.033		
C69-X-W-038 c	05:33:44.65	+10:01:45.8												
" s	05:33:44.50	+10:01:39.1			18.415 0.013	17.856 0.012				15.942 0.034	15.684 0.047			
C69-X-W-039 c	05:33:47.85	+09:52:55.9			20.447 0.077	19.700 0.009				17.57 0.164				
" w	05:33:47.39	+09:52:59.6		14.620 0.010	14.040 0.001	13.531 0.001	12.972 0.024	12.661 0.023	12.611 0.032	12.997 0.006	13.045 0.009	13.245 0.043	13.068 0.067	
C69-X-W-040 M	05:33:39.20	+10:00:13.3		16.207 0.011	15.261 0.000	14.343 0.024	13.234 0.025	12.531 0.031	12.352 0.026	12.223 0.005	12.255 0.006	12.149 0.020	12.166 0.032	
C69-X-W-041 I	05:33:43.19	+09:43:40.6		17.349 0.097	16.336 0.000	14.988 0.050	13.752 0.029	13.129 0.029	12.896 0.030	12.611 0.006	12.603 0.008	12.481 0.030	12.550 0.051	
C69-X-W-042 c	05:33:51.29	+09:48:12.3			23.161 0.083	22.097 0.063	20.75 0.000	019.75 0.000	19.00 0.000	17.185 0.106	16.944 0.137			
" e	05:33:51.56	+09:48:12.3			21.017 0.014	19.783 0.008	18.409 0.028	17.659 0.038	17.477 0.080	16.9 0.097				
" w	05:33:51.00	+09:48:16.0			23.081 0.074	22.243 0.070	20.323 0.162	20.617 0.625	18.833 0.289	17.556 0.121	16.759 0.119			
C69-X-W-043 I	05:33:52.02	+09:53:02.7		12.353 0.010			11.150 0.023	10.860 0.023	10.798 0.023	10.732 0.003	10.753 0.003	10.722 0.008	10.739 0.011	
C69-X-W-044 -	05:33:33.98	+09:50:23.2								16.336 0.067	15.781 0.059	14.468 0.136	13.718 0.138	
C69-X-W-045 -	05:33:12.86	+09:57:58.0								15.661 0.056				
C69-X-W-046 M	05:33:03.79	+09:58:42.6					14.015 0.035	13.359 0.033	13.053 0.039					
C69-X-W-047 M	05:33:11.61	+09:59:02.9					14.716 0.042	14.086 0.049	13.815 0.051					
C69-X-W-048 I	05:34:24.67	+09:56:57.1			22.049 0.046	20.309 0.015	18.595 0.024	17.937 0.039	17.782 0.083	16.767 0.068	16.742 0.133			
C69-X-W-049 I	05:34:34.36	+10:03:19.1			22.896 0.060	21.827 0.046	20.00 0.000	19.00 0.000	18.25 0.000	16.443 0.055	15.937 0.059			
C69-X-W-050 -	05:33:28.86	+09:51:08.6												
C69-X-W-051 -	05:33:39.63	+09:51:03.7												
C69-X-W-052 -	05:33:23.08	+09:56:49.3												

Name	T.g	Lu	FluxTot	eFlux	FracE	IRAC	Disk?	Ha?	DM	ByN	Mem (ByN)	Final
C69-X-W-001 c	5000	3.4265	6.871e-10	3.160e-12	0.287	III		-	-		-	Y?
" n	_	-	_	_	0.000	?-	_	_	_	_	-	bi?
C69-X-W-002 c	3700	0.4109	8.240e-11	9.855e-13	0.467	III	No	Ha-	012	026	Y	Y+
" n	4750	0.0055	1.105e-12	6.729e-15	0.452	?-	-	-	_	-	-	NM
C69-X-W-003 I	3600	0.5802	1.163e-10	1.135e-12	0.465	III	No	Ha-	004	013	Y	Y+
C69-X-W-004 I	4000	0.9155	1.836e-10	1.250e-12	0.521	III	No	Ha-	001	001	Y	Y+
C69-X-W-005 c	4500	0.6404	1.284e-10	1.820e-12	0.546	III	-	-	009	-	-	Y+
" s	5500	0.0403	8.095e-12	1.139e-14	0.432	?-	-	-	-	-	-	NM
" w	5000	0.0081	1.630e-12	7.946e-15	0.453	?-	-	-	-	-	-	NM
C69-X-W-006 I	4000	0.4414	8.851e-11	1.144e-12	0.516	III	-	-	014	-	-	Y+
C69-X-W-007 c	3600	0.1249	2.506e-11	2.769e-13	0.463	III	-	-	-	-	-	Y
"е	1900	0.0004	9.588e-14	2.042e-15	0.359	?-		-	-	-	-	NM?
C69-X-W-008 c	3750	0.2671	5.357e-11	6.397e-13	0.432	I/I	Thic	Ha+	002	038	Y	Y+
″n	4500	0.0388	7.785e-12	1.082e-14	0.461	1/1	-	-	-	-	-	NM
C69-X-W-009 c	5750	1.1992	2.404e-10	9.655e-13	0.250		-	-	-	-	-	NM
S S	4500	0.1566	3.141e-11	2./34e-14	0.481	111	-	-	-	-	-	NM
C69-X-W-010 c	4000	0.0033	6.684e-13	2.158e-15	0.379	11	-	-	-	-	-	NM+
e C60 X W 011 a	4000	1.8244	2.244e-13	1.100e-15	0.516	/	-	-	- 007	-	-	NM V
C09-A-W-011C	4730 3400	0.0020	4 1620 13	4.923e-12 2.102o.15	0.393	2	-	-	007	-	-	I + NM
S C60 X W 012 I	3400	0.0020	4.102e-13	5.192e-13	0.293	/- П	-	-	- 006	-	-	NM V
C69-A-W-0121	2700	0.2970	5.570+ 11	6.150e-15	0.460	11 111	- No	-	000	027	- V	1+ V.
C09-A-W-013 C	3700	0.2782	0.540e-11	0.204e-15	0.408	2	NO	па-	011	057	I	I + NM
II C60 V W 014 a	4000	4 8047	9.5496-14	2.0996-13	0.475		-	-	-	-	-	NIVI N/O
C09-A-W-014 C	4300	4.8047	9.034e-10 8.406a 12	2.0570.12	0.343		-	-	-	-	-	1 / NM
W C69 X W 015 I	3750	0.0423	3 5280-11	2 9/16-13	0.171	ш	- No	-	_	044	v	V_
C60 X W 016	3750	0.1759	5.5286-11	2.9410-13	0.012	2	NO	-	_	044	1	1 T NM2
C69-X-W-017	-	-	-	-	0.000	2	-	-	_	-	-	NM2
C69-X-W-017 -	4500	0 2854	5 724e-11	2 890e-13	0.567	.– III	_	_	_	_	-	NM2
C69-X-W-019 M	4000	0.0088	1.766e-12	6.872e-14	0.296	T	_	_	_	_	-	NM
C69-X-W-020 I	7000	12 483	2 503e-09	3 885e-12	0.081	ш	_	_	_	_	-	¥9
C69-X-W-021 -	_	-	200000	-	0.000	?_	_	_	_	_	-	NM?
C69-X-W-022 -	_	_	_	_	0.000	?_	_	_	_	_	-	NM?
C69-X-W-023 I	3700	0 2553	5.120e-11	3 588e-13	0.423	III	No	_	_	036	Y	Y+
C69-X-W-024 c	3700	0.1509	3.027e-11	2.311e-13	0.450	Ш	No	_	_	052	Y	Y+
"s	3750	0.0010	2.066e-13	6.413e-15	0.443	?_	_	_	_	_	-	NM+
C69-X-W-025 c	3750	0.0005	1.129e-13	2.742e-15	0.449	?_	_	_	_	_	-	k NM+
"е	4250	0.0003	7.838e-14	2.657e-15	0.560	?-	-	-	_	_	-	NM+
" w	3700	0.0018	3.666e-13	2.975e-15	0.413	?-	_	_	_	_	-	NM
C69-X-W-026 -	-	-	-	-	0.000	?-	-	-	_	_	-	NM?
C69-X-W-027 M	5000	0.0555	1.113e-11	5.284e-13	0.574	?-	-	-	-	-	-	NM
C69-X-W-028 M	2500	0.0073	1.467e-12	5.583e-14	0.382	П	-	-	-	-	-	Y
C69-X-W-029 M	3200	0.1673	3.356e-11	3.924e-13	0.431	Π	-	-	-	-	-	Y
C69-X-W-031 M	1900	0.0046	9.330e-13	5.340e-14	0.354	П	-	-	-	-	-	Y
C69-X-W-032 c	3700	0.0450	9.030e-12	1.342e-13	0.438	III	-	-	-	-	-	NM?
" e	3750	0.0438	8.787e-12	1.068e-14	0.253	III	-	-	-	-	-	NM?
" s	-	-	-	-	0.000	?-	-	-	-	-	-	NM?
" w	3100	0.0219	4.397e-12	7.049e-14	0.386	Π	Thic	Ha+	-	113	Y	Y+
" z	-	-	-	-	0.000	?-	-	-	-	-	-	bi?
C69-X-W-033 +	-	-	-	-	0.000	?-	-	-	-	-	-	NM?
C69-X-W-034 M	4000	0.1161	2.328e-11	3.326e-13	0.510	III	-	-	-	-	-	NM?
C69-X-W-035 -	-	-	-	-	0.000	?-	-	-	-	-	-	NM?
C69-X-W-036 M	5250	0.3032	6.081e-11	7.943e-13	0.559	III	-	-	-	-	-	NM
C69-X-W-037 M	3750	0.0727	1.459e-11	1.896e-13	0.490	?-	-	-	-	-	-	NM?
C69-X-W-038 c	-	-	-	-	0.000	?-	-	-	-	-	-	NM?
" s	4500	0.0062	1.261e-12	4.634e-15	0.291	?-	-	-	-	-	-	NM
C69-X-W-039 c	4000	0.0012	2.465e-13	2.991e-15	0.253	?–	-	-	-	-	-	NM
" w	6000	0.3116	6.249e-11	2.575e-13	0.539	III	-	-	-	-	-	NM
C69-X-W-040 M	4000	0.1550	3.110e-11	4.028e-13	0.526	III	-	-	-	-	-	NM?
C69-X-W-041 I	3750	0.0855	1.715e-11	3.948e-13	0.493	Ш	-	-	-	-	-	NM?
C69-X-W-042 c	2700	0.0004	9.571e-14	9.746e-16	0.123	?-	-	-	-	-	-	NM+
" e	3750	0.0011	2.291e-13	2.938e-15	0.475	?-	-	-	-	-	-	NM
" w	3750	0.0001	2.926e-14	2.979e-15	0.508	?-	-	-	-	-	-	NM
C69-X-W-043 I	6250	2.0759	4.162e-10	1.346e-12	0.232	111	-	-	-	-	-	NM
C69-X-W-044 -	-	-	-	-	0.000	11	-	-	-	-	-	NM?
C69-X-W-045 -	-	-	-	-	0.000	?-	-	-	-	-	-	NM?
C69-X-W-046 M	3400	0.0604	1.211e-11	1.160e-13	0.297	?-	-	-	-	-	-	NM?
C69-X-W-047 M	4250	0.0434	8./14e-12	7.942e-14	0.212	?-	-	-	-	-	-	NM
C09-X-W-048 I	5400	0.0009	1.80/e-13	2.456e-15	0.413	7–	-	-	-	-	-	NM
									C	ontinued of	on next page	

Table 2.11: Disk properties, physical parameters and membership citeria of the X-ray sources in the Collinder 69 West field.
	Table 2	2.11 – Conti	nued										
Name	T _{eff}	L _{bol}	FluxTot	eFlux	FracF.	IRAC	Disk?	Ha?	DM	ByN	Mem (ByN)	Final	-
C69-X-W-049 I	3000	0.0004	8.099e-14	1.467e-15	0.342	?-	-	-	-	-	-	NM+	
C69-X-W-050 -	-	-	-	-	0.000	?-	-	-	-	-	-	NM?	
C69-X-W-051 -	-	-	-	-	0.000	?-	-	-	-	-	-	NM?	
C69-X-W-052 -	_	_	_	_	0.000	2_	_	_	_	_	-	NM?	

2.2 Barnard 30 and Barnard 35

Barnard 30 and Barnard 35 are two dark clouds located ~2.°5 North-West and South-East of the star λ Ori, respectively. We have collected optical and mid-IR photometry for these associations (see Figs. 2.4 and 2.5).

 Optical data: On 2005 December 24-26, we conducted an optical photometric survey on the Lambda Orionis Star Forming Region (LOSFR), using the Wide Field Camera (WFC), an optical mosaic camera mounted on the 2.5 m Isaac Newton Telescope at El Roque de los Muchachos Observatory, La Palma. The WFC consists of 4 thinned EEV 2k×4k CCDs. The CCDs have a pixel scale 0.33"/pixel and a field of view of 34'×34' neglecting the 1' inter-chip spacing.

We used the Sloan-gunn r and i filters for this survey and performed 4 different pointings in each region covering the whole stellar associations centered in Barnard 30 and Barnard 35. We collected two different sets of exposures, with short and long exposure times. In the first case, we exposed during 5 s for each filter whereas the long exposure times were 600 and 3×400 for Sloan gunn i and r respectively. In this way we increased the dynamical range and our shallow photometry overlaps with previously published RI cousins data from Dolan & Mathieu (1999). Landolt standards were observed and used for calibrations. Errors in the zero-points are generally less than 1-2%.

The weather during the run was clear and the mean seeing as measured in the images is 1.5". The reduction and photometry was performed with the CASU INT Wide Field Survey (McMahon et al. 2001) pipeline (Irwin & Lewis 2001). This pipeline uses IRAF for the overall structure, but with supplementary extra stages. Completeness is achieved at $R(complete) \sim 21.5$ mag and $I(complete) \sim 20.5$ mag based on the drop of detected objects for each interval in each filter. Because of the completeness limit in R, the effective completeness is at $I_{(Compl,effect)}$ =19.00. Therefore, for an age of 1Myr that would correspond to a mass of 0.025 M_o and an effective tempereture of 2625 K. For the case of an age of 5 Myr the limit would be at 0.025 M_o and 2600 K.

• Spitzer data: Our Spitzer data were collected in 2005 October 22 and 26, and 2006 March 25 and 29 with IRAC, and 2006 March 2 and April 3 with MIPS as part of a General Observer cycle 2 program (PID:20339).

Figure 2.4: Layout of observations in the Barnard 35 area. Thick green rectangles represent the Spitzer fields obtained in GO2 (long-dashed: IRAC, and short-dashed: MIPS). Thin blue solid lines define the areas covered by our optical WFC survey. Young stars, identified by Dolan & Mathieu (1999, 2001), appear as crosses (WTTs) and solid circles (CTTs) following the low resolution spectroscopic criterion by Barrado y Navascués & Martín (2003). IRAS contours at 100μ m are displayed in magenta.

Figure 2.5: Layout of observations in the Barnard 30 area. Thick green rectangles represent the Spitzer fields obtained in GO2 (long-dashed: IRAC, and short-dashed: MIPS). Blue solid lines define the areas covered by our optical survey. Young stars, identified by Dolan & Mathieu (1999, 2001), appear as crosses (WTTs) and solid circles (CTTs) following the low resolution spectroscopic criterion (Barrado y Navascués & Martín 2003). IRAS 100 μ m contours are plotted in magenta.

IRAC imaging for each dark cloud was performed in two epochs separated by 7 months. In each epoch, observations were performed in mapping mode with individual exposures of 12 seconds "frame time" (corresponding to 10.4 seconds exposure times) and three dithers at each map step. We used the high dynamic range (HDR) option which provides extra frames, with frame times shorter (0.6 seconds) than our selected frame time. We have used the shorter frames to measure the brightness of the brighter sources and we have combined the longer frames of the two epochs to obtain one single deeper mosaic and thus reach our sensitivity goal. Each of the IRAC images from the Spitzer Science Center pipeline was corrected for instrumental artifacts using the IDL code provided by the Spitzer Science Center and then combined into the mosaics at each of the four bandpasses using the MOPEX package (Makovoz & Khan 2005). The final mosaics cover an area in the sky of ~ $0.6^{\circ} \times 1.3^{\circ}$ and are centered at 05:31:22.77 +12:14:52.35 in Barnard 30, and at 05:44:43.53 +09:30:49.06 in Barnard 35. Note that just half the area observed with the optical WFC survey is observed with IRAC in each of the dark clouds. The mean integration time for the deep mosaics is 62.4 s.

The Multi-band Imaging Photometer for Spitzer (MIPS, Rieke et al. (2004)) was used to map both regions with a fast rate scan mode and 12 legs separated by 302" in the cross scan direction. The total effective integration time per point on the sky at 24 μ m for most points in the map was 15 seconds, and the mosaics covered an area of 1°×1.5° centered around 05:30:23.17 +11:55:52.83 for Barnard 30, and 05:43:40.4 +09:26:37.8 for Barnard 35. The overlapping area between IRAC and MIPS in each dark cloud is a region of ~1°×0.5°. Since there were no visible artifacts in the pipeline mosaics for MIPS 24 μ m we used them as our starting point to extract the photometry. Note that since the MIPS surveys of Barnard 30 and Barnard 35 have been done in fast scan mode (3 sec frame time × 5 frames), they are shallower than that of Collinder 69 which was performed in medium scan mode (4 sec frame time × 10 frames).

The analysis of the data was done with IRAF.

The new candidate members derived from these surveys can be seen in tables 2.14, 2.15, 2.18 and 2.19.

Dolan/DIL ID	RA (J2000)	DEC (J2000)	V^2	R ²	I^2	J ³ error	H ³ error	Ks ³ error	[3.6] error	[4.5] error	[5.8] error	[8.0] error	[24] error
217 ¹	05:41:28.91	+09:56:29.0	13.72	12.91	12.12	10.963 0.021	10.2 0.023	9.777 0.021					5.244 0.005
222 ¹	05:42:32.43	+09:34:22.8	17.03	15.81	14.25	12.648 0.025	11.978 0.026	11.672 0.026					7.856 0.047
225 ¹	05:42:55.00	+09:15:01.6	15.17	14.13	13.0	11.645 0.023	10.887 0.025	10.56 0.02					6.077 0.01
227 ¹	05:43:20.92	+09:06:07.1	13.05	12.28	11.5	10.074 0.025	9.132 0.02	8.411 0.02					3.268 0.001
228 ¹	05:43:23.22	+09:05:31.7	13.37	12.57	11.78	10.342 0.025	9.623 0.022	9.237 0.02					5.562 0.008
231	05:43:32.20	+09:09:24.0	14.71	13.75	12.76	11.293 0.025	10.552 0.02	10.185 0.022	9.409 0.002	9.04 0.001	8.62 0.003	7.901 0.002	5.213 0.004
232	05:43:33.50	+09:16:55.8	14.96	13.98	12.81	11.378 0.026	10.694 0.023	10.464 0.02	10.23 0.002	10.214 0.003	10.136 0.008	10.171 0.012	
233	05:43:36.60	+09:24:55.5	15.06	14.06	13.04	11.663 0.025	10.948 0.023	10.762 0.022	10.421 0.002	10.495 0.002	10.443 0.006	10.457 0.011	
234	05:43:42.09	+10:02:21.0	14.43	13.55	12.65	11.173 0.024	10.418 0.022	10.01 0.02	9.392 0.002	8.976 0.001	8.652 0.003	8.164 0.002	6.069 0.011
235	05:43:44.61	+09:53:01.6	13.85	12.99	12.04	10.734 0.026	10.067 0.026	9.831 0.025	9.646 0.002	9.635 0.002	9.598 0.003	9.608 0.003	
236	05:43:52.34	+09:17:00.5	17.18	15.90	14.26	12.599 0.027	11.932 0.023	11.684 0.019	11.431 0.002	11.373 0.003	11.353 0.008	11.33 0.012	
237	05:43:55.55	+09:48:30.8	15.17	14.14	13.03	11.696 0.022	10.946 0.021	10.742 0.021	10.556 0.002	10.584 0.002	10.539 0.005	10.525 0.006	
238	05:43:56.59	+09:18:16.9	17.3	16.07	14.63	12.854 0.026	12.036 0.023	11.672 0.021	11.276 0.002	11.091 0.002	10.947 0.006	10.789 0.007	7.024 0.027
239	05:44:01.63	+09:17:20.8	15.64	14.64	13.59	12.335 0.026	11.604 0.027	11.398 0.024	11.143 0.002	11.105 0.003	11.132 0.007	11.113 0.01	
240	05:44:07.26	+09:06:38.1	14.65	13.74	12.91	11.656 0.026	10.935 0.023	10.675 0.021	10.438 0.002	10.376 0.002	10.274 0.005	9.978 0.004	4.528 0.002
241	05:44:08.99	+09:09:14.8	14.1	13.23	12.41	11.102 0.024	10.025 0.022	9.252 0.019	8.119 0.001	7.719 0.001	7.439 0.002	6.661 0.001	3.729 0.002
242	05:44:10.65	+09:12:45.2	14.18	13.45	12.78	11.925 0.024	11.32 0.023	11.179 0.024	11.065 0.002	11.103 0.002	11.051 0.007	11.072 0.009	
243	05:44:14.86	+09:08:08.2	17.05	15.85	14.32	12.671 0.024	11.967 0.025	11.673 0.029	11.471 0.002	11.333 0.003	11.288 0.008	11.195 0.011	6.296 0.014
244	05:44:17.35	+09:10:59.2	14.07	13.13	12.21	10.793 0.023	10.043 0.025	9.62 0.023	9.109 0.001	8.711 0.001	8.423 0.002	7.676 0.001	4.83 0.005
245	05:44:19.21	+09:12:34.9	14.79	13.74	12.55	11.192 0.027	10.552 0.038	10.223 0.026	9.868 0.001	9.761 0.002	9.614 0.003	9.383 0.003	7.611 0.051
246	05:44:21.85	+09:08:52.9	15.42	14.23	12.9	11.357 0.032	10.672 0.051	10.041 0.027	9.636 0.002	9.343 0.001	9.056 0.003	8.058 0.002	4.706 0.008
247	05:44:22.89	+09:10:35.3	16.09	15.01	13.82	12.452 0.024	11.72 0.023	11.449 0.027	11.108 0.002	10.76 0.003	10.448 0.005	9.697 0.005	7.141 0.043
248	05:44:23.21	+09:12:03.9	12.04	11.45	10.89	10.003 0.023	9.364 0.025	8.952 0.021	8.349 0.001	8.174 0.001	7.939 0.002	7.461 0.001	4.296 0.004
249	05:44:25.97	+09:07:00.7	14.21	13.37	12.52	11.151 0.023	10.35 0.023	9.939 0.023	9.06 0.001	8.649 0.001	8.268 0.002	7.757 0.001	5.876 0.018
250	05:44:26.90	+09:10:42.4	17.08	15.92	14.59	13.238 0.027	12.552 0.031	12.355 0.033	12.076 0.004	12.044 0.005	11.93 0.015	11.923 0.085	
251	05:44:36.27	+09:51:43.9	16.81	15.69	14.37	12.863 0.024	12.137 0.021	11.94 0.021	11.797 0.002	11.776 0.003	11.733 0.01	11.726 0.013	
252	05:44:37.02	+09:13:20.0	16.94	15.65	14.02	12.329 0.023	11.658 0.027	11.327 0.019	10.843 0.003	10.535 0.003	10.171 0.006	9.554 0.014	6.172 0.032
254	05:44:37.61	+10:04:14.2	12.53	12.04	11.57	10.932 0.022	10.458 0.021	10.391 0.021	10.371 0.002	10.33 0.002	10.397 0.005	10.324 0.006	
255	05:44:44.64	+09:23:18.6	15.21	14.18	12.99	11.365 0.023	10.601 0.026	10.139 0.027	9.365 0.001	8.921 0.001	8.603 0.003	7.972 0.001	5.241 0.005
256	05:44:46.58	+09:11:21.6	16.8	15.65	14.32	12.924 0.024	12.212 0.022	11.953 0.026	11.535 0.002	11.183 0.002	10.824 0.006	10.009 0.005	6.558 0.022
257	05:44:47.00	+09:17:51.9	14.9	14.08	13.26	12.206 0.023	11.526 0.022	11.377 0.025	11.235 0.002	11.228 0.003	11.213 0.01	11.246 0.03	
258	05:44:52.81	+09:13:05.3	14.6	13.76	13.0	11.754 0.021	11.066 0.024	10.833 0.025	10.267 0.002	10.067 0.002	9.936 0.004	9.885 0.005	5.216 0.007
259	05:45:04.10	+09:04:52.6	17.04	15.69	14.31	12.333 0.024	11.458 0.022	11.13 0.02	10.472 0.002	9.961 0.002	9.481 0.003	8.093 0.002	3.889 0.002
260	05:45:21.54	+09:05:45.7	16.68	15.38	13.88	12.149 0.022	11.316 0.023	11.052 0.023	10.832 0.002	10.802 0.002	10.77 0.008	10.728 0.009	
261	05:45:53.28	+09:13:01.8	14.02	13.15	12.24	11.129 0.021	10.437 0.022	10.264 0.02	10.134 0.002	10.182 0.002	10.083 0.004	10.122 0.004	
DIL82	05:44:08.70	+09:19:10.0	-	-	-	13.258 0.027	12.996 0.023	12.939 0.033	12.822 0.0040	12.83 0.0060	12.93 0.024	12.857 0.04	
DIL85	05:44:21.50	+09:10:04.0	-	-	-	14.373 0.029	14.028 0.038	13.968 0.054	13.883 0.0090	13.906 0.014	13.948 0.072	13.876 0.177	
DIL86	05:44:41.32	+08:56:59.0	-	-	-	11.575 0.023	10.976 0.021	10.82 0.023	10.716 0.0020	10.783 0.0030	10.71 0.0060	10.698 0.0080	
DIL88	05:45:50.99	+10:02:28.0	-	-	-	11.559 0.024	10.786 0.024	10.424 0.02	9.99 0.0020	9.61 0.0020	9.141 0.0030	7.931 0.0020	

Table 2.12: Photometry for the Dolan and DIL members of Barnard 35.

¹ Out of IRAC FOV.
 ² Magnitudes from Dolan & Mathieu (1999).
 ³ 2MASS magnitudes.

Dolan/DIL ID	Mass $(M_{\odot})^1$	Teff (K) ¹	IRAC class ²	SED slope	Disk Type ³	$W_{\lambda}(H\alpha) (\text{\AA})^4$	$W_{\lambda}(Li) (Å)^4$
217	0.72	4000	_	-	-	3.35	0.53
222	0.23	3400	_	_	-	19.37	0.54
225	0.63	3900	_	_	-	7.82	0.60
227	0.72	4000	_	_	-	52.56	0.31
228	0.72	4000	_	_	-	0.41	0.50
231	0.72	4000	II	-1.109	Thick	49.93	0.49
232	0.47	3750	III	-2.755	Diskless	3.07	0.60
233	0.47	3750	III	-2.855	Diskless	4.83	0.66
234	0.72	4000	II	-1.45	Thick	4.1	0.52
235	0.72	4000	III	-2.789	Diskless	2.54	0.58
236	0.28	3500	III	-2.73	Diskless	5.27	0.63
237	0.63	3900	III	-2.789	Diskless	2.84	0.64
238	0.23	3400	III	-2.286	Transition	26.71	0.62
239	0.47	3750	III	-2.818	Diskless	4.64	0.67
240	0.72	4000	III	-2.312	Transition	86.96	0.54
241	0.63	3900	II	-1.205	Thick	27.8	0.45
242	1.62	5600	III	-2.828	Diskless	-0.35	0.49
243	0.47	3750	III	-2.54	Transition	19.47	0.63
244	0.72	4000	II	-1.23	Thick	96.46	0.44
245	0.63	3900	III	-2.278	Transition	5.45	0.66
246	0.63	3900	II	-1.057	Thick	25.88	0.68
247	0.28	3500	II	-1.242	Thick	13.73	0.62
248	1.10	4600	II	-1.718	Thick	3.27	0.41
249	0.72	4000	II	-1.351	Thick	12.08	0.54
250	0.88	4200	III	-2.761	Diskless	22.97	0.74
251	0.28	3500	III	-2.752	Diskless	5.29	0.60
252	0.28	3500	II	-1.358	Thick	33.09	0.50
254	1.57	5500	III	-2.81	Diskless	-1.57	0.24
255	0.19	3300	II	-1.272	Thick	21.24	0.60
256	0.72	4000	II	-1.103	Thick	32.16	0.52
257	1.52	5400	III	-2.848	Diskless	1.56	0.49
258	0.28	3500	III	-2.408	Transition	-0.22	0.41
259	0.35	3600	I/II	-0.149	Thick	4.79	0.66
260	0.43	3700	III	-2.719	Diskless	4.35	0.75
261	0.72	4000	III	-2.793	Diskless	1.13	0.41
DIL82	1.84	6000	III	-2.903	Diskless	-	-
DIL85	2.30	7000	III	-2.832	Diskless	_	-
DIL86	1.18	4800	III	-2.791	Diskless	_	-
DIL88	_	2700	I/II	-1.08	Thick	-	-

Table 2.13: Disk properties of the previously known members of Barnard 35.

¹Effective temperatures are derived from the SED fitting. Masses are estimated based on Teff and a 3 Myr Siess et al. isochrone.

²IRAC Class based on the IRAC [3.6]-[4.5] vs. [5.8]-[8.0] color-color diagram (Allen et al. 2004 criteria) and in the SED of each object.

³Disk type based on the IRAC slope and SED shape ${}^{4}W_{\lambda}(H\alpha)$ and $W_{\lambda}(Li)$ from Dolan & Mathieu (1999)

ID	RA(J2000), DEC(J2000)	R eR	I eI	J eJ	H eH	Ks eKs	[3.6] e[3.6]	[4.5] e[4.5]	[5.8] e[5.8]	[8.0] e[8.0]	[24] e[24]
10543	05:44:52.79 +09:03:32.0	19.459 0.157	17.301 0.054	14.048 0.036	12.393 0.023	11.472 0.025	10.436 0.002	9.923 0.002	9.473 0.003	8.749 0.002	5.821 0.012
11994	05:44:12.78 +09:05:10.5	17.398 0.382	15.471 0.138	13.259 0.027	12.594 0.023	12.239 0.026	11.206 0.002	11.102 0.003	10.69 0.006	10.066 0.004	7.324 0.032
12156	05:44:19.36 +09:05:23.3	15.366 0.095	14.051 0.048	12.678 0.024	11.933 0.031	11.682 0.026	11.356 0.002	11.195 0.003	10.955 0.006	10.117 0.005	6.717 0.02
12396 ²	05:45:42.89 +09:05:33.7						13.744 0.008	12.871 0.007	11.706 0.011	10.417 0.006	6.612 0.018
12913	05:44:28.66 +09:06:18.6	18.923 0.098	16.67 0.03	14.433 0.033	13.813 0.039	13.464 0.039	12.976 0.005	12.689 0.005	12.438 0.021	11.68 0.037	7.652 0.114
13586	05:43:53.49 +09:07:11.7	16.512 0.168	15.022 0.088	13.09 0.027	12.227 0.025	11.708 0.024	10.963 0.003	10.508 0.003	10.307 0.005	9.705 0.003	7.116 0.023
14252	05:43:44.51 +09:08:01.1	18.051 0.037	17.086 0.031	14.572 0.041	12.624 0.022	11.089 0.023	9.297 0.001	8.542 0.001	8.037 0.002	7.254 0.001	4.099 0.002
14618	05:44:30.86 +09:08:26.1			18.392 -	15.7 0.182	12.725 0.035	10.6 0.003	9.831 0.002	9.292 0.003	9.06 0.005	6.124 0.049
14785	05:44:10.03 +09:08:40.7	16.835 0.023	15.572 0.021	13.846 0.026	13.116 0.023	12.638 0.029	11.502 0.002	10.992 0.003	10.503 0.005	9.924 0.004	7.837 0.066
14804^{2}	05:44:38.39 +09:08:41.8			17.257 0.26	14.1 0.067	12.367 0.023	10.602 0.002	10.071 0.002	9.637 0.004	9.15 0.005	6.265 0.022
14943 ²	05:44:29.28 +09:08:52.8						12.313 0.016	10.46 0.015	9.158 0.007	7.783 0.002	
15004^{2}	05:44:30.00 +09:08:56.8			$18.441^{1} -$	15.913 0.214	12.4 0.034	9.15 0.003	8.014 0.003	7.033 0.003	6.219 0.001	
15017 ²	05:44:31.64 +09:08:57.9			16.521 0.149	14.724 0.06	13.624 0.051	12.515 0.012	12.032 0.017	11.503 0.03	11.068 0.041	
16286	05:43:39.59 +09:10:40.9	16.386 0.028	14.984 0.01	13.336 0.033	12.656 0.034	12.351 0.034	11.79 0.003	11.448 0.004	11.102 0.009	10.25 0.005	8.002 0.064
16567	05:44:36.62 +09:11:01.1			18.196 ¹ –	16.2371 -	14.596 0.103	12.517 0.004	11.488 0.004	10.711 0.006	9.894 0.009	5.776 0.013
17409	05:45:07.53 +09:12:10.7	16.564 0.303	14.929 0.114	13.004 0.024	12.297 0.022	11.924 0.025	11.128 0.002	10.579 0.002	10.122 0.004	9.426 0.003	7.381 0.045
17517	05:43:50.67 +09:12:25.1	16.342 0.391	14.801 0.167	13.33 0.024	12.37 0.022	11.821 0.024	11.077 0.002	10.787 0.002	10.667 0.006	9.976 0.004	6.566 0.015
17523	05:44:30.23 +09:12:23.8	18.333 0.056	16.338 0.02	14.134 0.029	13.364 0.033	12.914 0.039	12.178 0.004	11.784 0.004	11.44 0.013	10.732 0.033	6.245 0.083
17593	05:45:05.70 +09:12:28.1	18.665 0.075	16.257 0.018	13.668 0.027	13.06 0.022	12.674 0.034	11.977 0.003	11.627 0.003	11.247 0.008	10.418 0.006	7.721 0.064
18430	05:43:51.36 +09:13:40.5	19.477 0.152	17.208 0.047	14.623 0.043	13.978 0.035	13.736 0.045	12.986 0.005	12.59 0.005	12.164 0.015	11.426 0.012	8.902 0.138
20180	05:43:52.47 +09:15:59.8	17.688 0.062	15.806 0.018	13.986 0.033	13.388 0.035	13.008 0.03	12.433 0.003	12.127 0.004	11.837 0.012	11.182 0.012	8.799 0.13
20434	05:44:19.40 +09:16:19.3	16.136 0.231	14.664 0.097	13.123 0.026	12.389 0.023	12.032 0.027	11.078 0.002	10.712 0.002	10.319 0.004	9.451 0.003	6.483 0.015
20473	05:43:56.99 +09:16:23.9	15.385 0.092	13.955 0.044	12.336 0.027	11.572 0.022	11.173 0.024	10.683 0.002	10.414 0.002	10.285 0.005	9.709 0.003	6.888 0.023
23145	05:44:16.14 +09:20:00.0	16.024 0.19	14.463 0.077	12.801 0.027	12.075 0.025	11.757 0.026	11.378 0.002	11.19 0.003	11.1 0.007	10.82 0.007	7.272 0.028
23414	05:44:52.80 +09:20:18.3	13.781 0.005	12.713 0.007	10.947 0.023	10.015 0.024	9.698 0.023	9.535 0.002	9.601 0.002	9.532 0.004	9.546 0.01	7.319 0.101
24086	05:45:10.55 +09:21:09.5	19.664 0.147	18.13 0.051	14.727 0.053	14.079 0.074	13.694 0.067	12.635 0.004	12.325 0.005	12.073 0.017	11.418 0.018	
27556	05:44:38.12 +09:25:57.9	17.503 0.039	15.835 0.014	14.078 0.027	13.362 0.025	13.138 0.034	12.632 0.004	12.418 0.005	12.226 0.016	11.781 0.017	8.682 0.116
37817	05:43:50.60 +09:40:42.3	17.739 0.034	16.017 0.015	14.08 0.024	13.257 0.03	12.788 0.026	12.102 0.003	11.807 0.004	11.581 0.01	11.16 0.011	8.522 0.094
45299	05:43:44.15 +09:50:39.1	16.979 0.25	15.382 0.118	13.358 0.052	12.603 0.057	12.286 0.044	12.033 0.005	11.707 0.004	11.372 0.01	10.935 0.012	8.756 0.119
45860	05:44:30.16 +09:51:18.0	17.227 0.029	15.568 0.018	13.788 0.026	13.114 0.032	12.794 0.027	12.227 0.003	11.842 0.003	11.446 0.009	10.698 0.006	7.939 0.055
46311	05:44:18.65 +09:51:51.9	16.859 0.013	15.124 0.0070	13.266 0.038	12.55 0.042	12.213 0.03	11.571 0.003	11.365 0.004	11.129 0.008	10.591 0.006	8.021 0.06
47084^{2}	05:43:44.93 +09:52:52.4	17.05 0.035	15.57 0.029	13.978 0.033	13.333 0.037	12.994 0.038	12.292 0.007	12.128 0.008	11.942 0.015	11.286 0.013	8.448 0.101

 Table 2.14: Photometry for the new candidate members of Barnard 35 from the Spitzer Survey.

¹Upper limmits ²Out of the optical WFC Survey. In the case of 47084 the optical magnitudes were taken from Dolan & Mathieu (2002).

Table 2.15: Disk properties of the new candidate members of Barnard 35 selected from the Spitzer survey (i.e. they must have IR excess).

10543 05:44:52.79 11994 05:44:12.78 12156 05:44:19.36 12396 05:45:42.89 12913 05:44:28.66 13586 05:43:53.49 14252 05:43:43.13 14618 05:43:43.086 14785 05:44:10.03 14804 05:44:38.39	+09:03:32.0 Y Y +09:05:10.5 Y Y +09:05:10.5 Y Y +09:05:23.3 Y Y +09:05:33.7 R - Y +09:05:18.6 Y Y +09:07:11.7 Y Y +09:08:01.1 R Y +09:08:26.1 Y Y	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	0.006 0.06 0.90 0.08 1.05	1600 2900 3800 - 3000 3900		-0.921 -1.483 -1.427 1.035 -1.377	Thick Thick Thick Thick Thick
11994 05:44:12.78 12156 05:44:19.36 12396 05:45:42.89 12913 05:44:28.66 13586 05:43:53.49 14252 05:43:34.51 14618 05:44:38.36 14785 05:44:38.33 14804 05:44:38.39	:+09:05:10.5 Y Y :+09:05:23.3 Y Y :+09:05:23.3 Y Y :+09:05:33.7 R - Y :+09:06:18.6 Y Y :+09:07:11.7 Y Y :+09:08:01.1 R Y :+09:08:26.1 Y T	Y Y Y Y Y Y Y Y? Y Y Y Y Y Y Y Y??	0.06 0.90 0.08 1.05	2900 3800 - 3000 3900	II II II	-1.483 -1.427 1.035 -1.377	Thick Thick Thick Thick
12156 05:44:19.36 12396 05:45:42.89 12913 05:44:28.66 13586 05:43:53.49 14252 05:43:34.51 14252 05:43:34.51 14618 05:44:30.86 14785 05:44:38.33 14804 05:44:38.35	i+09:05:23.3 Y Y i+09:05:33.7 R - Y i+09:06:18.6 Y Y i+09:07:11.7 Y Y i+09:08:01.1 R Y i+09:08:26.1 Y T	Y Y Y Y? Y Y Y Y Y Y Y Y Y?	0.90 0.08 1.05	3800 - 3000 3900	П I П	-1.427 1.035 -1.377	Thick Thick Thick
12396 05:45:42.89 12913 05:44:28.66 13586 05:43:53.49 14252 05:43:43.45 14618 05:44:30.86 14785 05:44:10.03 14804 05:44:38.39	+09:05:33.7 R - Y i+09:06:18.6 Y Y i+09:07:11.7 Y Y i+09:08:01.1 R Y i+09:08:26.1 Y T i+09:08:40.7 Y Y	Y Y? Y Y Y Y Y Y Y?	0.08 1.05	- 3000 3900	I II	1.035 -1.377	Thick Thick
12913 05:44:28.66 13586 05:43:53.49 14252 05:43:44.51 14618 05:44:30.86 14785 05:44:10.03 14804 05:44:38.39	i +09:06:18.6 Y Y i +09:07:11.7 Y Y +09:08:01.1 R Y i +09:08:26.1 Y T i +09:08:26.1 Y T	Y Y Y Y Y Y?	0.08 1.05	3000 3900	II	-1.377	Thick
13586 05:43:53.49 14252 05:43:44.51 14618 05:44:30.86 14785 05:44:10.03 14804 05:44:38.39	+09:07:11.7 Y Y +09:08:01.1 R Y +09:08:26.1 Y T +09:08:40.7 V Y	Y Y Y Y?	1.05	3900	п		THER
14252 05:43:44.51 14618 05:44:30.86 14785 05:44:10.03 14804 05:44:38.39	+09:08:01.1 R Y T +09:08:26.1 Y T +09:08:40.7 X X	Y Y?			11	-1.454	Thick
14618 05:44:30.86 14785 05:44:10.03 14804 05:44:38.39	+09:08:26.1 Y T	n		-	Ι	-0.545	Thick
14785 05:44:10.03 14804 05:44:38.39	±09:08:40.7 V V	r Y	0.004	1200	II	-1.093	Thick
14804 05:44:38.39	+07.00.40.7	Y Y	1.05	3900	п	-1.031	Thick
	+09:08:41.8 Y Y	Y Y	0.005	1400	п	-1.188	Thick
14943 05:44:29.28	+09:08:52.8 R - Y	Y?		-	Ι	2.274	Thick
15004 05:44:30.00	+09:08:56.8 R Y	Y Y?		-	Ι	0.514	Thick
15017 05:44:31.64	+09:08:57.9 Y	Y		-	п	-1.162	Thick
16286 05:43:39.59	+09:10:40.9 Y Y	Y Y	0.27	3300	II	-1.09	Thick
16567 05:44:36.62	+09:11:01.1 R Y	Y Y?		-	Ι	0.133	Thick
17409 05:45:07.53	+09:12:10.7 YY	Y Y	0.14	3100	п	-0.908	Thick
17517 05:43:50.67	+09:12:25.1 Y Y	Y Y	0.90	3800	II	-1.628	Thick
17523 05:44:30.23	+09:12:23.8 Y Y	Y Y	0.46	3500	п	-1.201	Thick
17593 05:45:05.70	+09:12:28.1 Y Y	Y Y	0.02	2700	п	-1.061	Thick
18430 05:43:51.36	+09:13:40.5 Y Y	Y Y	0.08	3000	II	-1.053	Thick
20180 05:43:52.47	+09:15:59.8 Y Y	Y Y	0.27	3300	п	-1.419	Thick
20434 05:44:19.40	+09:16:19.3 Y Y	Y Y	0.46	3500	п	-0.984	Thick
20473 05:43:56.99	+09:16:23.9 Y Y	Y Y	0.46	3500	II	-1.763	Thick
23145 05:44:16.14	+09:20:00.0 Y T	г ү	0.90	3800	III	-2.223	Transition
23414 05:44:52.80	+09:20:18.3 F F T	Y Y	0.75	3700	III	-2.824	Transition
24086 05:45:10.55	+09:21:09.5 Y	Y?	0.06	2900	п	-1.467	Thick
27556 05:44:38.12	+09:25:57.9 Y Y	Y Y	0.21	3200	II	-1.775	Thick
37817 05:43:50.60	+09:40:42.3 Y Y	Y Y	0.08	3000	II	-1.776	Thick
45299 05:43:44.15	+09:50:39.1 Y Y	Y Y	0.27	3300	II	-1.579	Thick
45860 05:44:30.16	+09:51:18.0 Y Y	Y Y	0.14	3100	II	-1.094	Thick
46311 05:44:18.65	+09:51:51.9 Y Y	Y Y	0.14	3100	II	-1.72	Thick
47084 05:43:44.93	+09:52:52.4 Y Y	Y Y	1.05	3900	П	-1.699	Thick

²Final Membership

¹Membership is [3.6] vs. [3.6]-[8.0], H-Ks vs. Ks-[24], [3.6]-[8.0] vs. [8.0]-[24]. Y: member, R: Very red object in comparison with the theoretical isochrone, Y?: probable member, F: field object; -: Not enough data

³The effective temperature is derived from the SED fittings in Figure 3.14 and 3.15. Mass is estimated based on the temperature and a 3 Myr isochrone from Baraffe et al. (1998).For the three objects with the lowest temperatures, the DUSTY models from Chabrier et al. (2000) are used.

Dolan/DIL ID	RA (J2000) DEC (J2000)	V1	R ¹	I^1	J ² error	H ² error	Ks ³ error	[3.6] error	[4.5] error	[5.8] error	[8.0] error	[24] error
DM90 ⁴	05:28:18.00 +11:56:50.6	15.382	14.232	13.05	11.651 0.035	10.815 0.051	10.054 0.033					4.55 0.006
DM99 ⁴	05:29:26.70 +11:51:44.8	15.935	14.811	13.429	11.831 0.023	11.055 0.03	10.752 0.022					5.463 0.011
DM100 ⁴	05:29:34.21 +12:56:21.6	14.9	13.78	12.757	11.262 0.022	10.333 0.021	9.895 0.018					4.409 0.003
DM106 ⁴	05:29:52.77 +12:09:47.5	16.125	14.934	13.541	11.918 0.022	11.021 0.024	10.585 0.021					4.577 0.003
DM107 ⁴	05:29:57.66 +12:12:07.1	14.999	13.996	13.013	11.892 0.02	11.034 0.019	10.659 0.018					6.526 0.016
DM109 ⁴	05:30:00.63 +12:13:44.4	17.918	16.503	14.975	12.77 0.022	11.793 0.021	11.11 0.02					5.745 0.016
DM110 ⁴	05:30:01.89 +12:13:10.0	12.737	12.024	11.398	10.637 0.02	9.908 0.021	9.578 0.018					4.876 0.006
DM111 ⁴	05:30:02.03 +12:13:35.8	13.133	12.43	11.787	10.667 0.023	9.721 0.023	9.019 0.02					3.226 0.002
DM113	05:30:03.82 +12:01:21.8	15.236	14.223	13.252	11.694 0.022	10.89 0.021	10.463 0.019	9.759 0.002	9.35 0.002	8.896 0.004	8.151 0.002	5.418 0.006
DM114	05:30:05.65 +12:09:37.2	16.863	15.539	13.937	12.273 0.022	11.552 0.023	11.192 0.02	10.843 0.003				6.526 0.017
DM115	05:30:13.13 +12:08:45.8	13.836	13.055	12.282	10.954 0.022	10.12 0.023	9.557 0.018	8.459 0.001	7.951 0.001	7.251 0.002	6.273 0.001	3.586 0.001
DM118	05:30:17.04 +12:15:41.0	16.0	14.969	13.901	12.665 0.024	11.921 0.026	11.702 0.023	11.545 0.003	11.584 0.004	11.482 0.011	11.484 0.017	
DM120	05:30:29.09 +12:33:56.5	16.834	15.821	14.746	13.161 0.023	12.412 0.023	12.005 0.022	11.694 0.002	11.303 0.003	11.269 0.009	10.652 0.008	7.104 0.028
DM121	05:30:36.08 +12:06:40.6	17.18	16.0	14.71	12.91 0.025	12.119 0.021	11.634 0.018	10.602 0.002	10.222 0.002	10.198 0.004	9.997 0.005	6.825 0.026
DM123	05:30:36.19 +12:36:52.5	15.174	14.201	13.243	11.598 0.03	10.728 0.029	10.163 0.026	9.635 0.002	9.295 0.003	8.988 0.003	8.1 0.002	4.651 0.004
DM125	05:30:51.70 +12:08:36.7	14.607	13.731	12.911	11.64 0.023	10.867 0.026	10.452 0.018	9.924 0.002	9.62 0.002	9.3 0.003	8.327 0.003	5.749 0.023
DM126	05:30:53.97 +12:43:31.6	16.848	15.77	14.713	13.159 0.022	12.378 0.021	12.156 0.022	11.989 0.003	11.998 0.004	11.966 0.013	11.972 0.023	
DM127	05:30:56.91 +11:56:46.9	15.092	14.046	12.923	11.607 0.026	10.846 0.022	10.614 0.02	10.384 0.002	10.326 0.002	10.31 0.004	10.317 0.006	
DM129	05:30:57.86 +11:47:21.4	13.41	12.729	12.043	11.056 0.026	10.413 0.022	10.277 0.021	10.17 0.002	10.143 0.002	10.136 0.004	10.076 0.007	
DM131	05:31:01.01 +12:04:14.3	16.534	15.372	14.086	12.752 0.022	12.007 0.021	11.797 0.021	11.615 0.005	11.54 0.005	11.542 0.016	11.578 0.074	
DM134 ⁴	05:31:07.81 +11:25:26.3	16.03	14.88	13.545	12.533 0.042	11.817 0.047	11.573 0.045					6.085 0.01
DM135	05:31:08.03 +12:06:06.4	15.881	14.789	13.585	12.212 0.022	11.469 0.023	11.239 0.022	10.554 0.002	10.271 0.003	10.023 0.004	9.635 0.005	6.7 0.036
DM136	05:31:15.51 +12:11:23.7	16.364	15.145	13.863	12.097 0.022	11.21 0.026	10.718 0.018	9.988 0.002	9.646 0.003	9.318 0.003	8.769 0.005	5.98 0.021
DM138 ⁴	05:31:16.15 +11:25:31.3	15.308	14.372	13.41	11.744 0.022	10.906 0.023	10.327 0.025					4.453 0.003
DM142	05:31:21.65 +12:05:47.8	13.76	12.809	11.842	10.946 0.045	10.24 0.049	10.037 0.049	9.754 0.002	9.775 0.004	9.645 0.005		
DM143	05:31:23.59 +12:09:43.9	12.827	12.087	11.408	10.422 0.02	9.623 0.021	9.192 0.017	8.216 0.001	7.732 0.001	6.956 0.002	6.085 0.002	2.73 0.004
DM147	05:31:34.59 +11:49:29.8	15.025	14.045	13.007	11.684 0.026	10.986 0.024	10.751 0.022	10.659 0.002	10.634 0.002	10.585 0.005	10.555 0.007	
DM149	05:31:37.61 +11:58:18.3	14.644	13.938	13.239	12.192 0.02	11.599 0.021	11.449 0.019	11.359 0.002	11.391 0.003	11.354 0.008	11.321 0.015	
DM150	05:31:38.60 +11:48:26.4	16.082	15.013	13.883	12.61 0.028	11.889 0.026	11.678 0.027	11.477 0.002	11.483 0.003	11.461 0.009	11.498 0.014	
DM151	05:31:39.93 +11:50:49.6	16.369	15.497	14.356	13.154 0.031	12.507 0.029	12.25 0.034	11.96 0.003	11.928 0.004	11.546 0.009	11.087 0.008	7.324 0.034
DM152	05:31:40.48 +12:10:46.9	15.103	14.049	12.972	11.311 0.022	10.454 0.023	10.184 0.019	9.847 0.001	9.562 0.002	9.052 0.003	7.914 0.002	5.01 0.005
DM153	05:31:43.40 +12:30:22.1	13.454	12.787	12.149	11.14 0.022	10.532 0.021	10.243 0.018	10.128 0.002	9.818 0.002	9.385 0.004	8.477 0.004	5.641 0.043
DM154	05:31:45.43 +11:37:59.3	17.272	15.914	14.229	12.981 0.044	12.343 0.046	12.057 0.049	11.694 0.004	11.677 0.005	11.513 0.016		
DM157	05:31:47.54 +11:14:51.0	17.197	15.816	14.074								7.563 0.043
DM158	05:31:47.79 +12:18:08.3	13.017	12.285	11.61	10.616 0.022	10.002 0.024	9.812 0.021	9.323 0.003	8.989 0.003	8.602 0.003	7.808 0.008	5.209 0.009
DM160	05:31:49.15 +12:32:00.8	14.548	13.524	12.465	10.991 0.033	9.992 0.034	9.564 0.032	8.376 ³ 0.004	7.997 ³ 0.004	7.812 ³ 0.012	7.163 ³ 0.006	4.098 0.011
DM161	05:31:58.49 +12:22:47.4	15.932	14.769	13.353	11.833 0.02	11.118 0.024	10.85 0.018	10.671 0.002	10.591 0.002	10.641 0.006	10.692 0.019	
DM164	05:31:59.94 +12:08:06.8	16.136	15.047	13.793	12.499 0.021	11.748 0.021	11.525 0.022	11.352 0.002	11.325 0.003	11.304 0.007	11.3 0.012	
DM165 ⁵	05:32:06.41 +12:29:22.2	15.228	14.227	13.166	12.02 0.022	11.198 0.019	10.86 0.019	10.29 0.002	10.045 0.002	9.725 0.005	9.128 0.009	
DM166	05:32:06.51 +12:24:04.5	14.793	14.003	13.331	11.931 0.02	11.182 0.021	10.767 0.019	10.252 0.002	9.949 0.002	9.654 0.003	9.108 0.004	4.946 0.007
DM168	05:32:07.26 +11:54:04.2	16.203	15.152	13.957	12.729 0.023	11.969 0.024	11.754 0.022	11.592 0.003	11.56 0.003	11.506 0.009	11.497 0.015	6.912 0.021
DM169	05:32:07.97 +12:07:14.6	13.628	12.808	12.034	10.966 0.021	10.33 0.023	10.125 0.02	9.911 0.001	9.912 0.002	9.824 0.004	9.778 0.004	9.431 0.212
DM172	05:32:15.46 +12:09:34.3	16.375	15.399	14.172	12.7 0.022	11.977 0.024	11.577 0.023	10.561 0.002	10.182 0.002	9.774 0.004	8.883 0.002	6.382 0.014
DM173 ⁵	05:32:18.11 +12:43:56.3	15.317	14.24	13.169	11.822 0.022	11.005 0.024	10.649 0.02	9.819 0.001	9.522 0.002	9.23 0.003	8.694 0.002	
DM174 ⁵	05:32:25.63 +12:36:35.4	14.751	13.879	13.062	11.64 0.022	10.827 0.023	10.424 0.017	9.628 0.001	9.34 0.002	9.18 0.003	8.372 0.003	
DM175	05:32:26.24 +11:54:24.3	15.942	14.782	13.38	11.966 0.021	11.243 0.046	11.043 0.031	10.778 0.002	10.765 0.003	10.659 0.006	10.528 0.007	
										Continued	on next page	

Table 2.16: Photometry for the DM and DIL members of Barnard 30.

	Table 2.16 – Conti	nued										
Dolan/DIL ID	RA (J2000) DEC (J2000)	V	R	Ι	J error	H error	Ks error	[3.6] error	[4.5] error	[5.8] error	[8.0] error	[24] error
DM176 ⁵	05:32:27.31 +12:37:54.5	13.277	12.68	12.097	11.234 0.022	10.63 0.021	10.478 0.018	10.386 0.002	10.379 0.002	10.351 0.005	10.322 0.008	
DM177 ⁵	05:32:29.38 +12:01:23.6	16.15	15.025	13.634	12.183 0.021	11.472 0.021	11.26 0.02	11.01 0.002	10.9 0.003	10.924 0.007	10.973 0.009	
DIL12 ⁴	05:29:24.02 +11:51:56.5	-	-	-								3.577 0.002
DIL18 ⁴	05:30:04.66 +12:13:08.5	-	-	-								6.016 0.014
DIL23	05:30:42.86 +11:38:18.8	14.235	13.723	13.27	12.583 0.024	12.117 0.022	12.047 0.023	12.003 0.004	11.983 0.005	11.935 0.016	12.035 0.029	
DIL27	05:31:24.75 +12:12:08.7	15.576	14.4	13.204	12.049 0.031	11.102 0.024	10.566 0.018	9.538 0.004	9.076 0.004			4.678 0.007
DIL28 ⁴	05:31:26.73 +11:01:22.6	-	-	-								7.491 0.038
DIL29	05:31:28.19 +12:09:10.5	11.544	11.106	10.638	9.408 0.02	8.311 0.023	7.341 0.031	6.317 ³ 0.002	5.619 ³ 0.002	4.883 ³ 0.003	3.652 ³ 0.001	0.79 0.001
DIL37 ⁵	05:32:17.69 +12:23:58.9	17.035	15.747	14.301	12.56 0.023	11.831 0.027	11.428 0.024	10.437 0.002	10.106 0.002	9.735 0.004	9.174 0.005	
DIL38 ⁵	05:32:19.10 +12:24:23.8	14.33	13.359	12.323	10.928 0.023	10.1 0.026	9.656 0.019	8.987 0.002	8.444 0.002	8.071 0.002	7.174 0.001	
DIL39 ⁵	05:32:22.16 +12:18:02.3	-	-	-	11.493 0.02	10.902 0.023	10.642 0.02	10.385 0.002	10.284 0.002	10.295 0.004	10.328 0.005	
DIL43 ⁴	05:32:25.60 +10:29:43.3	-	-	-								7.34 0.042
DIL44 ⁴	05:32:32.09 +10:44:16.8	-	-	-								6.33 0.013
DIL46 ⁵	05:32:36.44 +12:26:20.6	14.105	13.148	12.052	10.425 0.022	9.694 0.023	9.291 0.019	8.601 0.001	8.129 0.001	7.823 0.002	7.169 0.001	

¹Magnitudes from Dolan & Mathieu (1999, 2001, 2002)
²2MASS magnitudes
³Photometry from the shallow mosaics
⁴Out of IRAC FOV
⁵Out of MIPS FOV

2

Dolan/DIL ID	Mass $(M_{\odot})^1$	Teff (K) ⁶	IRAC class ¹	SED slope	Disk Type ²	$W_{\lambda}(H\alpha) (A)^3$	$W_{\lambda}(Li) (Å)^3$
DM90 ⁴	0.63	3900	II?	_	-	36.74	0.54
DM99 ⁴	0.52	3800	?	-	-	22.88	0.61
DM100 ⁴	0.63	3900	?	_	-	95.43	0.51
DM106 ⁴	0.43	3700	?	-	-	31.14	0.58
DM107 ⁴	0.47	3750	?	_	-	2.75	0.59
DM109 ⁴	0.09	3000	II?	-	-	114.32	0.40
DM110 ⁴	0.98	4400	?	-	-	-0.39	0.51
DM111 ⁴	0.88	4200	II?	-	-	33.76	0.41
DM113	0.72	4000	II	-0.994	Thick	23.43	0.58
DM114	0.35	3600	?	-	-	39.03	0.60
DM115	0.72	4000	I/II	-0.303	Thick	22.12	0.43
DM118	0.72	4000	III	-2.739	Diskless	6.09	0.54
DM120	0.52	3800	II	-1.729	Thick	171.14	0.24
DM121	0.47	3750	II T	-2.213	Thin	244.76	0.65
DM123	0.47	3750	11	-1.105	Thick	127.58	0.28
DM125	0.28	3500	II W	-1.029	Thick	42.62	0.58
DM126	0.12	3100		-2.811	Diskless	-2.63	0.22
DM127	0.52	3800		-2.768	Diskless	7.12	0.72
DM129	0.72	4000		-2.131	Diskless	0.22	0.46
DM131	0.28	3500	2	-2.808	Diskless	3.33	0.00
DM134	0.03	3900	/ H	- 1 704	Thisk	2.30	0.53
DM135	0.98	2750	11	-1./94	Thick	4.70	0.64
DM1384	0.47	3730	11	-1.449	THICK	13.03	0.50
DM138	0.03	4000	III III	-	Dicklose	0.41	0.55
DM142	0.72	3500	111	-2.034	Thick	-0.41	0.48
DM145	0.63	3900	III	-2.714	Diskless	2.57	0.45
DM149	0.63	3900	ш	-2.783	Diskless	-14.2	0.20
DM150	0.98	4400	Ш	-2.856	Diskless	0.83	0.62
DM151	1.18	4800	П	-1.777	Thick	-1.03	0.27
DM152	0.52	3800	П	-0.604	Thick	4.32	0.51
DM153	0.47	3750	п	-0.94	Thick	15.04	0.43
DM154	0.91	4250	III	-2.565	Diskless	5.3	0.75
DM157	0.47	3750	?	_	_	7.88	0.63
DM158	0.47	3750	Π	-1.105	Thick	1.05	0.50
DM160	0.72	4000	II	-	Thick	7.99	0.41
DM161	2.06	6400	III	-2.886	Diskless	16.62	0.61
DM164	0.23	3400	III	-2.779	Diskless	3.17	0.67
DM165 ⁵	0.35	3600	II	-1.502	Thick	3.49	0.67
DM166	1.39	5200	II	-1.536	Thick	88.7	0.43
DM168	0.98	4400	III	-2.724	Transition	8.25	0.59
DM169	0.72	4000	III	-2.668	Diskless	1.1	0.60
DM172	0.88	4200	II	-0.925	Thick	36.51	0.63
DM173 ⁵	0.91	4250	II	-1.557	Thick	30.27	0.57
DM174 ⁵	0.91	4250	II	-1.446	Thick	36.83	0.65
DM175	0.88	4200	111	-2.536	Diskless	5.06	0.77
DM176 ³	1.31	5000	111	-2.762	Diskless	0.44	0.47
DM1773	0.72	4000		-2.819	Diskless	4.15	0.62
DIL12 ⁺	0.88	4200	7	-	-	-	-
DIL18	0.88	4200	/ 111	-	– Disklass	-	-
DIL23	0.72	4000	111 11	-2.804	Diskiess	-	-
DIL 284	0.72	4000	2	-2.100	THICK	_	-
DIL20	1.57	+000 5500	1/II	-0.324	- Thiak	-	-
DIL 37 ⁵	0.88	4200	1/11 II	-0.324	Thick	_	-
DIL 38 ⁵	1 18	4800	п	-0.807	Thick	_	-
DIL 39 ⁵	0.23	3400	III	-2 792	Diskless	_	-
DIL 43 ⁴	0.28	3500	?	_	_	_	-
DIL44 ⁴	0.19	3300	?	_	_	_	-
DIL46 ⁵	0.47	3750	II	-1.236	Thick	_	-
· · · · · · · · · · · · · · · · · · ·			Continued or	nevt page			

Table 2.17: Disk properties of the previously known members of Barnard 30.

	Table	2.17 - Contin	ued				
Dolan/DIL ID	Mass $(M_{\odot})^1$	Teff (K) ⁶	IRAC class ¹	SED slope	Disk Type ²	$W_{\lambda}(H\alpha) (A)^3$	$W_{\lambda}(Li) (A)^3$

¹IRAC Class based on the IRAC [3.6]-[4.5] vs. [5.8]-[8.0] color-color diagram and in the SED of each object. ²Disk type based on the IRAC slope and SED shape ³ $W_{\lambda}(H\alpha)$ and $W_{\lambda}(Li)$ from Dolan & Mathieu (1999) ⁴Out of IRAC FOV

⁵Out of MIPS FOV

⁶Effective temperatures are derived from the SED fitting perfomed with VOSA. Masses are estimated based on Teff and a 3 Myr Siess et al. isochrone.

ID	RA(J2000), DEC(J2000)	R eR	I eI	J eJ	H eH	Ks eKs	[3.6] e[3.6]	[4.5] e[4.5]	[5.8] e[5.8]	[8.0] e[8.0]	[24] e[24]
6876	05:30:35.19 +11:45:11.5	20.404 0.118	19.458 0.138				13.897 0.007	12.823 0.006	11.91 0.012	10.935 0.01	7.91 0.06
9196	05:31:33.36 +11:48:58.3	17.826 0.051	15.845 0.03	14.185 0.035	13.458 0.036	13.021 0.04	12.268 0.003	12.099 0.004	11.868 0.012	11.4 0.012	
10420	05:31:39.96 +11:50:49.5	16.744 0.077	15.046 0.041	13.154 0.031	12.507 0.029	12.25 0.034	11.96 0.003	11.928 0.004	11.546 0.009	11.087 0.008	7.32 0.034
12438	05:32:07.27 +11:54:04.1	15.43 0.037	14.148 0.033	12.729 0.023	11.969 0.024	11.754 0.022	11.592 0.003	11.56 0.003	11.506 0.009	11.497 0.015	6.91 0.021
12629 ²	05:32:25.91 +11:54:24.7			14.242 0.047	13.547 0.057	13.128 0.049	12.038 0.005	11.739 0.005	11.151 0.008	10.727 0.007	8.44 0.099
13402^{2}	05:32:19.21 +11:55:36.6			15.232 0.082	14.319 0.075	13.895 0.078	13.242 0.005	13.001 0.007	12.904 0.021	12.342 0.036	
16599	05:30:03.81 +12:01:21.5	14.34 0.031	13.299 0.031	11.694 0.022	10.89 0.021	10.463 0.019	9.759 0.002	9.35 0.002	8.896 0.004	8.151 0.002	5.41 0.006
17792^{2}	05:30:25.93 +12:03:21.4			13.65 0.034	13.049 0.035	12.785 0.036	12.276 0.003	12.079 0.004	11.836 0.012	11.191 0.013	8.82 0.123
18115 ²	05:30:17.88 +12:03:55.6			12.574 0.024	11.737 0.027	11.261 0.027	10.419 0.002	9.982 0.002	9.597 0.003	8.794 0.002	5.9 0.008
19172	05:31:27.83 +12:05:30.9			16.319 ¹ –	14.596 0.08	12.763 0.04	10.976 0.003	9.631 0.003	8.492 0.003	7.12 0.003	1.93 0.002
19198	05:31:29.64 +12:05:32.9			15.903 0.079	14.548 0.054	13.838 0.055	12.664 0.008	11.493 0.004	10.358 0.009	8.989 0.012	4.17 0.016
19545	05:31:08.03 +12:06:06.3	15.285 0.037	13.97 0.033	12.212 0.022	11.469 0.023	11.239 0.022	10.554 0.002	10.271 0.003	10.023 0.004	9.635 0.005	6.7 0.036
19617	05:31:23.18 +12:06:11.4	20.079 1.931	18.84 1.147	16.066 0.13	15.031 0.097	14.62 0.126	13.101 0.007	12.288 0.005	11.559 0.025	10.506 0.045	5.5 0.038
19802	05:31:34.57 +12:06:31.3	20.148 0.112	17.533 0.038	13.45 0.026	11.792 0.024	11.027 0.023	10.32 0.002	10.163 0.002	10.0 0.004	9.868 0.009	7.06 0.056
19863 ²	05:30:36.08 +12:06:40.6			12.91 0.025	12.119 0.021	11.634 0.018	10.602 0.002	10.222 0.002	10.198 0.004	9.997 0.005	6.82 0.026
20369	05:31:24.96 +12:07:30.2	20.924 0.211	18.357 0.06	14.794 0.052	13.522 0.046	12.658 0.037	11.963 0.003	11.399 0.004	10.978 0.008	10.223 0.009	7.6 0.078
20941	05:31:27.20 +12:08:28.5	19.526 1.147	17.308 0.284	13.452 0.024	12.278 0.023	11.604 0.019	10.799 0.002	10.389 0.002	10.028 0.005	9.249 0.011	5.33 0.032
20993	05:30:51.70 +12:08:36.7	13.718 0.03	12.892 0.03	11.64 0.023	10.867 0.026	10.452 0.018	9.924 0.002	9.62 0.002	9.3 0.003	8.327 0.003	5.74 0.023
21068 ²	05:30:13.12 +12:08:45.7			10.954 0.022	10.12 0.023	9.557 0.018	8.459 0.001	7.951 0.001	7.251 0.002	6.273 0.001	3.58 0.001
21232	05:31:19.54 +12:08:58.4	21.548 0.37	19.536 0.163	16.645 0.132	14.735 0.059	13.135 0.036	11.886 0.004	11.492 0.004	11.086 0.013	10.656 0.028	5.67 0.027
21424	05:31:19.48 +12:09:15.4	16.116 0.055	14.584 0.038	11.987 0.022	10.776 0.023	10.091 0.018	9.085 0.001	8.52 0.002	8.099 0.002	7.295 0.001	4.3 0.011
21495	05:31:22.26 +12:09:21.4	19.913 0.094	17.228 0.035	15.687 0.063	13.787 0.041	12.2 0.024	9.98 0.002	9.411 0.002	8.81 0.003	8.035 0.003	4.64 0.012
21677	05:32:15.47 +12:09:34.3	15.513 0.04	14.296 0.035	12.7 0.022	11.977 0.024	11.577 0.023	10.561 0.002	10.182 0.002	9.774 0.004	8.883 0.002	6.38 0.014
21725	05:31:23.61 +12:09:43.9	12.828 0.03	11.927 0.03	10.422 0.02	9.623 0.021	9.192 0.017	8.216 0.001	7.732 0.001	6.956 0.002	6.085 0.002	2.73 0.004
21900	05:32:12.32 +12:09:55.5	15.679 0.043	15.179 0.05	14.217 0.03	13.427 0.031	12.653 0.028	11.568 0.003	11.274 0.004	10.564 0.005	9.296 0.003	4.83 0.004
22102	05:31:26.97 +12:10:20.6	17.023 0.113	14.61 0.039	11.956 0.022	11.249 0.02	10.887 0.018	10.378 0.002	10.223 0.002	10.031 0.007	9.802 0.038	7.05 0.21
22233	05:31:23.14 +12:10:33.8	18.35 0.38	15.912 0.084	13.165 0.022	12.462 0.023	12.021 0.019	11.49 0.003	11.255 0.004	10.949 0.011	10.492 0.026	6.67 0.217
22362	05:31:40.50 +12:10:46.8	14.177 0.031	13.109 0.031	11.311 0.022	10.454 0.023	10.184 0.019	9.847 0.001	9.562 0.002	9.052 0.003	7.914 0.002	5.01 0.005
22691	05:31:15.52 +12:11:23.6	15.606 0.042	14.131 0.034	12.097 0.022	11.21 0.026	10.718 0.018	9.988 0.002	9.646 0.003	9.318 0.003	8.769 0.005	5.98 0.021
22786	05:31:26.06 +12:11:33.5	20.332 0.128	17.885 0.044	14.4 0.029	12.875 0.023	12.056 0.023	11.211 0.002	10.769 0.003	10.388 0.005	9.729 0.005	4.65 0.011
22957	05:31:28.10 +12:11:51.1	17.748 0.051	15.84 0.03	12.98 0.023	12.001 0.021	11.49 0.019	10.903 0.002	10.552 0.002	10.118 0.004	9.358 0.003	6.19 0.041
23445	05:31:28.42 +12:12:35.3	16.975 0.108	15.04 0.047	13.019 0.022	12.344 0.021	12.066 0.021	11.593 0.002	11.34 0.003	11.091 0.007	10.449 0.009	7.79 0.103
23598	05:31:25.68 +12:12:51.4	18.309 0.053	16.183 0.031	12.703 0.022	11.752 0.021	11.271 0.018	10.557 0.002	10.191 0.002	9.79 0.004	9.077 0.003	6.09 0.017
25472	05:31:51.31 +12:16:20.8	16.577 0.07	15.071 0.043	12.742 0.022	11.715 0.024	11.043 0.023	10.229 0.002	9.753 0.002	9.454 0.003	9.005 0.003	6.98 0.059
26565	05:31:47.81 +12:18:08.2	12.417 0.03	11.578 0.03	10.616 0.022	10.002 0.024	9.812 0.021	9.323 0.003	8.989 0.003	8.602 0.003	7.808 0.008	5.2 0.009
28513	05:30:50.45 +12:21:28.0	9.405 0.03	8.693 0.03	8.061 0.019	7.913 0.02	7.914 0.024	7.834 0.001	8.026 0.001	7.849 0.002	7.866 0.002	6.23 0.058
29908 ^{2,3}	05:32:17.75 +12:23:58.7			12.56 0.023	11.831 0.027	11.428 0.024	10.437 0.002	10.106 0.002	9.735 0.004	9.174 0.005	
29957 ²	05:32:06.52 +12:24:04.4			11.931 0.02	11.182 0.021	10.767 0.019	10.252 0.002	9.949 0.002	9.654 0.003	9.108 0.004	4.94 0.007
30116 ³	05:32:19.07 +12:24:22.4	13.718 0.03	12.487 0.03	10.928 0.023	10.1 0.026	9.656 0.019	8.987 0.002	8.444 0.002	8.071 0.002	7.174 0.001	
30172 ³	05:32:14.51 +12:24:29.0	19.248 0.801	17.12 0.226	14.564 0.032	13.78 0.03	13.338 0.037	12.167 0.003	11.668 0.004	11.164 0.007	10.416 0.009	
30256	05:31:56.36 +12:24:41.4	13.34 0.03	12.287 0.03	10.899 0.022	10.199 0.019	10.009 0.019	9.863 0.001	9.896 0.002	9.864 0.004	9.833 0.004	7.5 0.065
30354 ³	05:32:13.06 +12:24:52.4	16.404 0.063	15.612 0.064	14.218 0.026	13.196 0.03	12.532 0.026	11.575 0.003	10.891 0.003	10.23 0.005	8.815 0.006	
31202 ^{2,3}	05:32:36.42 +12:26:19.4			10.425 0.022	9.694 0.023	9.291 0.019	8.601 0.001	8.129 0.001	7.823 0.002	7.169 0.001	
31833	05:30:14.76 +12:27:36.5	19.105 0.619	16.405 0.099	13.758 0.024	12.865 0.024	12.48 0.024	11.883 0.003	11.584 0.004	11.419 0.011	10.962 0.021	7.71 0.113
31902 ^{2,3}	05:32:34.32 +12:27:32.3			11.761 0.023	10.935 0.024	10.581 0.019	9.459 0.002	9.174 0.003	8.957 0.003	8.394 0.003	
										Continued on	next nage

 Table 2.18: Photometry for the new candidate members of Barnard 30 from the Spitzer Survey.

	Table 2	2.18 - Continued									
ID	RA(J2000), DEC(J2000)	R eR	I eI	J eJ	H eH	Ks eKs	[3.6] e[3.6]	[4.5] e[4.5]	[5.8] e[5.8]	[8.0] e[8.0]	[24] e[24]
32037 ^{2,3}	05:32:36.58 +12:27:48.3			13.87 0.024	12.651 0.026	11.73 0.021	10.044 0.002	9.398 0.002	8.988 0.003	8.401 0.002	
32340 ³	05:32:06.23 +12:28:24.1	19.607 1.123	16.943 0.193	14.08 0.026	13.27 0.026	12.779 0.024	11.997 0.003	11.458 0.003	11.104 0.008	10.448 0.016	99.9 9.999
32951 ³	05:32:06.43 +12:29:22.2	14.362 0.031	13.171 0.031	12.02 0.022	11.198 0.019	10.86 0.019	10.29 0.002	10.045 0.002	9.725 0.005	9.128 0.009	
33125 ³	05:32:11.94 +12:29:41.9			$16.801^{1} -$	15.381 0.1	13.856 0.058	12.852 0.006	11.876 0.004	11.259 0.011	10.063 0.012	
33419	05:30:35.04 +12:30:17.0	13.282 0.03	12.617 0.03	11.966 0.022	11.433 0.021	11.295 0.017	11.246 0.003	11.293 0.003	11.25 0.01	11.165 0.027	6.98 0.049
33525	05:31:43.43 +12:30:22.0	12.995 0.03	12.222 0.03	11.14 0.022	10.532 0.021	10.243 0.018	10.128 0.002	9.818 0.002	9.385 0.004	8.477 0.004	5.64 0.043
33661 ³	05:32:08.06 +12:30:34.8			$16.745^{1} -$	14.562 0.052	12.634 0.036	10.152 0.002	9.075 0.002	8.327 0.003	7.738 0.002	
33936	05:32:02.89 +12:31:05.8			15.559 0.062	12.159 0.026	10.184 0.021	8.434 0.001	7.802 0.001	7.327 0.002	6.825 0.001	3.44 0.003
34050	05:32:02.58 +12:31:17.4			16.767 0.17	13.826 0.043	12.288 0.028	11.069 0.006	10.481 0.006	10.141 0.012	9.405 0.015	3.65 0.004
34119	05:31:50.23 +12:31:26.0	17.039 0.105	15.112 0.047	12.205 0.023	10.89 0.023	10.393 0.02	10.076 0.002	10.043 0.002	9.968 0.006	9.958 0.024	6.63 0.056
35518	05:30:29.09 +12:33:56.5	16.041 0.046	14.775 0.037	13.161 0.023	12.412 0.023	12.005 0.022	11.694 0.002	11.303 0.003	11.269 0.009	10.652 0.008	7.1 0.028
35582	05:30:34.17 +12:34:03.4	20.194 1.728	18.88 0.91	16.635 0.131	15.463 0.092	14.465 0.083	12.668 0.004	12.082 0.004	11.239 0.008	10.329 0.006	6.68 0.024
35766	05:32:00.56 +12:34:15.1	17.322 0.134	15.325 0.053	13.48 0.024	12.841 0.024	12.553 0.026	12.165 0.004	11.92 0.005	11.734 0.014	11.067 0.027	8.58 0.318
37215 ^{2,3}	05:32:25.65 +12:36:35.3			11.64 0.022	10.827 0.023	10.424 0.017	9.628 0.001	9.34 0.002	9.18 0.003	8.372 0.003	
37312 ²	05:30:36.19 +12:36:52.5			11.598 0.03	10.728 0.029	10.163 0.026	9.635 0.002	9.295 0.003	8.988 0.003	8.1 0.002	4.65 0.004
39428	05:31:41.23 +12:40:15.7	16.598 0.082	14.757 0.043	12.499 0.023	11.419 0.021	10.933 0.018	10.05 0.001	9.575 0.001	8.977 0.003	8.247 0.002	4.39 0.003
40421^2	05:30:27.08 +12:42:02.9			14.987 0.039	14.234 0.031	14.078 0.057	13.736 0.008	13.53 0.01	13.145 0.035	12.364 0.041	
41615 ³	05:32:18.12 +12:43:56.3	14.341 0.031	13.122 0.031	11.822 0.022	11.005 0.024	10.649 0.02	9.819 0.001	9.522 0.002	9.23 0.003	8.694 0.002	
41741^{2}	05:30:40.96 +12:44:16.1			12.866 0.023	11.832 0.021	11.349 0.021	10.702 0.002	10.212 0.002	10.056 0.005	9.638 0.003	6.71 0.021
45191 ²	05:31:39.75 +12:50:02.8			17.015 0.185	16.235 0.207	14.875 0.11	12.467 0.004	11.637 0.004	10.826 0.007	9.949 0.005	6.58 0.019
45371 ²	05:30:31.60 +12:50:27.1			13.258 0.023	12.377 0.021	11.891 0.021	11.066 0.002	10.594 0.003	10.207 0.005	8.96 0.003	5.72 0.01

¹Upper limmits ²Out of the optical WFC Survey. ³Out of the MIPS 24 μ m survey.

6876 R. Y Y 0.002 1300 I 0.538 Thick 9196 Y - Y Y 0.276 3300 II -1.84 Think 12438 ? T T Y 0.467 3500 III -2.724 Transition 12639 Y Y Y Y 0.029 2700 II -1.272 Thick 13402 Y - Y Y 0.048 5600 II -1.83 Thick 15402 Y Y Y Y 0.041 2800 II -1.601 Thick 17792 Y Y Y Y 0.002 1400 I 1.551 Thick 19172 R Y Y Y 0.003 1700 I 1.373 Thick 19918 R Y Y Y 0.003 1700 II -2.313 Thick 19902 T T Y 0.003 1700 II -0.333 Thick 20941 Y Y Y 0.004<	ID	Phot. Mem. ²	Final Mem. ³	Mass $(M_{\odot})^1$	Teff (K) ¹	YSO Class	SED slope	Disk Type
9196 Y Y? 0.276 3300 II -1.777 Think 10420 Y Y Y Y 0.467 3500 II -1.777 Thick 12438 ? T T Y 0.754 3700 II -1.272 Thick 13402 Y Y? 2.968 5600 II -1.85 Thick 13599 YY Y Y 1.052 3900 II -0.997 Thick 18115 Y Y Y Y 0.002 1400 I 1.551 Thick 19172 R Y Y Y 0.003 1700 I 1.1373 Thick 194617 R Y Y Y 0.003 1700 II -2.316 Thin 19633 Y T T Y 0.003 2900 II -0.177 Thick 19803 Y T Y Y 0.004 1800 II -0.877 Thick 19803 Y T Y Y 0.004 1500 II -1.033 Thick 2069 Y Y Y	6876	R - Y	Y	0.002	1300	Ι	0.538	Thick
10420 Y Y Y Y 0.467 5500 II -1.777 Thick 12429 Y Y Y Y 0.029 2700 II -1.272 Thick 13402 Y - YY Y 0.029 2700 II -1.272 Thick 13402 Y - YY Y 0.029 2700 II -0.994 Thick 17792 Y Y Y Y 0.0041 1800 II -0.997 Thick 18115 Y Y Y Y 0.002 1400 I 1.551 Thick 19172 R Y Y Y 0.003 1700 II -1.373 Thick 19188 R Y Y Y 0.003 2900 II -0.117 Thick 19802 ? T T Y 0.003 2900 II -0.213 Thin 20841 Y Y Y Y 0.004 1800 II -1.029 Thick 2132 Y Y Y Y 0.004 1500 II -1.023 Thick 2133<	9196	Y	Y?	0.276	3300	II	-1.84	Thin
12438 ? T T Y 0.754 3700 III -2.724 Transition 12629 Y Y Y Y 0.029 2700 II -1.22 Thick 13402 Y Y? 2.968 5500 II -1.85 Thin 16599 Y Y Y Y 0.0041 2800 II -1.601 Thick 17792 Y Y Y Y 0.0041 2800 II -1.617 Thick 18115 YY Y Y 0.003 1700 I 1.551 Thick 1948 R Y Y Y 0.003 1700 II -2.316 Thick 19802 ? T T Y 0.003 1700 II -2.316 Thin 19863 Y T Y Y 0.004 1800 II -0.927 Thick 20569 Y Y Y Y 0.004 1800 II -1.033 Thick 2068 R Y Y Y 0.004 1500 II -1.423 Thick 2124 Y Y Y	10420	YYY	Y	0.467	3500	II	-1.777	Thick
12629 Y Y Y Y 0.029 2700 II -1.272 Thick 13402 Y Y? 2.968 5600 II -1.85 Thick 16599 Y Y Y Y 1.052 3900 II -0.997 Thick 18115 Y Y Y Y 0.002 1400 I 1.551 Thick 19172 R Y Y Y 0.002 1400 I 1.551 Thick 19188 R Y Y Y 0.003 1700 II -1.373 Thick 19802 ? T T Y 0.003 1700 III -2.213 Thin 19863 Y T Y Y 0.004 1800 II -0.877 Thick 2069 Y Y Y Y 0.004 1800 II -1.423 Thick 21232 Y Y Y Y 0.006 2000 I/II -0.033 Thick 21445 Y Y Y Y 0.026 3300 I -0.603 Thick 21232 Y Y Y	12438	? T T	Y	0.754	3700	III	-2.724	Transition
13402 Y Y? 2.968 5600 II -1.85 Thick 16599 Y Y Y Y 0.041 2800 II -0.994 Thick 17792 Y Y Y Y 0.004 1800 II -0.997 Thick 18115 Y Y Y Y 0.002 1400 I 1.551 Thick 19172 R Y Y Y 0.003 1700 II -1.794 Thick 19188 R Y Y Y 0.003 1700 II -1.744 Thick 19863 Y T T Y 0.003 1700 II -2.316 Thin 20369 Y Y Y Y 0.004 2000 II -0.2213 Thick 21068 R Y Y Y 0.006 2000 I/II -0.033 Thick 21444 Y Y Y Y 0.006 2000 I/II -0.603 Thick 21424 Y Y Y Y 0.0276 3300 I -0.603 Thick 21445 Y Y Y	12629	YYY	Y	0.029	2700	II	-1.272	Thick
16599 Y Y Y Y 1.052 3900 II -0.994 Thick 17792 Y Y Y Y 0.0041 2800 II -1.601 Thick 18115 Y Y Y Y 0.004 1800 I -0.997 Thick 19172 R Y Y Y 0.002 1400 I 1.551 Thick 19184 R Y Y Y 0.002 2700 I 0.117 Thick 19803 Y T T Y 0.003 1700 III -2.316 Thin 20869 Y Y Y Y 0.0063 2900 II -1.083 Thick 20941 Y Y Y Y 0.0064 2200 II -1.033 Thick 21028 R Y Y Y 0.0064 1500 II -1.633 Thick 21232 Y Y Y Y 0.004 1500 II -1.633 Thick 21424 Y Y Y Y 0.029 2700 I -0.633 Thick 21477	13402	Y	Y?	2.968	5600	II	-1.85	Thin
17792Y Y YY0.0042800II-1.601Thick18115Y Y YY0.0021800II-0.997Thick19172R Y YY0.0021400I1.551Thick19188R Y YY0.0021400II-1.734Thick19545Y T TY1.1154000II-1.794Thick19617R Y YY0.0032700I0.117Thick19802? T TY0.0032900II-2.213Thin20369Y Y YY0.0041800II-0.877Thick20931Y Y YY0.0041500II-1.083Thick21232Y Y YY0.0041500II-1.033Thick21232Y Y YY0.0041500II-0.603Thick21232Y Y YY0.0292700II-0.822Thick21424Y Y YY0.0262000II-1.423Thick21424Y Y YY0.02763300I-0.603Thick21424Y Y YY0.0262900II-0.634Thick21232R Y YY0.0632900II-0.643Thick21242Y Y YY0.0632900II-1.187Thick21257R Y YY0.0632900II-1.685Thick	16599	YYY	Y	1.052	3900	II	-0.994	Thick
18115 Y Y Y Y 0.004 1800 II -0.997 Thick 19172 R Y Y Y 0.002 1400 I 1.551 Thick 19198 R Y Y Y 0.003 1700 II -1.794 Thick 19545 Y T T Y 0.003 1700 III -1.794 Thick 19863 Y T T Y 0.003 1700 III -2.316 Think 20369 Y Y Y Y 0.004 1800 II -0.877 Thick 20933 Y Y Y Y 0.004 2000 II -1.023 Thick 21068 R Y Y Y 0.006 2000 I/II -0.303 Thick 21232 Y Y Y Y 0.006 2000 II -1.423 Thick 21424 Y Y Y Y 0.276 3300 I -0.603 Thick 21495 Y Y Y Y 0.213 3200 II -0.633 Thick 21424 Y Y Y	17792	YYY	Y	0.041	2800	II	-1.601	Thick
19172R Y YY0.0021400I1.551Thick19198R Y YY0.0031700I1.373Thick19545Y T TY0.0292700I0.117Thick19802? T TY0.0031700III-2.316Thin19863Y T TY0.00632900II-2.213Thin20369Y Y YY0.0042200II-1.083Thick20941Y Y YY0.0042200II-1.083Thick20993Y Y YY1.1154000II-1.029Thick21232Y Y YY0.0041500II-1.423Thick21424Y Y YY0.0292700II-0.822Thick21475R Y YY0.02763300I-0.033Thick21677Y Y YY0.0041800I/II-0.344Thick21677Y Y YY0.0032900II-1.718Thick21620R Y YY0.0632900II-1.685Thick21725R Y YY0.0632900II-1.685Thick2160R Y YY0.0632900II-1.645Thick22362Y Y YY0.0353400II-1.685Thick22362Y Y YY0.02133200II-1.541Thic	18115	YYY	Y	0.004	1800	II	-0.997	Thick
19198R Y YY0.0031700I1.373Thick19545Y T TY1.1154000II -1.794 Thick19617R Y YY0.0032700I0.117Thick19802? T TY0.0032900II -2.213 Thin19863Y T TY0.0041800II -0.877 Thick20941Y Y YY0.0042200II -1.083 Thick20993Y Y YY0.0042200II -1.029 Thick21068R Y YY0.0042000II -1.029 Thick21232Y Y YY0.0041500II -1.423 Thick21424Y Y YY0.0262000II -0.603 Thick21425Y Y YY0.02763300I -0.603 Thick21777Y Y YY0.02133200II -0.78 Thick2100R Y YY0.00632900II -1.685 Thick22102Y T TY0.0632900II -1.685 Thick22691Y Y YY0.0292700II -1.685 Thick22641Y Y YY0.0292700II -1.685 Thick22641Y Y YY0.0292700II -1.449 Thick22575Y Y YY0.02133200	19172	RYY	Y	0.002	1400	Ι	1.551	Thick
19545Y T TY1.1154000II-1.794Thick19617R Y YY0.0031700III-2.213Thin19802? T TY0.0032900II-2.213Thin20369Y Y YY0.0041800II-0.877Thick20941Y Y YY0.0042200II-1.083Thick20993Y Y YY1.1154000II-1.029Thick21068R Y YY0.0041500II-1.423Thick21424Y Y YY0.0292700II-0.822Thick21475R Y YY0.0263300I-0.603Thick21677Y Y YY0.2133200II-0.925Thick21725R Y YY0.00632900III-2.171Transition22362Y Y YY0.00632900II-1.685Thick22362Y Y YY0.0043600II-1.648Thick22362Y Y YY0.0043600II-1.449Thick22362Y Y YY0.0033200II-1.648Thick22567Y Y YY0.00632900II-1.449Thick23598Y Y YY0.00632900II-1.144Thick2555Y Y YY0.02133200II-1.387<	19198	RYY	Y	0.003	1700	Ι	1.373	Thick
19617R Y YY0.0292700I0.117Thick19802? T TY0.0031700III-2.213Thin19863Y T TY0.0632900II-2.213Thick20369Y Y YYQ0.0041800II-1.083Thick20941Y Y YY0.0042200II-1.083Thick2098R Y YYQ0.0041500II-1.423Thick21232Y Y YY0.0062000I/II-0.303Thick21424Y Y YY0.0292700II-0.822Thick21495Y Y YY0.02763300I-0.063Thick21725R Y YY0.2133200II-0.925Thick21900R Y YY0.0632900III-2.171Transition2233Y Y YY0.0632900II-1.685Thick22362Y Y YY0.0632900II-1.685Thick22362Y Y YY0.0292700II-1.664Thick22362Y Y YY0.0292700II-1.617Thick22362Y Y YY0.0292700II-1.648Thick22362Y Y YY0.02133200II-1.449Thick23455Y Y YY0.02133200	19545	ΥTΤ	Y	1.115	4000	II	-1.794	Thick
19802? T TY0.0031700III-2.316Thin19863Y T TY0.0632900II-2.213Thin20369Y Y YYQ0.0041800II-1.087Thick20941Y Y YYQ0.0042200II-1.029Thick21068R Y YY0.0062000I/II-0.303Thick2132Y Y YY0.0041500II-1.423Thick21424Y Y YY0.02763300I-0.603Thick21477Y Y YY0.2133200II-0.925Thick21707Y Y YY0.00632900III-2.171Transition21000R Y YY0.0632900III-2.171Transition2233Y Y YY0.0632900II-1.685Thick22362Y Y YY0.0643600II-1.449Thick22691Y Y YY0.0292700II-1.622Thick22786Y Y YY0.0192500II-1.157Thick23445Y Y YY0.0192500II-1.162Thick25472Y Y YY0.0192500II-1.449Thick25453? TY0.0192500II-1.451Thick25655Y Y YY0.02133200 <td>19617</td> <td>RYY</td> <td>Y</td> <td>0.029</td> <td>2700</td> <td>Ι</td> <td>0.117</td> <td>Thick</td>	19617	RYY	Y	0.029	2700	Ι	0.117	Thick
19863Y T TY0.0632900II-2.213Thin20369Y Y YY0.0041800II-0.877Thick20941Y Y YY0.0042200II-1.083Thick20993Y Y YY1.1154000II-1.029Thick21068R Y YY0.0062000I/II-0.303Thick21232Y Y YY0.0292700II-0.822Thick21442Y Y YY0.02763300I-0.603Thick21475R Y YY0.02133200II-0.925Thick21475R Y YY0.0041800I/II-0.34Thick2100R Y YY0.0632900II-1.685Thick2233Y Y YY0.0632900II-1.685Thick22362Y Y YY0.0632900II-1.165Thick22362Y Y YY0.0292700II-1.662Thick22362Y Y YY0.0292700II-1.167Thick22362Y Y YY0.0292700II-1.162Thick22362Y Y YY0.0292700II-1.162Thick22362Y Y YY0.0292700II-1.167Thick22576Y Y YY0.02133200II-1.157 <t< td=""><td>19802</td><td>? T T</td><td>Y</td><td>0.003</td><td>1700</td><td>III</td><td>-2.316</td><td>Thin</td></t<>	19802	? T T	Y	0.003	1700	III	-2.316	Thin
20369 Y Y Y Y 0.004 1800 II -0.877 Thick 20941 Y Y Y Y 0.004 2200 II -1.083 Thick 20993 Y Y Y Y 0.115 4000 II -1.029 Thick 21068 R Y Y Y 0.006 2000 I/I -0.303 Thick 21232 Y Y Y Y 0.0029 2700 II -0.822 Thick 21495 Y Y Y Y 0.0276 3300 I -0.603 Thick 21725 R Y Y Y 0.213 3200 II -0.925 Thick 21900 R Y Y Y 0.063 2900 III -2.171 Transition 22362 Y Y Y Y 0.355 3400 II -0.604 Thick 22691 Y Y Y Y 0.355 3400 II -1.167 Thick 22578 Y Y Y Y	19863	ΥTΤ	Y	0.063	2900	II	-2.213	Thin
20941Y Y YY0.0042200II-1.083Thick20993Y Y YY1.1154000II-1.029Thick21068R Y YY0.0062000I/II-1.023Thick21232Y Y YY0.0092700II-0.822Thick21424Y Y YY0.0292700II-0.603Thick21495Y Y YY0.2763300I-0.603Thick21705R Y YY0.0041800I/II-0.178Thick21900R Y YY0.00632900III-2.171Transition22233Y Y YY0.0632900II-1.685Thick22362Y Y YY0.0643600II-1.449Thick22691Y Y YY0.0041700II-1.157Thick22967Y Y YY0.00292700II-1.062Thick23598Y Y YY0.0192500II-1.144Thick25472Y Y YY0.0192500II-1.144Thick25598Y Y YY0.0192500II-1.165Thick26555Y Y YY0.02133200II-1.468Thick29908YY?0.0192500II-1.165Thick30116YY?0.0192500II-1.	20369	YYY	Y	0.004	1800	II	-0.877	Thick
20993Y Y YY1.1154000II -1.029 Thick21068R Y YY0.0062000 $ / I $ -0.303 Thick21232Y Y YY0.0041500II -1.423 Thick21424Y Y YY0.0292700II -0.822 Thick21495Y Y YY0.2763300I -0.603 Thick21677Y Y YY0.2133200II -0.925 Thick21725R Y YY0.00632900III -0.178 Thick2100R Y YY0.0632900III -1.685 Thick2233Y Y YY0.0632900II -1.685 Thick22362Y Y YY0.06043600II -1.449 Thick22362Y Y YY0.0041700II -1.57 Thick22362Y Y YY0.0043600II -1.449 Thick22362Y Y YY0.0133200II -1.685 Thick23645Y Y YY0.0292700II -1.662 Thick23455Y Y YY0.0192500II -1.161 Thick25472Y Y YY0.0192500II -1.448 Thick25451Y Y YY0.02133200II -1.337 Thick30116YY?0.0123 <t< td=""><td>20941</td><td>YYY</td><td>Y</td><td>0.004</td><td>2200</td><td>II</td><td>-1.083</td><td>Thick</td></t<>	20941	YYY	Y	0.004	2200	II	-1.083	Thick
21068R Y YY0.0062000I/II-0.303Thick21232Y Y YY0.0041500II-1.423Thick21424Y Y YY0.0292700II-0.822Thick21495Y Y YY0.2133200II-0.603Thick21677Y Y YY0.2133200II-0.34Thick21725R Y YY0.0041800I/II-0.178Thick21900R Y YY0.0632900II-2.171Transition22332Y Y YY0.0632900II-1.685Thick22691Y Y YY0.6043600II-1.449Thick22691Y Y YY0.0041700II-1.157Thick22957Y Y YY0.0192500II-1.468Thick23445Y Y YY0.0632900II-1.168Thick23572Y Y YY0.0192500II-1.164Thick23445Y Y YY0.0192500II-1.168Thick25472Y Y YY0.0192500II-1.105Thick25472Y Y YY0.0192500II-1.105Thick25473Y Y YY0.0192500II-1.105Thick25472Y Y YY0.0632900II-1.685<	20993	YYY	Y	1.115	4000	II	-1.029	Thick
21232Y Y YY0.0041500II-1.423Thick21424Y Y YY0.0292700II-0.822Thick21495Y Y YY0.2163300I-0.603Thick21677Y Y YY0.2133200II-0.925Thick21725R Y YY1.3404200I/II-0.178Thick21900R Y YY0.0041800I/II-0.178Thick22102Y T TY0.0632900II-1.685Thick22362Y Y YY0.6043600II-1.449Thick22691Y Y YY0.6043600II-1.157Thick22957Y Y YY0.0041700II-1.157Thick23445Y Y YY0.0192500II-1.468Thick2557Y Y YY0.0632900II-1.468Thick25472Y Y YY0.2133200II-1.165Thick25472Y Y YY0.2133200II-1.165Thick25473Y Y YY0.2133200II-1.165Thick25472Y Y YY0.2133200II-1.165Thick25472Y Y YY0.2133200II-1.668Thick30172Y -Y?0.2133200II-1.68	21068	RYY	Y	0.006	2000	I/II	-0.303	Thick
21424Y Y YY 0.029 2700 II -0.822 Thick21495Y Y YYQ.276 3300 I -0.603 Thick21677Y Y YYQ.213 3200 II -0.925 Thick21725R Y YY1.340 4200 I/II -0.34 Thick21900R Y YY0.004 1800 I/II -0.178 Thick22102Y T TY0.063 2900 II -1.685 Thick2233Y Y YY0.604 3600 II -1.685 Thick22691Y Y YY0.604 3600 II -1.449 Thick22786Y Y YY0.029 2700 II -1.662 Thick23445Y Y YY0.019 2500 II -1.541 Thick23598Y Y YY0.063 2900 II -1.468 Thick25472Y Y YY0.019 2500 II -1.144 Thick26565Y Y YY0.013 3200 II -1.363 Transition29908YY?0.0213 3200 II -1.387 Thick30116YY?0.004 1800 I 0.298 Thick30172YY?0.004 2800 I/II -0.807 Thick31202YY?0.004 1800 I 0.298 Thick31202Y	21232	YYY	Y	0.004	1500	II	-1.423	Thick
21495Y Y YY0.2763300I-0.603Thick21677Y Y YY0.2133200II-0.925Thick21725R Y YY1.3404200I/II-0.34Thick21900R Y YY0.0041800I/II-0.178Thick22102Y T TY0.0632900III-2.171Transition22332Y Y YY0.0632900II-1.685Thick22362Y Y YY0.06043600II-1.449Thick22691Y Y YY0.0041700II-1.157Thick22957Y Y YY0.0292700II-1.662Thick23445Y Y YY0.0192500II-1.468Thick25472Y Y YY0.0632900II-1.468Thick25472Y Y YY0.0192500II-1.105Thick25473Y Y YY0.02133200II-1.105Thick25474Y Y YY0.0632900II-1.468Thick25553Y Y YY0.0192500II-1.105Thick26565Y Y YY0.2133200II-1.637Thick29908YY?0.0412800I/II-0.835Thick30172YY?0.0041800I0.29	21424	YYY	Y	0.029	2700	II	-0.822	Thick
21677Y Y YY0.2133200II-0.925Thick21725R Y YY1.3404200 I/II -0.34Thick21900R Y YY0.0041800 I/II -0.178Thick22102Y T TY0.0632900III-2.171Transition22233Y Y YY0.0632900II-1.685Thick22691Y Y YY0.6043600II-1.685Thick22691Y Y YY0.0041700II-1.157Thick22957Y Y YY0.00292700II-1.062Thick23445Y Y YY0.0192500II-1.144Thick25472Y Y YY0.0632900II-1.1468Thick25598Y Y YY0.0192500II-1.144Thick25472Y Y YY0.02133200II-1.468Thick25595Y Y YY0.02133200II-1.367Thick2908YY?0.02133200II-1.365Thick29957Y Y YY0.0883000II-1.387Thick30172YY?0.0042800I/II-0.835Thick30256? TY1.0523900II-1.236Thick31202YY?0.0041800I <td< td=""><td>21495</td><td>YYY</td><td>Y</td><td>0.276</td><td>3300</td><td>Ι</td><td>-0.603</td><td>Thick</td></td<>	21495	YYY	Y	0.276	3300	Ι	-0.603	Thick
21725R Y YY1.3404200 I/Π -0.34Thick21900R Y YY0.0041800 I/Π -0.178Thick22102Y T TY0.0632900II-1.171Transition22233Y Y YYY0.0632900II-1.685Thick22362Y Y YYY0.3553400II-0.604Thick22691Y Y YY0.0043600II-1.449Thick22786Y Y YY0.0041700II-1.157Thick22957Y Y YY0.0292700II-1.662Thick23445Y Y YY0.0192500II-1.448Thick25472Y Y YY0.0632900II-1.468Thick25555Y Y YY0.02133200II-1.146Thick25472Y Y YY0.2133200II-1.168Thick25553? ? TY8600III-2.803Transition29908YY?0.2133200II-1.387Thick30116YY?0.0042800I/II-0.805Thick30256? ? TY1.0523900II-2.793Transition30354RY?0.0041800I0.298Thick31202YY?0.6043600 <t< td=""><td>21677</td><td>YYY</td><td>Y</td><td>0.213</td><td>3200</td><td>II</td><td>-0.925</td><td>Thick</td></t<>	21677	YYY	Y	0.213	3200	II	-0.925	Thick
21900R Y YY0.0041800I/II-0.178Thick22102Y T TY0.0632900II-2.171Transition22233Y Y YY0.0632900II-1.685Thick22362Y Y YY0.3553400II-0.604Thick22691Y Y YY0.6043600II-1.449Thick22786Y Y YY0.0041700II-1.157Thick22957Y Y YY0.0292700II-1.062Thick23445Y Y YY0.0192500II-1.144Thick25572Y Y YY0.0632900II-1.468Thick25555Y Y YY0.2133200II-1.157Thick28513? TY8600III-2.803Transition29908YY?0.2133200II-1.536Thick20557Y Y YY0.0883000II-1.536Thick30116YY?0.0042800I/II-0.807Thick30256? TYY0.0192500II-1.236Thick31202YY?0.0082100II-2.793Transition30354RY?0.0041800I0.298Thick31902YY?0.6043600II-1.64	21725	RYY	Y	1.340	4200	I/II	-0.34	Thick
22102Y TY0.0632900III -2.171 Transition22233Y Y YYQ0.0632900II -1.685 Thick22362Y Y YYQ0.3553400II -0.604 Thick22691Y Y YYQ0.0643600II -1.449 Thick22786Y Y YYQ0.0041700II -1.157 Thick22957Y Y YYQ0.0292700II -1.062 Thick23445Y Y YYQ0.1133200II -1.541 Thick23598Y Y YYQ0.0632900II -1.468 Thick25472Y Y YYQ0.0632900II -1.468 Thick26565Y Y YYQ0.2133200II -1.165 Thick28513? TY8600III -2.803 Transition2908YY?0.0133200II -1.387 Thick30116YY?0.0043800J/II -0.807 Thick30256? TYY0.0192500II -1.236 Thick31202YY?0.0041800I0.298Thick31202YY?0.0041800I0.298Thick31202YY?0.0043600II -1.641 <td>21900</td> <td>RYY</td> <td>Y</td> <td>0.004</td> <td>1800</td> <td>I/II</td> <td>-0.178</td> <td>Thick</td>	21900	RYY	Y	0.004	1800	I/II	-0.178	Thick
22233Y Y YY0.0632900II-1.685Thick22362Y Y YYQ0.3553400II-0.604Thick22691Y Y YYQ0.6043600II-1.449Thick22786Y Y YYQ0.0041700II-1.157Thick22957Y Y YYQ0.0292700II-1.662Thick23445Y Y YYQ0.2133200II-1.541Thick23598Y Y YYQ0.0632900II-1.468Thick25655Y Y YYQ0.2133200II-1.468Thick26565Y Y YYQ0.2133200II-1.387Thick29908YY?Q0.2133200II-1.387Thick29977Y Y YY0.0883000II-1.536Thick30116YY?0.0412800I/II-0.807Thick30256? TY1.0523900III-2.793Transition30354RY?0.0041800I0.298Thick31202YY?0.6043600II-1.641Thick31902YY?0.0062000II-1.641Thick32037YY?0.0062000II-1.103Thick<	22102	ΥTΤ	Y	0.063	2900	III	-2.171	Transition
22362Y Y YY0.3553400II-0.604Thick22691Y Y YY0.6043600II-1.449Thick22786Y Y YY0.0041700II-1.157Thick22957Y Y YY0.0292700II-1.062Thick23445Y Y YY0.0192500II-1.541Thick23598Y Y YY0.0632900II-1.468Thick25472Y Y YY0.0632900II-1.105Thick25473? TY8600III-2.803Transition29908YY?0.2133200II-1.387Thick29957Y Y YY0.0883000II-1.536Thick30116YY?0.0412800I/II-0.835Thick30256? TYI1.0523900II-2.793Transition30354RY?0.0082100II-1.236Thick31202YY?0.0082100II-1.816Thick31833Y Y YY0.0192500II-1.641Thick31202YY?0.0062000II-1.641Thick31203YY?0.0062000II-1.641Thick31203YY?0.0062000II-1.641 <td>22233</td> <td>YYY</td> <td>Y</td> <td>0.063</td> <td>2900</td> <td>II</td> <td>-1.685</td> <td>Thick</td>	22233	YYY	Y	0.063	2900	II	-1.685	Thick
22691Y Y YY0.6043600II-1.449Thick 22786 Y Y YY0.0041700II-1.157Thick 22957 Y Y YY0.0292700II-1.062Thick 23445 Y Y YY0.2133200II-1.541Thick 23598 Y Y YY0.0192500II-1.144Thick 25472 Y Y YY0.0632900II-1.468Thick 26565 Y Y YY0.2133200II-1.105Thick 28513 ? ? TY8600III-2.803Transition 29908 YY?0.2133200II-1.387Thick 29957 Y Y YY0.0883000II-1.536Thick 30116 YY?0.9033800I/II-0.835Thick 30256 ? ? TY1.0523900III-2.793Transition 30354 RY?0.0082100II-1.236Thick 31202 YY?0.6043600II-1.816Thick 31902 YY?0.6043600II-1.641Thick 32340 YY?0.0062000II-1.103Thick 325 RY?0.2133200II-1.621Thick 3125 RY?0.0062000 </td <td>22362</td> <td>YYY</td> <td>Y</td> <td>0.355</td> <td>3400</td> <td>II</td> <td>-0.604</td> <td>Thick</td>	22362	YYY	Y	0.355	3400	II	-0.604	Thick
22786Y Y YY0.0041700II-1.157Thick22957Y Y YY0.0292700II-1.062Thick23445Y Y YY0.2133200II-1.541Thick23598Y Y YY0.0192500II-1.144Thick25472Y Y YY0.0632900II-1.468Thick26565Y Y YY0.2133200II-1.105Thick28513? TY8600III-2.803Transition29908Y -Y?0.2133200II-1.387Thick29957Y Y YY0.0883000II-1.536Thick30116Y -Y?0.0412800I/II-0.807Thick30256? TY1.0523900III-2.793Transition30354RY?0.0041800I0.298Thick31202YY?0.6043600II-1.816Thick31833Y Y YY0.0041700I-0.998Thick32037YY?0.0041700I-0.998Thick32340YY?0.0062000II-1.103Thick32951YY?0.2133200II-1.502Thick33125RY?0.0041600I0.281Thick </td <td>22691</td> <td>YYY</td> <td>Y</td> <td>0.604</td> <td>3600</td> <td>II</td> <td>-1.449</td> <td>Thick</td>	22691	YYY	Y	0.604	3600	II	-1.449	Thick
22957Y Y YY0.0292700II-1.062Thick23445Y Y YY0.2133200II-1.541Thick23598Y Y YY0.0192500II-1.144Thick25472Y Y YY0.0632900II-1.468Thick26565Y Y YY0.2133200II-1.105Thick28513? TYY0.2133200II-1.387Thick29908YY?0.2133200II-1.387Thick29957Y Y YY0.0883000II-1.536Thick30116YY?0.0412800I/II-0.807Thick30256? TY1.0523900III-2.793Transition30354RY?0.0041800I0.298Thick31202YY?0.6043600II-1.816Thick31902YY?0.6043600II-1.641Thick32037YY?0.0062000II-1.103Thick32037YY?0.0062000II-1.103Thick32340YY?0.0041600I0.281Thick32125RY?0.0041600I0.281Thick	22786	YYY	Y	0.004	1700	II	-1.157	Thick
23445Y Y YY0.2133200II-1.541Thick23598Y Y YY0.0192500II-1.144Thick25472Y Y YYQ0.0632900II-1.468Thick26565Y Y YYQ0.2133200II-1.105Thick28513? ? TY8600III-2.803Transition29908YY?0.2133200II-1.387Thick29957Y Y YY0.0883000II-1.536Thick30116YY?0.9033800I/II-0.807Thick30172YY?0.0412800I/II-0.835Thick30256? ? TY1.0523900III-2.793Transition30354RY?0.0041800I0.298Thick31202YY?0.6043600II-1.816Thick31902YY?0.6043600II-1.641Thick32340YY?0.0062000II-1.103Thick32951YY?0.2133200II-1.502Thick33125RY?0.0041600I0.281Thick	22957	YYY	Y	0.029	2700	II	-1.062	Thick
23598Y Y YY0.0192500II-1.144Thick25472Y Y YY0.0632900II-1.468Thick26565Y Y YY0.2133200II-1.105Thick28513? TY8600III-2.803Transition29908YY?0.2133200II-1.387Thick29957Y Y YY0.0883000II-1.536Thick30116YY?0.9033800I/II-0.807Thick30172YY?0.0412800I/II-0.835Thick30256? TY1.0523900III-2.793Transition30354RY?0.0041800I0.298Thick31202YY?0.6043600II-1.816Thick31902YY?0.6043600II-1.641Thick32340YY?0.0062000II-1.641Thick32951YY?0.2133200II-1.502Thick33125RY?0.0041600I0.281Thick	23445	YYY	Y	0.213	3200	II	-1.541	Thick
25472Y Y YY0.0632900II-1.468Thick 26565 Y Y YY0.2133200II-1.105Thick 28513 ? TY8600III-2.803Transition 29908 YY?0.2133200II-1.387Thick 29907 Y Y YY0.0883000II-1.536Thick 30116 YY?0.9033800I/II-0.807Thick 30172 YY?0.0412800I/II-0.835Thick 30256 ? TY1.0523900III-2.793Transition 30354 RY?0.0041800I0.298Thick 31202 YY?0.0082100II-1.236Thick 31202 YY?0.0043600II-1.641Thick 31202 YY?0.0041700I-0.998Thick 3125 RY?0.0062000II-1.103Thick 3125 RY?0.0041600I0.281Thick	23598	YYY	Y	0.019	2500	II	-1.144	Thick
26565Y Y YY0.2133200II-1.105Thick 28513 ? ? TY8600III-2.803Transition 29908 YY?0.2133200II-1.387Thick 29908 YY?0.0883000II-1.536Thick 29957 Y Y YYQ0.9033800I/II-0.807Thick 30116 YY?0.0412800I/II-0.835Thick 30256 ? ? TY1.0523900III-2.793Transition 30354 RY?0.0041800I0.298Thick 31202 YY?0.0082100II-1.236Thick 31333 Y Y YY0.0192500II-1.816Thick 32037 YY?0.0041700I-0.998Thick 32240 YY?0.0062000II-1.103Thick 32951 YY?0.2133200II-1.502Thick 33125 RY?0.0041600I0.281Thick	25472	YYY	Y	0.063	2900	II	-1.468	Thick
28513? ? TY 8600 III -2.803 Transition 29908 YY? 0.213 3200 II -1.387 Thick 29957 Y Y YY 0.088 3000 II -1.536 Thick 30116 YY? 0.903 3800 I/II -0.807 Thick 30172 YY? 0.041 2800 I/II -0.835 Thick 30256 ? ? TY 1.052 3900 III -2.793 Transition 30354 RY? 0.004 1800 I 0.298 Thick 31202 YY? 0.008 2100 II -1.236 Thick 31333 Y Y YY 0.019 2500 II -1.816 Thick 32037 YY? 0.004 1700 I -0.998 Thick 32340 YY? 0.006 2000 II -1.103 Thick 32951 YY? 0.213 3200 II -1.502 Thick 33125 RY? 0.004 1600 I 0.281 Thick	26565	YYY	Y	0.213	3200	II	-1.105	Thick
29908 $Y - $ Y ? 0.213 3200 II -1.387 Thick29957 $Y Y Y$ Y 0.088 3000 II -1.387 Thick 30116 $Y - $ Y ? 0.088 3000 II -1.536 Thick 30116 $Y - $ Y ? 0.903 3800 I/II -0.807 Thick 30172 $Y - $ Y ? 0.041 2800 I/II -0.835 Thick 30256 ? ? T Y 1.052 3900 III -2.793 Transition 30354 $R - $ Y ? 0.004 1800 I 0.298 Thick 31202 $Y - $ Y ? 0.008 2100 II -1.236 Thick 31833 $Y Y Y$ Y 0.019 2500 II -1.816 Thick 31902 $Y - $ Y ? 0.004 1700 I -0.998 Thick 32340 $Y - $ Y ? 0.006 2000 II -1.103 Thick 32951 $Y - $ Y ? 0.213 3200 II -1.502 Thick 33125 $R - $ Y ? 0.004 1600 I 0.281 Thick	28513	??T	Y		8600	III	-2.803	Transition
29957Y Y YY0.0883000II-1.536Thick30116YY?0.9033800I/II-0.807Thick30172YY?0.0412800I/II-0.835Thick30256? TY1.0523900III-2.793Transition30354RY?0.0041800I0.298Thick31202YY?0.0082100II-1.236Thick31833Y Y YY0.0192500II-1.816Thick31902YY?0.6043600II-1.641Thick32340YY?0.0062000II-1.103Thick32951YY?0.2133200II-1.502Thick33125RY?0.0041600I0.281Thick	29908	Y	Y?	0.213	3200	II	-1.387	Thick
30116YY?0.903 3800 I/II-0.807Thick 30172 YY?0.041 2800 I/II-0.835Thick 30256 ? TY1.052 3900 III-2.793Transition 30354 RY?0.004 1800 I0.298Thick 31202 YY?0.008 2100 II-1.236Thick 31833 Y Y YY0.019 2500 II-1.816Thick 31902 YY?0.604 3600 II-1.641Thick 32340 YY?0.006 2000 II-1.103Thick 32951 YY?0.213 3200 II-1.502Thick 33125 RY?0.0041600I0.281Thick	29957	YYY	Y	0.088	3000	II	-1.536	Thick
30172YY?0.0412800I/II-0.835Thick 30256 ? ? TY1.0523900III-2.793Transition 30354 RY?0.0041800I0.298Thick 31202 YY?0.0082100II-1.236Thick 31833 Y Y YY0.0192500II-1.816Thick 31902 YY?0.6043600II-1.641Thick 32340 YY?0.0062000II-1.103Thick 32951 YY?0.2133200II-1.502Thick 33125 RY?0.0041600I0.281Thick	30116	Y	Y?	0.903	3800	I/II	-0.807	Thick
30256? ? TY 1.052 3900 III -2.793 Transition 30354 RY? 0.004 1800 I 0.298 Thick 31202 YY? 0.008 2100 II -1.236 Thick 31833 Y Y YY 0.019 2500 II -1.816 Thick 31902 YY? 0.604 3600 II -1.641 Thick 32340 YY? 0.004 1700 I -0.998 Thick 32951 YY? 0.213 3200 II -1.502 Thick 33125 RY? 0.004 1600 I 0.281 Thick	30172	Y	Y?	0.041	2800	I/II	-0.835	Thick
30354RY?0.0041800I0.298Thick 31202 YY?0.0082100II-1.236Thick 31833 Y Y YY0.0192500II-1.816Thick 31902 YY?0.6043600II-1.641Thick 32037 YY?0.0041700I-0.998Thick 32340 YY?0.0062000II-1.103Thick 32951 YY?0.2133200II-1.502Thick 33125 RY?0.0041600I0.281Thick	30256	??T	Y	1.052	3900	III	-2.793	Transition
31202YY?0.0082100II-1.236Thick 31833 Y Y YY0.0192500II-1.816Thick 31902 YY?0.6043600II-1.641Thick 32037 YY?0.0041700I-0.998Thick 32340 YY?0.0062000II-1.103Thick 32951 YY?0.2133200II-1.502Thick 33125 RY?0.0041600I0.281Thick	30354	R	Y?	0.004	1800	Ι	0.298	Thick
31833 Y Y Y Y 0.019 2500 II -1.816 Thick 31902 Y Y? 0.604 3600 II -1.641 Thick 32037 Y Y? 0.004 1700 I -0.998 Thick 32340 Y Y? 0.006 2000 II -1.103 Thick 32951 Y Y? 0.213 3200 II -1.502 Thick 33125 R Y? 0.004 1600 I 0.281 Thick	31202	Y	Y?	0.008	2100	II	-1.236	Thick
31902 Y Y? 0.604 3600 II -1.641 Thick 32037 Y Y? 0.004 1700 I -0.998 Thick 32340 Y Y? 0.006 2000 II -1.103 Thick 32951 Y Y? 0.213 3200 II -1.502 Thick 33125 R Y? 0.004 1600 I 0.281 Thick	31833	YYY	Y	0.019	2500	II	-1.816	Thick
32037 Y Y? 0.004 1700 I -0.998 Thick 32340 Y Y? 0.006 2000 II -1.103 Thick 32951 Y Y? 0.213 3200 II -1.502 Thick 33125 R Y? 0.004 1600 I 0.281 Thick	31902	Y	Y ?	0.604	3600	II	-1.641	Thick
32340 Y Y? 0.006 2000 II -1.103 Thick 32951 Y Y? 0.213 3200 II -1.502 Thick 33125 R Y? 0.004 1600 I 0.281 Thick	32037	Y	Y?	0.004	1700	Ι	-0.998	Thick
32951 Y Y? 0.213 3200 II -1.502 Thick 33125 R Y? 0.004 1600 I 0.281 Thick	32340	Y	Y?	0.006	2000	II	-1.103	Thick
33125 R Y? 0.004 1600 I 0.281 Thick	32951	Y	Y ?	0.213	3200	II	-1.502	Thick
	33125	R	Y?	0.004	1600	Ι	0.281	Thick

Table 2.19: Disk properties of the 66 new candidate members of Barnard 30 selected from the Spitzer data.

ID	Dhat Man ?	Einel Man 3	Mara (M)	$\mathbf{T}_{\mathbf{r}} \mathbf{f} (\mathbf{Z})^{\dagger}$	VCO Class	CED alars	Dist. Trues
ID	Phot. Mem. ²	Final Mem. ⁹	Mass $(M_{\odot})^{*}$	Iеп (К) ¹	YSO Class	SED slope	Disk Type
33419	? T T	Y		7800	III	-2.732	Transition
33525	YYY	Y		6000	II	-0.94	Thick
33661	R	Y?	0.002	1300	Ι	-0.111	Thick
33936	YYY	Y	0.002	1400	Ι	-1.016	Thick
34050	YYY	Y	0.003	1500	I/II	-0.986	Thick
34119	? T T	Y	0.029	2700	III	-2.693	Transition
35518	YYY	Y	0.355	3400	II	-1.729	Thick
35582	RYY	Y	0.003	1500	Ι	-0.106	Thick
35766	Y - Y	Y	0.355	3400	II	-1.608	Thick
37215	Y	Y?	0.006	1900	II	-1.446	Thick
37312	YYY	Y	0.007	2100	II	-1.105	Thick
39428	YYY	Y	0.144	3100	I/II	-0.749	Thick
40421	Y	Y?	0.355	3400	II	-1.247	Thick
41615	Y	Y?	1.340	4200	II	-1.557	Thick
41741	YYY	Y	0.006	2000	II	-1.685	Thick
45191	RYY	Y	0.002	1300	Ι	0.052	Thick
45371	RYY	Y	0.009	2300	I/II	-0.47	Thick

Table 2.19 – Continued

¹Teff is derived from the SED fittings shown in Figures from 4.13 to 4.17. Mass estimate based on Teff and a 3Myr isochrone from the Lyon group or from Siess et al. (2000) depending on the object.

²Membership is [3.6] vs. [3.6]-[8.0], H-Ks vs. Ks-[24], [3.6]-[8.0] vs. [8.0]-[24]. Y: member, R: Very red object, Y?: probable member, F: field object; -: Not enough data

Chapter 3

Collinder 69: the Central Cluster

Collinder 69 is one of the richest young clusters near the Sun in the age range when young stars lose their circunstellar disks and stop accretion (1 - 10 Myr, Hartmann 1999) and references there in). It is the central cluster of the Lambda Orionis Star Forming Region and it is associated to the eponymous λ Ori star. Dolan & Mathieu (1999, 2001, 2002) derived a distance of 450 ± 50 pc, larger than both the distance derived by Murdin & Penston (1977) and the value derived by Hipparcos (Perryman et al. 1997) for the five stars in the central area, 380 ± 30 pc. According to Dolan & Mathieu (2002), the turn-off age for the massive stars is ~6 Myr (see also Murdin & Penston 1977 for another age determination based on the massive stars, 4 Myr).

In this chapter we describe how we have confirmed and rejected candidate members to the Collinder 69 open cluster; the different methodologies used to derived stellar parameters for these members (analysis of high, medium and low resolution optical and near-infrared spectroscopy and comparison of the Spectral Energy Distributions with models) and how these estimations compare with each other.

The candidate members were selected based on a variety of photometric surveys and a X-rays campaign (as described in the previous chapter). This chapter is organized as follows: in Section 3.1 we focus on the Collinder 69 candidate members from our CFHT survey to present a new tool (VOSA) developed to analyze Spectral Energy Distributions of large lists of objects in an automatic manner. We compare the results that we obtain with those derived with classical methodologies. In Section 3.2 we describe the spectroscopic surveys that have already been performed and published by other authors. In Section 3.3 we provide the analysis and the results obtained from the optical spectra gathered by our group. In Section 3.4 we describe the analysis and results from our infrared spectroscopic surveys. Finally, in Section 3.8 we present the conclusions achieved from this work.

Name	R ^a	I ^a	J ^b	Hp	Ks ^b	[3.6] ^c	[4.5] ^c	[5.8] ^c	[8.0] ^c	[24] ^d
LOri029	14.89 ± 0.00	13.69±0.00	12.210 ± 0.026	11.460 ± 0.027	11.071±0.019	10.259 ± 0.003	9.830±0.003	9.321±0.006	8.416±0.003	5.684 ± 0.007
LOri034	15.10 ± 0.00	13.97±0.00	12.442±0.026	11.639 ± 0.026	11.184±0.023	10.068 ± 0.003	9.734±0.003	9.314±0.007	8.325±0.003	5.738 ± 0.007

Table 3.1: Example of the photometric data for our sources.

Filters corresponding to the telescope/instrument configuration described below:

^aCFHT

^b2MASS, Skrutskie et al. (2006)

^cSpitzer/IRAC, Fazio et al. (2004)

^dSpitzer/MIPS, Rieke et al. (2004)

3.1 A test for the VOSA methodology. Spectral Energy Distribution analysis of the candidate members from the CFHT1999 survey

During this Thesis we developed (in collaboration with the SVO team members located at LAEFF) VOSA (which stands for Virtual Observatory SED analyzer), a VO-Tool designed to perform SED fitting and isochrones interpolation (see Appendix C for detailed explanations on the technical issues). As it can be inferred so far, our group has been involved in a very exhaustive study of the LOSFR. One of the caveats of doing this kind of observational studies is the fact that the amount of data to be processed and analyzed is not negligible. Although in the analysis of astronomical data there are important tasks that have to be performed in a one by one basis, there are others that not only can be automatized but also benefit from the methodologies brought up by the Virtual Observatory.

The Virtual Observatory (IVOA¹) is an international, community-based initiative to provide seamless access to the data available from astronomical archives and services as well as state-of-the-art tools for the efficient analysis of this huge amount of information. The works by Padovani et al. (2004) and Tsalmantza et al. (2006) are good examples of the efficiency of such tools in helping astronomers to produce scientific results.

In the SED fitting process of the candidate members we made use of multi-wavelength data; optical to mid-infrared photometry. The data were taken from Barrado y Navascués et al. (2007b) and complemented with VO photometric services (see Section C for details). None of our sources had Tycho or Hauck/Strömgren counterparts, but some of them did have 2MASS counterparts (we have used 2MASS photometry for those sources for which we did not have near IR photometry either from CAHA/Omega2000 or WHT/INGRID, see Barrado y Navascués et al. 2007b for details). Ten photometric points per object, covering from 0.6 up to 24 μ m were typically used in the analysis (see the example in Table 3.1).

¹http://www.ivoa.net

3.1.1 General Results

Following the work-flow explained in Section C.2 we were able to build Spectral Energy Distributions and estimate effective temperatures, gravities and bolometric luminosities for 167 candidate members of Collinder 69, and even infer ages and masses for 145 of these sources in an **automatic manner**.

Examples of the estimations made through synthetic photometry fittings are shown in Figs. C.6, C.7, C.8 and C.9 and the results achieved for each source are shown in Table 3.2.

Regarding the comparison with theoretical isochrones and evolutionary tracks in the Hertzsprung-Russell diagram, VOSA does not provide estimations of either age or mass for 20 sources (~12% of the total) due to the peculiar location of these sources in the diagram (see the VOSA Help menu for further details on the cases where the interpolation process cannot be completed and no estimation of age and/or mass can be provided).

Besides the case of two special sources, there are two main causes for this peculiar location in the HR diagram: either the source might harbour a close to edge-on disk that reprocess the light emitted from the photosphere of the source (and therefore both the effective temperature and the bolometric luminosity are underestimated) or the source does not belong to cluster. See Fig. 3.5 for details on the specific location of the peculiar sources and Subsection 3.1.3 for the discussion on each particular case.

3.1.2 Comparison with other methodologies.

In order to test the results provided by VOSA, we have compared some of the parameters and properties discussed in this work with those derived using other methodologies (mainly based on colours and classical bolometric corrections).

3.1.2.1 Infrared excesses.

Barrado y Navascués et al. (2007b) studied in detail the Spitzer/IRAC data of the candidates, and based on the criteria developed by Allen et al. (2004) and Hartmann et al. (2005) derived a fraction of members with disks of 25% and 40% for the stellar and substellar population of C69, respectively.

VOSA detects infrared excesses by calculating iteratively the α parameter (a measurement of the slope of the SED at infrared wavelengths) from Lada et al. (2006). This method provides us with excess fractions of 32% for candidates with stellar masses (from 0.72 M \odot to 1.15 M \odot), and 44% for sources with estimated masses ≤ 0.72 M \odot . The differences, which are not significant, can be explained by the presence of optically thin disks that mimic the location

of single photospheres in the Spitzer/IRAC colour-colour diagrams and are therefore classified as Class III sources.

3.1.2.2 Effective temperature estimation.

In order to compare our estimations with other classical photometric methodologies, we derived the effective temperature of our candidates using two different colours ([R-I] and [I-Ks]) and temperature-colour relationships (Bessell 1991 and Leggett 1992). In Fig. 3.1 we have plotted the relationships mentioned before and overplotted as solid and open circles (diskless and disk harbouring sources) the results obtained with VOSA.

There is a good agreement between the different relationships (especially with the one proposed by Bessell 1991) with offsets of -150K and +100K for the two colours, [R-I] and [I-Ks], respectively. These offsets have already been reported in the literature when comparing temperatures obtained with models and those obtained with colour and temperature scales (see for example Barrado y Navascués et al. 2004a, Barrado y Navascués 2006 and Mohanty et al. 2007).

We have selected one specific case, LOri055, where the differences between the temperatures derived from the colors and the one estimated by VOSA are much higher than the mentioned offset. For this case we have forced VOSA to find the best multiplicative factor to fit the SED of this object with NextGen models at temperatures in the range between the lowest (3200 K from the [I-Ks] colour and the Leggett 1992 temperature scale) and the highest (3600 K from VOSA) derived for the source.

In Fig 3.2 we show the fits obtained when forcing the different temperatures. An inspection of the behaviour of the χ^2 of the fits concludes that the temperature proposed by VOSA improves by one and a half orders of magnitude the goodness of the fit obtained with the lowest temperature (the one derived with the [I-Ks] colour).

3.1.2.3 Bolometric luminosity estimation.

In the case of the computation of the bolometric luminosity, we have applied different bolometric corrections to several photometric bands (I band by Kenyon & Hartmann 1995, J band by Lawson et al. 1996 and Ks band by Tinney et al. 1993) and as can be seen in Fig. 3.3, there are no systematic differences among the various methods. In our case we use the whole observed SED (except for the wavelength range where some excess is detected) to infer the total emitted flux, and therefore, the better the accuracy of the observations, the better the estimation.

3.1.3 Individual sources in C69

As mentioned previously, the location in a T_{eff} vs L_{bol} diagram of 20 of our sources made it impossible for VOSA to estimate their ages and masses. Besides, the ages estimated with our methodology for three other sources were much higher than the average age estimated in the

Figure 3.1: Dereddened colours CFHT [R-I] and CFHT–2MASS [I-K] vs. T_{eff} (obtained with VOSA) for the candidate members of C69. The dotted line represents the relationship derived by Bessell (1991) and the dashed line the one derived by Leggett (1992). Open circles highlight sources harbouring disks.

literature for Collinder 69. We have divided these 23 "peculiar sources" into four groups according to the cause that might explain their location in the HR diagram (we have used the same number code as in Table 3.2).

 Sources with infrared excess caused by the presence of a disk. The dust belonging to the disk reprocesses the light emitted by the central object, and in the cases where the angle of the disk and/or the amount of flaring is high enough, the light from the star can be blocked (see examples of very low mass stars and brown dwarfs surrounded by edge-on disks and the effects on the light from the central object in Fernández & Comerón 2001; Barrado y Navascués et al. 2004a; Pontoppidan et al. 2005; Luhman et al. 2007, and Huelamo et al. 2009, submitted).

Whenever this is the case, our methodology will underestimate both the effective temperature and the bolometric luminosity of the central object. We propose this hypothesis as the cause for the peculiar location in the HR diagram of LOri029, LOri034, LOri146, LOri147 and LOri156.

We do not see this effect in any of the remaining 24 sources that show infrared excess. See as an example, in Fig 3.4, the comparison between the best fit obtained for one of the sources classified as "peculiar", LOri034, and the one achieved for LOri062; in the latter case, the derived parameters, mainly the age, are consistent with the hypothesis that the source belongs to C69. Thus we consider that 18% of sources harbouring disks with inclinations

Figure 3.2: Forced fits to the SED of LOri055 for the range of effective temperatures estimated according to the different methods. According to our calculations, the χ^2 improves by one and a half orders of magnitude when comparing the 3100 K and the 3600 K fits.

Figure 3.3: Comparison between the bolometric luminosities estimated with different bolometric corrections applied to various photometrical bands and those obtained with VOSA. Open circles highlight sources harbouring disks.

or disk structures that block part of the stellar light is a reasonable percentage.

- 2. Sources previously flagged as possible non-members. Barrado y Navascués et al. (2007b) studied the photometric properties of the sample, and flagged 16 sources as probable non-members according to these properties. With our methodology, we independently confirm this classification for all 16 sources (see Table 3.2 for the corresponding IDs); 13 of the cases were very clear, since the location of those sources in the HR diagram fell outside the parameter space confined by the isochrones and evolutionary tracks, in the other three cases (LOri101, LOri141 and LOri165), the derived ages (32, 37 and 85 Myr, respectively) were inconsistent with the upper-limit age derived for the whole cluster (12.3–16 Myr, see Subsection 3.1.4 for details).
- 3. Degeneracy of the fitting process. In the case of LOri169 no conclusion can be assessed, since the number of points making up the SED is as low as five (one of them, the R-band magnitude has a very large error), whilst we try to fit four independent parameters.
- 4. New non-member candidate. Even thought the best fit achieved for LOri162 seems to reproduce quite well the observational data (see Fig 3.6), the estimated luminosity is not compatible at all with the hypothesis that this object belongs to C69. Its luminosity is much higher than the one expected for a cluster member with the derived effective temperature of 1600 K. This luminosity would imply a radius of the star of ~0.5 R_o (assuming a distance of 400 pc and the relationship $M_d = (R/D)^2$), whilst according to the isochrones from Baraffe et al. (2003), assuming an age of ~10 Myr, the radius of this object should be ~0.15 R_o.

The effective temperature of LOri162 suggests that it might be a field L dwarf that, due to its very low temperature, mimics the colours of the less massive members of Collinder 69. Using the M_d factor and assuming a typical radius for 1-5 Gyr dwarfs with the given temperature of 1600 K (according to isochrones from Baraffe et al. 2003), we estimate a

Figure 3.4: Comparison of the best fits achieved for two sources showing infrared excess (open circles for the observed photometry and open triangles joined with a dashed line for the synthetic set). On the left side, LOri034, a source whose estimated location in the HR diagram does not allow VOSA to infer either its mass or its age. On the right hand side, LOri062, another source harbouring a disk but for which all the parameters can be estimated by VOSA and with an inferred age of 12.3 Myr, consistent with the range of ages estimated previously in the literature for C69.

distance to this object of between 61 and 69 parsecs and a spectral type of L6-L7 according to the T_{eff} scale by Basri et al. (2000).

3.1.4 The CFHT1999 survey as a whole.

Dolan & Mathieu (1999) studied the λ Orionis Star Forming Region (which includes the central cluster Collinder 69 and several younger, dark clouds), and, based on the presence of the Li I λ 6708 absorption (in mid-resolution optical spectra) and different theoretical isochrone sets, they concluded that the star formation in this region (high- and low-mass) began 5–7 Myr ago with a dramatic change in the low-mass star formation happening 1–2 Myr ago: either an abrupt cessation (through removal of the gas supply), or a burst (caused by star birth via cloud compression).

Dolan & Mathieu (2001) derived a turnoff age of 6–7 Myr based on Strömgren photometry for the massive stars of the cluster.

Barrado y Navascués et al. (2007b) studied Collinder 69, the older central cluster, in detail, and proposed an upper-limit for the age of 20 Myr based on colour-magnitude (optical/nearinfrared) diagrams and isochrones by Baraffe et al. (1998), with an optimal age of 5 Myr for the isochrones (Baraffe et al. 2002) corresponding to the DUSTY models. The methodology presented in this work provides us with an estimation of the age of the association through the analysis of the statistics of the ages inferred for each individual member of the cluster. We have selected a subsample of 120 sources (out of the total of 167 candidates) that makes up the "least-possible biased" set in the sense that we do not include either sources flagged as possible non-member

Figure 3.5: Location in the HR diagram of the "peculiar sources" analyzed in Section 3.1.3. Squares surround non-members candidates from Barrado y Navascués et al. (2007b); circles around sources showing infrared excess, and a triangle and a star highlight LOri169 and LOri162, respectively. See text for details.

Figure 3.6: Best fit achieved for LOri162, a possible L field dwarf. The SED fitting process is quite insensitive to the surface gravity of the source; also, at the beginning of the process, we constrained the values of $\log g$ to be between 3.5 and 4.5. Thus, the value of $\log g$ 3.5 shown in the caption should not be taken into account; instead, as a reference, the radius assumed when estimating the distance to this source (61-69 parsecs) corresponds to a log *g* range of 5.2-5.5

or sources with infrared excesses whose age estimation might be affected by the effect of the disk on the apparent luminosity of the central object. This set of sources can be considered as a representative sample of the Class III population of Collinder 69 in the 0.014–1.15M_{\odot} range of masses. From the 120 sources, the SEDs of three of them are best reproduced with models from the DUSTY collection (with temperatures below 2300 K), while for the remaining 117 the best fitting model always corresponds to either the NextGen or the Kurucz collection. Since different sets of isochrones and evolutionary tracks have to be applied when using the DUSTY models or the NextGen and Kurucz models, we will split our sample in two sets:

- For the three sources where the DUSTY models reproduce the best observed SEDs, we derive an upper-limit age of 5 Myr
- Among the remaining 117 sources, we find that while 90% of them are younger than 16 Myr, the 3rd quartile is located at 12.3 Myr; therefore we infer an upper-limit age for Collinder

69 of 12.3-16 Myr.

This final upper-limit of 12.3-16 Myr is consistent with the estimated ages for the cluster by other authors; for example the previously mentioned 5 Myr optimal age derived by Barrado y Navascués et al. (2007b) and the turn-off age for massive stars of 6–7 Myr from Dolan & Mathieu (2001).

A limitation of our methodology is that, since we are performing a fit with four free parameters, a minimum of six data-points in the observed SED is desirable (to avoid degeneracy). Another issue to take into account is that our results (mainly the derivation of the effective temperatures) are quite discrete, since the minimum step in temperature in the grid of models is 100K.

On the other hand, a great advantage is that the process followed is completely automatic; therefore, if a new (denser) grid of models is published, new observational data become available or new candidate members are detected, our determination of the age can be easily and quickly re-computed.

Table 3.2: Parameters derived for each individual source of the sample. For some of the sources, we have not been able to interpolate between the isochrones and evolutionary tracks (to infer ages and masses), because of their peculiar location in the HR diagram; we have grouped these sources in four possible categories according to the probable cause for this peculiar location (last column of the table, see footnotes for more details)

ID	Model	T _{eff}	logg	Fobs/FTot	L(L _☉)	$\Delta L(L_{\odot})$	Age(Myr)	$M(M_{\odot})$	Note
LOri001	Kurucz	4000	3.5	0.48	9.52e-1	2.80e-3	3.0	1.1265	-
LOri002	NextGen	3800	4.5	0.48	1.02e+0	3.18e-3	1.6	0.9508	-
LOri003	Kurucz	4000	3.5	0.47	8.78e-1	2.55e-3	3.2	1.105	-
LOri004	Kurucz	3750	4.0	0.48	8.23e-1	2.45e-3	1.7	0.8613	-
LOri005	NextGen	4000	4.0	0.48	9.10e-1	2.73e-3	3.2	1.113	-
LOri006	Kurucz	4000	3.5	0.47	7.66e-1	2.45e-3	4.0	1.0983	-
LOri007	Kurucz	4000	4.5	0.48	6.61e-1	2.17e-3	5.0	1.0471	-
LOri008	Kurucz	4000	3.5	0.48	7.44e-1	2.45e-3	4.0	1.0962	-
LOri009	NextGen	4000	3.5	0.49	5.96e-1	1.88e-3	5.8	1.0505	-
LOri010	NextGen	4200	4.0	0.48	5.73e-1	1.84e-3	10.0	1.1466	-
LOri011	NextGen	3900	4.5	0.47	7.06e-1	2.33e-3	3.7	1.037	-
LOri012	NextGen	4000	4.5	0.48	6.22e-1	2.00e-3	5.2	1.0544	-
LOri013	NextGen	3700	4.5	0.49	6.12e-1	1.93e-3	2.3	0.7737	-
LOri014	Kurucz	4000	4.5	0.49	5.37e-1	1.74e-3	6.4	1.0473	-
LOri015	Kurucz	4000	3.5	0.49	5.60e-1	1.77e-3	6.3	1.0495	-
LOri016	Kurucz	3750	4.5	0.47	5.06e-1	1.65e-3	3.4	0.8185	-
LOri017	NextGen	4200	4.0	0.48	4.52e-1	1.36e-3	13.7	1.0499	-
LOri018	Kurucz	3750	3.5	0.47	4.91e-1	1.51e-3	3.7	0.8153	-
LOri019	Kurucz	3750	3.5	0.48	4.65e-1	1.52e-3	4.0	0.8102	-
LOri020	NextGen	3600	4.5	0.48	4.86e-1	1.75e-3	2.0	0.624	-
LOri021	Kurucz	4000	3.5	0.47	4.10e-1	1.33e-3	9.9	0.9998	-
LOri022	Kurucz	3750	4.0	0.48	4.26e-1	1.29e-3	4.5	0.8043	-
LOri023	NextGen	4000	4.5	0.47	4.08e-1	1.30e-3	10.0	0.9996	-
LOri024	Kurucz	3750	3.5	0.48	4.11e-1	1.50e-3	4.9	0.8024	-
LOri025	NextGen	3700	4.5	0.44	4.71e-1	2.25e-3	3.2	0.7504	-
LOri026	NextGen	3700	4.5	0.48	4.30e-1	1.51e-3	3.7	0.75	-
LOri027	NextGen	4000	4.5	0.48	3.51e-1	1.11e-3	12.5	0.9586	-
LOri028	Kurucz	3750	4.0	0.49	2.93e-1	9.22e-4	7.4	0.7584	-
LOri029	NextGen	3100	4.5	0.4	4.49e-1	1.27e-3			[1]
LOri030	NextGen	3700	4.5	0.48	3.19e-1	1.11e-3	5.3	0.7237	-
LOri031	NextGen	3800	4.5	0.47	3.25e-1	1.12e-3	7.7	0.8366	-
LOri032	NextGen	3700	4.5	0.48	3.04e-1	1.05e-3	5.9	0.7128	-
LOri033	NextGen	3700	4.5	0.46	3.17e-1	1.34e-3	5.3	0.7231	-
LOri034	NextGen	3000	4.0	0.36	4.32e-1	1.08e-3			[1]
		Cont	inued on	next nage					

Table 3.2 – Continued

	14010 51	-							
ID	Model	T _{eff}	logg	Fobs/F _{Tot}	L(L _☉)	$\Delta L(L_{\odot})$	Age(Myr)	M(M _☉)	Note
LOri035	NextGen	3700	4.5	0.48	2.67e-1	9.09e-4	6.6	0.7005	-
LOri036	NextGen	3600	4.5	0.49	2.49e-1	8.21e-4	5.0	0.5883	-
LOri037	NextGen	3700	4.5	0.48	2.82e-1	9.78e-4	6.3	0.7033	-
LOri038	NextGen	3800	4.5	0.4	2.55e-1	7.92e-4	10.1	0.8002	-
LOF1039	NextGen	3800	4.5	0.47	2.41e-1	8.20e-4	11.1	0.7997	-
LOri040	NextGen	3600	4.5	0.48	2.56e-1	8.55e-4	5.0	0.5922	-
LOri041	NextGen	2800	4.5	0.49	2.54e-1	8.89e-4	2.0	0.3932	-
LOri042	NextGen	3800	4.5	0.47	2.22e-1	7.09e-4	12.6	0.7929	-
LOri043	NextGen	2750	4.5	0.49	2.25e-1	7.95e-4	5.0	0.5744	-
LO11044	NawtCan	2600	5.5	0.48	2.07. 1	7.20. 4	12.0	0.7201	-
LO11043	NextGen	2800	4.5	0.49	2.07e-1	7.50e-4	18.0	0.3703	-
LO11046	NextGen	2400	4.5	0.47	2.02. 1	3.72e-4	18.0	0.7508	-
LOH047	NextGen	3400	4.5	0.47	2.05e-1	7.800-4	2.3	0.3014	-
LOII048	NextGen	2800	4.5	0.47	1.500-1	5 520 4	4.5	0.4310	-
LOII049	NextGen	3300	4.5	0.47	1.520-1	5.520-4 6.760-4	1.9	0.7471	-
LOri051	NextGen	3700	4.5	0.44	1.000-1	1.640-4	1.5	0.2770	
LOri052	NextGen	3600	4.5	0.48	1.520-1	5.030-4	9.5	0.0500	
LOri052	NextGen	3600	4.5	0.48	1.52c-1 1.40e-1	5.42e-4	10.0	0.5588	
LOri053	NextGen	3500	4.5	0.48	1.40C-1	4.66e-4	6.5	0.5588	
LOri054	NextGen	3600	4.5	0.40	1.36e-1	5.28e-4	10.4	0 5584	-
L Ori055	NextGen	3400	4.5	0.47	1.300 I	4.93e-4	4.6	0.35	
LOri057	NextGen	3400	4.5	0.46	1.27c 1 1.07e-1	3.76e-4	5.9	0.35	-
LOri058	NextGen	3500	4.5	0.49	9.87e-2	3 55e-4	10.5	0 4498	-
LOri059	NextGen	3500	4.5	0.49	9.79e-2	3.84e-4	10.5	0.4498	-
LOri060	NextGen	3500	4.5	0.49	9.28e-2	4.03e-4	12.2	0.4498	-
LOri061	NextGen	3300	4.5	0.44	1.06e-1	3.54e-4	3.7	0.2753	-
LOri062	NextGen	3500	4.5	0.46	9.20e-2	3.54e-4	12.3	0.4498	-
LOri063	NextGen	3100	4.0	0.39	1.05e-1	3.37e-4	1.5	0.157	-
LOri064	NextGen	3500	4.5	0.48	8.10e-2	3.05e-4	14.9	0.4496	-
LOri065	NextGen	3400	4.5	0.49	7.76e-2	3.10e-4	9.6	0.3503	-
LOri066	NextGen	3200	4.5	0.5	8.87e-2	3.66e-4	2.9	0.2098	-
LOri067	NextGen	3500	4.5	0.49	6.44e-2	2.94e-4	19.9	0.4469	-
LOri068	NextGen	3400	4.5	0.47	9.32e-2	3.52e-4	7.1	0.3501	-
LOri069	NextGen	3200	4.5	0.5	1.04e-1	4.29e-4	2.4	0.2151	-
LOri070	NextGen	3400	4.5	0.49	6.13e-2	2.78e-4	12.7	0.35	-
LOri071	NextGen	3200	4.5	0.48	7.37e-2	2.98e-4	3.4	0.2028	-
LOri072	NextGen	3100	4.5	0.43	9.69e-2	3.61e-4	1.6	0.1614	-
LOri073	NextGen	3400	4.5	0.46	8.71e-2	3.15e-4	7.9	0.3502	-
LOri074	NextGen	3300	4.5	0.49	8.33e-2	3.18e-4	4.9	0.2619	-
LOri075	NextGen	3200	4.5	0.46	1.01e-1	3.72e-4	2.5	0.2144	-
LOri076	NextGen	3400	4.5	0.48	5.31e-2	2.13e-4	15.8	0.3485	-
LOri077	NextGen	3200	4.5	0.5	5.65e-2	2.57e-4	4.3	0.1965	-
LOri078	NextGen	3300	4.5	0.48	5.28e-2	3.26e-4	8.1	0.2502	-
LOri079	NextGen	3300	4.5	0.5	4.84e-2	2.43e-4	9.5	0.25	-
LOri080	NextGen	3100	4.0	0.49	6.45e-2	2.56e-4	2.5	0.1519	-
LOri081	NextGen	3200	4.5	0.42	4.91e-2	1.96e-4	5.0	0.1783	-
LOri082	NextGen	3300	4.5	0.5	4.77e-2	2.34e-4	9.7	0.25	-
LOri083	NextGen	3300	4.5	0.49	4.69e-2	2.41e-4	9.8	0.25	-
LOri084	NextGen	3300	4.5	0.51	5.18e-2	2.36e-4	8.3	0.2501	-
LOri085	NextGen	3100	4.5	0.43	5.32e-2	2.12e-4	3.1	0.1497	-
LOri086	NextGen	3400	4.5	0.49	4.06e-2	2.04e-4	20.1	0.315	-
LOri087	NextGen	3300	4.5	0.5	4.76e-2	2.49e-4	9.7	0.25	-
LOri088	NextGen	3200	4.5	0.51	4.80e-2	2.64e-4	5.0	0.1762	-
LOri089	NextGen	3300	4.5	0.5	4.04e-2	2.15e-4	11.7	0.2482	-
LOri090	NextGen	3300	4.5	0.46	3.89e-2	1.83e-4	12.4	0.2471	-
LOri091	NextGen	3100	4.0	0.49	4.72e-2	2.32e-4	3.2	0.1432	-
LOri092	NextGen	3300	4.5	0.47	3.94e-2	1.92e-4	12.2	0.2475	-
LOri093	NextGen	3300	4.5	0.49	3.91e-2	2.24e-4	12.3	0.2473	-
LOri094	NextGen	3200	4.0	0.48	4.14e-2	2.10e-4	5.8	0.1743	-
LOri095	NextGen	3300	4.5	0.5	3.53e-2	1.95e-4	12.8	0.243	-
LOri096	NextGen	3100	4.5	0.44	3.66e-2	1.89e-4	4.0	0.1295	-
LOri098	NextGen	3400	4.0	0.49	3.37e-2	2.09e-4	25.0	0.3	-
LOri099	NextGen	3400	4.0	0.47	3.25e-2	1.64e-4	25.1	0.2998	-
LOri100	NextGen	3300	4.5	0.46	3.10e-2	1.80e-4	15.7	0.2337	-
LOri101	NextGen	3400	4.5	0.45	2.60e-2	1.49e-4	31.7	0.2989	-
LOri102	NextGen	3200	4.0	0.48	3.27e-2	2.34e-4	7.6	0.1653	-
LOri103	NextGen	3200	4.5	0.49	2.99e-2	1.50e-4	8.0	0.162	-
LOri104	NextGen	3000	4.0	0.45	3.10e-2	1.54e-4	3.1	0.0899	-
LOri105	NextGen	3200	4.0	0.49	2.51e-2	1.82e-4	10.0	0.1565	-
LOri106	NextGen	3100	4.0	0.45	2.91e-2	1.92e-4	4.9	0.116	-
		Conti	nued on	next page					

Table 3.2 – Continued

	Table 3.2	- Contin	lucu						
ID	Model	T _{eff}	logg	Fobs/FTot	L(L _☉)	$\Delta L(L_{\odot})$	Age(Myr)	M(M _☉)	Note
LOri107	NextGen	3000	3.5	0.49	3.14e-2	2.08e-4	3.1	0.0899	-
LOri108	NextGen	3100	4.5	0.5	2.56e-2	1.75e-4	5.1	0.1103	-
LOF1109	NextGen	3200 3400	4.5	0.52	2.28e-2	5.08e-5	20.9	0.1544	-
LOH110	NextGen	3000	4.0	0.48	2.230-2	1.740-4	34	0.2947	-
LOri112	NextGen	3100	4.0	0.48	2.00C-2 2.49e-2	1.00C-4	5.4	0.1101	
LOri113	NextGen	3200	4.5	0.49	1.99e-2	4.14e-5	12.7	0.1513	-
LOri114	NextGen	3000	4.0	0.48	2.27e-2	1.73e-4	4.0	0.0822	-
LOri115	NextGen	3300	4.5	0.48	1.64e-2	1.48e-4	31.4	0.2	-
LOri116	NextGen	3200	4.0	0.47	1.75e-2	1.46e-4	15.6	0.1501	-
LOri117	NextGen	3100	3.5	0.5	2.10e-2	4.51e-5	6.3	0.1096	-
LOri118	NextGen	3000	4.0	0.43	1.99e-2	1.36e-4	4.3	0.08	-
LOri119	NextGen	3100	4.0	0.54	1.79e-2	5.97e-5	7.8	0.1084	-
LOri120	NextGen	3100	4.0	0.46	1.65e-2	1.38e-4	8.1	0.1072	-
LOri121	NextGen	3200	4.5	0.48	1.34e-2	1.35e-4	20.0	0.1476	-
LOri122	NextGen NextCon	3100	4.0	0.46	1.52e-2	1.3/e-4	9.5	0.1057	-
LOn124	NextGen	3200	4.0	0.45	1.30e-2	1.30e-4	20.4	0.1464	-
LOII125 LOri126	NextGen	3000	4.0	0.46	1.20e-2 1.35e-2	2.80e-5	21.3 6.2	0.1432	-
LOri127	DUSTY00	1900	4.5	0.74	6.04e-2	4.21e-4	0.2	0.0750	[2]
LOri128	NextGen	3100	4.0	0.49	1.26e-2	1.67e-4	11.9	0.1022	-
LOri129	NextGen	3000	3.5	0.44	1.61e-2	1.48e-4	5.0	0.075	-
LOri130	NextGen	3200	4.0	0.47	1.16e-2	1.23e-4	24.9	0.1439	-
LOri131	NextGen	3000	3.5	0.5	1.39e-2	1.44e-4	6.1	0.0742	-
LOri132	NextGen	3000	3.5	0.49	1.21e-2	1.53e-4	6.6	0.0723	-
LOri133	NextGen	3800	3.5	0.43	7.85e-3	1.24e-4			[2]
LOri134	NextGen	3100	3.5	0.49	1.17e-2	1.32e-4	12.6	0.1017	-
LOri135	NextGen	3100	3.5	0.46	1.11e-2	1.38e-4	12.9	0.1015	-
LOri136	NextGen	2900	3.5	0.5	1.24e-2	1.80e-4	5.0	0.0602	-
LOFI137	NextGen	2000	4.0	0.31	3.50e-3	3.94e-5	00	0.0729	[2]
LOIII38	NextGen	3000	4.0	0.49	9.76e-3 8.50e-3	1.200-4	0.0 10.1	0.0738	-
LOri140	NextGen	2800	3.5	0.43	1.06e-2	1.23e-4	4.0	0.0405	-
LOri141	NextGen	3100	4.0	0.5	5.69e-3	1.67e-5	36.8	0.1088	-
LOri142	NextGen	3000	4.0	0.51	7.33e-3	1.92e-5	12.6	0.0749	-
LOri143	NextGen	3000	4.0	0.53	7.43e-3	2.29e-5	12.6	0.0749	-
LOri144	NextGen	3800	4.5	0.54	2.85e-3	4.29e-5			[2]
LOri146	NextGen	2700	3.5	0.44	8.00e-3	1.32e-4			[1]
LOri147	NextGen	3500	3.5	0.51	5.24e-3	2.00e-5			[1]
LOri148	NextGen	3000	4.5	0.54	5.19e-3	1.63e-5	20.4	0.0756	-
LOri149	Kurucz	3500	3.5	0.24	2.12e-3	4.22e-6		0.0450	[2]
LOri150	NextGen	2800	3.5	0.48	4.79e-3	1.31e-4	9.8	0.0472	-
LOri151	NextGen	3200	4.5	0.51	2.81e-3	1.48e-5			[2]
LOIII52	NextGen	2900	5.5	0.5	3.40e-3	1.1/0-4	25.1	0.0659	[2]
LOri154	NextGen	2700	3.5	0.32	4 17e-3	1.30c-3	7.9	0.0055	
LOri155	NextGen	2700	4.5	0.53	3.63e-3	1.11e-5	9.4	0.0336	-
LOri156	COND00	1500	3.5	0.54	3.20e-3	1.43e-5			[1]
LOri157	NextGen	3700	3.5	0.47	1.54e-3	9.04e-6			[2]
LOri158	NextGen	3900	3.5	0.45	1.18e-3	8.72e-6			[2]
LOri159	NextGen	3000	4.5	0.49	1.28e-3	1.17e-5			[2]
LOri160	NextGen	2700	3.5	0.5	1.65e-3	1.02e-5	31.6	0.0467	-
LOri161	NextGen	2600	4.5	0.52	1.77e-3	1.37e-5	16.0	0.0308	-
LOri162	COND00	1600	3.5	0.6	1.71e-3	2.37e-5			[4]
LOri163	DUSTY00	2000	4.0	0.55	1.65e-3	2.13e-5	1.0	0.006	-
LOri164	NextGen	3800	3.5	0.45	7.29e-4	5.92e-6	05.2	0.046	[2]
LOri165	DUSTY00	2500	3.5	0.51	7.50e-4	1.50e-5	85.3	0.048	[2]
LOri166	DUSTY00	2200	4.5	0.43	9.35e-4	6.94e-6	4.7	0.0136	- r+1
LUI116/	DUSTY00 NextCon	2000	3.3 4.0	0.51	1.55e-5 3.00o 4	1.85e-5 7.44a 6	1.0	0.006	[*] [2]
LOri169	NextGen	2900 3100	4.0	0.45	2.290-4 2.21e-4	6.63e-6			[2] [3]
LOri170	NextGen	3500	3.5	0.45	1.99e-4	8,21e-6			[2]
		Cont	inued on	next page		0.2.1.0			(-)

	Table 3.2	e – Contir	nued						
ID	Model	T _{eff}	logg	Fobs/FTot	$L(L_{\odot})$	$\Delta L(L_{\odot})$	Age(Myr)	$M(M_{\odot})$	Note

This whole section has been included to illustrate the advantages of using this methodology to analyze large lists of candidate members to star forming regions. VOSA turns out to be specially useful when the wavelength coverage of the candidate members is inhomogeneus (not the same photometric bands are available for all the candidates).

One of the caveats on the other hand can arise from the nature of the datasets themselves; for example, in our case, where Ströngrem photometry is not available for any of our candidates (candidates from the surveys described in the previous Chapter); VOSA fits are quite insensitive to the logg parameter. In order to be consistent during this thesis we have repeated the VOSA fits of the CFHT sample forcing for logg a value of 4.0 dex (as can be seen in the T_{eff} and L_{bol} listed on Table 3.25 the differences are no dramatic at all). The same constrain is applied to every candidate member to derive the values of T_{eff} and L_{bol} listed on Table 3.25.

3.2 Previous Spectroscopic Surveys

As mentioned in the Introduction, several spectroscopic surveys have been carried out targeting the LOSFR, and in particular its central cluster Collinder 69. Here we summarize the most relevant results obtained so far:

Combining previous H α objective prism observations of the LOSFR with their own 100 square degree survey(50% completeness at 17.0 mag in the V band), Duerr et al. (1982) tabulated ~100 stars detected to have H α emission in one or more of these observations (for every case in which a star was bright enough for study, it had also been found in the literature to be variable photometrically, see Duerr et al. 1982 for details).

In the last eight years deeper but spatially limited H α surveys have been performed. Dolan & Mathieu (2001) found 23 new stars with H α equivalent widths greater than 10 Å; all but two are associated with the B30 and B35 clouds. On the other hand, strong H α emission has also been detected from candidate substellar members (in this case to C69) in the very deep survey for young stars of Barrado y Navascués et al. (2004b). They suggest that three such stars have such large EW(H α), 73 Å to 123 Å, as to be candidates for active accretion disks.

^[1] Source with disk.

^[2] Previous "non-member" candidates according to the photometric properties (see Barrado y Navascués et al. 2007b for further details).

^[3] Degenerated fit due the small number of points to be fitted vs number of free parameters.

^[4] Possible foreground cool source.

⁽see Section 3.1.3 for details on each individual case).

^[*] For a more detailed analysis in LOri167 see Barrado y Navascués et al. (2007a).

Regarding diagnosis on youth and kinematics; Dolan & Mathieu (2001) surveyed 11 1°-diameter fields located radially across the SFR, with an emphasis on the regions in which H α emission stars were found by Duerr et al. (1982). The observations were done with the WIYN Hydra Multi-Object Spectrograph achieving ~90% completeness in all but two fields. They obtained 4177 spectra of 3618 stars. Each spectrum was centered at 6640 Å, and thus included the Li I λ 6707 Å and H α lines, and a rich array of metal lines near 6450 Å for precise radial velocity measurements. With a resolution R~20000 and a typical SNR per pixel of 25-40, lithium absorption could be detected to a minimum equivalent width of 0.1 Å with 5 σ confidence, and the radial-velocity precision was 0.5 km/s.

Lithium absorption was detected in ~650 stars, of which, less than half showed strong lithium absorption indicative of youth (defined as EW(Li) ≥ 0.2 Å). As mentioned before, one of their main result states that those stars with strong Li I absorption are kinematically associated, and their mean velocity of 24.5 km/s is typical of the Orion association.

Finally, during the last year, Sacco et al. (2008) and Maxted et al. (2008) published their results on the comparative analysis of high resolution spectra of two samples of low-mass young stars. One sample was composed by candidate members to C69 and the other one by candidate members to the σ Ori cluster (with estimated ages 1–8 Myrs). While their main results have already been described in the Introduction, in this section we will focus on the redundancy of those surveys with our own survey (coincident sources are shown in Table 3.3 and Table 3.4 along with the measurements and parameters provided by Maxted et al. 2008 and Sacco et al. 2008, respectively).

Maxted et al. (2008) obtained several spectra (from three to seven) with SNR better than five for 73 candidate members from those proposed by Barrado y Navascués et al. (2004b). The observations were performed with the FLAMES multi-object spectrograph (Pasquini et al. 2002) with a resolution of R~16000 and a wavelength coverage from 8073 to 8632 Å. They studied binarity and membership to C69 based on radial velocity determinations and analysis of the Na I λ 8200 lines and TiO band strength. Comparison with our results will be provided in Section 3.3.

On the other hand, Sacco et al. (2008), observed 49 sources in the λ Ori cluster: five candidate members from Dolan & Mathieu (1999), 34 from Barrado y Navascués et al. (2004b), and ten candidates listed in both studies. From the 44 sources in common with Barrado y Navascués et al. (2004b) 31 were also observed by Maxted et al. (2008) (see last column of Table 3.3). These authors based their study on observations that were as well performed with FLAMES but with a different set-up. They observed the C69 candidates with two different gratings, achieving resolutions of R~17000 and R~16200 for the spectral ranges 6470–6790 Å and 8480–9000 Å, respectively. Radial velocities, Li absorption and H α emission were used to establish membership, and H α and other optical emission lines to study the accretion properties of the members. Comparison with our sample and results will be provided in the following sections.

Name	MJO2008	<rv></rv>	eRV	EW(NaI)	eEW(NaI)	TiO(8442)	eTiO	SB Type	S08
LOri039	J053557.0+094652	28.7	0.37	2.34	0.01	0.677	0.0010		
LOri040	J053539.4+095032	27.44	0.38	2.34	0.02	0.667	0.0020		х
LOri041	J053530.4+095034	28.98	0.44	2.33	0.01	0.668	0.0010	(D)	х
LOri043	J053502.7+095647	30.06	1.01	2.33	0.02	0.663	0.0010	SB2	
LOri044 LOri046	J053408.3+095125 J053426.0+095149	-0.65	0.34	2.01	0.02	0.657	0.0010		v
LOri047	J053555.6+095053	27.26	0.34	2.53	0.01	0.682	0.0010		л
LOri048	J053512.5+095311	27.71	0.56	2.21	0.02	0.663	0.0010		x
LOri049	J053500.9+094936	23.47	0.34	2.87	0.02	0.642	0.0020		х
LOri050	J053456.3+095504	26.2	2.32	2.21	0.01	0.656	0.0010	SB1	x
LOri051	J053612.1+100056	28.66	2.68	2.23	0.1	0.666	0.0080	SB1	
LOri052	J053411.7+095703	36.31	0.73	2.6	0.02	0.645	0.0020		
LOri053	J053436.7+095258	27.49	0.35	2.27	0.02	0.661	0.0020		х
LOri054	J053552.5+094831 J053521.4+094956	29.46	0.38	2.52	0.02	0.685	0.0020		v
LOri055	J053458.3+095347	26.64	0.35	2.35	0.02	0.689	0.0020		x
LOri058	J053610.3+100018	30.06	0.57	2.78	0.09	0.688	0.0090		
LOri059	J053423.5+094343	29.8	0.36	2.68	0.03	0.683	0.0020		
LOri060	J053520.0+094906	27.24	0.26	2.2	0.02	0.654	0.0020		x
LOri061	J053518.1+095224	26.88	0.42	2.22	0.02	0.659	0.0020		х
LOri062	J053515.3+094837	26.87	0.27	2.23	0.02	0.674	0.0020		х
LOri063	J053519.1+095442	26.42	0.44	2.0	0.07	0.61	0.0060		х
LOri064	J053552.0+095029	28.07	0.38	2.78	0.03	0.672	0.0020		
LOri065	J053517.9+095657	27.15	0.29	2.39	0.02	0.683	0.0020		
LO11066 L Ori067	J053500.7+095727 J053626 3+094546	28.9	0.55	2.64	0.02	0.75	0.0030		
LOri068	J053448.0+094326	30.35	0.35	2.84	0.02	0.688	0.0020		x
LOri069	J053443.9+094835	22.56	3.48	2.66	0.02	0.732	0.0020	SB2	x
LOri073	J053446.8+095037	27.57	0.35	2.5	0.02	0.69	0.0020		
LOri074	J053600.5+094238	27.63	0.38	2.64	0.03	0.719	0.0030		
LOri075	J053455.2+100034	27.92	2.2	2.37	0.02	0.71	0.0020	SB1	х
LOri076	J053510.9+095743	28.53	0.38	2.38	0.04	0.718	0.0030		х
LOri077	J053441.7+094242	29.93	0.46	2.97	0.03	0.707	0.0030		
LOri078	J053616.4+095015	27.76	0.39	2.43	0.04	0.686	0.0040		
LOri080	J053448.2+095955	27.38	0.30	2.55	0.05	0.695	0.0030		x
LO11080	I053600 8+095257	29.44	0.66	2.73	0.15	0.739	0.0040		л
LOri083	J053543.4+095426	25.94	0.42	2.46	0.04	0.701	0.0040		x
LOri085	J053521.5+095329	27.35	0.29	2.64	0.03	0.706	0.0030		
LOri086	J053411.5+094914	30.01	0.44	2.53	0.04	0.689	0.0040		
LOri087	J053433.7+095534	27.07	0.36	2.52	0.03	0.687	0.0030		x
LOri088	J053449.5+095846	27.44	0.36	2.86	0.04	0.73	0.0040		х
LOri090	J053627.0+095134	26.75	0.43	2.77	0.07	0.725	0.0080		
LOri091	J053435.8+095426	28.32	0.39	2.92	0.03	0.761	0.0040		
LOri092	J053550.9+095103	27.55	0.4	2.5	0.04	0.711	0.0040		x
LO11093	J053441.1+095010 J053443 1+100159	30.51	0.50	2.74	0.04	0.728	0.0040		x
LOri095	J053524.1+095515	27.36	0.46	2.4	0.08	0.707	0.0080		x
LOri096	J053511.1+095719	27.98	0.38	2.39	0.04	0.701	0.0040		x
LOri098	J053631.4+094501	28.17	0.41	2.95	0.06	0.739	0.0070		
LOri100	J053500.0+094614	29.51	0.37	2.85	0.05	0.718	0.0050		х
LOri102	J053522.0+095252	28.62	0.29	2.79	0.04	0.719	0.0040		х
LOri103	J053522.5+094501	28.04	0.36	2.67	0.04	0.749	0.0050		
LOri104	J053507.0+095401	27.87	0.38	2.69	0.05	0.737	0.0060		
LOI1105	JUJ 3417.3+095229 I0535287±095410	27.08	0.4	2.9	0.05	0.728	0.0060		x
LOri107	J053555,1+095219	28.64	0.46	2.5	0.06	0.868	0.0090		
LOri109	J053408.5+095043	28.1	0.44	2.71	0.06	0.741	0.0070		
LOri110	J053532.6+095248	13.44	0.5	3.59	0.04	0.699	0.0040		
LOri114	J053618.1+095225	27.15	0.47	2.72	0.08	0.776	0.011		
LOri116	J053512.0+100104	27.02	0.5	3.12	0.08	0.764	0.01		
LOri118	J053524.3+095351	27.55	0.37	2.58	0.06	0.773	0.0080		
LOri120	J053446.2+095537	27.85	0.42	2.77	0.07	0.805	0.0090		
LOri122	J053435.4+095118	29.97	0.68	3.08	0.07	0.744	0.0080		
LOI1125 LOri126	1053539 8±005324	27.02	0.57	3.20 2.56	0.08	0.752	0.0090		
LOri120	J053609.8+094237	27.02	0.48	2.50	0.09	0.770	0.012		
LOri130	J053456.5+094233	30.09	0.47	3.33	0.1	0.722	0.01		
LOri131	J053606.9+095251	28.28	0.5	3.32	0.09	0.895	0.015		
		Cont	inued on 1	next page					

 Table 3.3: Physical properties derived by Maxted et al. (2008) for a sample of the Colinder 69 candidate members from Barrado y Navascués et al. (2004b). Sources also observed by Sacco et al. (2008) are marked in the last column.

Table 3.3 – Continued

	Table $3.3 = C$	onunucu							
Name	MJO2008	<rv></rv>	eRV	EW(NaI)	eEW(NaI)	TiO(8442)	eTiO	SB Type	S08
LOri135	J053509.3+095244	27.81	0.42	3.35	0.09	0.816	0.013		
LOri140	J053419.2+094827	27.36	0.51	2.59	0.12	0.85	0.021		
LOri143	J053500.9+095820	26.06	0.66	2.55	0.16	0.84	0.023		
LOri146	J053500.1+095240	28.53	0.66	3.08	0.17	0.824	0.028		

Table 3.4: Sacco et al. (2008) measurements derived for 49 of the Barrado y Navascués et al. (2004b) candidate members.

Name	SpT	<rv> eRV</rv>	vsini+E-e	EW(Li)	Bin.	$EW(H\alpha)$	FW10%	$log(M_{acc})$	EW(NII)	EW(HeI)	EW(SII ¹)	EW(SII ²)	ID
LOri003	K8.5			520±32	SB	-1.13 ±0.15	/ /		< 0.04	< 0.04	< 0.04	< 0.04	L01
LOri016	K8.0			531±33	SB	-1.58 ±0.13			< 0.03	< 0.03	< 0.03	< 0.03	L03
LOri020	M2.0	21.43±0.53		18 ±29									L05
LOri022	M1.5	28.4 ±0.38	<17.0	516±33		-6.96 ±0.69	219±43		< 0.03	0.12	< 0.03	< 0.03	L06
LOri024	M0.0	27.28±0.29	<17.0	554±21		-2.0 ± 0.12	137±20		< 0.05	< 0.05	< 0.05	< 0.05	L07
LOri026	K9.5	27.29±0.43	26.0+6.0-1.0	581±43		-5.3 ±0.3	198±18		< 0.03	< 0.03	< 0.03	< 0.03	L08
LOri030	M1.5				SB2								L10
LOri034	M1.0	24.36±0.3	<17.0	541±35		-8.47 ±0.47	215±25	-10.8±0.4	< 0.06	< 0.06	< 0.06	< 0.06	L11
LOri035	M2.5	21.36±0.72	30.2+10.0-6.2	572±21		-3.32 ± 0.35	146±34		< 0.06	< 0.06	< 0.06	< 0.06	L12
LOri036	M3.0	24.63±0.38		56 ±22									L13
LOri037	M2.0	27.13±0.33	<17.0	566±57		-3.67 ±0.34	148±29		< 0.06	< 0.06	< 0.06	< 0.06	L14
LOri040	M3.0	26.95±0.46	<21.3	561±45		-5.15 ±0.62	141±18		< 0.08	< 0.08	< 0.08	< 0.08	L15
LOri041	M3.5	27.05±0.71	61.9+11.8-5.7	485±40		-7.05 ±0.86	306±52		< 0.06	< 0.06	< 0.06	< 0.06	L16
LOri045	M2.0	26.89±0.42	<17.0	554±23		-3.04 ±0.33	123±27		< 0.08	< 0.08	< 0.08	< 0.08	L18
LOri046	M2.0	-0.28±0.43		148±64									L19
LOri048	M2.5	27.04±0.44	<17.0	545±12		-3.34 ± 0.44	159±36	<-11.0	< 0.08	< 0.08	< 0.08	< 0.08	L20
LOri049	M2.0	24.06±0.36		64 ±13									L21
LOri050	M2.5			596±58	SB	-11.14±0.96	±		< 0.09	< 0.15	< 0.09	< 0.09	L22
LOri053	M2.5	27.0 ± 0.42	<18.3	561±30		-2.93 ±0.2	130±22		< 0.09	< 0.09	< 0.09	< 0.09	L24
LOri055	M2.5	26.7 ±0.39	<17.0	602±33		-6.53 ±0.49	118±13		< 0.09	< 0.09	< 0.09	< 0.09	L25
LOri056	M3.0	26.84±0.56	<19.3	576±23		-5.57 ±0.81	130±13		< 0.1	0.15	< 0.1	< 0.1	L26
LOri057	M3.5	26.99±0.49	<17.0	677±19		-5.2 ± 0.52	107±11		< 0.1	0.2	< 0.1	< 0.1	L27
LOri060	M2.5	27.22±0.45	<18.5	599±28		-4.18 ± 0.48	121±18		< 0.08	< 0.08	< 0.08	< 0.08	L28
LOri061	M2.5	26.8 ± 0.47	17.9+1.4-1.8	591±30		-13.97±1.38	274±15	-10.2±0.3	< 0.1	0.18	< 0.1	< 0.1	L29
LOri062	M3.0	26.8 ±0.47	<17.0	648±48		-4.41 ±0.3	123±22	<-11.0	< 0.1	< 0.1	< 0.1	< 0.1	L30
LOri068	M3.0	29.37±0.47	<17.0	698±25		-7.9 ±1.26	116±16		< 0.1	< 0.15	< 0.1	< 0.1	L31
LOri069	M3.5			516±57	SB	-7.39 ±1.46	±		< 0.1	< 0.1	< 0.1	< 0.1	L32
LOri075	M5.0*	26.02 ± 0.82	61.3+11.5-4.9	455±44		-10.71±0.98	326±9		< 0.1	< 0.1	< 0.1	< 0.1	L33
LOri063	M3.0	27.19 ± 0.47	<18.2	505 ± 52		-19.14±2.53	230±4	-10.7±0.3	3.6	0.8	0.26	0.31	L34
LOri076	M3.0	27.52±0.5	<17.0	608±19		-4.92 ±0.6	121 ± 20		< 0.1	< 0.1	< 0.1	< 0.1	L35
LOri079	M3.0	27.03±0.51	<17.0	607±59		-5.06 ± 0.53	127±25	<-11.0	< 0.1	< 0.2	< 0.1	< 0.1	L36
LOri080	M3.0	25.74 ± 0.81	60.2+21.3-5.9	523±20		-14.47±1.25	287±41	-10.1±0.5	0.1	< 0.1	< 0.1	< 0.1	L37
LOri083	M3.0	26.32±0.57	19.1+7.9-2.6	585±77		-5.32 ± 0.68	134±16		< 0.1	0.1	< 0.1	< 0.1	L38
LOri087	M4.5*	27.25 ± 0.57	18.4+6.0-1.7	609±42		-5.56 ± 0.7	125 ± 18	<-11.0	< 0.1	< 0.2	< 0.1	< 0.1	L39
LOri088	M3.5	26.75±0.53	<17.0	660±42		-9.44 ±1.12	107±13		< 0.1	0.17	< 0.1	< 0.1	L40
LOri092	M3.5	26.66±0.57	19.8+2.8-2.6	661±51		-2.9 ± 0.34	107 ± 29		0.14	< 0.1	< 0.1	< 0.1	L41
LOri093	M3.5	27.0 ± 0.56	<18.3	623±61		-6.25 ±0.94	137±29		< 0.1	0.15	< 0.1	< 0.1	L42
LOri094	M4.0	26.36±0.8	54.8+5.5-8.2	538 ± 204		-15.53±2.23	228±18		< 0.2	< 0.2	< 0.2	< 0.2	L43
LOri095	M6.0*	27.31±0.55	<19.7	559±30		-4.96 ±0.62	105±9		< 0.25	< 0.25	< 0.25	< 0.25	L44
LOri096	M3.5	26.92±0.55	<19.1	553 ± 48		-6.97 ±1.1	114 ± 20	<-11.0	0.22	< 0.2	< 0.2	< 0.2	L45
LOri100	M3.5	28.04 ± 0.46	<17.0	717±43		-8.18 ± 1.4	98 ± 6		0.6	< 0.25	0.59	< 0.25	L46
LOri102	M4.0	28.1 ± 0.53	<17.0	584±62		-5.94 ± 0.96	93 ±4		0.25	< 0.1	0.25	0.16	L47
LOri105	M4.0	26.45 ± 0.7	<20.0										L48
LOri106	M4.0	26.83±0.54	<17.0	636±132		-26.16±2.4	107±4	<-11.0	0.7	0.4	0.4	0.3	L49

Li I equivalent width in mÅ; the remaining EWs are given in Å, mean v_r and FW_{10%}(H α) in km/s and accretion rates in M_{\odot}/yr.

^{[1] [}SII] at 6716Å

^{[2] [}SII] at 67131Å

^[*] Spectral type spectroscopically derived by Barrado y Navascués et al. (2004b). The remaining spectral types have been photometrically determined by Sacco et al. (2008).

Date	Observatory/Telescope/Instrument	Resolution	Wavelength coverage	Number of sources	Original photometric
				observed	survey
November 2-5, 2002	Mauna Kea / Keck I / LRIS	~2650	6425–7692Å	12	CFHT1999
November 2-5, 2002	Mauna Kea / Keck I / LRIS	~ 950	6250–9600Å	29	CFHT1999
December 11-14, 2002	Las Campanas / Magellan Baade / MIKE	~11250	4430–7250Å	14	CFHT1999
March 9-11, 2003	Las Campanas / Magellan II / B&C	~2600	6200–7825Å	2	CFHT1999
March 9-11, 2003	Las Campanas / Magellan II / B&C	~800	5000–10200Å	3	CFHT1999
November 22-25, 2005	CAHA / 3.5m / TWIN	~1100	5600–10425Å	5	CFHT1999
November 20-23, 2006	CAHA / 3.5m / TWIN	~1100	5700–9900Å	8	CFHT1999 & $1^{o} \times 1^{o}$ Spitzer
Nov. 30 - Dec. 11, 2007	CAHA / 2.5m /CAFOS	~600	6200–10350Å	37	CFHT1999 & $1^o \times 1^o$ Spitzer &
					XMM-Newton survey
January 5, 2008	Paranal / UT2/FLAMES	~8600	6438–7184Å	40	CFHT1999 & $1^o \times 1^o$ Spitzer

 Table 3.5: Collinder 69 optical spectroscopic campaigns.

3.3 Our optical spectroscopic surveys

During the last seven years, our group has been granted with time in different observatories to perform spectroscopic observations of our photometrically-selected candidate members to the different associations within the Lambda Orionis Star Forming Region. These observations comprise a wide range of resolutions and wavelength coverages.

The highest resolution spectra were obtained in order to study the H α emission of the sources (and its relation with accretion processes), other emission lines such as He I and some forbidden lines (commonly used as tracers of mass loss), and the presence of Li I absorption (confirming the youth of the sources). On the other hand, lower resolution optical spectra were obtained for fainter sources to derive spectral types and study their surface gravity. As a byproduct we have been able to study the biases introduced when measuring line profiles (such as H α) at different resolutions.

In Appendix A we provide details on the data reduction procedures carried out for each specific technical set-up; while, in Table 3.5, some of the most relevant specifications characterizing the observations are summarized.

In the following subsections we will describe the different kinds of analyses that we have been able to perform depending on the characteristics of the observational data. Most of these analyses are based on the measurement of parameters of the lines such as their equivalent width, full width half maximum and full width at 10% of the maximum. In order to ease this process we have developed a code that, given the approximate center of the line, the resolution of the spectra and the uncertainty in the wavelength calibration, provides the user with the mean of three measurements of each the previously mentioned EW, FWHM and FW_{10%} (as well as a σ for the derived values) in an automatic manner (see Appendix B for details on the process).

3.3.1 Spectral type determination based on molecular bands.

We have followed two different approaches to determine the spectral types of our candidate members. For the hotter part of the sample (a fraction of the XMM candidates), we have compared our optical (low resolution, CAFOS) spectra with those obtained (with the same con-

Figure 3.7: Spectral type determination for three candidate members by comparison with templates obtained with the same instrumental set-up. The "science spectra" is displayed in black and the templates (labelled according to the spectral type) in red.

figuration during the same campaigns) as templates from Taurus members and also field dwarfs within a spectral type range of G0 to M0. Since the extinction is quite low and homogeneous in Collinder 69, the comparison with the templates is very direct. In Fig 3.7 we show as examples of these comparisons three K-type stars candidate members.

On the other hand, for the majority of our candidates (in principle with T_{eff} derived from their SEDs consistent with being M type stars) we have inferred their spectral types studying their molecular bands. Several spectral ratios or indices (quantifying different band strengths) have been proposed in the literature to derive spectral types both, from optical and infrared spectra. From those oriented to classify for late-type stars, some are based on the relative depths of the mentioned molecular bands that present dramatic variations tied to changes in effective temperature (see for example Reid et al. 1995; Cruz & Reid 2002 and references therein); others are based on measuring the slope of the pseudocontinuum (since the overall optical-NIR spectrum of very cool stars is

,	1			
Index	Numerator (Å)	Denominator (Å)	Ref	Relation with SpT
TiO 1	7000–7040	7060-7100	3	*SpT = 2.433 × (TiO1 + TiO2) + 58.345
TiO 2	7058-7061	7043-7046	1	* SpT = 1.989 × (TiO1 + TiO2) ² - 13.759 × (TiO1 + TiO2) + 92.645
TiO 5	7126–7135	7042-7046	1	$\text{SpT} = -10.775 \times (\text{TiO 5}) + 8.200$, for $(\text{TiO 5}) \le 0.75$
			1	$\text{SpT} = 5.673 \times (\text{TiO 5}) + 6.221$, for (TiO 5) ≥ 0.3
VO-a	Sum of 7350-7370 and 7550-7570	7430-7470	2	SpT = 10.511(VO-a) - 16.272
			2	SpT = -7.037(VO-a) + 26.737
PC3	8230-8270	7540–7580	4	$SpT = -8.009 + 14.080 \times PC3 - 2.810 \times PC3^2$

Table 3.6: Regions that define the Spectral Indices used to classify the C69 candidate members (and the empirical relations between those indices and the Spectral Types).

(1) Kirkpatrick et al. (1999)

(2) Reid et al. (1995)

(3) Martin et al. (1996)

(4) Martín et al. (1999)

* These relationships have been derived in this work with data from Martín et al. (1999) and assuming a linear behaviour of the (TiO 1+ TiO 2) index for spectral types earlier than M9, and a cuadratic one for cooler spectral types.

largely depressed by molecular opacity, the true stellar continuum is never seen, but at a few regions the molecules are a little more transparent and one can reach deeper in the photosphere), using indices that increase monotonically when the effective temperature decreases (for example PC3 and PC6 from Martin et al. 1996 and Martín et al. 1999).

As we mentioned previously in the Introduction, M-dwarfs stars are characterized spectroscopically by the presence of molecular bands of titanium and vanadium oxide (TiO, VO). These bands, being very prominent up to M7 spectral type are also known to become weaker when moving on to cooler temperatures (due to the condensation of Ti and V dust). We will therefore use not only more than one band but also ratios between bands that show opposite tendencies to avoid ambiguity in the spectral type determination (see Table 3.6 for a list of the indices used and their relations with spectral types). This combination of indices should provide us with a spectral classification with ~0.5 subclass accuracy.

Due to the restrictions of the wavelength coverage and resolution of each instrumental setup, we have not been able to calculate every index for all the sources. As an example, while in the case of the MIKE observations we have used TiO 5 and the ratio of TiO 1 over TiO 2; for the LRS and FLAMES samples we have been able to compare the results obtained with PC3 and the combination of TiO 5 and VO-a.

In Fig. 3.9 we show several spectral sequences obtained for the different campaigns combining the use of spectral indices with template comparison (note the large differences in resolution

Figure 3.8: Examples of different indices used to determine the spectral types of our sources. **Top-Left:** Pseudo continuum PC3 index from Martin et al. (1996). **Top-Right:** TiO 1 over TiO 2 ratio from Martín et al. (1999). **Bottom-Pannel:** Dependence of the TiO 5 and VO-a indices with the spectral type (from Cruz & Reid 2002).

and wavelenth coverage between the different campaigns). As can be seen in the reddest parts of the spectra, TiO and VO absorptions, as stated before, clearly represent the dominant feature for this spectral range.

Once we had derived the spectral type for each source (either with templates or molecular indices), we compared them with the effective temperatures derived from their SEDs, and we derived the temperature scale showed in Table 3.13 (with a regression coefficient of 0.86). This scale shows an offset of \sim +400 K with respect to that of Leggett et al. (1996, 2000) and \sim +200 K compared with the one from Luhman (1999); this effect has already been discussed in Section 3.1; to preserve self-consistency we will use our derived scale in the following Sections.

Figure 3.9: Spectral sequence determined for the sources observed during three different campaigns.

							-	
Source	Model collection	T _{eff}	logg	Spectral Type	vsin(i) (km/s)	EW(H α)crit ¹	$\log(\dot{M}_{acc})(M_{\odot}/yr)$	Binary ³
LOri017*	Kurucz	4250	4.0	—	70	_		
LOri031	Kurucz	3750	4.0	M3.5	40	x		
LOri042	Kurucz	3750	4.0	M4.0	30	x		
LOri050	NextGen	3700	4.0	M4.0	60	1	-10.878±0.05	M08, S08
LOri055	NextGen	3700	4.0	M4.0	<20	x		
LOri056	NextGen	3700	4.0	M4.0	_	x		
LOri057	NextGen	3700	4.0	M5.5	<20	x		
LOri058	NextGen	3500	4.0	M3.5	_	x		
LOri059	NextGen	3500	4.0	M4.0	_	x		
LOri060	NextGen	3500	4.0	M4.0	60	x		
LOri063	NextGen	3700	4.0	M4.0	_	x		
LOri068	NextGen	3700	4.0	M5.0	_	X		
LOri073	NextGen	3700	4.0	M5.5	_	x		
LOri075	NextGen	3400	4.0	M5.0	65 ²	×		M08, B09

Table 3.7: Parameters derived from for the MIKE sample.

*There were problems on the extraction of several orders. We have used the $T_{\rm eff}$ corresponding to the SED fit shown in Sect. 3.1

¹ \checkmark indicates that the object fulfills the accretion criterion by Barrado y Navascués & Martín (2003) (those marked with \checkmark do not).

² From Maxted et al. (2008).

³ Binary system according to Maxted et al. (2008) (M08), Sacco et al. (2008) (S08) or this work (B09).

Object	Spectral Type	EW(H α)crit ¹	$\log(\dot{M}_{acc})(M_{\odot}/yr)$	Na I Mem ²	Object	Spectral Type	EW(H α)crit ¹	$\log(\dot{M}_{acc})(M_{\odot}/yr)$	Na I Mem ²
LOri075	M5.0	×		Mem	LOri133	M4.75	×		NM
LOri081	M5.25	×		Mem	LOri134	M5.0	×		Mem
LOri082	M4.75	×		Mem	LOri135	M6.5	×		Mem
LOri087	M5.0	×		Mem	LOri139	M5.75	×		Mem
LOri095	M6.0	×		Mem	LOri140	M7.0	1	-8.875±0.14	Mem
LOri098	M5.0	×		Mem	LOri141	M4.0	×		NM
LOri107	M6.0	×		Mem	LOri147	M5.5	x		NM
LOri110	M5.25	x		NM	LOri150	M7.0	×		Mem
LOri114	M6.0	×		Mem	LOri151	M5.5	×		NM
LOri115	M5.0	x		NM	LOri154	M8.0	×		NM
LOri116	M5.5	x		Mem	LOri155	M8.0	×		Mem
LOri118	M5.5	x		Mem	LOri156	M8.0	1	-8.022±0.10	Mem
LOri124	M5.5	×		Mem	LOri161	M8.0	1	-9.967±0.42	Mem
LOri126	M6.5	1	-8.781±0.10	Mem	LOri165	M7.5	-		Mem
LOri130	M5.25	×		Mem					

Table 3.8: Parameters derived for the LRIS (low resolution spectra) sample.

 1 \checkmark indicates that the object fulfills the accretion criterion by Barrado y Navascués & Martín (2003) (those marked with \varkappa do not). 2 Membership based on the measured Na I EW.

Object	Spectral Type	EW(Ha)crit1	$\log(\dot{M}_{acc})(M_{\odot}/yr)$	LC ²	Object	Spectral Type	EW(H α)crit ¹	$\log(\dot{M}_{acc})(M_{\odot}/yr)$	LC ²
LOri068	M4.5	x		IV	LOri099	M5.25	X		IV
LOri071	M5.0	x		IV	LOri106	M5.5	1	-10.917±0.01	IV
LOri077	M5.0	x		IV	LOri109	M5.5	×		IV
LOri089	M5.0	×		IV	LOri113	M5.5	1	-10.574±0.03	IV
LOri091	M5.5	×		IV	LOri119	M5.5	×		V
LOri094	M5.5	×		IV	LOri129	M6.0	×		IV

Table 3.9: Parameters derived for the LRIS (medum resolution spectra) sample.

1 🗸 indicates that the object fulfills the accretion criterion by Barrado y Navascués & Martín (2003) (those marked with

 λ of notice test that the object running the decrement energy λ do not). ² Based on comparison of the KI bluer component of the λ 7700 doublet with standards of luminosity class III, IV and V and similar spectral type (one half subclass maximum difference).

Tal	ole 3.10:	Parameters	derived	for t	he T	WIN	sample.
-----	-----------	------------	---------	-------	------	-----	---------

Object	Spectral Type	EW(Ha)crit1	$\log(\dot{M}_{acc})(M_{\odot}/yr)$	Alkali Mem ²	Object	Spectral Type	EW(Ha)crit1	$\log(\dot{M}_{acc})(M_{\odot}/yr)$	Alkali Mem ²
DM48	M1.5	×		Mem	LOri061	M2.0	1	-7.647±0.05	Mem
LOri007	M1.0	_*		Mem?	LOri062	M3.0	×		Mem
LOri036	M3.5	x		NM	LOri080	M5.5	1	-7.061±0.05	Mem
LOri044	M4.5	×		NM	LOri091	M4.5	1	-9.177±0.19	Mem
LOri045	M2.0	×		Mem	LOri092	M4.5	×		Mem
LOri048	M3.0	×		Mem	LOri105	M6.0	×		Mem
LOri052	M5.0	×		NM					

1 🗸 indicates that the object fulfills the accretion criterion by Barrado y Navascués & Martín (2003) (those marked with \times do not). ² Membership based on the measured Na I and K I doublets equivalent widths. * See Section 3.3.5

Object	Spectral Type	EW(H α)crit ¹	$\log(\dot{M}_{acc})(M_{\odot}/yr)$	Alkali Mem ²	Object	Spectral Type	EW(H α)crit ¹	$\log(\dot{M}_{acc})(M_{\odot}/yr)$	Alkali Mem ²
C69-X-E-009 I	K2	1	-7.555±0.35	Mem	C69-X-E-068 M	K2	×	-	NM
C69-X-E-010 sX	K3	×	-	NM	C69-X-E-069 c	K5	×	-	NM
C69-X-E-027 n	M4.0	×	-	Mem	C69-X-E-071 c	K7	×	-	NM
C69-X-E-040 M	M3.5	×	-	Mem	C69-X-E-072 I	M3	×	-	NM
C69-X-E-060 n	K6	×	-	NM	C69-X-E-073 I	K4	×	-	NM
C69-X-E-064 I	M4.0	×	-	Mem	C69-X-E-104 c	M3.5	×	-	Mem
C69EI1-10336	M4	×	-	Mem	LOri046	M4.0	×	-	NM
C69EI1-114	M1.5	×	-	Mem	LOri049	M5.0	×	-	NM
C69EI1-13542	K3	×	-	NM	LOri053	M5.5	×	-	Mem
C69EI1-14424	M3.5	×	-	Mem	LOri054	M5.5	×	-	Mem
C69EI1-14609	M3	1	-5.559 ± 0.25	Mem	LOri064	M5.5	×	-	Mem?
C69EI1-790	M3	x	-	Mem	LOri069	-	×	-	_*
C69WI1-3226	K7-M0	x	-	NM	LOri070	M5.5	×	-	Mem
C69WI1-4897	F9	×	-	NM	LOri072	M6.0	×	-	Mem
C69_1d03367	M3.5	x	-	Mem	LOri078	M3.5	×	-	Mem
DM065	M3.5	x	-	Mem	LOri079	M6.0	×	-	Mem
DM070	M3.5	×	-	Mem	LOri083	-	×	-	_*
DM48	M3.5	x	_	Mem	LOri084	M6.0	×	-	Mem

 Table 3.11: Parameters derived for the CAFOS sample.

¹ ✓ indicates that the object fulfills the accretion criterion by Barrado y Navascués & Martín (2003) (those marked with X do not).
 ² Membership based on the measured Na I and K I doublets equivalent widths. * See Section 3.3.5

			-	2				-	2
Object	Spectral Type	$EW(H\alpha)crit^1$	$\log(\dot{M}_{acc})(M_{\odot}/yr)$	Li I Mem ²	Object	Spectral Type	$EW(H\alpha)crit^1$	$\log(\dot{M}_{acc})(M_{\odot}/yr)$	Li I Mem ²
C69WI1-2708	M3.5	×	-	1	LOri053	M4.5	×	-	1
C69WI1-9288	M2.5	1	-7.049±0.024	~	LOri056	M5.0	×	-	1
DM009	K9	x	-	~	LOri059	M5.0	×	-	1
DM016	M1.5	×	-	1	LOri069	M5.5	×	-	1
LOri001	M0	x	-	~	LOri073	M5.0	×	-	1
LOri007	M1.5	x	-	×	LOri075	M5.5	×	-	1
LOri011	K9	×	-	×	LOri079	M6.5	×	-	1
LOri012	K8	x	-	×	LOri086	M5.0	×	-	1
LOri013	M3.5	x	-	~	LOri087	M5.0	×	-	1
LOri024	M1.5	x	-	~	LOri088	M5.5	×	-	1
LOri026	M2.5	x	-	~	LOri091	M5.5	×	-	1
LOri037	M3.5	x	-	~	LOri093	M5.5	×	-	1
LOri038	M3.0	1	-10.904 ± 0.030	~	LOri094	M5.5	×	-	1
LOri043	M4.0	x	-	~	LOri096	M5.0	×	-	1
LOri044	M3.5	×	-	×	LOri099	M5.75	×	-	1
LOri045	M4.0	x	-	~	LOri105	M6.0	×	-	✓?
LOri046	M4.0	×	-	×	LOri109	M6.0	×	-	1
LOri049	M4.0	×	-	×	LOri112	M6.5	×	-	1
LOri050	M4.0	×	-	~	LOri115	M5.0	×	-	1
LOri052	M4.0	×	-	X ?	LOri120	M5.5	×	-	1

Table 3.12: Parameters derived for the FLAMES sample.

¹ \checkmark indicates that the object fulfills the accretion criterion by Barrado y Navascués & Martín (2003) (those marked with \varkappa do not). ² Membership based on the measured Li I equivalent width.

Spectral Type	Effective Temperature
K3	5000 K
K4	4850 K
K5	4700 K
K6	4600 K
K7	4450 K
K8	4325 K
K9	4200 K
M0	4050 K
M1	3900 K
M2	3775 K
M3	3625 K
M4	3500 K
M5	3350 K
M6	3225 K
M7	3050 K
M8	2950 K
M9	2800 K
LO	2650 K

 Table 3.13: Temperature scale derived from our spectroscopic data of Collinder 69.

3.3.2 Rotational velocities estimation.

For the sample of sources observed with the highest resolution (those observed with MIKE, Table 3.7) we tried to measure the rotational velocity by comparing with Kurucz model synthetized for different velocities. Since there is a known dispersion between effective temperature based on spectral types and T_{eff} scales and those derived using models (and we are going to use the latter in our $v \sin(i)$ estimation), we performed synthetic spectra fit to our observational data. We built a grid of synthetic spectra using different colections: Kurucz, NextGen and Dusty covering effective temperatures in the range 5000-2000 K, asuming solar metallicities, and a range of log g between 3.5 and 5.0. We lowered the resolution of our spectra to R~200, which is the resolution provided in the public servers by the Lyon group in order to perform a direct fitting process. Table 3.7 shows the best fitting parameter for each case.

According to the effective temperatures derived, we computed high resolution Kurucz synthetic spectra in the wavelength range 6090–6130 Åwith log g of 4.0 dex and different vsin(i) values. We chose that precise wavelength range because the SNR of our spectra is not very high in all the cases, and, according to the Kurukz models, two of the most prominent photospheric absorption lines (from Ca I) are located within this region. We have performed a model fit to those lines in order to estimate the rotational velocities of our sources. Prior to this comparison, we included the instrumental response measured on the MIKE lamp arc. The mean full-widh half

Figure 3.10: Rotational velocity.

maximum value measured on the lamp spectra was 0.4914 Å, corresponding to a velocity of ~20 km/s (the lower limit we can provide for several cases). The estimates rotational velocities are provided in Table 3.7 and are in the same range of values of those derived by Sacco et al. (2008) for other members with similar spectral types. In particular there are three sources for which Sacco et al. (2008) and us have estimated vsin(*i*). In two of these cases, LOri055 and LOri057, both estimations are in very good agreement, but in the case of LOri060 we provide a value 40 km/s higher than the one obtained by Sacco et al. (2008). Since our determination is based only on a doublet and theirs on the cross-correlation of their whole spectra we must take their upper-limit of ~ 20 km/s as a more robust measurement.

3.3.3 The effect of the resolution on the measurement of the lines.

As has been stated at the begining of this section, we have obtained data from many different telescopes using various instrumental configurations; this way, as a logical consequence, our dataset comprises a varity of resolutions. In order to assure that we do not incur in any formal mistake when mixing the measured properties of the lines (in particular EW, FHWM and $FW_{10\%}$) of spectra taken at different resolutions, we have performed the following exercise:

We have degraded one of our FLAMES spectra (from LOri038, a M3, accreting, Class II, confirmed member) to different resolutions (including those listed in Table 3.5). We have then

Figure 3.11: Relationship between different measurements of the H α and Li I line profiles and the resolution os the spectra where the measurement has been performed.

(on those degraded spectra) measured FHWM, EW and FW_{10%} for the H α (emission) and Li λ 6708 Å lines (absorption) with the automatic procedure explained in Appendix B. In Fig. 3.11 we provide those values (EW and FW_{10%} for H α and EW for Li I λ 6708 Å) as a function of the resolution of the spectra. The length of the y-axes has been fixed by purpose for each plot: in the first panel (from left to right), it represents the variation of the instrumental response (the FHWM measured on the respective arc adapted for each value of the resolution) among the resolutions considered. In the cases of the middle and right-side pannels, the length of this axes provides an idea of the variation within members of Collinder 69 for the corresponding equivalent width. Note that in the case of H α there is clearly no significant dependence on the measurements made at different resolutions (the variations lie within the error bars). For the case of the Lithium, due to the intrinsic weakness of the line, the accuracy of the measurement (meaning the errorbars) lowers with the spectral resolution, but still it seems perfectly reasonable to compare meaurements at R ~ 2000 and R ~ 8000. In the same figure we have highlighted te range of resolutions where Li is not detectable anymore. A detailed view of the "degeneration" of the lines for this example is provided in fig. 3.12

Figure 3.12: Sequence composed by a detailed view of the evolution of the profiles of the H α (emission) and Li I (absorption) lines with the variation of the spectral resolution. The first panel (from left to right) corresponds to the original resolution of our FLAMES spectrum of LOri038, a M3 member of C69 (R ~8000). In the last panel we have degraded the FLAMES spectra to a resolution similar to that of our low-resolution campaign (R ~800 obtained with the B&C spectrograph). As can be seen in this figure and in Fig. 3.11 the lithium's equivalent width can be measured down to resolutions of the order of 1250 (for a good signal to noise ratio as it is the case of our spectrum of LOri038). The linestyles and color code are those explained on Appendix B.

3.3.4 Activity, accretion and youth indicators.

Several features were detected in our spectra; features such as H α and H β emission, some forbidden lines in emission (OI, II, SII), He I also in emission, Lithium absorption and several alkali absorption lines (mainly Na I and K1).

Activity and accretion:

The forbidden emission lines of [OI], [SII] and [NII] have been attributed in the literature to low density regions such as winds, and are therefore a tracer of the mass loss process (see Shu et al. 1994; Hartmann et al. 1994 and Hartmann 1999). In the same context, both the He I λ 6678 Åand H α emissions are characteristic of classical T Tauri stars and their substellar analogs (Martín et al. 2001; Natta & Testi 2001; Natta et al. 2002; Testi et al. 2002; Mohanty et al. 2003; Jayawardhana et al. 2002b,a, 2003a,b; Barrado y Navascués et al. 2002, 2003; White & Basri 2003).

We have detected forbidden emission lines in some of our higher resolution spectra (see tables 3.15, 3.16, 3.17 and 3.21), but since most of these detections are quite marginal we cannot assure whether we are receiving signal from the source itself or nebular emission. Regarding the He I λ 6678 and H α emissions, ~55% of the sources showing H α large enough to suggest that the source is undergoing accretion (see the following paragraphs) also show He I in emission. In two of the cases (FLAMES spectra) the line could be contaminated by the nebular emission, the remaining cases correspond to long-slit spectra, and therefore, if our reduction process has been performed properly, this effect should not be present. There is a clear trend among both equivalent widths; the stronger the H α emission, the strongest the He I one; but our sample is not statistically significant to derive a quantitative relationship.

As has been mentioned before, even though H α emission is commonly used as a proxy for active accretion, some considerations have to be taken into account when studying this fenomena in cool objects since part of that emission can be chromospheric and has nothing to do with accretion processes. Barrado y Navascués & Martín (2003) proposed an empirical criterion, based on the saturation limit of chromospheric activity, to determine whether a star or brown dwarf is accreting matter from a disk or not.

This criterion is translated into a relationship between the spectral type and the EW(H α) of the source. We have applied the temperature scale provided in Table 3.13 to convert the spectral types in T_{eff} compatibles with those derived for our sources from their SEDs (see Section 3.1), and applying this relation, we have estimated which from our candidates are active accretors. In Fig 3.13 we display the diagram relating this two parameters for all the confirmed members of Collinder 69 (members confirmed by Dolan & Mathieu 1999, 2001; Maxted et al. 2008; Sacco et al. 2008 or this work). Our measurements are displayed as solid dots (while Dolan & Mathieu 1999, 2001 members are represented with squares, and Sacco et al. 2008 members with diamonds). We have also included the information regarding the infrared class (as a proxy for the presence of disk, from Barrado y Navascués et al. 2007b) with larger circumferences sourrounding Class

II sources. There are two brown dwarfs classified as active accretors that are not classified as Class II according to their IRAC data. One of them is LOri156; although it is classified as Class III according to the criteria from Allen et al. (2004), the large α parameter ($\alpha = -1.54$) suggests that indeed, the source harbours a thick disk. The other brown dwarf, LOri161, was not detected on the 5.8 and 8.0 micron channels of IRAC, and therefore no IR Class has been assigned to it. The strong H α emission could be explained either as a result of active accretion from a thin disk that has not been detected due to lack of sensitivity (the third and fourth channels of the IRAC camera are less sensitive than the first two); or as a flare. We would need another spectra to be able to decide between the two options; in any case, the signal-to-noise ratio of the average of the

On the other hand, there is one source, LOri091 showing a very large H α emission in one of our spectra (it has been observed three times by us); we have not classified it as an accreting source since we are quite confident that the spectra from which we measured this strong emission was taking during a flare of this very low mass star (see Section 3.3.5 for more details).

spectra taken was not too high yielding a large uncertainty in the measurement of the EW(H α)

When studying the H α emission of our sources, we were also forced to take into account the environment where the sources are located. In cases like Collinder 69, where a non-negligiable nebular H α component can be observed along the whole cluster (see Fig. 1.7), one has to be very careful make sure that the nebular component is subtracted properly from the spectrum of each science target. This is not an issue for instance when dealing with long-slit spectroscopy (like most of our campaigns), since the parts of the slit where the science object is not located will allow us to estimate this "contamination". On the other hand, when observing with fiber spectrographs the location of the "sky fibers" is crucial in order not to introduce a bias on the measurements.

In Fig. 3.14 we show an H α image (from Finkbeiner 2003, with very low spatial resolution) of the LOSFR where we have masked the location of the sources observed with FLAMES in 2008 and also the location of the sky fibers used to correct our measurements. At a first sight, some structure can be inferred in the nebular emission surrounded by our science targets; we studied the variations of the H α nebular emission with the sky fibers; we measured a mean full width at 10% of ~41 km/s with a standard deviation of ~3 km/s. We computed a median sky fiber and corrected the science spectra with that median; therefore the dispersion measured in those fibers translated into an added ~7% uncertainty in our measurements.

In Tables 3.15, 3.18, 3.16, 3.17, 3.19, 3.20 and 3.21 we present the measured EW (also FWHM and FW_{10%} for H α) for all the previously mentioned lines (when consistent with the wavelength coverage of the particular instrumental set-up). For those sources fulfilling the Barrado y Navascués & Martín (2003) criteria on the H α equivalent width, we have estimated the mass accretion rate using the measured FW_{10%}(H α) and the following relationship derived by Natta et al. (2004):

(74.51±33.07 Å).

Figure 3.13: H α equivalent width versus the effective temperature for confirmed members of Collinder 69. We display data from Dolan & Mathieu (1999, 2001), with filled squares and from Sacco et al. (2008) with filled diamonds. Our data are displayed with solid dots; in every sample red symbols are used for those sources with measured equivalent width above the saturation criteria. Overlapping large circles denote Class II objects (IR Class from Spitzer/IRAC data). For some sources we had more than one epoch of data (either our own data or those from Dolan & Mathieu 1999, 2001; Sacco et al. 2008); the different measurements for each of this sources appear joint with a solid line. The short-dashed line corresponds to the saturation criteria defined by Barrado y Navascués & Martín (2003), whereas the two long-dashed lines are other criteria which have been used to discriminate between Classical and Weak line TTauri stars. A vertical dotted line highlights the substellar frontier for an estimated age of 5 Myr according to the isochrones form the Lyon group (Baraffe et al. 2002).

Figure 3.14: Same image as in Fig. 1.7 but with contour levels overplotted. On top of it we have marked with pink crosses the positions of the candidates observed with FLAMES, and with red squares the locus of the sky fibers used to correct our observations.

$$\log(\dot{M}_{acc}) = -12.89(\pm 0.3) + 9.7(\pm 0.7) \times 10^{-3} \text{FW}_{10\%}(H\alpha)$$
(3.1)

These accretion rates are listed on Tables 3.7, 3.8, 3.9, 3.10, 3.11 and 3.12 (as well as other physical parameters derived in the forthcoming sections). Individual sources are analyzed in detail in Section 3.3.5. In Fig. 3.15 we show an accretion rate versus mass diagram where we compare the values estimated in this work with those derived in the literature for different young stellar and substellar sources (Calvet et al. (2004); Muzerolle et al. (2005); Mohanty et al. (2005) and Natta et al. (2006)) and even higher mass YSOs (Mendigutia et al. 2009, priv. comm.). Our data follow the $\dot{M}_{acc} \propto M_*^2$ trend with similar scatter than the rest of studies published so far.

We have also tried to relate the H α emission with the properties of the disks. The theoretical disk models used to interpret the IRAC colour-colour diagram by Allen et al. (2004) suggest that the accretion rates increase from the bottom-left to the top-right of the Class II region on the [5.8]-[8.0] vs [3.6]-[4.5] space due to the increase of both, the disk emission and the wall emission. In Fig. 3.16 we show the mentioned IRAC colour-colour diagram for the members of Collinder 69 (spectroscopically confirmed members, and highly reliable photometric candidates). We have included information regarding the presence of disk (large red circles) and the intensity

Figure 3.15: Mass accretion rates for a wide range of stellar masses. Red filled dots from this work. Crosses are from Calvet et al. (2004); Muzerolle et al. (2005); Mohanty et al. (2005) and Natta et al. (2006). Filled and open black symbols from Mendigutia et al 2009 (private communication), corresponding to the objects with EW(H α) > 10 Å and < 10 Å, respectively. Triangles represent lower limits. The vertical bars (without top nor bottom dash) over these symbols (the black ones from the literature and also LOri080 from this work) represent variability measured in time scales of hours – months, not uncertainty in the measurements. The mass that we show in this figure is the average between the one derived from the L_{bol} and the one derived from the T_{eff} (with the error bars displaying the differences among them). The dashed line follows $\dot{M}_{acc} \propto M_*^2$, and the dotted lines ± 1 dex.

of the emission of H α . Apart from LOri143 (the black dot surrounded only by a big blue square), a source that shows large variability in H α and probably the large EW measured corresponds with a flare event; the tendency shown by the remaining sources seems to agree with the hypothesis just explained. A similar behaviour is observed in Fig. 3.17 where we use the same symbols to represent the effective temperature vs the α parameter introduced by Lada et al. (2006) to represent the IRAC slope of the sources. It is quite eye-catching the fact that the largest values of the α parameter (the thicker disks) are concentrated around an specific range of temperatures. Since our method to derive the effective temperature does not account for possible effects of the disk on the "photospheric" part of the SED, this might simply be a bias introduced by our methodology.

Youth indicators:

Regarding youth indicators, above $\sim 0.065 \text{ M}_{\odot}$ (less massive objects cannot develop the necessary temperature in their cores), lithium acts as an age scale because the length of time it

Figure 3.16: IRAC color-color diagram including information about the nature of the disk and the H α emission of the sources. Sources showing infrared excess have been surrounded by a red circumference. A blue square with a size proportional to the intensity of the H α emission of the sources is also shown in the figure.

takes for the core to reach 3.0×10^6 K is a sensitive function of mass (Basri 1997). Because these stars are fully convective, once the core temperature exceeds the necessary limit, the entire lithium content of the star should be exhausted rapidly and thus be reflected in an observable change in the photospheric lithium abundance. Theoretical models make specific predictions about the time evolution of this lithium depletion boundary. For example, Ventura et al. (1998) predict that at ages 30, 70, and 140 Myr, the lithium depletion edge should occur at 0.17, 0.09, and 0.07 M_{\odot}, respectively. Other models by Chabrier & Baraffe (1997) and Burrows et al. (1997) make similar predictions of the variation of this lithium depletion boundary with age. Indeed, Bildsten et al. (1997) and others have argued that the age for an open cluster derived in this manner should be more accurate than those found by any other method.

Due to the intrinsic weakness of the lithium line we have only been able to use it as a youth indicator for the sources observed with a high signal-to-noise ratio (specially in the lower resolution campaigns) and down to a certain spectral resolution (see Section 3.3.3). In Table 3.12, for example, we have included a membership column based on the presence or absence of Li I in the spectra (see Fig 3.18 for an example of two sets of objects clearly showing Li I in absorption in spectra taken with two different instrumental set-ups).

Figure 3.17: Effective temperature vs. IRAC SED slope of the confirmed and candidate members to Collinder 69 including information about the nature of the disk and the H α emission of the sources. Same symbols and colors as in Fig 3.16

Figure 3.19 shows the measured lithium equivalent width versus the spectral type of the candidate members to Collinder 69. We have included the data from Dolan & Mathieu (1999, 2001) and the measurements from this work. For comparison we have also displayed data corresponding to a similar age cluster, σ Orionis, as well as an older one, IC2391. We have also overploted the theoretical equivalent widths from Zapatero Osorio et al. (2002) considering log g = 4.0 and log g = 4.5 and initial cosmic abundance (A(Li) = 3.1). Note that a significant fraction of our sources lie on top or above of the theoretical curves, implying that lithium is still preserved at the age of Collinder 69.

The scatter of the Li I equivalent widths is considerable for all spectral types included in the figure, getting even larger for temperatures cooler than M4. This is a well-known open problem (see Barrado y Navascués et al. 2001, Zapatero Osorio et al. 2002 and references therein). The dispersion could be ascribed to a variability in the Li I line as a consequence of stellar activity, different mixing processes, presence or absence of circumstellar disks, binarity, or different rotation rates from star to star. We have overplotted red dots over the sources in our sample classified as accretors. It turns out to be quite clear that all of them but LOri080 (the lowest red dot discussed in Section 3.3.5) follow a trend showing average equivalent widths.

In addition to the discussed dispersion in the Lithium equivalent width measured on sources with different temperatures, we have observed some variability in this line when compar-

Figure 3.18: Detail around Li I λ 6708Å for eight confirmed members with different spectral types. The two panels correspond to two different campaigns: Magellan/MIKE echelle spectra (only the order corresponding to this line), and FLAMES multi-fiber spectra.

ing our data with the values measured by Sacco et al. (2008) for some of the sources. We display our measurements against theirs in Fig. 3.20. It looks like most of our measured values are lower than those from Sacco et al. (2008), but we are dealing with too low numbers to perform any statistics. In any case, this behaviour is not systematic (we provide measurements that are higher than the ones that they provide), and from the exercise that we performed in Section 3.3.3 we are quite confident that what we are showing is not an instrumental bias. In Table 3.14 we provide the properties of the sources showing this variability in the Li absorption. Most of the sources show features typical of active stars (such as X-ray emission or H α variability). Neuhaeuser et al. (1998) monitored the young star Par 1724 finding a variable Lithium equivalent width consistent with rotational modulation. In any case we only have two measurements per source, and the sample is too small to arrive to any conclusion.

Finally, several alkali lines are known to be gravity sensitive in M-type stars. For example the K I doublet at 7665 & 7700 Å and the Na I doublet at 8184 & 8195.5 (see Martin et al. 1996; Schiavon et al. 1997). The surface gravity of members of Collinder 69 is expected to be log(g) = 3 - 4 (Maxted et al. 2008), whereas a typical M-type giant will have $log(g) \sim 2$. Thus, the equivalent width of both doublets, EW(K I) & EW(Na I), can be used to identify background giants in our sample. We have used the most suitable of these lines depending on the resolution

Figure 3.19: Lithium equivalent width versus the spectral type. We display data from Dolan & Mathieu (1999, 2001) as crosses, whereas our new data appear as solid circles. Values for Sigma Orionis low mass stars are displayed as open squares Zapatero Osorio et al. (2002). The Weak-line TTauri stars belonging to Taurus and the Sco-Cen complex are included as plus symbols, whereas the open circles correspond to members of the IC2391 open cluster. The solid line corresponds to the upper envelope of the values measured in young open clusters such as IC2391, IC2602, the Pleiades and M35. The long-dashed line delimits the areas for weak-line and post-TTauri stars (adapted from Martin 1997 and Martín & Magazzù 1999. Short-dashed and dotted lines correspond to the cosmic abundances - A(Li) = 3.1 - from gravities of log g = 4.5 and 4.0, respectively (curves of growth from Zapatero Osorio et al. 2002).

Figure 3.20: Lithium equivalent width provided in Sacco et al. (2008) versus the values measured in this work. We have used the same symbols and color as in Figs. 3.16 and 3.17 adding the information about binarity provided by Sacco et al. (2008); Maxted et al. (2008)

Table 3.14: Properties of the sources showing Li variability (Sacco et al. (2008) values compared to the values derived in this work). Note that there is no bias concerning the resolution of the spectra (as was also proved with the exercise of Sec. 3.3.3). The instrument code is the same as in 3.25

Object	SpT	INS	Binarity ¹	IR Class	T _{eff} ²	vsini ³	$H\alpha$ Vble ⁴	X-ray ⁵
LOri050	M4.0	(8) (3)	SB1(M08 S08)	Π	3700.0		N	Y
LOri055	M4.0	(3)		III	3700.0	<17.0	Ν	Ν
LOri056	M4.0 M5.0	(3) (8)		III	3700.0	<19.3	Y	Ν
LOri057	M5.5	(3)		III	3700.0	<17.0	Ν	Ν
LOri060	M4.0	(3)		III	3500.0	<18.5	Ν	Ν
LOri063	M4.0	(3)		II	3700.0	<18.2	Y	Ν
LOri068	M4.5 M5.0	(1) (3)		III	3700.0	<17.0	Y	Ν
LOri069	M5.5	(8)	SB2(M08 S08)	III	3400.0		Y	Ν
LOri075	M5.0 M5.5	(2) (8) (3)	SB1 (M08)	III	3400.0	61.3+11.5-4.9	Y	Ν
LOri088	M5.5	(8)		III	3200.0	<17.0	Y	Ν
LOri093	M5.5	(8)		III	3500.0	<18.3	Y	Ν
LOri094	M5.5	(8) (1)		III	3200.0	54.8+5.5-8.2	Y	Ν
LOri096	M5.0	(8)		II	3500.0	<19.1	Y ⁶	Ν
LOri106	M5.5	(1)		Π	3200.0	<17.0	Y	Ν

¹ According to Sacco et al. (2008) (S08) or Maxted et al. (2008) (M08).

² Derived with VOSA.

 3 From Sacco et al. (2008).

⁴ Comparing the measurements of this work (in the case of LOri056 the variation in the H α emission is also clear between the two spectra taken in different campaigns) with those of Sacco et al. (2008).

⁵ Sources detected in our XMM-Newton survey (see previous Chapter).

⁶ Although no H α measurement is provided for LOri096 from our FLAMES spectra, the raw spectra, no "sky substraction performed", shows an EW(H α) lower than the one measured by Sacco et al. (2008).

and the wavelength coverage of each campaign; as an example, for the medium resolution LRIS sample, we have only been able to compare the bluest component of the previously mentioned K I doublet with templates of different luminosity class, since the wavelength range covered with our instrumental configuration did not cover the other component (see Fig. 3.21 for an example of this comparison). We must note anyway that the EW of this component measured on the templates has a very strong dependency on the luminosity class, and therefore we think that our estimated values listed in Table 3.9 are reliable.

Figure 3.21: Determination of the gravity by comparison of the bluest component of the K I doublet on two M5.0 candidate members (LOri071 and LOri077) with respect to several templates with different luminosity class.

In Fig. 3.22 we plot the effective temperature of members and rejected candidates to Collinder 69 against their measured Na I. We have also included the measurements from Maxted et al. (2008) and highlighted those sources classified as Weak-line TTauri (showing X-ray emission) and as active accretors (green and red solid dots respectively). As we did with the Li I measurements, we have compared the values measured by us with those from Maxted et al. (2008) for the sources in common. We find that \sim 35% of the common sources show Na I variability (differences not compatible within the error bars for both measurements). More than half of these sources are either Classical TTauris or X-ray emitters.

Considering mean values in the variable sources, we have checked the following trend: while there is a mix between the two populations (Classical and Weak-line TTauris) in the stellarmass domain, for the substellar one (the boundary is located at T_{eff} ~3150 K for 5 Myr according to the SIESS + COND isochrone), we find lower Na I EWs on the active accretors than in the rest of the sample.

Figure 3.22: T_{eff} vs EW(NaI) for members and non-members of Collinder 69. Rejected candidates are displayed as plus signs, confirmed members as solid dots, where: red ones highlight sources classified as active accretors and green ones Weak-line TTauri stars detected on our X-rays survey. For those sources showing large variability in the measured Na I equivalent widths (measurements from Maxted et al. 2008 and this work) we have included vertical bars (with the same color code described before) connecting those measurements. Large black circunferences surround Class II sources. The only solid red dot not classified as Class II corresponds to LOri156; a brown dwarf harbouring a thick disk already discussed in the Activity and accretion section.

Table 3.15: Equivalent width of the main lines observed in the spectra obtained with MIKE. For the case of the H α emission the values of FWHM and FW_{10%} have also been included. The symbol "–" indicates that the line is not detectable. We note that for most of the sources we took three exposures. In this table we provide the value measured on the averaged spectra (no significant variability was detected in such a short time scale).

Object	Hβ	[OI]	[OI]	[OI]	[NII]	[NII]	Hα			HeI	LiI	[SII]	[SII]
	4861	5577	6300	6364	6548	6581	6563			6678	6708	6717	6731
	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW	FW10% (km/s) eFW10	FWHM(km/s) eFWHM	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW
LOri017	-	-	-	-	-	-	-6.572±2.307	19.033 ± 0.891	6.360±0.379	-	-	-	-
LOri031	-	-	-	-	-	-	-2.838±0.139	133.886 ± 0.100	57.470±0.100	-	0.614 ± 0.045	-	-
LOri042	-	-	-	-	-	-	-3.024±0.156	130.237 ± 0.100	52.283±0.100	-	0.648 ± 0.078	-	-
LOri050	-9.412±1.637	-0.531 ± 0.041	-0.584±0.034	-	-	-	-15.979 ± 1.578	204.190 ± 5.078	80.844±0.583	-0.437±0.070	0.570 ± 0.016	-	-
LOri055	-5.112±0.295	-	-	-	-	-	-7.054±0.132	105.422 ± 0.100	54.690 ± 0.100	-	0.413 ± 0.079	-	-
LOri056	-5.158±0.784	-	-	-	-	-	-4.367 ± 0.446	118.967 ± 0.100	29.772±0.100	-	0.306 ± 0.047	-	-
LOri057	-	-	-	-	-	-	-4.999 ± 0.307	133.405 ± 0.100	42.783±0.100	-	0.480 ± 0.083	-	-
LOri058	-	-	-	-	-	-	-7.280 ± 0.398	177.662 ± 0.100	65.785±0.100	-	0.299 ± 0.056	-	-
LOri059	-	-	-	-	-	-	-6.874±0.288	123.839 ± 0.100	44.380±0.100	-	0.390 ± 0.042	-	-
LOri060	-4.133±0.473	-	-1.141±0.416	0.914±0.095	-	-	-4.032 ± 0.214	128.601 ± 12.311	42.838±0.132	-	0.400 ± 0.069	-	-
LOri063	-	-	-	-	0.732±0.045	-2.508 ± 0.385	-11.547±0.692	103.513 ± 0.100	34.225±0.100	-	0.645 ± 0.088	-0.929±0.218	-0.784±0.065
LOri068	-5.488±0.619	-	-	-	-	-	-6.815±0.516	144.819 ± 0.751	52.574±0.379	-	0.691 ± 0.090	-	-
LOri073	-	-	-	-	-	-	-10.906 ± 1.041	308.589 ± 0.100	35.491±0.100	-	0.615 ± 0.055	-	-
LOri075	-	-5.466±1.529	-1.756 ± 0.504	-	-	-	-12.806 ± 0.861	280.897 ± 0.100	63.352±0.100	-	0.941 ± 0.052	-	-

Table 3.16: Equivalent width of the main lines observed in the spectra obtained with LRIS in the lowest resolution mode used. For the case of the H α emission the values of FWHM and FW_{10%} have also been included. The symbol "–" indicates that the line is not detectable. In the case of the Na I doublet at ~8200 Åthe value given is the addition of the EW measured for each component of the doublet. We do not list values for LOri165 since the poor S/N of its spectra does not allow us to provide reliable measurements.

					_					
Object	[OI]	[OI]	[NII]	[NII]	Hα			HeI	[SII]	Na I
	6300	6364	6548	6581	6563			6678	6731	8200
	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW	FW10% (km/s) eFW10	FWHM(km/s) eFWHM	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW
LOri075	-	-	-	-	-10.203±0.885	508.674±28.187	329.813± 2.818	-	-	2.815 ± 0.378
LOri081	-	-	-	-	-3.450 ± 0.071	507.292 ± 10.104	79.108 ± 1.236	-	-	2.379 ± 0.190
LOri082	-	-	-	-	-10.631±2.094	365.138±32.646	243.652 ± 8.528	-	-	1.968 ± 0.100
LOri087	-	-	-	-	-6.995±0.393	524.099 ± 16.692	319.621± 2.182	-	-	3.257 ± 0.405
LOri095	-	-	-	-	-8.231±1.177	472.947±41.735	268.336± 7.519	-	-	2.199 ± 0.345
LOri098	-	-	-	-	-12.508±0.904	192.404 ± 14.548	163.184 ± 2.570	-2.243±0.578	-	3.598 ± 0.513
LOri107	-	-0.682±0.130	-	-	-11.915±1.018	192.824±10.091	101.558 ± 2.808	-	-	2.947 ± 0.063
LOri110	-	-	-	-	-5.731±2.728	315.067±28.476	280.498 ± 27.434	-	-	5.319 ± 0.690
LOri114	-2.392±0.859	-	-	-	-12.589±1.734	443.986±52.475	244.657± 5.723	-	-	2.955 ± 0.207
LOri115	-0.950 ± 0.030	-	-	-	-8.974±0.879	488.641±43.944	228.659 ± 3.564	-	-	4.625 ± 1.472
LOri116	-	-	-	-	-11.779±1.543	550.587±47.371	231.602± 6.291	-	-	2.291 ± 0.063
LOri118	-	-	-	-	-10.429±0.205	385.889±3.739	200.330 ± 1.367	-	-	2.836 ± 0.665
LOri124	-	-	-	-	-6.965±1.776	275.810±30.964	236.637± 8.759	-	-	2.901 ± 0.776
LOri126	-	-	-	-	-35.424±3.504	423.619±10.226	275.512± 2.163	-	-	1.858 ± 0.300
LOri130	-	-	-	-	-8.505 ± 0.629	380.821±11.137	231.322± 2.643	-	-	3.498 ± 0.778
LOri133	-	-	-	-	-2.200 ± 0.402	383.101±11.900	83.850± 11.900	-	-	4.519 ± 0.617
LOri134	-	-	-	-	-5.925 ± 0.307	414.258±13.816	251.489 ± 2.375	-	-	3.471 ± 0.381
LOri135	-	-	-	-	-13.320±3.533	387.911±89.677	272.093±11.159	-	-	2.447 ± 0.936
LOri139	-2.760 ± 0.278	-	-	-	-17.986±1.019	318.437±3.694	236.181± 1.902	-0.884±0.181	-1.134±0.300	2.742 ± 0.398
LOri140	-11.817±3.639	-	-	-	-79.143±9.439	413.949±14.091	286.552 ± 2.040	-4.242±0.171	-	2.328 ± 0.223
LOri141	-	-	-	-	-3.060 ± 0.768	383.389±27.805	344.335± 9.999	-	-	4.918 ± 1.376
LOri147	-	-	-	-	-9.804±1.373	474.165 ± 24.845	241.861 ± 6.880	-	-	6.908 ± 0.417
LOri150	-	-	-	-	-15.254±2.046	294.012±9.445	275.049 ± 3.071	-	-	1.496 ± 0.575
LOri151	-	-	-	-	-9.567±2.024	383.255±72.881	264.943 ± 5.638	-	-	7.022 ± 1.360
LOri154	-	-	-	-	-17.465±3.030	306.366±6.798	255.896± 8.450	-4.429 ± 1.202	-4.092±1.439	6.331± 1.235
LOri155	-	-	-4.276±0.821	-4.418±0.549	-51.493±18.697	786.706±292.685	308.948 ± 8.489	-2.809 ± 0.644	-	2.565 ± 0.434
LOri156	-	-	-	-	-114.455 ± 1.812	501.896 ± 10.670	316.907 ± 8.456	-	-	1.332 ± 0.270
LOri161	-	-	-	-	-74.510±33.069	301.382±42.955	227.491 ± 11.467	-	-	$2.383 {\pm}~0.379$

Table 3.17: Equivalent width of the main lines observed in the spectra obtained with LRIS in medium resolution. For the case of the H α emission the values of FWHM and FW_{10%} have also been included. The symbol "–" indicates that the line is not detectable. In the case of the K I doublet at ~7700 Å only the component at 7665 Å has been measured.

Object	[NII]	[NII]	Hα			HeI	LiI	[SII]	[SII]	K1 I
	6548	6581	6563			6678	6708	6717	6731	7665
	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW	FW10% (km/s) eFW10	FWHM(km/s) eFWHM	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW
LOri068	-	-	-14.388 ± 0.742	314.426± 3.189	135.978± 0.379	-1.424 ± 0.244	0.530 ± 0.045	-0.757 ± 0.378	-0.406 ± 0.180	1.492 ± 0.247
LOri071	-0.490 ± 0.109	-1.127 ± 0.594	-6.812 ± 0.232	229.188 ± 5.875	118.052 ± 0.549	-	0.395 ± 0.071	-	-0.070 ± 0.008	1.645 ± 0.061
LOri077	-0.721±0.245	-	-7.923 ± 0.231	233.149 ± 2.097	119.660 ± 0.407	-	0.486 ± 0.098	-1.142 ± 0.519	-	1.900 ± 0.212
LOri089	-0.422±0.113	-	-3.896 ± 0.225	368.666± 8.329	115.970 ± 1.517	-	0.603 ± 0.218	-0.824 ± 0.377	-	1.545 ± 0.135
LOri091	-	-0.109 ± 0.002	-11.932 ± 1.123	266.885 ± 33.657	114.534 ± 1.133	-0.945 ± 0.305	0.644 ± 0.074	-0.950 ± 0.693	-0.341 ± 0.099	2.168 ± 0.463
LOri094	-	-	-8.488 ± 0.095	321.999 ± 0.786	141.460 ± 0.132	-1.870 ± 0.386	0.719 ± 0.082	-	-1.211 ± 0.821	2.087 ± 0.518
LOri099	-0.575±0.117	-	-5.806 ± 0.638	307.278± 19.619	136.007 ± 4.172	-	0.567 ± 0.158	-	-	1.866 ± 0.069
LOri106	-0.576±0.186	-	-48.423 ± 1.850	203.433 ± 0.821	109.098 ± 0.098	-1.005 ± 0.248	0.477 ± 0.033	-0.192 ± 0.018	-0.255 ± 0.040	3.071 ± 0.887
LOri109	-	-	-8.696 ± 0.447	228.950 ± 2.223	113.744 ± 0.365	-1.139 ± 0.219	0.502 ± 0.148	-	-0.153 ± 0.038	2.623 ± 0.568
LOri113	-	-0.167 ± 0.054	-20.853 ± 0.914	238.784 ± 2.710	129.651 ± 0.332	-1.102 ± 0.139	0.617 ± 0.139	-1.734 ± 0.420	-	2.678 ± 0.625
LOri119	-4.156±1.031	-	-11.876 ± 0.409	227.861± 2.631	112.936 ± 0.339	-0.578 ± 0.187	0.879 ± 0.184	-0.252 ± 0.083	-	3.421 ± 0.668
LOri129	-	-	-10.757 ± 0.936	221.341 ± 4.472	100.069 ± 0.871	-0.675 ± 0.150	0.404 ± 0.092	-	-	3.117 ± 0.769

Table 3.18: Equivalent width of the main lines observed in the spectra obtained with B&C in low and medium resolution. For the case of the H α emission the values of FWHM and FW_{10%} have also been included. The symbol "–" indicates that the line is not detectable. We also include the parameters derived for these objects. Note that, whenever possible, the Na I doublet is preferred over the K I to estimate the gravity of our sources since the measurement of the latter can be affected by the absorption band on top of which it is located.

Object	$H\alpha$			KI	KI	NaI		EW(H α)crit ¹	Alkali g
	6563			7665	7700	8200	SpT		
	EW(Å) eEW	FW10% (km/s) eFW10	FWHM(km/s) eFWHM	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW			
LOri117	23.421±1.442	351.588 ± 13.503	137.967 ± 2.905			2.278±0.176	M6.0	x	Mem
LOri120	10.182 ± 1.967	271.625±733.136	112.917±15.762			3.388 ± 0.361	M5.5	x	Mem
LOri143	41.783 ± 4.663	289.273 ± 4.808	238.369 ± 3.072			2.590 ± 0.276	M7.0	×	Mem
LOri080	14.671±1.001	259.417 ± 24.445	125.030 ± 1.767	1.662 ± 0.886	1.205 ± 0.253		M5.5	×	Mem
LOri100	11.425 ± 1.839	205.041 ± 24.653	130.484± 3.571	2.063 ± 0.217	1.241 ± 0.063		M5.5	×	Mem

 1 \checkmark indicates that the object fulfills the accretion criterion by Barrado y Navascués & Martín (2003) (those marked with \checkmark do not).

3.3.5 Particular sources:

3.3.5.1 Accretion:

LOri050: Class II source according to its IRAC photometry (see Chapter 2) and active accretor based to the measured H α equivalent width (Table 3.15), its derived spectral type (Table 3.7) and its H α full width at 10% of the flux (Table 3.15). Via SED fitting we have determined a mass of ~0.3 M $_{\odot}$ for this source (see Section 3.1), and we have estimated an accretion rate of 9.11×10^{-11} M $_{\odot}$ /yr. As can be seen in Fig. 3.15, this accretion rate is slightly lower than the one expected according to the mass of the source, but this is not surprising since according to Sacco et al. 2008 and Maxted et al. 2008 LOri050 is a spectroscopic binary. Therefore we are observing a very interesting system with a total stellar mass of ~0.3 M $_{\odot}$ and a circumbinary disk actively accreting.

LOri061, LOri126, LOri140, LOri156, LOri161: All of them but LOri161 are classified as harbouring a thick disk (see Chapter 2) based on the IRAC slope (Lada et al. 2006). LOri161 in fact has not been classified according to its IRAC photometry since it was only detected in the two first channels. On the other hand, all of them are active accretors according to Barrado y Navascués & Martín (2003) criterion. As in the case of LOri050, we have estimated the accretion rate based in the measured H α full width at 10% of the flux (Table 3.16) and the mass of the source based on the SED fitting. We have obtained quite high accretion rates as can be seen in Fig. 3.15. We must note that the mass of one of the sources with the highest rate (LOri156) was not derived from the SED fit (since, due to the infrared excess shown by this target, the number of useful data-points to be reproduced with a synthetic photosphere was not enough to perform the fitting process, see Appendix C for further details); it was inferred from other members with no disk and similar spectral type.

With such high accretion rates some veiling (due to excess emission from the accretion shock) could be expected on these sources (as it is the case for LS-RCrA 1, Barrado y Navascués

Table 3.19: Equivalent width of the main lines observed in the spectra obtained with TWIN during 2005 and 2006 campaigns (medium resolution). For the case of the H α emission the values of FWHM and FW_{10%} have also been included. The symbol "–" indicates that the line is not detectable. Note that, whenever possible, the Na I doublet is preferred over the K I to estimate the gravity of our sources since the measurement of the latter can be affected by the absorption band on top of which it is located.

Object	$H\alpha$			HeI	LiI	KI	KI	NaI
	6563			6678	6708	7665	7700	8200
	EW(Å) eEW	FW10% (km/s) eFW10	FWHM(km/s) eFWHM	EW(Å) eEW				
DM48	7.724±0.190	587.785±10.910	328.313±1.868	-	-	0.494 ±0.211	0.667 ±0.127	2.361±0.178
LOri007	-	-	-	-	-	0.470 ± 0.213	0.693 ±0.110	3.195±0.306
LOri036	4.797±0.224	478.437 ± 7.954	287.713 ± 2.940	-	-	1.435 ± 0.140	1.109 ± 0.105	3.532±0.194
LOri044	1.571±0.200	600.775±85.749	337.349± 9.449	-	-	1.124 ± 0.107	0.997 ± 0.041	3.450±0.157
LOri045	6.849±0.105	626.681± 6.209	331.207±1.516	-	0.390 ± 0.933	0.626 ± 0.200	0.584 ± 0.044	2.775 ± 0.611
LOri048	4.319±0.193	546.682 ± 14.598	315.965 ± 3.477	-	-	0.628 ± 0.106	0.583 ± 0.079	2.740 ± 0.255
LOri052	6.796±0.440	487.216 ± 0.061	271.568 ± 0.014	-	-	1.420 ± 0.120	0.930 ± 0.099	3.151±0.032
LOri061	11.776±0.165	540.469 ± 5.459	309.810 ± 0.962	-	0.435 ± 0.272	0.983 ± 0.374	0.542 ± 0.052	2.851±0.146
LOri062	6.480±0.732	447.922±251.407	315.481± 8.221	-	0.073 ± 0.126	0.959 ± 0.230	0.569 ± 0.118	2.411±0.667
LOri080	22.822±0.616	600.883 ± 4.756	336.845 ± 1.268	-	0.183 ± 0.080	1.772 ± 0.330	0.629 ± 0.184	2.340 ± 0.455
LOri091	47.870±8.314	382.777±19.556	228.429 ± 4.020	0.450 ± 0.087	-	-	-	2.053±0.700
LOri092	12.512±1.367	585.237±16.524	385.393 ± 7.298	-	-	0.704 ± 0.070	0.746 ± 0.120	2.732±0.430
LOri105	13.376 ± 2.603	581.478±39.131	362.935±11.431	-	-	2.131 ± 0.904	1.331 ± 0.540	2.367±0.647

et al. 2004a). In order to study this possibility, for each of our accretors, we selected a nonaccreting Class III source with very similar spectral type (one half subclass) and we compared the strength of several TiO molecular bands on both spectra. As can be seen in Fig 3.23 no significant differences are found on the continuum level of any pair of sources. In fact, we have estimated that veiling, defined as $r_{\lambda} = F(\lambda)_{\text{excess}}/F(\lambda)_{\text{photosphere}}$ is negligeable in all of our cases: whilst for LS-RCrA 1, Barrado y Navascués et al. (2004a) found that r_{λ} varies from ~1 to ~0.25 for the wavelength range 6200–6750 Å we find a horizontal slope in this interval. The only cases where a linear horizontal r_{λ} does not work are located on the very edges of the detector, and therefore we can conclude that no veiling is present on our spectra.

LOri106, LOri113: These sources were classified as Class II based on their position in the IRAC colour-colour diagram. They harbour thick disks according to the mid-infrared slope of the SED and are active accretors following Barrado y Navascués & Martín (2003). We derived accretion rates which follow $\dot{M}_{acc} \propto M_*^2 \pm 1$ dex (see Fig. 3.15 and Table 3.17).

LOri080, LOri091: This set of sources represent and interesting puzzle since both of them show variable H α emission (see following sections); according to the maximum measured EW of this line, both were classified as active accretors but none of them show infrared excess (see Barrado y Navascués et al. 2007b). Since no signpost of disk has been observed, the variation in H α might arise from chromospheric activity of these sources. We have analyzed the possible wavelength dependence of changes in the spectra of both sources from one observation to the other one. In the case of LOri091 no significant changes are observed apart from the difference in the H α profile. For LOri080, on the other hand, some wavelength dependent wavelength structure has been detected. In Fig. 3.24 we show this structure. To make this comparison we have used both, the spectra of LOri080 observed with the B&C spectrograph and the TWIN spectra of LOri105

Table 3.20: Equivalent width of the main lines observed in the spectra obtained with CAFOS. For the case of the H α emission the values of FWHM and FW_{10%} have also been included. The symbol "–" indicates that the line is not detectable. No measurements are provided for LOri069 and LOri083 since some problems with the identification of the right counterpart of the sources have been found (see 3.3.5).

563 $5498, 854, 2660$ 7665 7700 8200 $C09E11-10336$ $-5.3122.0579$ 520.180 ± 15.077 386.596 ± 9.207 $ 1.249\pm0.211$ 0.732 ± 01.27 2.110 ± 0.178 $C09E11-1342$ -4.788 ± 0.160 425.320 ± 15.108 217.719 ± 4.857 $ -$	Object	Hα			Ca II (IRT)	KI	KI	NaI
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		6563			8498, 8542,8662	7665	7700	8200
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		EW(Å) eEW	FW10% (km/s) eFW10	FWHM(km/s) eFWHM	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW	EW(Å) eEW
$ \begin{array}{c} C69E11-114 & -4.788\pm0.160 & 425.320\pm15.108 & 217.719\pm4.857 & - & 1.027\pm0.213 & 0.863\pm0.110 & 2.396\pm0.306 \\ C69E11-14424 & -11.655\pm0.249 & 536.653\pm10.869 & 349.084\pm1.113 & - & 0.412\pm0.107 & 0.633\pm0.041 & 2.574\pm0.157 \\ C69E11-1409 & -79.824\pm5.012 & 779.540\pm25.366 & 377.713\pm6.584 & -5.361,5.599.4.245 & 1.310\pm0.870 & 0.398\pm0.044 & 2.402\pm0.611 \\ C69E11-790 & - & - & - & - & - & - & - & 4.84\pm0.120 & 3.819\pm0.099 & 4.59\pm0.032 \\ C69W11-3226 & - & - & - & - & - & - & - & - & 1.718\pm0.146 \\ C69J.401367 & - & - & - & - & - & - & - & - & - & $	C69EI1-10336	-6.312±0.579	520.180±15.077	386.596± 9.207	-	1.249 ±0.211	0.732 ± 0.127	2.110 ± 0.178
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C69EI1-114	-4.788±0.160	425.320±15.108	217.719 ± 4.857	-	1.027 ± 0.213	0.863 ± 0.110	2.396 ± 0.306
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C69EI1-13542	-	-		-	-	-	1.210 ± 0.194
$ \begin{array}{c ccw class c$	C69EI1-14424	-11.652±0.249	536.653±10.869	349.084 ± 1.113	-	0.412 ± 0.107	0.633 ± 0.041	2.574 ± 0.157
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C69EI1-14609	-79.824±5.012	779.540±25.366	377.713 ± 6.584	-5.361,-5.599,-4.245	1.310 ± 0.870	0.398 ± 0.044	2.402 ± 0.611
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C69EI1-790	-9.047±0.478	439.634±62.832	266.683±10.416	-	0.973 ± 0.106	0.714 ± 0.079	2.208 ± 0.255
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C69WI1-3226	-	-		-	4.844 ± 0.120	3.819 ± 0.099	4.59 ± 0.032
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C69WI1-4897	-	-		-	-	-	1.718 ± 0.146
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C69_1d03367	-6.869±0.350	736.586±77.050	374.092±10.892	-	0.374 ± 0.230	0.328 ± 0.118	2.259 ± 0.667
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DM065	-3.473 ± 0.115	465.345 ± 30.345	201.279 ± 4.954	-	-	-	1.727 ± 0.566
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DM070	-1.560 ± 0.120	412.223 ± 29.733	249.214 ± 17.378	-	-	-	2.099 ± 0.635
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C69-X-E-009 I	-5.861 ± 0.282	565.053 ± 60.339	366.346 ± 12.633	-	-	-	1.022 ± 0.305
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C69-X-E-010 sX	-0.130 ± 0.038	661.376 ± 25.935	407.115 ± 114.145	-	-	-	0.712 ± 0.264
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C69-X-E-027 n	-5.580 ± 0.155	497.237 ± 75.874	255.838 ± 2.736	-	-	-	2.156 ± 0.568
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C69-X-E-040 M	-4.909 ± 0.577	929.244 ± 40.856	705.234 ± 15.234	-	-	-	1.828 ± 0.544
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C69-X-E-060 n	1.494 ± 0.065	875.720 ± 60.309	503.664 ± 15.852	-	-	-	0.919 ± 0.273
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C69-X-E-064 I	-7.571 ± 0.340	480.504 ± 84.239	257.710 ± 8.095	-	0.215 ± 0.188	0.214 ± 0.186	2.095 ± 0.592
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C69-X-E-068 M	4.165 ± 0.198	1310.578 ± 97.850	619.490 ± 17.607	-	-	-	0.460 ± 0.227
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C69-X-E-069 c	1.443 ± 0.106	1485.519 ± 165.080	765.851 ± 21.626	-	-	-	0.935 ± 0.241
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C69-X-E-071 c	1.491 ± 0.052	943.769 ± 20.335	579.984 ± 5.637	-	-	-	0.548 ± 0.269
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C69-X-E-072 I	-4.643 ± 1.096	784.025 ± 149.766	356.684 ± 41.958	-	-	-	0.646 ± 0.373
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C69-X-E-073 I	4.209 ± 0.579	1691.144 ± 393.990	842.876 ± 38.903	-	-	-	0.476 ± 0.114
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C69-X-E-104 c	-2.618 ± 0.196	793.690 ± 8.992	444.372 ± 11.133	-	-	-	1.719 ± 0.463
LOri046 - - - - - 1.007 ±0.904 1.576 ±0.540 3.539±0.647 LOri049 - - - - 0.922 ±0.070 0.462 ±0.050 3.142±0.194 LOri053 -5.833±0.216 682.681± 30.222 444.106±17.941 - 0.807 ±0.211 0.554 ±0.271 1.965±0.157 LOri054 -8.346±0.476 679.312± 35.771 436.269±12.554 - 1.125 ±0.213 0.726 ±0.233 1.752±0.611 LOri054 -9.617±0.563 775.658±196.878 689.032±17.970 - 1.333 ±0.207 1.461 ±0.107 2.954±0.255 LOri070 -13.555±3.256 857.564±62.661 657.945±46.892 - 1.139 ±0.107 - 2.412±0.146 LOri072 -11.258±0.508 424.469± 85.548 301.016±26.867 - 1.868 ±0.870 1.383 ±0.370 2.202±0.667 LOri073 -1.142±0.186 502.345± 42.514 367.513±35.751 - 0.420 ±0.106 0.557 ±0.106 2.050±0.455 LOri079 -9.061±3.351 702.366± 76.618 495.637±81.053	DM48	-3.357±0.111	361.042±58.248	207.629±34.510	-	0.291 ± 0.070	0.229 ± 0.120	2.566 ± 0.430
LOri049 - - - - 0.922 ±0.070 0.462 ±0.050 3.142±0.194 LOri053 -5.833±0.216 682.681± 30.222 444.106±17.941 - 0.807 ±0.211 0.554 ±0.271 1.965±0.157 LOri054 -8.346±0.476 679.312± 35.771 436.269±12.554 - 1.125 ±0.213 0.726 ±0.233 1.752±0.611 LOri064 -9.617±0.563 755.658±196.878 689.032±17.970 - 1.393 ±0.207 1.461 ±0.107 2.954±0.255 LOri069 - </td <td>LOri046</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>1.007 ± 0.904</td> <td>1.576 ± 0.540</td> <td>3.539 ± 0.647</td>	LOri046	-	-	-	-	1.007 ± 0.904	1.576 ± 0.540	3.539 ± 0.647
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LOri049	-	-	-	-	0.922 ± 0.070	0.462 ± 0.050	3.142±0.194
LOri054 -8.346±0.476 679.312±35.771 436.269±12.554 - 1.125±0.213 0.726±0.233 1.752±0.611 LOri064 -9.617±0.563 775.658±196.878 689.032±17.970 - 1.393±0.207 1.461±0.107 2.954±0.255 LOri069 - - - - - - - LOri070 -13.555±3.256 857.564±62.61 657.945±46.892 - 1.139±0.107 - 2.412±0.146 LOri072 -11.258±0.508 424.469±8.5548 301.016±26.867 - 1.868±0.870 1.383±0.370 2.202±0.667 LOri078 -1.142±0.186 502.345±42.514 367.513±35.751 - 0.420±0.106 0.557±0.106 2.050±0.455 LOri079 -9.061±3.351 702.366±7.6.618 495.637±81.053 - 0.708±0.120 0.583±0.120 1.806±0.700 LOri083 -	LOri053	-5.833±0.216	682.681± 30.222	444.106±17.941	-	0.807 ± 0.211	0.554 ± 0.271	1.965 ± 0.157
LOri064 -9.617±0.563 775.658±196.878 689.032±17.970 - 1.393 ±0.207 1.461 ±0.107 2.954±0.255 LOri069 - 2.0224.0667 2.0024.0667 2.0024.0667 2.0024.0667 2.0024.0667 2.0024.0667 2.0024.0667 2.0024.0667 2.0024.0667 2.0024.0667 2.0024.0667 2.0024.0667 2.0024.0667 2.0024.0667 2.0024.0667 <td>LOri054</td> <td>-8.346±0.476</td> <td>679.312± 35.771</td> <td>436.269±12.554</td> <td>-</td> <td>1.125 ± 0.213</td> <td>0.726 ± 0.233</td> <td>1.752 ± 0.611</td>	LOri054	-8.346±0.476	679.312± 35.771	436.269±12.554	-	1.125 ± 0.213	0.726 ± 0.233	1.752 ± 0.611
LOri069 - </td <td>LOri064</td> <td>-9.617±0.563</td> <td>775.658±196.878</td> <td>689.032±17.970</td> <td>-</td> <td>1.393 ±0.207</td> <td>1.461 ± 0.107</td> <td>2.954±0.255</td>	LOri064	-9.617±0.563	775.658±196.878	689.032±17.970	-	1.393 ±0.207	1.461 ± 0.107	2.954±0.255
LOri070 -13.555±3.256 857.564±62.661 657.945±46.892 - 1.139±0.107 - 2.412±0.146 LOri072 -11.258±0.508 424.469±85.548 301.016±26.867 - 1.868±0.870 1.383±0.370 2.202±0.667 LOri078 -1.142±0.186 502.345±42.514 367.513±35.751 - 0.420±0.106 0.557±0.106 2.050±0.455 LOri079 -9.061±3.351 702.366±76.618 495.637±81.053 - 0.708±0.120 0.583±0.120 1.806±0.700 LOri083 - <td>LOri069</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	LOri069	-	-	-	-	-	-	-
LOri072 -11.258±0.508 424.469±85.548 301.016±26.867 - 1.868±0.870 1.383±0.370 2.202±0.667 LOri078 -1.142±0.186 502.345±42.514 367.513±35.751 - 0.420±0.106 0.557±0.106 2.050±0.455 LOri079 -9.061±3.351 702.366±76.618 495.637±81.053 - 0.708±0.120 0.583±0.120 1.806±0.700 LOri083 - - - - - - - - LOri074 10.410±2180 65.105±125 444.736±62.762 - 1.528±0.020± 1.145±0.0255	LOri070	-13.555±3.256	857.564 ± 62.661	657.945±46.892	-	1.139 ± 0.107	-	2.412 ± 0.146
LOri078 -1.142±0.186 502.345±42.514 367.513±35.751 - 0.420±0.106 0.557±0.106 2.050±0.455 LOri079 -9.061±3.351 702.366±76.618 495.637±81.053 - 0.708±0.120 0.583±0.120 1.806±0.700 LOri083 -	LOri072	-11.258 ± 0.508	424.469 ± 85.548	301.016±26.867	-	1.868 ± 0.870	1.383 ± 0.370	2.202 ± 0.667
LOri079 -9.061±3.351 702.366±76.618 495.637±81.053 - 0.708±0.120 0.583±0.120 1.806±0.700 LOri083	LOri078	-1.142±0.186	502.345 ± 42.514	367.513±35.751	-	0.420 ± 0.106	0.557 ± 0.106	2.050 ± 0.455
	LOri079	-9.061±3.351	702.366± 76.618	495.637±81.053	-	0.708 ± 0.120	0.583 ± 0.120	1.806 ± 0.700
	LOri083	-	-	-	-	-	-	-
LO11064 -10.417±3.160 081.000±103.135 414.730±02.705 - 1.538±0.904 1.145±0.904 2.311±0.255	LOri084	-10.419 ± 3.180	681.666±105.135	414.736±62.763	-	1.538 ± 0.904	1.145 ± 0.904	2.311±0.255

(a non accretting member to C69 with no sign of accretion) as standards to compare the overall shape of the spectra. We find a very faint component on top of the photospheric one using both standards. Once this excess is corrected from the TWIN spectra we measure a marginal detection of Li I with a EW of 0.183 ± 0.081 Å.

C69EI1-14609: Accretor according to Barrado y Navascués & Martín (2003) criterion. For this particular object we have been able to obtain a different estimation for the accretion rate based on the equivalent width measurement of the components of the CaII triplet (at 8498 Å, 8542 Å and 8662 Å). This emission could be a sign of chromospheric activity, but the equivalent widths measured are too large, placing our measurements in the broad-line component of the unresolved line structures, that is generally related to accretion (see Comerón et al. 2003; Mohanty et al. 2005). We also note that as in Comerón et al. (2003) the CaII triplet line ratios are very close to 1:1:1 (quite different from the 1:9:5 expected ratio for optically thin emission). As in Comerón

Table 3.21: Equivalent width of the main lines observed in the spectra obtained with FLAMES. For the case of the H α emission the values of FWHM and FW_{10%} have also been included (and the aditional 7% uncertainty due to the nebulosity component has been taken into account). The symbol "–" indicates that the line is not detectable.

Object	[NII]	Hα			HeI	LiI	[SII]	[SII]
5	6581	6563			6678	6708	6717	6731
	EW(Å)	EW(Å)	FW10% (km/s)	FWHM(km/s)	EW(Å)	EW(Å)	EW(Å)	EW(Å)
C69WI1-2708	-0.691±0.060	-6.377±0.128	552.227±39.125	183.578±12.945	-	0.518±0.014	-0.388±0.128	-0.307±0.051
C69WI1-9288	-	-30.202±1.140	602.118±44.632	183.86±13.029	-0.482±0.148	0.432 ± 0.040	-	-0.198±0.037
DM009	-	-0.608±0.039	205.370±14.376	75.593±5.291	-	0.432 ± 0.029	-	-
DM016	-	-2.828±0.101	153.631±10.754	66.407±4.648	-	0.546 ± 0.010	-	-
LOri001	-	-2.819±0.159	251.751±17.623	97.268±6.809	-	0.468 ± 0.015	-	-
LOri007	-	-	-	-	-	-	-	-
LOri011	-	-	-	-	-	-	-	-
LOri012	-	-	-	-	-	-	-	-
LOri013	-	-4.308±0.207	190.175±13.312	75.889±5.312	-	0.523 ± 0.037	-	-
LOri024	-	-2.466±0.107	163.825±11.468	66.436±4.651	-	0.540 ± 0.017	-	-
LOri026	-	-5.537±0.298	236.544±16.558	83.764±5.863	-	0.588 ± 0.046	-	-
LOri037	-	-4.401±0.233	171.951±12.037	70.046±4.903	-	0.558 ± 0.037	-	-
LOri038	-	-14.012±0.513	204.755±14.333	90.727±6.351	-0.454±0.133	0.523 ± 0.035	-	-
LOri043	-	-3.920±0.123	125.701±8.799	60.390±4.227	-	0.528 ± 0.070	-0.261±0.071	-
LOri044	-	-1.615±0.098	123.614±8.653	52.944±3.706	-	-	-	-
LOri045	-0.402 ± 0.044	-6.220±0.337	165.632±11.594	59.234±4.146	-0.343±0.068	0.498 ± 0.044	-	-
LOri046	-	-0.369±0.014	-	13.254±1.255	-	-	-	-
LOri049	-	-	-	-	-	-	-0.205±0.037	-
LOri050	-0.452±0.059	-11.646±1.290	226.620±23.719	84.980 ± 6.760	-0.627±0.242	0.509 ± 0.036	-	-
LOri052	-	-7.262±0.423	234.239±16.397	85.283±5.970	-	0.278±0.103	-	-
LOri053	-	-4.298±0.148	128.460 ± 9.293	64.825±4.554	-	0.560 ± 0.041	-0.254±0.032	-
LOri056	-	-6.219±0.221	143.572±10.191	66.654±4.688	-	0.450 ± 0.023	-	-
LOri059	-0.624±0.129	-9.833±0.301	121.439±8.501	52.399±3.668	-0.313±0.053	0.369 ± 0.063	-0.679±0.128	-0.362±0.083
LOri069	-0.756±0.134	-8.123±0.466	185.720 ± 13.000	61.282 ± 4.290	-	0.328 ± 0.041	-0.459±0.113	-0.503±0.104
LOri073	-0.374±0.086	-4.542±0.186	131.898 ± 10.403	61.659 ± 4.432	-0.215±0.031	0.462 ± 0.092	-	-
LOri075	-0.731±0.171	-10.729±0.726	270.528 ± 20.109	101.942 ± 8.074	-	0.960 ± 0.202	-	-
LOri079	-1.430 ± 0.072	-10.010 ± 0.243	92.566 ± 6.480	39.784±2.785	-0.403±0.058	0.605 ± 0.090	-	-0.665±0.035
LOri086	-1.121±0.132	-6.978±0.205	103.888±7.272	48.805±3.416	-0.338±0.047	0.621 ± 0.086	-	-
LOri087	-0.575±0.131	-7.947±0.231	126.534 ± 8.857	54.013 ± 3.781	-0.506±0.032	0.594 ± 0.078	-0.901±0.054	-0.406±0.076
LOri088	-1.639 ± 0.134	-16.288 ± 0.483	97.336±6.991	48.506±3.426	-0.506±0.094	0.475 ± 0.111	-1.593±0.365	-0.719±0.183
LOri091	-0.440 ± 0.055	-13.473±1.112	152.509 ± 13.524	67.343±4.999	-	0.760 ± 0.060	-0.813±0.355	-
LOri093	-1.002 ± 0.061	-8.536±0.219	119.687±8.378	59.589±4.171	-0.238±0.029	0.496 ± 0.083	-	-
LOri094	-1.705 ± 0.210	-13.775±0.728	164.273±11.499	46.247±3.237	-0.412±0.065	0.495 ± 0.024	-	-0.983±0.190
LOri096*	-	-	-	-	-	0.382 ± 0.156	-	-
LOri099	-	-9.221±0.667	121.811±8.527	33.522±2.347	-	0.385 ± 0.115	-	-
LOri105	-2.675±0.519	-22.429 ± 0.449	85.105±5.957	35.092±2.456	-	0.137 ± 0.026	-	-0.719±0.194
LOri109	-2.636 ± 0.436	-19.615±0.516	94.108 ± 6.588	36.735±2.571	-	0.565 ± 0.113	-1.421±0.165	-1.039 ± 0.129
LOri112	-1.756±0.197	-10.927±1.683	132.260±21.057	90.340±6.824	-	0.537 ± 0.195	-2.070±0.249	-
LOri115	-	-12.575±0.592	81.994±5.740	20.491±1.434	-0.831±0.082	0.336 ± 0.090	-0.983±0.285	-
LOri120	-3.310±0.165	-13.304±1.000	80.596±7.327	37.101±2.721	-	0.657 ± 0.084	-4.725±0.554	1.341±0.122

*No measurements for the emission lines are provided since the substraction of the nebulosity for this particular source was not satisfactory.

Figure 3.23: Comparison of accreting (black solid line) and non accreting (red dotted line) sources of the LRIS low resolution sample of objects. Note the absence of a super-imposed continuum.

Figure 3.24: Left: Comparison of the spectra of LOri080 taken in two different campaigns and the spectra of a non-accreting member with a very similar spectral type. LOri080 spectra showing the largest H α emission has been plotted with a solid black line, the spectra of the comparison member is plotted with a red dashed line; and the LOri080 spectra with much lower H α emission is displayed in blue (dot-dashed line). **Right:** Veiling emission (r_{λ}) estimated as function of the wavelength for LOri080 with large H α emission. We have used LOri80 itself and LOri105 as comparison templates. Note that the region around the H α emission has been omitted.

et al. (2003) we used the following equations to estimate the accretion rate of this source (these equations were derived from the accretion line profile study by Muzerolle et al. 1998):

$$\log(\dot{M}_{acc}) = -34.15 + 0.89 \log(F_{\text{CaII}(\lambda 8542)})$$
(3.2)

$$F_{\text{CaII}(\lambda 8542)} = 4.72 \times 10^{33} EW(\text{CaII}(\lambda 8542)) \times 10^{-0.4(m_{\lambda} - 0.54A_{V})}$$
(3.3)

where $F_{\text{CaII}(\lambda 8542)}$ is the flux in the line, m_{λ} is the magnitude of the star at $\lambda 8542$, and A_V is the visual extinction translated to the wavelength of the line of study using Fitzpatrick (1999) relations. Since the bluest photometric point that we had for this object is the 2MASS J magnitude, we used the best fitting model to the SED of the source as a scaling factor to estimate m_{λ} . On the other hand, according to the intrinsic colors by Leggett (1992) and our determination of the spectral type (M3), we find a very low A_V value of 0.03 mag. Finally we obtained an accretion rate value of $2.95 \times 10^{-7} \text{ M}_{\odot}/\text{yr}$; almost an order of magnitude lower than the one obtained based on H α . We have also checked for this object the presence of veiling comparing its spectrum with the one of C69EI1-790 (another confirmed member with the same spectral type). In this case no blue excess has been found in the source (further than a marginal excess right in the blue edge of the spectra that we think corresponds to an instrumental signature rather than a real excess).

C69WI1-9288, C69WI1-2708: Both sources are classified as Class II based on their IRAC photometry, and they show double-peaked structure on the H α emission as can be see in Fig 3.25. Whilst the sky subtraction for C69WI1-9288 worked very well, some residual could remain in the case of C69WI1-2708 (although we do not see any structure on other, very narrow, "sky lines"). The accretion rate calculated for C69WI1-9288 is shown in Table 3.21 since this source fulfills the Barrado y Navascués & Martín (2003) criterion. On the other hand the measured H α equivalent width of C69WI1-2708 lies well below the saturation criteria, but its wide FW_{10%} velocity would translate in an accretion rate of ~ 2.93 × 10⁻⁰⁸ M_☉/yr. As in previous cases we have compared the spectra of these two sources with non-accreting targets of the same spectral type (LOri026 and LOri037, respectively) and no veiling has been detected.

3.3.5.2 Binarity

LOri075: This source has been classified as SB1 by Maxted et al. (2008) (but no binarity signpost has been reported in Sacco et al. 2008). According to Maxted et al. (2008), the spectral lines for this star show rotational broadening; they compared them to those of a narrow-lined star of similar spectral type and estimated a projected rotational velocity of $vsin(i) \sim 65$ km/s. They classified the source as SB1, but they also noted that there is an asymmetry in the cross-correlation function (CCF) in the form of a blue-wing, particularly when the measured RV corresponds to a red-shift. Therefore they suggested that the fainter component in this binary was detected but unresolved in their spectra.

We have detected a double peaked structure in H α and Li I in our MIKE spectra which made us believed that we had spectroscopically resolved the source. Further research on the struc-

Figure 3.25: Double peaked structure in the H α emission of C69WI1-9288 and C69WI1-2708.

ture of some photospheric lines marginally suggests that we might have resolved the binary. In Fig 3.26 we show the double peaked structure found in some of the most prominent photospheric lines for this object (given the low temperature of the source these "most prominent lines" are still very weak). We have measured a mean relative velocity of ~45 km/s (σ ~8.7 km/s). We have synthesized a 3500 K (log(g) = 4.) Kurucz spectra (an effective temperature ~200 K hotter than the one estimated for our source, but the coolest temperature for the Kurucz collection) in the region of the Ba λ 5535Å line with the same resolution and a rotational velocity close to the one derived by Maxted et al. (2008) (~50 km/s). We have checked that the closest line in the synthetic spectra has a relative velocity of ~110 km/s, much higher than those measured by us. We show on the right-hand side panel that the relative velocity derived for the photospheric lines does not agree with the one that would be measured on the H α profile. This fact and the weakness of the lines measured force us to consider the resolution of the binary as tentative. We must note anyway that the environmental H α component (see Fig 1.7) of the region can change the relative velocity of the peaks of this emission line.

3.3.5.3 Membership

LOri044, LOri046, LOri049, LOri052: All these sources (but LOri052) have been classified as non-members based on the absence or very marginal detection of Li I. In the cases of LOri044, LOri046, LOri049, LOri052, either Maxted et al. (2008) or Sacco et al. (2008) also classify them as non-members based on their radial velocities. On our FLAMES spectra of LOri052 a marginal detection of Li I in absorption with EW of ~0.28 Å was measured; this value is too low compared to other members with similar spectral type; therefore, together with Maxted et al. (2008) radial velocity determination and our alkali lines study, we classify this source as possible non-member.

Figure 3.26: Left: Double peaked structure found in photospheric lines for LOri075. Rest frame velocity and mean relative velocity of the second peak are indicated with dashed lines. The blue rectangle shows the $\pm 3\sigma$ area of the second peak location. **Right:** H α profile of the same source. Note how the secondary peak dashed line location (calculated from the photospheric lines) does not agree with the position of the peak (see text for details).

LOri110, LOri115, LOri133, LOri141, LOri147, LOri151, LOri154: All these sources show surface gravities (based on the measured EW(NaI), see Table 3.16 and 3.19) too large compared with other cluster members. For the particular case of LOri110, no Li I was detected on our LRIS spectra, and Maxted et al. (2008) also measured Na I EWs inconsistent with membership and confirmed that the radial velocities derived ruled out membership too. Regarding LOri133 and LOri151, Barrado y Navascués et al. (2004b) already classified these objects as doubtful candidate members based on their photometric properties. To enforce our classification as non-members for these sources we have compared the strength of their Na I doublet with field dwarf of the same spectral types and with objects having an EW value consistent with membership. We show this comparison in Fig. 3.27. Even though LOri115 shows very deep Na I absorption (as shown in the previously mentioned figure), it shows an EW(Li) (measured on or FLAMES spectra) compatible with a young source. The variability in H α found between our two spectra, suggests that this depth of the Na I doublet could be related to stellar activity.LOri165 was also classify as possible non-member by Barrado y Navascués et al. (2004b) and even though our LRIS low resolution spectra has a very poor signal-to-noise ratio to be able to provide reliable measurements of the Na I doublet, the rough profile of the doublet suggests that it does not correspond to a young source.

LOri007: No significant H α emission was measured on the spectra of this source (ob-

Figure 3.27: Candidates discarded as members based on the Na I λ 8200 doublet. For each case we have over-plotted in red a candidate member with a EW value consistent with membership and the same spectral type. In blue we have plotted the same region for spectra of field dwarfs obtained in the same campaign with the same spectral type (for spectral types M4.75 and M5.25 we have averaged spectra of field dwarfs with spectral types M4.5 and M5.0; M5.0 and M5.5, respectively). Note how the depth of the absorption resembles the spectra corresponding to the dwarfs more than those from the candidate members.

served with TWIN and with FLAMES), and although the equivalent widths values of the alkali lines are consistent with membership (see Table 3.10), no Li I in absorption has been detected (see Table 3.12). Therefore we provide a classification of non-member.

LOri036, LOri044: Both sources show faint H α emission, but the alkali lines suggest that both objects are older than the cluster members. Besides Sacco et al. (2008) found a RV value not fully compatible with membership for LOri036, and (Maxted et al. 2008) estimated a RV that clearly rules out membership for LOri044.

C69EI1-13542, C69WI1-3226, C69WI1-4897, LOri046, LOri049: None of these sources show H α emission. In fact, several of them show this feature in absorption along with very low gravity according to the alkali absorptions strengths; therefore we classify them as non-members. In particular, LOri046 and LOri049 have also been classified as non-members by Sacco et al. (2008) due to their measured radial velocity.

LOri069, LOri083: Both sources are members according to Sacco et al. (2008) and Maxted et al. (2008). The spectra that we obtained with CAFOS do not correspond to a M star at

all; after some checking, we arrived to the conclusion that in both cases we made a mistake when positioning the slit and the spectra of a background source was obtained. A year later we observed again LOri069 with FLAMES. In this case we are sure that the observed source is indeed LOri069 and we confirmed its membership by the presence of Li I absorption in the spectra.

3.3.5.4 Variability

LOri068, LOri075, LOri080, LOri091, LOri109, LOri115: All these sources have been observed with two different instrumental set-ups. All of them show variations in the measured $H\alpha$ profile. We have checked for each case whether this variations could be related to the different resolutions the spectra were obtained with or they are signpost of real variability of the source. In Table 3.22, we resume the different values measured for these sources that we have used to distinguish between instrumental bias or real variability.

LOri068 and LOri109 have been classified as non-accreting sources with the data from both campaigns; we have measured EW values of the Li I absorption compatible (within the errors) in both runs while the variation in H α is much larger. Therefore we consider that those variations in the H α emission are not an instrumental bias, but reflects chromospheric variable activity.

LOri115 also shows variable $H\alpha$ emission; it has been classified as Class II with a thin disk according to the IRAC data, but none of the measured $H\alpha$ equivalent widths suggest that the disk might be accreting onto the star. As in the previous case we think that this variability has its origins on the chromospheric activity and not in the interaction with it disk.

The case of the SB LOri075 is more difficult to analyze since (due to the very different resolution and wavelength coverage of the spectra) we have not been able to measure common lines to perform the same comparison as with LOri068. In any case, since LOri075 is an unresolved (or marginally resolved) double system, variability in the measured H α is not surprising.

LOri080 and LOri091 as stated before in this section, represent very interesting cases; due to the similar resolution (in both cases but specially in the latter one comparing the TWIN and B&C measurements) and compatible KI measured EWs (for LOri080), the large variations in H α emission should not arise from any instrumental effect. These sources change from being under the H α saturation criteria (Barrado y Navascués & Martín 2003) to be well above. The estimated accretion rates would change in one order of magnitude for LOri091 up to three orders of magnitude for LOri080. As shown in Fig. 3.15 this large variable accretion has been detected on higher masses sources. In the case of LOri091 a flare is more likely to explain such variations in H α than the variable accretion scenario since no infrared excess has been detected. On the other hand LOri080 remains a puzzle; some infrared excess has been detected on IRAC bands but the slope of its SED at these wavelengths (from 3.6 to 8.0 micron) classify this object as harbouring a thin disk, for which the calculated accretion rate variability seems to be too high.

There are other sources like LOri050, LOri059, LOri073, LOri094, LOri099 and LOri105 that show some variation in the measured EW, but these variations are very close to the estimated

Table 3.22: Parameters measured and calculated for those sources observed with different instrumental set-ups. The symbol "–" indicates that the parameter was not estimated for this particular source.

Name	$EW(H\alpha)$	Ins. Res	$\log(\dot{M}_{acc})(M_{\odot}/yr)$	LiI	KI	NaI
LOri068	6.82±0.52	MIKE R~10000	-	0.69 ± 0.09	-	-
LOri068	14.39 ± 0.74	LRIS R~3500	-	0.53 ± 0.05	-	-
LOri075	12.81±0.86	MIKE R~10000	-	0.94 ± 0.05	-	-
LOri075	10.20 ± 0.89	LRIS R~1100	-	-	-	2.82 ± 0.38
LOri080	14.67 ± 1.00	BC R~2600	-10.374±0.24	-	1.66 ± 0.89	-
LOri080	22.82 ± 0.62	TWIN R~3500	-7.061±0.05	-	1.77±0.33	2.34±0.46
LOri091	11.93 ± 1.12	LRIS R~3500	-10.301±0.33	0.23±0.07	2.17 ± 0.46	-
LOri091	47.87±8.3	TWIN R~3500	-9.177±0.19	-	-	2.05 ± 0.70
LOri091	13.47±1.11	FLAMES R~8600	-11.411±0.03	0.76 ± 0.06	-	-
LOri109	19.62±0.52	FLAMES R~8600	-	0.57 ± 0.11	-	-
LOri109	8.70±0.45	LRIS R~3500	-	0.50 ± 0.15	2.62 ± 0.57	-
LOri115	12.58±0.59	FLAMES R~8600	-	0.34±0.09	-	-
LOri115	8.97 ± 0.88	LRIS R~1100	-	-	-	4.63±1.47

 Table 3.23: Collinder 69 near infrared spectroscopic campaigns.

Date	Observatory/Telescope/Instrument	Resolution	Wavelength coverage	Number of sources observed	Original photometric
				observed	survey
December 22-23, 2004	Mauna Kea / Keck II / NIRSPEC	~2000	1.143–1.375µm	4*	CFHT1999
December 9, 2005	Mauna Kea / Keck II / NIRSPEC	~2000	1.143–1.375µm	9*	CFHT1999
January 9-11, 2007	La Silla / NTT / SOFI	~950	0.950–2.500µm	2	CFHT1999
November 10, 2008	Mauna Kea / SUBARU /IRCS	~200	1.400–2.500µm	8*	Subaru2006

* For some of the sources the obtained S/N ratio was too poor to perform the analysis and therefore are not listed on the tables with the results from these analyses.

errors or has also been measured on the Lithium line and the probability that they only reflect biases due to the different resolution of the spectra seems to be quite high.

3.4 Low resolution near-infrared spectroscopy

In order to be able to characterize the colder–redder candidate members to Collinder 69 we requested time in different observatories to perform infrared spectroscopy. We were granted with four campaigns (details about the campaigns themselves are provided in Table 3.4 and the reduction procedures followed are described in Appendix A). Two of the runs were focused on confirming the candidates by studying their surface gravity (with alkali lines as in the optical). The aim of the other two campaigns was to derive infrared spectral types analyzing the water vapour bands. In the following sections we provide a description of the methodologies used and the results achieved.

3.4.1 Estimating infrared spectral types: Water vapour indices and templates.

We have derived infrared spectral types for the sources observed with SOFI and SUB-ARU using spectral indices and templates. We did not make this analysis for the NIRSPEC sources due to the short wavelength coverage of the observations.

At this low spectral resolution, there are no absorption lines present in our spectra that can be reliably used to derive spectral types in the infrared domain. However, as has already been mentioned in the Introduction, the depths of the broad water vapour absorption bands are extremely sensitive to spectral type for M and L dwarfs.

Comerón et al. (2000) defined a reddening independent index, I_{H_2O} , to perform a spectral type classification measuring the depth of the wings of the water band of late M dwarfs centered near 1.9 μ m. This index is defined as:

$$I_{\rm H_2O} = \frac{f_1}{f_2} \left(\frac{f_4}{f_3}\right)^{0.76}$$
(3.4)

where f_1 , f_2 , f_3 and f_4 are the density fluxes in four narrow bands, 0.05 μ m wide, centered at 1.675 μ m, 1.75 μ m, 2.075 μ m and 2.250 μ m, respectively.

Gómez & Persi (2002) tested this method by comparing the estimated spectral types with the *Q* index defined by Wilking et al. (1999) obtaining excellent agreements (see Fig.8 in their paper). This *Q* index is reddening independent too and was defined in order to characterize the strength of the 1.7-2.1 μ m and \geq 2.4 μ m water absorption bands. It has the following expression:

$$Q = \frac{F_1}{F_2} \left(\frac{F_3}{F_2}\right)^{1.22}$$
(3.5)

where F_1 , F_2 and F_3 are the relative flux densities calculated in the three narrow bands: $[2.070 - 2.130\mu m]$, $[2.267 - 2.285\mu m]$ and $[2.400 - 2.500\mu m]$, respectively.

We have not been able to calculate the Q index accurately for our targets, because the bands considered (in particular F3), are located too close to the edge of the detector (in both campaigns) and affected by our reduction. However, we can still use the $I_{\rm H_2O}$ index and the comparison with spectral templates (obtained during the same night) to estimate the infrared spectral type of our candidates.

Examples of these comparisons with spectral templates for the four L brown dwarfs confirmed in this work are displayed in Fig 3.28.

We show the derived spectral types in Table 3.4.2. Whenever the source had a derived optical spectral type we present both estimations. In both cases the infrared spectral type turns out to be slightly colder than the optical but within the half subclass domain as previously reported (Luhman et al. 2003).

3.4.2 Estimating surface gravities

In order to estimate the surface gravity of our sources, we compared the strength of the gravity sensitive doublets of K I (at 1.169 & 1.177 μ m and 1.244 & 1.253 μ m) with a grid of models by Allard et al. (2003). For each source we made this comparison for different values of log(g) and a value of the effective temperature obtained applying Leggett (1992) temperature scale to the optical spectral types derived in this work. For the case of LOri146 where no optical spectra has been collected by our group, we assumed the effective temperature derived from the SED fitting (see Section 3.1).

Figure 3.28: Infra-red spectral type determination by comparison with field L dwarfs. Spectra coming from the Subaru campaign.

In Fig 3.29 we show an example of this comparison for two sources, LOri135 and LOri146, where, even though the signal to noise ratio was not too high, it is very clear that these sources must have a value of log(g) lower then 4.0; what confirm them as young sources. The values derived for all the sources are listed in Table 3.4.2.

3.5 The spatial distribution of the members.

In Table 3.25 we have included a column with the final membership assigned to each source. We consider members those labeled as Y? (fulfilling most of the photometric criteria, see

Object	Opt SpT	IR SpT	$\log(g)$	Object	Opt SpT	IR SpT	$\log(g)$
LOri135	M6.5		<4.0	LOri091	M5.5	M6	4.0
LOri146			<4.0	ccd9-007028		M8	
LOri107	M6		4.0-4.5	ccd9-005320		L0-L2	
LOri109	M5.5		4.0	ccd9-001365		L0-L2	
LOri139	M5.75		4.0-4.5	ccd8-014467		L0-L2	
LOri140	M7		<4.0	ccd5-008530		L0-L2	
LOri089	M5	M6	4.0	ccd9-006362		L0-L2	

Table 3.24: Parameters derived from the near-infrared spectroscopy.

Figure 3.29: Example of the surface gravity determination in the NIRSPEC spectra by comparison with theoretical models.

previous chapter), Y (highly reliable photometric candidates, see previous chapter for more details) and Y+ (spectroscopically confirmed members; in this case we have included the reference of the work were the spectroscopic confirmation was provided). There are \sim 240 members from which 225 have been labeled as Y or Y+.

In order to better understand the accretion and disk evolution of the confirmed members of Collinder 69, we have estimated the correlation in spatial distribution of different sets of data: Class II vs. Class III candidates, objects with any kind of disk (thin, thick and transition) vs. diskless objects. We have also tried to distinguish between the stellar and substellar populations.

In Fig. 3.30 we show this spatial distribution (members confirmed either by Dolan & Mathieu 1999, 2001; Sacco et al. 2008; Maxted et al. 2008 or this work) including information about the presence of disk and whether the disk is accreting or not. As can be seen in the figure, the sources with disk show a higher concentration towards the center of the cluster with respect to the diskless population (contrary to what one would expect according to the supernove scenario). In fact, if we assume that actively accreting systems are younger than those which do not show any sign of accretion, the youngest population of Collinder 69 seems to be clustered either around the central star λ Ori or to the South-West.

We have computed the two-sided Kuiper statistic (invariant Kolmogorov-Smirnov), and its associated probability that any of the previously mentioned populations were drawn from the same distribution. The tests reveal that the cumulative distribution function of Class II candidates is very different from that of Class III, with a 99.9% probability that both populations have been drawn from different distributions.

We have performed a similar analysis comparing the distribution of substellar and stellar sources. We have used different isochrones (1, 3, 5 and 8 Myrs) to build different sets of masses for our confirmed members and study therefore the relation of the age on the probability that stellar and substellar sources follow the same spatial distribution. In this case, the test points out a trend revealing that the larger the age assumed, the lower the probability that this two populations share a common distribution. This tendency might be degenerated though, since for the larger ages, the

set of substellar objects is quite reduced in number; and therefore this result should be only taken account as tentative.

Figure 3.30: Spatial distribution of the members of Collinder 69 (spectroscopically confirmed and photometric candidates). Active accretors according to the saturation criterion are highlighted in red. We have also included the information regarding the near infrared excess (as a proxy for the presence of disk, from Barrado y Navascués et al. 2007b) with larger circumferences sourounding the Class II sources. Note that LOri156 is not sourounded by a large circle even though its IRAC slope suggests that harbours a thick disk (see details on Secion 3.3.5)

Finally, in Fig. 3.31 we show the spatial distribution of weak line TTauri and that of classical TTauri highlighting the spectroscopically confirmed members. As can be seen in the figure, our spatial coverage is quite homogeneous, and so our uncertainties when constructing the different cumulative distributions. Therefore the results of our statistical tests are robust against uncertainties on the membership of the candidates.

At a simple sight it could look like the sources showing infrared excess but no accretion

Figure 3.31: Spatial distribution of weak line and classical TTauri stars and substellar analogs. Green solid dots for weak line TTauri (and substellar analogs), considered as those not showing any IR excess on the IRAC bands; and red solid dots for classical TTauri (and substellar analogs). Note the different spatial distribution of both samples. Candidate members for which no IR class has been inferred are not shown in this figure. Class II sources are highlighted with large black circumferences as in the previous figure, and large black crosses mark those sources whose membership has been confirmed spectroscopically by Dolan & Mathieu (1999, 2001); Sacco et al. (2008); Maxted et al. (2008) or this work.

are distributed in a more similar manner than the weak-line TTauri population, being the accretors the population that introduces the differences in spatial distribution. We have checked this hypothesis performing again a two-sided Kuiper statistic analysis obtaining a slightly larger correlation between the distribution of both populations, but still with a very high probability (99%) that they are not drawn from the same distribution.

3.6 The Hertzsprung–Russell diagram of Collinder 69.

In Fig. 3.32, we show the Hertzsprung–Russell diagram of Collinder 69 including all the (spectroscopically) confirmed members and the reliable (photometric) candidate members. We have overplotted three sets of isochrones composed (to achieve a complete mass range coverage) joining the collections by Siess et al. (2000) and COND by Baraffe et al. (2003) for three different ages: 1, 5 and 50 Myr. Taking into account the error bars in the determination of L_{bol} and T_{eff} (not displayed in the figure for cosmetic reasons) only one source, LOri169, lies below the 50 Myr isochrone. This source has been assigned the Y? membership code, meaning it is a probable photometric candidate. Its location in the HR diagram may suggest that it is not a real member, but we kept the Y? membership flag since the SED is not very well populated, and therefore the estimated effective temperature and luminosities hold large uncertainties.

On the other hand it seems remarkable that Class II sources tend to concentrate between effective temperatures of 1900–4000 K. This difference in distribution must be taken into account with caution anyways since the criteria from Allen et al. (2004) to assign infrared class to the YSOs according to their IRAC colors are biased towards low mass stars.

In any case, as can be inferred from this diagram, the previously derived optimal age of 5 Myr for Collinder 69 derived by Barrado y Navascués et al. (2007b) agrees very well with our results (including a larger range in mass). Besides, \sim 90% of our sources lie above the 20 Myr isochrone (composed in the same manner as those shown in the figure); we therefore propose an upper-limit age of 20 Myr for the Collinder 69 open cluster.

3.7 The Initial Mass Function of Collinder 69.

As has been already mentioned along this chapter; we have used the estimated T_{eff} and L_{bol} from the SED fit along with a composite 5 Myr isochrone (Siess et al. 2000 + COND from Baraffe et al. 2003) to derive the mass of our confirmed and candidate members. These two estimations are provided in Table 3.25. As can be seen in Fig. 3.33 there is a quite large dispersion when comparing both estimations. If we separate our members according to the ratio between the two estimated masses into large dispersion (those where one of the masses is larger than 1.5 times the other one) and "acceptable" dispersion (the ratio between the largest and the lowest mass lower than 1.5); we find that ~30% of the so-called "large dispersion" sources have been classified as

Figure 3.32: HR diagram of the confirmed (spectroscopically) and highly reliable (photometric) candidate members.

Class II according to their IRAC colours, while the same class in the acceptable dispersion sample lowers down to 15% (this is not a question of scale since both samples have a similar amount of sources). In fact, \sim 65% of the sources undergoing active accretion fall into the large dispersion sample. Therefore, our estimations of masses are quite sensitive to the presence of disks (a caveat that do not surprise us as has already been discussed in Section 3.1). To take into account this uncertainty, in this section we will present all the calculations for both estimations of the mass of the members and for an averaged mass.

In Figs. 3.34, 3.35 and 3.36 we present the derived Initial Mass Functions (according to the different procedures followed to derive the masses of the sources) for Collinder 69. We have considered all confirmed (Y+) and candidate members (Y? and Y) confined in the intersection of the CFHT, Spitzer and XMM fields of view. We emphasize that this intersection leaves the central part of the cluster (where λ Ori itself is located) aside. In order to take this effect into account, in Fig. 3.37 we show another IMF for Collinder 69 but this time we focus on the CFHT field of view not including the XMM candidates and estimating the masses of our sources based on the I band magnitude and the same isochrone as in the previous cases. For comparison, in that figure

Figure 3.33: Relationship between the masses derived from T_{eff} and L_{bol} . Members (confirmed or photometric Y and Y?) are displayed as solid red dots while the discarded candidates are shown as solid black dots. Note that although there is a large dispersion among the members between both estimations, the dispersion is much larger in the non-member sample with the masses estimated form the L_{bol} being systematically lower than those derived from the T_{eff} . Note the logarithmic scale on both axes.

we present the IMF derived in a similar manner for the σ Orionis cluster (with data from Béjar et al. 2001).

In all the cases, to enlarge the mass range coverage of our calculated IMF, we have included data from Murdin & Penston (1977) (scaling to the respective areas). The last point at the massive end correspond to a possible SN (open triangle). The figure indicates that the SN hypothesis is compatible with the IMF of the cluster.

Regardless of the parameter used to infer the mass of our confirmed and candidate members, for masses above 1 M_{\odot} , the power law index of the IMF can be assimilated to Salpeter's value, being much smaller for lower masses. In particular, the fitted slopes in the mass range 25–0.70 M_{\odot} vary from 2.11 to 2.27; and those for the low and very low mass range, 0.70-0.01 M_{\odot} , correspond to much lower values; from 0.55 to 0.60.

As we have mentioned before, the two areas for which we have derived the IMFs (the CFHT survey coverage and the intersection of CFHT, Spitzer and XMM) comprise populations that show distinct trends in terms of spatial distribution (the XMM pointings leave a side a relatively large population of Class II sources). Surprisingly, this fact does not seem to affect the shape of the IMF; the slopes shown in Figs. 3.34, 3.35 and 3.36 agree among themselves in the same manner as those from Fig. 3.37 do.

Our estimated slopes are consistent with those derived in the same manner (as that of our Figure 3.37) for several open clusters: SOri, data from Béjar et al. $(2001) - \alpha = 0.8$; APer, data fom Barrado y Navascués et al. $(2001, 2002) - \alpha = 0.6$; M35, data fom Barrado y Navascués et al. $(2001, 2002) - \alpha = 0.81$ from 0.8 to 0.2 M_o and $\alpha = -0.88$ M_o for lower masses; and the Pleiades, data from Bouvier et al. $(1998) - \alpha = 0.6$. For the low mass stars/substellar domain, the slope is very similar, regardless the total mass, the environments and the age of each association, except in the case of M35 –which corresponds to the core of the cluster–, a very rich association, about 150 Myr old, where an important dynamical evolution might have taken place.

3.8 Conclusions

We have analyzed ~170 optical and near infrared spectra with a wide range of resolutions of candidate members to the Collinder 69 cluster. Based on different criteria regarding molecular bands absorptions we have provided spectral types for all the sources. Using alkali lines as youth indicators we have confirmed 90 members (and 9 possible members). For those sources of our survey overlapping with radial velocities surveys (by Sacco et al. 2008; Maxted et al. 2008) we obtain very similar results regarding membership.

A summary of the sources analyzed in this work can be found in Table 3.25.

For those sources showing large H α equivalent widths (larger than the one expected to arise from chromospheric activity) we have derived accretion rates using mainly the full width at 10% of the H α emission line (but also the Ca II IRT) obtaining values compatible with

Figure 3.34: IMF derived for Collinder 69 (I). Masses derived combining the estimated T_{eff} and the composite 5 Myr isochrone (SIESS + COND).

those previously reported in the literature for objects of similar mass and age (Mohanty et al. 2005; Natta et al. 2006).

We have studied the accretion and disk properties of the confirmed members of Collinder 69. In Fig. 3.30 we show the spatial distribution of the confirmed members (either by Dolan & Mathieu 1999, 2001; Sacco et al. 2008; Maxted et al. 2008 or this work) including information about the presence of disk and whether the disk is accreting or not. As can be seen in the figure, the sources with disk show a higher concentration towards the center of the cluster with respect to the diskless population (contrary to what one would expect according to the supernove scenario). In fact, if we assume that actively accreting systems are younger than those which do not show sign of accretion, the youngest population of Collinder 69 is clearly concentrated around the central O population.

Figure 3.35: IMF derived for Collinder 69 (II). Masses derived combining the estimated L_{bol} and the composite 5 Myr isochrone (SIESS + COND).

With the data from our SUBARU campaign we have confirmed the cool nature of the **the lowest mass candidate members to Collinder 69** reported so far. With derived spectral types L0-L2 corresponding to effective temperatures of ~ 2000 K (according to the spectroscopic temperature scales derived by Basri et al. 2000), if members, they have estimated masses, following the 5 Myr DUSTY isochrone by Chabrier et al. 2000, as low as 0.012 M_{\odot} (~12.6 $M_{Jupiter}$).

Figure 3.36: IMF derived for Collinder 69 (I). Mases derived averaging the masses from the previous two figures2.

Figure 3.37: IMF derived for Collinder 69. Comparison with the σ Ori cluster.

Object	Alt ID	DM ID SpT	INS ³	Accret.	Membership ⁵	$\log(\dot{M}_{acc})(M_{\odot}/yr)^4$	Bin	Class	6 EW(H α) ⁴	EW(Li) ⁴	Teff	Lhol	MassTef	F Massi bol
ccd9-007028		M8 ¹	(11)		NM?	6 (, (, j)		-			1200	0.0027	0.0036	0.0217
ccd9-005320		L0-L2 ¹	(11)		Y (B09)			III			1800	0.0107	0.0081	0.0704
ccd9-001365		L0-L2 ¹	(11)		Y (B09)			-			1800	0.0065	0.0081	0.0333
ccd8-021927					NM?			-			1000	0.0025	0.0025	0.0211
ccd8-014467		L0-L2 ¹	(11)		Y? (B09)			-			1800	0.0059	0.0081	0.0314
ccd8-005864					Y			-			1200	0.0011	0.0036	0.0152
ccd5-008530		L0-L2 ¹	(11)		Y? (B09)			-			1900	0.0012	0.0092	0.0157
ccd5-002230					NM?			-			2700	3.0E-4	0.0361	0.0084
ccd4-005127					Y			-			1900	0.0015	0.0092	0.0168
ccd3-007031					NM?			-			2300	0.0014	0.016	0.0165
ccd3-006362		L0-L2 ¹	(11)		Y? (B09)			-			2600	0.0017	0.029	0.0179
ccd3-005774					NM?			-			500	0.0079	6.0E-4	0.0379
ccd2-024918					NM?			_			2400	0.0033	0.0186	0.0233
ccd2-009766					NM?			_			3300	0.0048	0.2342	0.0281
ccd1-016078					NM?			_						
LOri170					NM?			_			3100	2.0E-4	0.1365	0.0070
LOri169					Y?			_			3100	2.0E-4	0.1365	0.0075
LOri168					NM?			_			2900	4.0E-4	0.0701	0.0095
LOri167					Y			_			2500	0.0013	0.0229	0.0162
LOri166					Y?			_			2200	0.0010	0.0138	0.0145
LOri165					NM?			_			3100	7.0E-4	0.1365	0.0124
LOri164					NM			_			3300	8.0E-4	0.2342	0.0129
LOri163					Y			_			2700	0.0015	0.0361	0.0171
LOri162					Y			_			2600	0.0018	0.029	0.0183
LOri161		M8.0	(2)	Y	Y+ (B09)	-9.967 ± 0.42^{4}		_	$-74.51 + 33.069^{4}$		2600	0.0018	0.029	0.0185
LOri160			(-)		Y			_			2700	0.0016	0.0361	0.0173
LOri159					NM?			_			3100	0.0013	0.1365	0.016
LOri158					NM?			_			3500	0.0011	0.3382	0.0151
LOri157					NM			_			3300	0.0016	0.2342	0.0172
LOri156		M8.0	(2)	Y	Y + (B09)	-8.022±0.10 ⁴)		ш	$-114.455 \pm 1.812^{(4)}$		2700	0.0033	0.0361	0.0233
LOri155		M8.0	(2)	Ν	Y+ (B09)			ш	-51.493 ± 18.697^{4}		2800	0.0036	0.0488	0.0244
LOri154		M8.0	(2)	N	NM+ (B09)			_	$-17.465 + 3.03^{4}$		2700	0.0044	0.0361	0.0267
LOri153					Y			_			2900	0.0034	0.0701	0.0237
LOri152					NM?			_			3100	0.0027	0.1365	0.0217
LOri151		M5.5	(2)	Ν	NM+ (B09)			_	$-9.567 \pm 2.024^{4})$		3300	0.0027	0.2342	0.0216
LOri150		M7.0	(2)	Ν	Y+ (B09)			_	-15.254 ± 2.046^{4}		2900	0.0043	0.0701	0.0266
LOri149					NM			_			3700	0.0018	0.4582	0.0184
LOri148					Y?			_			3000	0.0051	0.1	0.0289
LOri147		M5.5	(2)	Ν	NM+ (B09)			_	-9.804 ± 1.373^{4}		3100	0.0052	0.1365	0.0291
LOri146			(9)		Y+ (M08, B09)			ш			2800	0.0071	0.0488	0.0353
LOri144			~ /		NM?			_			3750	0.0028	0.4936	0.022
LOri143		M7.0	(4)	Ν	Y+ (M08, B09)			III	-41.783 ± 4.663^{4}		3000	0.0076	0.1	0.0368
LOri142					Y			_			3000	0.0072	0.1	0.0357
LOri141		M4.0	(2)	Ν	NM+ (B09)			_	$-3.06\pm0.768^{(4)}$		3100	0.0056	0.1365	0.0305
LOri140		M7.0	(2) (9)	Y	Y + (M08, B09)	-8.875±0.14 ⁴⁾		П	-79.143 ± 9.439^{4}		2900	0.0098	0.0701	0.0421
		 C	-/ (-/	-	()						=, 50			

Table 3.25: Summary of the parameters derived in this work for Collinder 69 candidate members and comparison with previous studies.

bioot	Alt ID	DMID SpT	INIS ³	1.000	at Mamharshin ⁵	$\log(\dot{M}_{\rm e})(M_{\rm e}/{\rm yr})^4$	Din	Class	EW(Ha)4	FW(I i) ⁴	т	T	Mage	Mass
oject	Alt ID	DM ID SpT	1NS ⁵	Accr	et. Membership	$\log(M_{acc})(M_{\odot}/yr)$	BIN	Class	$EW(H\alpha)^{-17.09(+1.010^4)}$	Ew(Li)	1 _{eff}	Lbol	Mass _{Teff}	Mass _{Lbo}
Ji1139 Dri 128		M3./5	(2)(9)	IN	1 + (B09) V			п	-17.980±1.019"		3100	0.0080	0.1365	0.0383
J1158 Dri 127					1 NM			-			3000	0.0098	0.1	0.0422
)ri126					NIVI V			-			2800	0.0055	0.4950	0.0239
)::125		M6 5	(2) (0)	N	I V (M08 D00)			ш	12 22 2 5224)		2000	0.0129	0.0488	0.0007
)::124		M0.5	(2)(9)	IN N	I + (M00, D09) V + (N00)			III III	-13.32±3.333 /		2000	0.0108	0.1	0.07
)ri134		M3.0 M4.75	(2)	IN N	I + (IN09) V + (P00)			ш	-3.923±0.307 /		2900	0.0158	0.0701	0.0492
JIII 55		IV14.75	(2)	IN	I + (B09)			-	-2.2±0.402 ⁽⁾		2000	0.0071	0.3900	0.0555
)::121					1 V (M08)			п			2900	0.015	0.0701	0.0011
n1151 n:120		M5 25	(2)	N	I + (M08, P00)			ш	8 505+0 6204)		2900	0.0134	0.0701	0.0721
11130		M5.25	(2)	IN N	I + (M08, B09) N + (M08, B00)			п	-8.303±0.029	0.404 (0.0024)	2000	0.0117	0.1859	0.0049
129		M0.0	(1)	IN	Y + (M08, B09)			ш	-10.757±0.936*	0.404±0.092*	2100	0.015	0.1	0.0707
11120					1 NM			III III			1700	0.0124	0.1303	0.0000
11127		M6 5	(2)	v	NINI V. (MOS DOO)	0 701 . 0 104)		п	25 424 - 2 5044)		2100	0.0393	0.1265	0.155
ni120		IV10.3	(2)	I	$1 \pm (M00, D09)$ V $\pm (M08)$	-0./01±0.10 /		ш	-33.424±3.304 /		3300	0.015	0.1505	0.0619
)ri123		M5 5	(2)	N	I = (1000) V+ (B00)			ш	-6.965 ± 1.776^{4}		3300	0.0122	0.2342	0.0019
n:124		141.5.5	(2)	18	$\mathbf{V} + (\mathbf{M}09)$			ш	-0.70521.770 /		2100	0.0120	0.1265	0.0002
n1122					I + (N108)			ш			3100	0.0132	0.1303	0.0715
)ri120		M5 5	(4) (8)	N	1 V (M08 P00)			п	12204 ± 10^{4}	0.657+0.0844)	2100	0.0155	0.2342	0.0460
11120		M5.5	(4) (8)	IN N	I + (M08, B09)			п	10.182 + 1.0674	0.037±0.084	2100	0.0105	0.1305	0.0765
		M5.5	(4) (8)	IN N	I + (M08, B09) V + (P00)			ш	-10.182 ± 1.907	0 870+0 1844)	3100	0.0105	0.1303	0.0701
m1119		M5.5	(1)	IN N	I + (B09) V + (M08, B00)			п	-11.876 ± 0.409	0.879±0.184	3100	0.0172	0.1303	0.0791
nii 117		M5.5 M6.0	(2)	N	I + (M00, B09) V + (P00)			п	-10.429 ± 0.203		2000	0.0185	0.1303	0.0855
)ri116		M0.0	(4)	N	I + (B09) V + (M08, P00)			-	-23.421 ± 1.442		3000	0.0202	0.1	0.0901
mi 115		M5.0	(2)	N	I + (N00, B09) V + (P00)			п	(12.575 ± 0.502^4)	0.226+0.004)	3200	0.0174	0.1839	0.0301
ri115		M5.0	(8)(2)	N	$V_{\pm}(B09)$			п	-12.373±0.392	0.550±0.09	3500	0.0162	0.3382	0.0753
mi117		M5.0	(8) (2)	N	I + (B09) V + (M08, B00)			п	12580 ± 1724^{4}		3300	0.0102	0.3362	0.0755
nii 113	C60-X-W-032 n	M0.0	(2)	v	V_{\pm} (B09)	10574 ± 0.03^{4}		п	-12.389 ± 1.734	0.617+0.1394)	3400	0.0217	0.1305	0.0925
)ri112	C0)-A-W-032 W	M6.5	(1)	N	$V_{+}(B09)$	-10.574±0.05		ш	-10.927 ± 1.683^{4}	0.537+0.1954)	3200	0.0170	0.1830	0.0733
		W10.5	(8)	19	V			m	-10.927±1.005	0.557±0.175	2000	0.025	0.1057	0.0940
11111 mi110		M5 25	(2)	N	1 NM + (M08 P00)			III	5 721+2 7284)		3000	0.0271	0.1	0.0026
ri 100		M6.0 M5.5	(2)	N	V_{+} (M08, D09)			ш	10.615 ± 0.516^{4}	0.565+0.1124)	2200	0.0225	0.2342	0.0930
/1109		M6.0 M5.5	(8)(9)(1)	N	I + (M08, B09) V + (M08, B00)			III III	8 606+0 447 ⁴)	$0.503\pm0.113^{\circ}$	3300	0.0228	0.2342	0.0944
ri108		W10.0 W15.5	(0)(0)(1)	19	V			ш	-8.090±0.447	0.502±0.148	3100	0.0220	0.1365	0.0244
)ri107		M6.0	(2) (9)	N	1 V+ (M08 B09)			ш	$11,915\pm1,018^{4}$		3000	0.0202	0.1303	0.1
ni107		M5.5	(2)())	v	V + (S08 M08 P00)	(110^2) , $10017+001^4$		п	$26 16+2 4^{2}$, $48 422+1 85^{4}$	0.636 ± 0.0132^{2} , 0.477 ± 0.032^{4}	3200	0.0303	0.1820	0.1
ri105		M6.0	(6) (8)	N	Y_{\pm} (S08, M08, B09)	1110 , 10.017±0.017		ш	-22 429+0 449 ⁴)	0 137+0 026 ⁴)	3200	0.0203	0.2342	0.0976
1105		M6.0	(6) (8)	N	Y + (S08, M08, B09) Y+ (S08, M08, B09)			Ш	-13 376+2 603 ⁴	0.157 ±0.020	3300	0.0248	0.2342	0.0976
ri104		1110.0	(0) (0)		Y_{\pm} (M08)			п	15.57012.005		3100	0.0240	0.1365	0.1
ri103					V_{\pm} (M08)			ш			3300	0.0207	0.2342	0.1
ri102		M4 0 ²		N	Y_{\pm} (S08 M08)			ш	-5.94 ± 0.96^{2} .	0.584 ± 0.062^{2}	3300	0.0313	0.2342	0.1
ri101		1414.0		14	NM			ш	5.7720.70 ,	0.004±0.002	3700	0.0252	0.4582	0.0083
ri100		M5 5	(4)	N	V+ (\$08 M08 R00)			ш	-8 18+1 42)11 425+1 844)	$0.717 \pm 0.043^{(2)}$	3600	0.0252	0.4562	0.0985
ri099		M5 25 M5 75	(1) (8)	N	Y_{\pm} (B09)			ш	-9 221+0 667 ⁴	$0.385+0.115^{4}$	3400	0.0321	0.3900	0.1
		M5 25 M5 75	(1)(0)	N	$V_{\pm}(B09)$			III	5 806±0 638 ⁴)	0.567+0.1584)	3400	0.0321	0.286	0.1
0.008	C60-X-E-001 I	M5.0	(1)(0)	N	V_{\pm} (M08 B00)			ш	-12 508+0 90/4)	0.507 ±0.150	3400	0.0324	0.286	0.1
11070 ri006	C07-A-E-0911	M5.0	(2)	N	V_{\pm} (\$08 M08 P00)	$< 11.0^{2}$		п	-12.505±0.504	$0.553\pm0.048^{2} + 0.382\pm0.156^{4}$	3400	0.0334	0.280	0.1
11070		W15.0	(0)	19	1 T (300, M00, D09)	<u><u></u>∼11.0 /</u>		ш	-0.7/II.1 /	0.333±0.040 /, 0.362±0.130 9	5500	0.0344	0.5382	0.1

bject	Alt ID	DM ID SpT	INS ³	Accret	. Membership ⁵	$\log(\dot{M}_{acc})(M_{\odot}/yr)^4$	Bin C	lass ⁶	$EW(H\alpha)^4$	EW(Li) ⁴	T _{eff} L _{bol}	MassTet	ff MassLbol
Ori095		M6.0	(2)	Ν	Y+ (S08, M08, B09)	0(110)(10)(1)	Ι	Π	-4.96 ± 0.62^{2} ; -8.231 ± 1.177^{4}	0.559 ± 0.030^{2}	3400 0.0361	0.286	0.1
Ori094		M5.5	(8)(1)	Ν	Y+ (S08, M08, B09)		Γ	п	-15.53±2.23 ²); -13.775±0.73 ⁴)	0.538 ± 0.0204^{2} ; 0.495 ± 0.024^{4}	3200 0.0403	0.1839	0.1026
		M5.5	(8)(1)	Ν	Y+ (S08, M08, B09)		Γ	п	$-15.53\pm2.23^{(2)}$; $-8.488\pm0.095^{(4)}$	0.538 ± 0.0204^{2} ; 0.719 ± 0.082^{4}	3200 0.0403	0.1839	0.1026
Dri093		M5.5	(8)	Ν	Y+ (S08, M08, B09)		Γ	П	-6.25±0.94 ²); -8.536±0.219 ⁴)	$0.623 \pm 0.061^{(2)}; 0.496 \pm 0.083^{(4)}$	3500 0.0392	0.3382	0.1
Dri092		M4.5	(6)	Ν	Y+ (S08, M08, B09)		Ι	Π	$-2.9\pm0.34^{(2)}; -12.512\pm1.367^{(4)}$	$0.661 \pm 0.051^{(2)}$	3500 0.0396	0.3382	0.1007
Dri091		M4.0 M5.5 M6.0 ¹	(1) (10) (8) (6	5) N	Y+ (M08, B09)		Ι	Π	-13.473±1.112 ⁴⁾	0.76±0.06 ⁴⁾	3100 0.0473	0.1365	0.1212
		M4.0 M5.5 M6.01	(1) (10) (8) (6	5) N	Y+ (M08, B09)		Γ	п	-47.87±8.314 ⁴)		3100 0.0473	0.1365	0.1212
		M4.0 M5.5 M6.0 ¹	(1) (10) (8) (6	5) N	Y+ (M08, B09)		Ι	Π	-11.932 ± 1.123^{4}	0.644 ± 0.074^{4}	3100 0.0473	0.1365	0.1212
ri090	C69-X-E-078 I				Y+ (M08)		Ι	Π			3700 0.0374	0.4582	0.1
ri089		M5.0 M6.0 ¹	(1)(10)	Ν	Y+ (B09)		Γ	п	-3.896±0.225 ⁴)	0.603±0.218 ⁴⁾	3500 0.0407	0.3382	0.1036
ri088		M5.5	(8)	Ν	Y+ (S08, M08, B09)		Ι	Π	$-9.44\pm1.12^{(2)}; -16.288\pm0.483^{(4)}$	$0.660 \pm 0.042^{(2)}; 0.475 \pm 0.111^{(4)}$	3200 0.05	0.1839	0.1284
ri087		M5.0	(2) (8)	Ν	Y+ (S08, M08, B09)	<-11.0 ²⁾	Ι	Π	-5.56±0.7 ²); -7.947±0.231 ⁴)	$0.609 \pm 0.042^{(2)}; 0.594 \pm 0.078^{(4)}$	3500 0.0481	0.3382	0.1233
		M5.0	(2) (8)	Ν	Y+ (S08, M08, B09)	<-11.0 ²⁾	Ι	Π	-5.56±0.7 ²); -6.995±0.393 ⁴)	0.609 ± 0.042^{2}	3500 0.0481	0.3382	0.1233
ri086		M5.0	(8)	Ν	Y+ (S08, B09)		Ι	п	-6.978±0.205 ⁴)	0.621 ± 0.086^{4}	3700 0.0402	0.4582	0.1023
ri085			. /		Y+ (M08)		I	[3500 0.0488	0.3382	0.1251
ri084		M6.0	(7)	Ν	Y+ (B09)		I	п	-10.419±3.18 ⁴)		3300 0.0541	0.2342	0.1393
ri083		M3.0 ²		Ν	Y+ (S08, M08)		Ι	п	-5.32 ± 0.68^{2}	0.585 ± 0.077^{2}	3600 0.0468	0.3906	0.1199
ri082		M4.75	(2)	Ν	Y+ (M08, B09)		Ι	п	-10.631 ± 2.094^{4}		3500 0.049	0.3382	0.1257
ri081		M5.25	(2)	Ν	Y+ (B09)		Ι	[$-3.45\pm0.071^{4})$		3700 0.0423	0.4582	0.1079
ri080		M5.5	(4) (6)	Y	Y+ (S08, M08, B09)	$-10.1+0.5^{2}$; $-7.061+0.05^{4}$	г	п	$-14.47 + 1.25^{2}$; $-22.82 + 0.62^{4}$	$0.523 \pm 0.020^{(2)}$	3100 0.0658	0.1365	0.1703
		M5.5	(4) (6)	Y	Y+ (S08, M08, B09)	$-10.1+0.5^{2}$; $-7.061+0.05^{4}$	г	П	-14.47 ± 1.25^{2} ; -14.67 ± 1.00^{4}	0.523 ± 0.020^{2}	3100 0.0658	0.1365	0.1703
ri079		M6.5 M6.0	(8)(7)	N	Y+ (S08, M08, B09)	<-11.0 ²⁾	Г	П	-5.06 ± 0.53^{2} ; -9.06 ± 3.35^{4})	0.607 ± 0.059^{2}	3600 0.0491	0.3906	0.1259
		M6.5 M6.0	(8) (7)	N	Y+ (S08, M08, B09)	<-11.0 ²⁾	г	п	-5.06 ± 0.53^{2} ; -10.0 ± 0.24^{4}	$0.607 \pm 0.059^{(2)}$; $0.605 \pm 0.09^{(4)}$	3600 0.0491	0.3906	0.1259
ri078		M3.5	(7)	N	Y+ (M08, B09)		Ĩ	n I	-1.142 ± 0.186^{4}	0.00720.0057 , 0.000220.057	3700 0.0501	0.4582	0.1287
ri077		M5.0	(1)	N	Y + (M08, B09)		Г	П	$-7.923\pm0.231^{(4)}$	$0.486 \pm 0.098^{(4)}$	3400 0.0571	0.286	0.1473
ri076		M3.0 ²	(-)	N	Y + (S08, M08)		Г	П	-4.92 ± 0.6^{2}	0.608 ± 0.019^{2}	3700 0.0527	0.4582	0.1354
ri075		M5.0 M5.5	(2)(8)(3)	N	Y + (S08 M08 B09)		SB1 (M08) I	Π	-10.71 ± 0.98^{2} · -12.81 ± 0.86^{4}	$0.455\pm0.044^{2} \cdot 0.941\pm0.052^{4}$	3400 0.0999	0.286	0.2516
		M5.0 M5.5	(2)(8)(3)	N	Y+ (S08, M08, B09)		SB1 (M08) I	П	$-10.71+0.98^{2}$; $-10.73+0.73^{4}$	$0.455\pm0.044^{(2)}$; $0.96\pm0.202^{(4)}$	3400 0.0999	0.286	0.2516
		M5.0 M5.5	(2)(8)(3)	N	Y+ (S08, M08, B09)		SB1 (M08) I	П	-10.71 ± 0.98^{2} ; -10.20 ± 0.89^{4}	0.455 ± 0.044^{2}	3400 0.0999	0.286	0.2516
ri074			(_)(0)(0)		Y+ (M08)		Г	Π	,		3600 0.0807	0.3906	0.2085
ri073		M5.5 M5.0	(3)(8)	N	Y+ (M08 B09)		Ĩ	п	$-10.906 \pm 1.041^{4})$	$0.615\pm0.055^{(4)}$	3700 0.0865	0.4582	0.2005
		M5.5 M5.0	(3)(8)	N	Y + (M08, B09) Y + (M08, B09)		Ĩ	IT I	$-4542+0186^{4}$	$0.462 \pm 0.092^{(4)}$	3700 0.0865	0.4582	0.2215
ri072		M5.5 M5.0	(7)	N	Y + (B09)		I.	n in	$-11258+0508^{4}$	0.402±0.072	3400 0.0892	0.4562	0.2215
ri071		M5.0	(1)	N	Y+ (B09)		Ĩ	п	$-6.812\pm0.232^{(4)}$	$0.395\pm0.071^{(4)}$	3400 0.0736	0.286	0.1911
ri070		M5.5	(7)	N	Y+ (B09)		Ĩ	п	$-13555+3256^{4}$	0.09020.071	3700 0.0621	0.4582	0.1606
ri069		M5.5	(8)	N	Y + (S08 M08 B09)		SB2(M08 S08) I	IT I	-7 39+1 46 ²)	0.516 ± 0.057^{2}	3400 0 1043	0.286	0.2613
11007		M5.5	(8)	N	Y + (S08, M08, B09) Y + (S08, M08, B09)		SB2(M08 S08) I SB2(M08 S08) I	n n	-7.39 ± 1.46^{2} -8.123 ± 0.466^{4}	0.516 ± 0.057 0.516 ± 0.057^{2} 0.328 ± 0.041^{4}	3400 0.1043	0.286	0.2613
ri068		M4.5 M5.0	(1) (3)	N	Y + (S08, M08, B09) Y + (S08, M08, B09)		5552(1100 500) I	n n	$-7.9+1.26^{2}$ $-6.815+0.516^{4}$	0.698 ± 0.025^{2} ; 0.691 ± 0.09^{4}	3700 0.094	0.4582	0.2383
11000		M4.5 M5.0	(1)(3)	N	V_{\pm} (S08, M08, B09)		r T	n n	-7.9 ± 1.26^{2} ; -14.388 ± 0.742^{4}	0.698 ± 0.025^{2} ; 0.53 ± 0.045^{4})	3700 0.094	0.4582	0.2383
ri067		114.5 105.0	(1)(3)	.,	Y+ (M08)		I.	n n	1.911.20 , 14.30010.742	0.09010.025 , 0.5510.045	3500 0.0602	0.3382	0.1555
ri066					Y + (M08)		T	n n			3300 0.0904	0 2342	0.2301
ri065					$Y_{+}(M08)$		r	n			3700 0.0701	0.4582	0.2048
ri064	C69-X-E-027 o	M5 5	(7)	N	V_{\pm} (M08 B00)		I. T	n a	9 617+0 5634)		3500 0.0791	0.4382	0.2040
ri063	C07-A-E-057 C	M4.0	(7)	N	Y_{\pm} (S08 M08 R00)	$-10.7\pm0.3^{(2)}$	L T	r	$-19\ 14+2\ 53^{2}$, $-11\ 55\pm0\ 60^{4}$	0.505 ± 0.052^{2} 0.645 ± 0.088^{4}	3700 0.0757	0.3582	0.1207
ri062		M2.0	(5)	IN NI	1 + (300, 1000, D09) V (S08 M08 D00)	< 11.0 ²)	1 T	r r	(441 ± 0.2^2) , (48 ± 0.722^4)	0.648+0.0482)	2500 0.0833	0.4382	0.2245
11002 ri061		M2.0	(0)	v	1 + (300, M00, D09) V ₊ (S08 M09 D00)	-10.2+0.32). 7.647+0.054)	I T	r r	-13 07+1 38 ²), -11 78+0 17 ⁴)	0.040 ± 0.040^{2}	3700 0.0879	0.3362	0.2243
11001		M4.0	(0)	I N	$1 \pm (500, 1000, B09)$	-10.2±0.5 /; -/.04/±0.05 //	1 T	ц П	-13.77 ± 1.36 (; -11.76 ± 0.17) 4.18 ± 0.482 ; 4.02 ± 0.214)	0.591 ± 0.050 / 0.4 ± 0.060^{4}	3700 0.0997	0.4382	0.231
.1000		14.0	(5)	IN	1 + (SU0, MU0, B09)		1	u	-+.10 ±0.46-7; -4.05±0.21 7	0.377±0.026", 0.4±0.009"	3300 0.091	0.5562	0.2310

	Table 3.2	25 – Continued												
Object	Alt ID	DM ID SpT	INS ³	Accret	. Membership ⁵	$\log(\dot{M}_{acc})(M_{\odot}/yr)^4$	Bin	Class	$5 \text{ EW}(\text{H}\alpha)^4$	EW(Li) ⁴	T _{eff}	L _{bol}	Mass _{Teff}	Mass _{Lbol}
LOri059		M4.0 M5.0	(3) (8)	Ν	Y+ (M08, B09)			III	-6.874±0.288 ⁴)	0.39 ± 0.042^{4}	3500	0.0938	0.3382	0.2379
**		M4.0 M5.0	(3) (8)	Ν	Y+ (M08, B09)			III	-9.833±0.301 ⁴⁾	0.369±0.063 ⁴⁾	3500	0.0938	0.3382	0.2379
LOri058	C69-X-E-096 c	M3.5	(3)	Ν	Y+ (M08, B09)			III	-7.28±0.398 ⁴)	$0.299 \pm 0.056^{4)}$	3500	0.0951	0.3382	0.2407
LOri057		M5.5	(3)	Ν	Y+ (S08, B09)			III	-5.2 ± 0.52^{2} ; -4.999 ± 0.307^{4})	0.677 ± 0.019^{2} ; 0.48 ± 0.083^{4}	3700	0.106	0.4582	0.2653
LOri056		M4.0 M5.0	(3) (8)	Ν	Y+ (S08, M08, B09)			III	-5.57±0.81 ²); -4.367±0.446 ⁴)	0.576 ± 0.023^{2} ; 0.306 ± 0.047^{4}	3700	0.127	0.4582	0.3096
"		M4.0 M5.0	(3) (8)	Ν	Y+ (S08, M08, B09)			III	-5.57±0.81 ²); -6.219±0.221 ⁴)	0.576 ± 0.023^{2} ; 0.45 ± 0.023^{4}	3700	0.127	0.4582	0.3096
LOri055	C69-X-E-079 I	M4.0	(3)	Ν	Y+ (S08, M08, B09)			III	-6.53±0.49 ²); -7.054±0.132 ⁴)	0.602 ± 0.033^{2} ; 0.413 ± 0.079^{4}	3700	0.1382	0.4582	0.3292
LOri054	C69-X-E-055 I	M5.5	(7)	Ν	Y+ (M08, B09)			III	-8.346±0.476 ⁴)		3700	0.1363	0.4582	0.3258
LOri053		M4.5 M5.5	(8)(7)	Ν	Y+ (S08, M08, B09)			III	-2.93 ± 0.2^{2} ; -5.833 ± 0.216^{4}	0.561 ± 0.030^{2}	3500	0.136	0.3382	0.3253
**		M4.5 M5.5	(8)(7)	Ν	Y+ (S08, M08, B09)			III	-2.93±0.2 ²); -4.298±0.148 ⁴)	0.561 ± 0.030^{2} ; 0.56 ± 0.041^{4}	3500	0.136	0.3382	0.3253
LOri052	C69-X-W-024 c	M5.0 M4.0	(6) (8)	Ν	NM?+ (M08, B09)			III	-7.262±0.423 ⁴⁾	0.278±0.103 ⁴⁾	3500	0.1466	0.3382	0.3438
"	C69-X-W-024 c	M5.0 M4.0	(6) (8)	Ν	NM?+ (M08, B09)			III	-6.796±0.44 ⁴)		3500	0.1466	0.3382	0.3438
LOri051	C69-X-E-054 I				Y+ (M08)		SB1 (M08)	III			3500	0.1377	0.3382	0.3283
LOri050		M4.0	(8) (3)	Y	Y+ (S08, M08, B09)	-10.878±0.05 ⁴⁾	SB1(M08 S03	8) II	-11.14 ± 0.96^{2} ; -15.98 ± 1.58^{4}	0.596 ± 0.058^{2} ; 0.57 ± 0.016^{4}	3700	0.1756	0.4582	0.3944
"		M4.0	(8) (3)	Y	Y+ (S08, M08, B09)	-10.878±0.05 ⁴⁾	SB1(M08 S0	8) II	-11.14 ± 0.96^{2} ; -11.646 ± 1.29^{4}	0.596 ± 0.058^{2} ; 0.509 ± 0.036^{4}	3700	0.1756	0.4582	0.3944
LOri049		M5.0 M4.0	(7) (8)	Ν	NM+ (S08, B09)			III		0.64 ±0.013 ²)	3750	0.1439	0.4936	0.339
**		M5.0 M4.0	(7)(8)	Ν	NM+ (S08, B09)			III		0.64 ±0.013 ²⁾	3750	0.1439	0.4936	0.339
LOri048		M3.0	(6)	Ν	Y+ (S08, M08, B09)	<-11.0 ²⁾		II	-3.34±0.44 ²); -4.319±0.193 ⁴)	0.545 ± 0.012^{2}	3500	0.1804	0.3382	0.4023
LOri047	C69-X-E-081 c	DM047		Ν	Y+ (M08)			III	-8.65 ¹⁾	0.57 ¹⁾	3700	0.1977	0.4582	0.4277
LOri046		M4.0	(7)(8)	Ν	NM+ (S08, M08, B09)		III		0.148 ± 0.064^{2}	3750	0.1588	0.4936	0.3652
"		M4.0	(7) (8)	Ν	NM+ (S08, M08, B09)		III	-0.369 ± 0.014^{4}	0.148 ± 0.064^{2}	3750	0.1588	0.4936	0.3652
LOri045		M4.0 M2.0	(8) (6)	Ν	Y+ (S08, B09)			III	-3.04 ± 0.33^{2} ; -6.22 ± 0.337^{4})	0.554 ± 0.023^{2} ; 0.498 ± 0.044^{4}	3500	0.2045	0.3382	0.4375
"		M4.0 M2.0	(8) (6)	Ν	Y+ (S08, B09)			III	-3.04±0.33 ²⁾ ; -6.849±0.105 ⁴⁾	0.554 ± 0.023^{2}	3500	0.2045	0.3382	0.4375
LOri044	C69-X-W-015 I	M4.5 M3.5	(6) (8)	Ν	NM + (M08, B09)			III	$-1.615 \pm 0.098^{(4)}$		3750	0.1863	0.4936	0.4109
"	C69-X-W-015 I	M4.5 M3.5	(6) (8)	Ν	NM+ (M08, B09)			III	-1.571 ± 0.2^{4}		3750	0.1863	0.4936	0.4109
LOri043		M4.0	(8)	Ν	Y+ (M08, B09)		SB2 (M08)	III	$-3.92\pm0.123^{(4)}$	0.528 ± 0.07^{4}	3500	0.2198	0.3382	0.4598
LOri042		M4.0	(3)	Ν	Y+ (B09)			III	-3.024±0.156 ⁴)	$0.648 \pm 0.078^{4)}$	3750	0.2101	0.4936	0.4457
LOri041	C69-X-E-036 I	DM038 M3.5 ²		Ν	Y+ (S08, M08)			III	$-8.2^{1}; -7.05\pm0.86^{2}$	0.74^{1} ; 0.485 ± 0.040^{2}	3700	0.2506	0.4582	0.5044
LOri040	C69-X-E-035 c	DM041 M3.0 ²		Ν	Y+ (S08, M08)			III	-3.9^{1} ; -5.15 ± 0.62^{2}	0.64^{1} ; 0.561 ± 0.045^{2}	3500	0.2472	0.3382	0.4998
LOri039	C69-X-E-082 I	DM049		Ν	Y+ (DM, M08)			III	-3.59 ¹⁾	0.55 ¹⁾	3750	0.2278	0.4936	0.4715
LOri038	C69-X-W-008 c	DM002 M3.0	(8)	Y	Y+ (B09)	-10.904±0.030 ⁴⁾		II	-24.95^{1} ; -14.012 ± 0.513^{4}	0.47^{1} ; 0.523 ± 0.035^{4}	3500	0.2563	0.3382	0.5119
LOri037	C69-X-W-013 c	DM011 M3.5	(8)	Ν	Y+ (S08, B09)			III	-3.63^{1} ; -3.67 ± 0.34^{2} ; -4.40 ± 0.23^{4}	$0.63^{(1)}; 0.566 \pm 0.057^{(2)}; 0.558 \pm 0.037^{(4)}$	3500	0.2756	0.3382	0.5374
LOri036	C69-X-W-023 I	M3.5	(6)	Ν	NM+ (S08, B09)			III	-4.797±0.224 ⁴)	0.56 ± 0.022^{2}	3500	0.2414	0.3382	0.4914
LOri035		M2.5 ²		Ν	Y+ (S08)			III	-3.32 ± 0.35^{2}	$0.572 \pm 0.021^{(2)}$	3500	0.2587	0.3382	0.5151
LOri034		M1.0 ²		Y	Y?+ (S08)	$-10.8\pm0.4^{(2)}; -10.80\pm0.40^{(4)}$		Π	-8.47 ± 0.47^{2}	0.541 ± 0.035^{2}	3700	0.3063	0.4582	0.578
LOri033	C69-X-E-029 c	DM039		Ν	Y+(DM)			III	-3.14 ¹⁾	0.36 ¹⁾	3750	0.2932	0.4936	0.5607
LOri032	C69-X-E-022 I	DM055		Ν	Y+(DM)			III	-6.83 ¹⁾	0.62 ¹⁾	3750	0.2925	0.4936	0.5598
LOri031		M3.5	(3)	Ν	Y+ (B09)			III	-2.838±0.139 ⁴)	$0.614 \pm 0.045^{(4)}$	3750	0.3067	0.4936	0.5785
LOri030		M1.5 ²			Y?+ (S08)		SB2 (S08)	III			3750	0.3037	0.4936	0.5746
LOri029					Y			II			3700	0.3704	0.4582	0.6582
LOri028	C69-X-E-017 I				Y+			III			3750	0.2837	0.4936	0.5481
LOri027					Y			III			4000	0.3366	0.7341	0.6168
LOri026	C69-X-W-002 c	DM012 M2.5	(8)	Ν	Y+ (DM, S08, B09)			III	-6.07^{1} ; -5.3 ± 0.3^{2} ; -5.537 ± 0.298^{4}	0.66^{1} ; 0.581 ± 0.043^{2} ; 0.588 ± 0.046^{4}	3750	0.4153	0.4936	0.7124
LOri025	C69-X-E-011 c	DM059		Ν	Y+ (DM)			III	$-3.95^{1};$	0.53 ¹⁾	3750	0.4139	0.4936	0.7109
LOri024		M1.5	(8)	Ν	Y+ (S08, B09)			III	-2.0±0.12 ²); -2.466±0.107 ⁴)	0.554 ± 0.021^{2} ; 0.54 ± 0.017^{4}	3750	0.3979	0.4936	0.6919
LOri023	C69-X-E-028 c	DM050		Ν	Y+ (DM)			III	-1.95 ¹⁾	0.47 ¹⁾	3750	0.3859	0.4936	0.6772
LOri022	C69-X-E-014 I	DM044 M1.5 ²		Ν	Y+ (DM, S08)			III	-4.39 ¹); -6.96±0.69 ²)	0.54 ¹) 0.516±0.033 ²)	3750	0.4163	0.4936	0.7135
		Continu	ed on next pag	ge										4

	Table	3.25 – Continued												ľ
Object	Alt ID	DM ID SpT	INS ³	Accre	et. Membership ⁵	$\log(\dot{M}_{acc})(M_{\odot}/yr)^4$	Bin	Class	6 EW(H α) ⁴	EW(Li) ⁴	T _{eff}	L _{bol}	Mass _{Tef}	Mass _{Lbol}
LOri021					Y			III			4000	0.392	0.7341	0.6847
LOri020		M2.0 ²			NM+ (S08)			III		$0.18 \pm 0.029^{2)}$	3500	0.4655	0.3382	0.7703
LOri019					Y			III			3750	0.4495	0.4936	0.7519
LOri018	C69-X-E-016 I	DM056		Ν	Y+(DM)			III	-2.021)	0.591)	3750	0.4647	0.4936	0.7694
LOri017	C69-X-E-006 I	DM060	(3)	Ν	Y+ (DM, B09)			III	-0.8^{1} ; -6.572 ± 2.307^{4})	0.491)	4250	0.4449	1.0094	0.7465
LOri016		K8.0 ²			Y+ (S08)		SB (S08)	III	-1.58 ± 0.13^{2}	0.531±0.033 ²⁾	4000	0.4903	0.7341	0.7989
LOri015					Y			III			4000	0.5631	0.7341	0.8754
LOri014	C69-X-E-007 c	DM058		Ν	Y+ (DM)			III	-1.45 ¹⁾	0.55 ¹⁾	4000	0.522	0.7341	0.8323
LOri013	C69-X-W-003	I DM004 M3.5	(8)	Ν	Y+ (DM, B09)			III	-4.41 ¹⁾ ; -4.308±0.207 ⁴⁾	0.33^{1} ; 0.523 ± 0.037^{4})	3750	0.5978	0.4936	0.9104
LOri012		K8	(8)	Ν	NM+ (B09)			III		0.082±0.017 ⁴)	4000	0.6017	0.7341	0.914
LOri011		K9	(8)	Ν	NM+ (B09)			III		0.038 ± 0.0040^{4}	3750	0.6729	0.4936	0.9796
LOri010					Y			III			4250	0.5716	1.0094	0.8843
LOri009					Y			III			4000	0.5789	0.7341	0.892
LOri008	C69-X-E-004 I	DM051		Ν	Y+ (DM)			III	-1.65 ¹⁾	0.55 ¹⁾	4000	0.7191	0.7341	1.0195
LOri007		M1.5 M1.0	(8) (6)	Ν	NM+ (B09)			III			4000	0.6272	0.7341	0.9375
,		M1.5 M1.0	(8) (6)	Ν	NM+ (B09)			III			4000	0.6272	0.7341	0.9375
LOri006					Y			III			4000	0.7323	0.7341	1.0303
LOri005					Y			III			4000	0.8772	0.7341	1.1403
LOri004	C69-X-E-023 I				Y			III			3750	0.7806	0.4936	1.0697
LOri003	C69-X-E-001 I	DM046 K8.5 ²		Ν	Y+ (S08)		SB (S08)	III	-3.35 ¹); -1.13±0.15 ²)	0.55^{1} ; 0.520 ± 0.032^{2}	4000	0.8231	0.7341	1.1036
.Ori002					Y			III			3750	0.984	0.4936	1.2104
LOri001	C69-X-W-004	I DM001 M0	(8)	Ν	Y+ (B09)			III	-2.51 ¹); -2.819±0.159 ⁴)	0.56^{1} ; 0.468 ± 0.015^{4}	4000	0.928	0.7341	1.1748
DM071	C69-X-E-041 N	4 DM071			Y+ (DM)			-		0.52 ¹⁾	3700			
DM070	C69-X-E-019 N	4 DM070			Y+(DM)			III	-0.9 ¹⁾	0.58 ¹⁾	4500	0.244	1.2911	0.4952
DM069	C69-X-E-058 M	A DM069			Y+ (DM)			III	-0.49 ¹⁾	0.51 ¹⁾	4500	0.315	1.2911	0.5896
DM068		DM068			Y+ (DM)			III	0.041)	0.441)	3750	0.844	0.4936	1.1178
DM067	C69-X-E-031 M	/I DM067			Y+ (DM)			III	-4.88 ¹⁾	0.66 ¹⁾	4800	0.247	1.5748	0.4996
DM066		DM066			Y+ (DM)			III	-1.0 ¹⁾	0.551)	4000	1.655	0.7341	1.5
DM065	C69-X-E-018 N	4 DM065			Y+ (DM)			III	-2.67 ¹⁾	0.581)	4250	0.302	1.0094	0.5724
DM064		DM064			Y+ (DM)			Π	-2.52 ¹⁾	0.45 ¹⁾	3500	0.3	0.3382	0.5697
DM063		DM063			Y + (DM)			п	-4.76 ¹⁾	0.54 ¹⁾	4500	1.032	1.2911	1.2368
DM062	C69-X-E-027 c	DM062			Y + (DM)			III	-4.05 ¹⁾	0.61 ¹⁾	3700	0.188	0.4582	0.4134
DM061	C69-X-E-025 I	DM061			Y + (DM)			III	-4.23 ¹⁾	0.56 ¹⁾	3300	0.203	0.2342	0.4353
DM057	C69-X-E-008 I	DM057			Y+ (DM)			III	0.15 ¹⁾	0.39 ¹⁾	3500	1.148	0.3382	1.3004
DM053	C69-X-E-030 I	DM053			Y + (DM)			III	-3.621)	0.521)	3700	0.402	0.4582	0.6969
DM052		DM052			Y + (DM)			III	0.36 ¹⁾	0.25 ¹⁾	3750	0.625	0.4936	0.9355
DM048		DM048 M3.5 M1.5	(7)(6)	Ν	Y+ (DM, B09)			п	-8.61^{1} ; -3.357 ± 0.111^{4}	0.58 ¹⁾	3000	0.178	0.1	0.3986
,		DM048 M3.5 M1.5	(7) (6)	Ν	Y+ (DM, B09)			п	-8.61^{1} ; -7.724 ± 0.19^{4}		3000	0.178	0.1	0.3986
DM045	C69-X-E-010 c	DM045			Y + (DM)			III	0.12 ¹⁾	0.46 ¹⁾	4750	1.658	1.5313	1.5008
DM043		DM043			Y + (DM)			III	-2.6 ¹⁾	0.57 ¹⁾	3600	0.255	0.3906	0.5102
DM042		DM042			Y + (DM)			Ш	-2.94 ¹⁾	0.58 ¹⁾	4750	0.18	1.5313	0.4018
DM040	C69-X-E-084 I	DM040			Y+(DM)			III	-3.63 ¹⁾	0.55 ¹⁾	4500	0.136	1.2911	0.3253
DM037		DM037			Y + (DM)			Ш	-0.08 ¹⁾	0.431)	3000	0.405	0.1	0.7006
DM035	C69-X-E-034 c	DM035			Y + (DM)			III	-1.68 ¹⁾	$0.55^{(1)}$	4800	0.338	1.5748	0.6185
DM034		DM034			Y + (DM)			III	-2.64 ¹⁾	$0.49^{(1)}$	3700	0.188	0.4582	0.4134
DM032		DM032			Y+ (DM, S08)	<-11.0 ²⁾		III	-5.5^{1} ; -4.98 ± 0.49^{2}	0.42^{1} ; 0.589 ± 0.016^{2}	3750	0.151	0.4936	0.3515
DM031		DM031			Y + (DM)			III	0.01 ¹⁾	0.42^{1}	3600	0.875	0.3906	1.1388
		Continu	ad on next poo	10	()						2.500		,,	

DM030 DM028 DM028 DM027 DM026 DM025 DM024 DM023 DM021 DM012 DM019 DM019 DM018 DM017 DM016 DM017 DM016 DM017 DM016 DM017 DM016 DM010 DM009 C69-X- DM008 DM007 C69-X- DM008 C69-X- DM006 C69-X- DM006 C69-X- DM007 C69-X- DM006 C69-X- DM007 C69-X- DM006 C69-X- DM007 C69-X- DM007 C69-X- DM006 C69-X- DM007 C69-X- DM006 C69-X- DM005 DM003 C69-X- DM005 C69-X- C9-X	C-W-005 c DM00 C-W-005 c DM02 DM02 DM02 DM02 DM02 DM02 DM01 DM02 DM01) 3 7 5 4 3 2 1) 3 7 5 5 4 3 7 5 5 5 4 8 7 5 5 5 5 5 5 5 5 5 5 5 5 5	Ν	$\begin{array}{l} Y + (DM, S08) \\ Y + (DM) \\$	<-11.0 ²⁾		-1.0^{1} ; -1.89 ± 0.15^{2}) (0.35^{1}) $-3.6^{1})$ (0.39^{1}) $-1.47^{1})$ $1.07^{1})$ $-2.04^{1})$ $-2.37^{1})$ $1.72^{1})$	$\begin{array}{c} 0.61^{(1)}; 0.571 \pm 0.034^{(2)} \\ 0.47^{(1)} \\ 0.59^{(1)} \\ 0.35^{(1)} \\ 0.54^{(1)} \\ 0.54^{(1)} \\ 0.54^{(1)} \\ 0.54^{(1)} \\ 0.54^{(1)} \\ 0.51^{(1)} \end{array}$	4250 4000 3500 3600 4500 3500 3500 4500 3400	0.204 0.697 0.282 1.591 0.381 1.616 0.259 0.308	1.0094 0.7341 0.3382 0.3906 1.2911 0.3382 0.3382 1.2911	0.4368 1.0015 0.5459 1.4775 0.6712 1.4863 0.5155 0.5803
DM028 DM027 DM026 DM025 DM024 DM023 DM021 DM021 DM018 DM019 DM016 DM016 DM010 DM010 DM010 DM010 DM009 C69-X- DM000 DM000 C69-X- DM000 DM000 C69-X- DM000 C69-X- DM008 DM009 C69-X- DM008 C69-X- DM008 C69-X- DM008 C69-X- DM008 C69-X- DM005 DM005 C69W1-9847 C69W1 C69W1-9847 C69W1 C69W1-7180 C69W1 C69W1-7152 C69W1 C69W1-6142	-W-005 c DM02 DM02 DM02 DM02 DM02 DM02 DM01 DM01 DM01 DM01 DM01 DM01 DM01 DM01	3 7 5 5 4 8 2 1 9 3 7 5 5 5 1.5 (8) 5 4 8	Ν	Y + (DM) Y +	<-11.0 ²⁾	III III III III III III III	$\begin{array}{c} 0.35^{1)} \\ -3.64^{1)} \\ 0.39^{1)} \\ -1.47^{1)} \\ 1.07^{1)} \\ -2.04^{1)} \\ -2.37^{1)} \\ 1.71 \\ \end{array}$	$\begin{array}{c} 0.47^{1)} \\ 0.59^{1)} \\ 0.35^{1)} \\ 0.54^{1)} \\ 0.53^{1)} \\ 0.53^{1)} \\ 0.54^{1)} \\ 0.54^{1)} \\ 0.51^{1)} \end{array}$	4000 3500 3600 4500 3500 3500 4500 3400	0.697 0.282 1.591 0.381 1.616 0.259 0.308	0.7341 0.3382 0.3906 1.2911 0.3382 0.3382 1.2911	1.0015 0.5459 1.4775 0.6712 1.4863 0.5155 0.5803
DM027 DM026 DM026 DM025 DM024 DM023 DM021 DM019 DM019 DM019 DM019 DM017 DM016 DM017 DM016 DM015 DM014 C69-X- DM008 DM000 C69-X- DM008 DM000 C69-X- DM008 C69-X- DM008 C69-X- DM006 C69-X- DM006 C69-X- DM006 C69-X- DM006 C69-X- DM006 C69-X- DM006 C69-X- DM006 C69-X- DM007 C69-X- DM006 C69-X- DM008 C69-X- DM006 C69-X- C9-X- DM006 C69-X- C9-X- DM006 C69-X- C9-	-W-005 c DM02 DM02 DM02 DM02 DM02 DM01 DM01 DM01 DM01 DM01 DM01 DM01 DM01	7 5 5 4 3 2 1 9 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Ν	Y+(DM) Y=(DM) Y=(D	<-11.0 ²⁾		$-3.64^{1})$ $0.39^{1})$ $-1.47^{1})$ $1.07^{1})$ $-2.04^{1})$ $-2.37^{1})$ $1.72^{1})$	$\begin{array}{c} 0.59^{1)} \\ 0.35^{1)} \\ 0.54^{1)} \\ 0.3^{1)} \\ 0.53^{1)} \\ 0.54^{1)} \\ 0.54^{1)} \\ 0.51^{1)} \end{array}$	3500 3600 4500 3500 3500 4500 3400	0.282 1.591 0.381 1.616 0.259 0.308	0.3382 0.3906 1.2911 0.3382 0.3382 1.2911	0.5459 1.4775 0.6712 1.4863 0.5155 0.5803
DM026 DM025 DM025 DM023 DM022 DM021 DM019 DM018 DM017 DM016 DM015 DM015 DM015 DM010 DM009 C69-X- DM008 DM007 C69-X- DM008 C69-X- DM006 C69-X- DM006 C69-X- DM006 C69-X- DM006 C69-X- DM006 C69-X- DM006 C69-X- DM006 C69-X- DM006 C69-X- DM007 C69-X- DM006 C69-X- DM008 C69-X- DM008 C69-X- DM006 C69-X- DM007 C69-X- DM006 C69-X- C	E-W-005 c DM02	5 5 4 3 2 1 9 3 7 5 5 5 5 5 4 3	Ν	Y+(DM) Y+(DM) Y+(DM) Y+(DM) Y+(DM) Y+(DM) Y+(DM) Y+(DM) Y+(DM) Y+(DM) Y+(DM) Y+(DM)	<-11.0 ²⁾		$\begin{array}{c} 0.39^{1} \\ -1.47^{1} \\ 1.07^{1} \\ -2.04^{1} \\ -2.37^{1} \\ 1.71 \\ \end{array}$	$\begin{array}{c} 0.35^{1)} \\ 0.54^{1)} \\ 0.3^{1)} \\ 0.53^{1)} \\ 0.54^{1)} \\ 0.51^{1)} \end{array}$	3600 4500 3500 3500 4500 3400	1.591 0.381 1.616 0.259 0.308	0.3906 1.2911 0.3382 0.3382 1.2911	1.4775 0.6712 1.4863 0.5155 0.5803
DM025 DM024 DM023 DM021 DM021 DM019 DM018 DM017 DM016 DM016 DM013 DM010 DM016 DM017 DM018 DM016 DM017 DM018 DM010 DM000 C69-X- DM003 C69W11-9847 C69W11-9847 C69W11-9288 C69W11-7809 C69W11-7809 C69W11-7809 C69W11-7812 C69W11-6820 C69W1 C69W11-6121 C69W11-6487 C69W11-6487 C69W11-4897	DM02 DM02 DM02 DM02 DM02 DM01 DM01 DM01 DM01 DM01 C-W-006 I DM01 DM01 DM01 DM01 DM01 DM01 DM01 DM01	5 4 3 2 1 9 3 7 5 5 4 5 8	Ν	Y+(DM) Y+(DM) Y+(DM) Y+(DM) Y+(DM) Y+(DM) Y+(DM) Y+(DM) Y+(DM) Y+(DM)	<-11.0 ²⁾		-1.47^{1} 1.07^{1} -2.04^{1} -2.37^{1} -72^{1}	0.54 ¹⁾ 0.3 ¹⁾ 0.53 ¹⁾ 0.54 ¹⁾ 0.5 ¹⁾	4500 3500 3500 4500 3400	0.381 1.616 0.259 0.308	1.2911 0.3382 0.3382 1.2911	0.6712 1.4863 0.5155 0.5803
DM024 DM023 DM023 DM021 DM019 DM019 DM017 DM016 DM015 DM016 DM016 DM017 DM016 DM017 DM018 DM010 DM009 C69-X- DM000 DM000 C69-X- DM000 C69-X- DM000 C69-X- DM000 C69-X- DM000 C69-X- DM000 C69-X- DM005 C69-X- DM005 C69W1-847 C69W1-6847 C69W1-9288 C69W1 C69W1-718 C69W1-718 C69W1 C69W1-6420 C69W1 C69W1-6412 C69W1 C69W1-4897 C69W1	DM02 DM02 DM02 DM02 DM01 DM01 DM01 DM01 DM01 C-W-006 I DM01 DM01 DM01 DM01 DM01 DM01 DM01 DM01	4 3 2 1 3 3 5 5 5 4 3 3	Ν	Y+(DM) Y+(DM) Y+(DM) Y+(DM) Y+(DM, S08) Y+(DM) Y+(DM) Y+(DM)	<-11.0 ²⁾	III III III III	$\begin{array}{c} 1.07^{1}) \\ -2.04^{1}) \\ -2.37^{1}) \\ 1.72^{1} \end{array}$	$\begin{array}{c} 0.3^{1)} \\ 0.53^{1)} \\ 0.54^{1)} \\ 0.5^{1)} \end{array}$	3500 3500 4500 3400	1.616 0.259 0.308	0.3382 0.3382 1.2911	1.4863 0.5155 0.5803
DM023 DM022 DM022 DM012 DM018 DM018 DM017 DM016 DM015 DM015 DM010 DM009 C69-X- DM008 DM000 C69-X- DM008 DM007 C69-X- DM006 C69-X- DM006 C69-X- DM006 C69-X- DM006 C69-X- DM005 C69-X- C69-	DM02 DM02 DM02 DM01 DM01 DM01 DM01 DM01 C-W-006 I DM01 DM01 DM01 C-W-005 c DM00 DM00	3 2 1 3 5 5 5 4 8	N	Y + (DM) Y + (DM) Y + (DM) Y + (DM, S08) Y + (DM) Y + (DM) Y + (DM)	<-11.0 ²⁾	III III III	-2.04 ¹) -2.37 ¹)	$\begin{array}{c} 0.53^{1)} \\ 0.54^{1)} \\ 0.5^{1)} \end{array}$	3500 4500 3400	0.259 0.308	0.3382 1.2911	0.5155 0.5803
DM022 DM021 DM018 DM018 DM017 DM016 DM015 DM016 DM016 DM017 DM016 DM017 DM016 DM017 DM016 DM017 DM018 DM016 DM017 DM001 DM009 C69-X- DM006 C69-X- DM006 C69W1-666 C69W1-9847 C69W1-9847 C69W1-9847 C69W1-9847 C69W1-7808 C69W1-7808 C69W1-7178 C69W1-718 C69W1-7152 C69W1-6820 C69W1-6820 C69W1-6121 C69W1-61421 C69W1-614287 C69W1-4897 C69W1-4897	DM02 DM01 DM01 DM01 DM01 DM01 DM01 C-W-006 I DM01 DM01 C-W-005 c DM00 DM00	2 1 3 5 5 5 4 8	N	Y+ (DM) Y+ (DM) Y+ (DM, S08) Y+ (DM) Y+ (DM)	<-11.0 ²⁾	III III	-2.37 ¹)	0.54^{1}	4500 3400	0.308	1.2911	0.5803
DM021 DM019 DM019 DM017 DM016 DM015 DM014 C69-X- DM009 C69-X- DM000 DM000 DM000 DM000 DM000 C69-X- DM000 DM000 C69-X- DM000 C69-X- DM000 C69-X- DM000 C69-X- DM000 C69-X- DM005 DM005 C69W1-9847 C69W1-9847 C69W1-9847 C69W1-7808 C69W1-7809 C69W1-71782 C69W1 C69W1-7152 C69W1-6820 C69W1 C69W1-6412 C69W1-6412 C69W1-6412 C69W1-4897 C69W1-4897	DM02 DM01 DM01 DM01 DM01 DM01 DM01 C-W-006 I DM01 C-W-005 c DM00 DM00	1 3 7 5 M1.5 (8) 5 4 8	N	Y+ (DM) Y+ (DM, S08) Y+ (DM) Y+ (DM)	<-11.0 ²⁾	III	1 72])	0.51)	3400			
DM019 DM018 DM017 DM016 DM015 DM014 C69-X- DM013 DM010 DM009 C69-X- DM000 DM010 DM003 C69W1-9847 C69W1-9847 C69W1-9288 C69W1-9288 C69W1-9288 C69W1-9288 C69W1-9288 C69W1-9288 C69W1-9288 C69W1 C69W1-9288 C69W1 C69W1-7152 C69W1 C69W1-7152 C69W1-612 C69W1-6142 C69W1-6142 C69W1-6142 C69W1-6148 C69W1-4897	C-W-005 c DM01 DM01 DM01 DM01 DM01 DM01 DM01 DM01	9 3 7 5 M1.5 (8) 5 4 8	Ν	Y+ (DM, S08) Y+ (DM) Y+ (DM)	<-11.0 ²⁾		-1./3*/	0.5		0.657	0.286	0.9649
DM018 DM017 DM016 DM015 DM014 C69-X- DM010 DM009 C69-X- DM000 DM000 C69-X- DM003 C69WI1-6847 C69WI1-7808 C69WI1-7808 C69WI1-7809 C69WI1-6820 C69WI C69WI1-6121 C69WI1-6142 C69WI C69WI1-6487 C69WI-4897	C-W-005 c DM01 DM01 DM01 DM01 DM01 DM01 DM01 C-W-005 c DM00 DM00	3 7 5 M1.5 (8) 5 4	Ν	Y+ (DM) Y+ (DM)		III	-2.07^{1} ; -2.44 ± 0.23^{2}	0.56 ¹); 0.571±0.027 ²)	4750	0.304	1.5313	0.575
DM017 DM016 DM016 DM015 DM013 DM010 DM009 C69-X- DM008 DM007 C69-X- DM008 DM007 C69-X- DM008 C69-X- DM006 C69-X- DM005 C69W1-9847 C69W1-9847 C69W1-0608 C69W1-7809 C69W1-7809 C69W1-7809 C69W1-7152 C69W1-7152 C69W1-612 C69W1-6142 C69W1-6142 C69W1-6148 C69W1-4897 C69W1-4897	DM01 DM01 C-W-006 I DM01 DM01 DM01 C-W-005 c DM00 DM00	7 5 M1.5 (8) 5	Ν	Y+ (DM)		III	-2.64 ¹⁾	0.521)	4000	0.824	0.7341	1.1042
DM016 DM015 DM015 DM016 C69-X- DM000 DM000 DM007 C69-X- DM008 DM006 C69-X- DM007 C69-X- DM006 C69W1- C69W1-9284 C69W1-92696 C69W1-92696 C69W1-7809 C69W1-7809 C69W1-7178 C69W1-7178 C69W1-7182 C69W1-6202 C69W1-6412 C69W1-6412 C69W1-6418 C69W1-4897 C69W1-4897	DM01 DM01 Z-W-006 I DM01 DM01 Z-W-005 c DM00 DM00	5 M1.5 (8) 5 4	Ν	M. (DM DOOL		III	-0.25 ¹⁾	0.471)	5000	1.314	1.7371	1.3749
DM015 DM014 C69-X- DM010 DM000 DM009 C69-X- DM008 DM007 DM006 C69-X- DM007 C69-X- DM006 C69-X- DM005 DM005 C69W1-9847 C69W1 C69W1-9847 C69W1 C69W1-7809 C69W1 C69W1-7152 C69W1 C69W1-7152 C69W1 C69W1-6820 C69W1 C69W1-6420 C69W1 C69W1-4897 C69W1	DM01 Z-W-006 I DM01 DM01 Z-W-005 c DM00 DM00	5 4 3		Y + (DM, B09)		III	-5.45 ¹); -2.828±0.101 ⁴)	0.61 ¹⁾ ; 0.546±0.01 ⁴⁾	3750	0.308	0.4936	0.5803
DM014 C69-X- DM013 DM010 DM003 DM007 C69-X- DM008 DM007 C69-X- DM006 DM005 DM003 C69W1-9847 C69W1 C69W1-9288 C69W1 C69W1-9288 C69W1 C69W1-9284 C69W1 C69W1-718 C69W1 C69W1-7152 C69W1 C69W1-612 C69W1 C69W1-612 C69W1 C69W1-618 C69W1 C69W1-618 C69W1 C69W1-618 C69W1 C69W1-618 C69W1	Z-W-006 I DM01 DM01 DM01 Z-W-005 c DM00 DM00	4		Y+ (DM)		III	-1.07 ¹⁾	0.491)	3750	0.257	0.4936	0.5128
DM013 DM010 DM009 C69-X- DM007 C69-X- DM007 C69-X- DM006 C69-X- DM007 C69-X- DM006 C69-X- DM005 C69-X- DM005 C69-X- DM003 C69W1- C69W1-9288 C69W1 C69W1-9288 C69W1 C69W1-718 C69W1 C69W1-7152 C69W1 C69W1-612 C69W1 C69W1-612 C69W1 C69W1-618 C69W1 C69W1-618 C69W1 C69W1-618 C69W1	DM01 DM01 Z-W-005 c DM00 DM00	3		Y+ (DM, S08)	<-11.0 ²⁾	III	-2.28 ¹); -1.00±0.08 ²)	0.57 ¹); 0.523±0.026 ²)	4000	0.441	0.7341	0.7421
DM010 DM009 C69-X- DM007 C69-X- DM006 C69-X- DM007 C69-X- DM006 C69-X- DM007 C69-X- DM006 C69-X- DM005 C69W1 C69W11-780 C69W1 C69W11-7152 C69W1 C69W11-612 C69W1 C69W11-612 C69W1 C69W11-6148 C69W1 C69W11-6148 C69W1	DM01 C-W-005 c DM00 DM00	,		Y+ (DM)		III	-1.29 ¹⁾	0.531)	3600	0.348	0.3906	0.6308
DM009 C69-X- DM008 DM007 C69-X- DM006 C69-X- DM005 DM003 C69W1-9696 C69W1 C69W1-9208 C69W1 C69W1-7809 C69W1 C69W1-718 C69W1 C69W1-7152 C69W1 C69W1-6820 C69W1 C69W1-6420 C69W1	C-W-005 c DM00 DM00)		Y+ (DM)		III	-5.97 ¹⁾	0.511)	4250	0.198	1.0094	0.428
DM008 DM007 C69-X- DM006 C69-X- DM005 C69WI DM003 C69WI C69WI-9847 C69WI C69WI-9288 C69WI C69WI-9288 C69WI C69WI-7809 C69WI C69WI-718 C69WI C69WI-7152 C69WI C69WI-612 C69WI C69WI-6412 C69WI C69WI-6018 C69WI C69WI-6142 C69WI C69WI-6018 C69WI	DM00	9 K9 (8)	Ν	Y+ (DM, S08, B09)	<-11.0 ²⁾	III	-0.74 ¹); -0.5±0.03 ²); -0.608±0.039 ⁴)	0.4^{1} ; 0.464 ± 0.023^{2} ; 0.432 ± 0.029^{4}	4400	0.639	1.1901	0.9483
DM007 C69-X- DM006 C69-X- DM005 C69-X- DM005 C69-X- DM005 C69-X- DM005 C69-X- C69W11-9847 C69W1 C69W11-9288 C69W1 C69W11-9288 C69W1 C69W11-718 C69W1 C69W11-7152 C69W1 C69W11-612 C69W1 C69W11-612 C69W1 C69W11-6142 C69W1 C69W11-618 C69W1 C69W11-618 C69W1 C69W11-618 C69W1 C69W11-618 C69W1		3		Y+ (DM)		III	$0.09^{(1)}$	0.41 ¹⁾	3500	0.945	0.3382	1.1864
DM006 C69-X- DM005 E DM003 C69W1-9847 C69W1 C69W1-9268 C69W1 C69W1-9288 C69W1 C69W1-7809 C69W1 C69W1-718 C69W1 C69W1-7152 C69W1 C69W1-612 C69W1 C69W1-612 C69W1 C69W1-612 C69W1 C69W1-6018 C69W1 C69W1-618 C69W1	-W-011 c DM00	7		Y+ (DM)		III	0.12 ¹⁾	0.42 ¹⁾	4000	1.841	0.7341	1.5496
DM005 DM003 C69W11-9847 C69W1 C69W11-9288 C69W1 C69W11-7809 C69W1 C69W11-7809 C69W1 C69W11-7809 C69W1 C69W11-7819 C69W1 C69W11-782 C69W1 C69W11-612 C69W1 C69W11-612 C69W1 C69W11-614 C69W1 C69W11-6148 C69W1	-W-012 I DM00	5		Y+ (DM)		Π	-72.64 ¹⁾	0.43 ¹⁾	4000	0.297	0.7341	0.5657
DM003 C69W1-9847 C69W1 C69W1-9696 C69W1 C69W1-9288 C69W1 C69W1-7809 C69W1 C69W1-718 C69W1 C69W1-7152 C69W1 C69W1-6820 C69W1 C69W1-6412 C69W1 C69W1-6412 C69W1 C69W1-6418 C69W1 C69W1-4897 C69W1	DM00	5		Y+ (DM)		III	-0.06 ¹⁾	0.46 ¹⁾	4000	1.286	0.7341	1.3623
C69WI1-9847 C69WI C69WI1-9696 C69WI C69WI1-9288 C69WI C69WI1-7809 C69WI C69WI1-718 C69WI C69WI1-7152 C69WI C69WI1-6120 C69WI C69WI1-6412 C69WI C69WI1-6018 C69WI C69WI1-6018 C69WI	DM00	3		Y+ (DM)		III	-3.18 ¹⁾	0.44 ¹⁾	3400	0.724	0.286	1.0236
C69WI1-9696 C69WI C69WI1-9288 C69WI C69WI1-7809 C69WI C69WI1-718 C69WI C69WI1-7152 C69WI C69WI1-6020 C69WI C69WI1-6018 C69WI C69WI1-6018 C69WI C69WI1-6018 C69WI C69WI1-6018 C69WI C69WI1-4897 C69WI	T1-9847			NM		-			4200	0.1605	0.9517	0.368
C69WI1-9288 C69WI C69WI1-7809 C69WI C69WI1-718 C69WI C69WI1-7152 C69WI C69WI1-6820 C69WI C69WI1-6820 C69WI C69WI1-6820 C69WI C69WI1-6820 C69WI C69WI1-6820 C69WI C69WI1-6820 C69WI C69WI1-4897 C69WI	T1-9696			NM		II			1700	0.0032	0.0073	0.023
C69WI1-7809 C69WI C69WI1-718 C69WI C69WI1-7152 C69WI C69WI1-6820 C69WI C69WI1-6012 C69WI C69WI1-6018 C69WI C69WI1-6018 C69WI	T1-9288	M2.5 (8)	Y	Y+ (B09)	-7.049±0.024 ⁴)	II	-30.202 ± 1.14^{4}	0.432 ± 0.04^{4}	3700	0.198	0.4582	0.428
C69WI1-718 C69WI C69WI1-7152 C69WI C69WI1-6820 C69WI C69WI1-6412 C69WI C69WI1-6018 C69WI C69WI1-4897 C69WI	T1-7809			Y		II			2300	0.0234	0.016	0.0955
C69WI1-7152 C69WI C69WI1-6820 C69WI C69WI1-6412 C69WI C69WI1-6018 C69WI C69WI1-4897 C69WI	T1-718			NM		-			4500	0.013	1.2911	0.0611
C69WI1-6820 C69WI C69WI1-6412 C69WI C69WI1-6018 C69WI C69WI1-4897 C69WI	T1-7152			Y		II			3300	0.0579	0.2342	0.1492
C69WI1-6412 C69WI C69WI1-6018 C69WI C69WI1-4897 C69WI	T1-6820			NM		III			5250	0.3267	1.8909	0.6047
C69WI1-6018 C69WI C69WI1-4897 C69WI	T1-6412			NM		Ι			0	0.0	0.0	0.0
C69WI1-4897 C69WI	11-6018			NM		_			4250	0.0114	1.0094	0.0668
	11-4897	F9 (7)	Ν	NM+ (B09)		_			5500	0.2213	1.9992	0.4621
C69WI1-4614 C69WI	11-4614			NM		_			3100	0.0077	0.1365	0.0373
C69WI1-4232 C69WI	11-4232			Y		III			4400	0.6839	1.1901	0.9897
C69WI1-3226 C69WI	11-3226	K7-M0 (7)	Ν	NM		II			2000	0.0087	0.0105	0.0402
C69WI1-306 C69WI	11-306		- 1	NM		III			4600	0.2239	1.3929	0.4659
C69WI1-2708 C69WI	11-2708	M3.5 (8)	Ν	Y+ (B09)		II	-6.377±0.128 ⁴)	0.518±0.014 ⁴)	3600	0.1228	0.3906	0.3023
C69WI1-2303 C69WI	11-2303	(0)		NM		Ш			3900	0.0914	0.631	0.2324
C69WI1-2261 C69WI	11-2261			NM		III			5500	0.2131	1.9992	0.4501
C69WI1-15496 C69WI	T1-15496			NM		I			0	0.0	0.0	0.0
C69WI1-15404 C69WI	T1-15404			NM		ш			4250	0.037	1.0094	0.1
C69WI1-15377 C69WI	11-15377			Y		п			3300	0.1642	0.2342	0.3744
C69WI1-15281 C69WI	11-15281			NM		_			4600	0.0219	1.3929	0.0929
C69WI1-14892 C69WI	11-14892			Y		п			3400	0.052	0.286	0.1336
C69WI1-1388 C60WI	T1-1388			Y		ш			4400	0.3031	1 1901	0 5738
C69WI1-1322 C69WI	11 1300			Y		п			3300	0.0291	0 2342	0.1
C07W1	11-1322	Continued on a	vt page	•		11			5500	0.0271	5.2542	<u> </u>

Table 3.25 – Continued

ject	Alt ID	DM ID SpT	INS ³	Accret. Memb	$log(\dot{M}_{acc})(M_{\odot}/yr)^4$	Bin (Class ⁶ 1	$EW(H\alpha)^4$	EW(Li) ⁴	T _{eff}	L _{bol}	Mass _{Tef}	F Mass _{Lbol}
9WI1-12378	C69WI1-12378			NM	••••••••]				1700	0.0070	0.0073	0.0351
9WI1-10971	C69WI1-10971			NM		1	II			6250	0.5895	2.1305	0.9028
9SWI1-937	C69SWI1-937			Y ?		1	II			8000	11.7952	2.3494	2.0585
9SWI1-496	C69SWI1-496			Y		1	II			6000	5.2983	2.0869	1.9277
9SEI1-4263	C69SEI1-4263			Y ?		1	II			2500	0 1634.48	3 0.0	0.0
9SEI1-4253	C69SEI1-4253			Y		1	П			4600	3.9697	1.3929	1.8527
9SEI1-2889	C69SEI1-2889			Y		1	Π			5800	11.8429	2.052	2.0591
9EI1-790	C69EI1-790	M3	(7)	N Y+ (E	809)	1	I.	-9.047±0.478 ⁴⁾		3900	0.1054	0.631	0.2639
9EI1-7620	C69EI1-7620			Y		1	I			2000	0.0902	0.0105	0.2297
EI1-7312	C69EI1-7312			NM		1				0	0.0	0.0	0.0
EI1-7070	C69EI1-7070			NM		1				3100	0.0057	0.1365	0.0307
EI1-7021	C69EI1-7021			Y ?		1				0	0.0	0.0	0.0
EI1-6539	C69EI1-6539			NM		1				0	0.0	0.0	0.0
EI1-6036	C69EI1-6036			Y		1	I			3500	0.0467	0.3382	0.1195
EI1-4761	C69EI1-4761			NM?		1	П			5750	1.1663	2.0433	1.3086
9EI1-3574	C69EI1-3574			NM		1				0	0.0	0.0	0.0
9EI1-3465	C69EI1-3465			Y		1	I			3200	0.0275	0.1839	0.1
9EI1-3154	C69EI1-3154			NM		-	-			1700	0.0067	0.0073	0.0341
9EI1-3042	C69EI1-3042			Y		1	I			3500	0.0117	0.3382	0.0645
9EI1-2229	C69EI1-2229			Y		1	I			3400	0.0518	0.286	0.1332
9EI1-16821	C69EI1-16821			NM		1				0	0.0	0.0	0.0
EI1-16578	C69EI1-16578			Y		1	I			3000	0.0516	0.1	0.1325
EI1-16472	C69EI1-16472			Y		1	I			3300	0.047	0.2342	0.1202
EI1-16121	C69EI1-16121			NM		-				4250	0.0133	1.0094	0.0617
EI1-15980	C69EI1-15980			NM		-				2800	0.0063	0.0488	0.0327
9EI1-14609	C69EI1-14609	M3	(7)	Y Y+ (F	-5.559 ± 0.25^{4}	1	I.	-79.824±5.012 ⁴⁾		3400	0.059	0.286	0.1524
9EI1-14424	C69EI1-14424	M3.5	(7)	N Y+ (E	809)	1	I.	-11.652±0.249 ⁴)		3800	0.1532	0.5373	0.3553
EI1-13824	C69EI1-13824			Y ?		1				0	0.0	0.0	0.0
9EI1-13667	C69EI1-13667			NM		1	II			4500	0.328	1.2911	0.6062
EI1-13542	C69EI1-13542	K3	(7)	N NM+	(B09)	1	I			5250	0.192	1.8909	0.4193
EI1-13002	C69EI1-13002			Y		1	I			3100	0.0804	0.1365	0.2078
EI1-12787	C69EI1-12787			NM		-	-			4000	0.0437	0.7341	0.1116
EI1-12304	C69EI1-12304			NM		-	-			4800	0.0817	1.5748	0.2107
9EI1-11637	C69EI1-11637			NM		1	I			3750	0.0016	0.4936	0.0175
9EI1-11541	C69EI1-11541			NM?		1	I			3300	0.0763	0.2342	0.1983
9EI1-11529	C69EI1-11529			NM		1	II			4250	0.0263	1.0094	0.1
9EI1-114	C69EI1-114	M1.5	(7)	N Y+ (E	309)	1	I ·	-4.788±0.16 ⁴⁾		3600	0.3387	0.3906	0.6193
9EI1-10963	C69EI1-10963			NM		1	I			4000	0.0436	0.7341	0.1113
9EI1-10336	C69EI1-10336	M4	(7)	N Y+ (E	609)	1	I ·	-6.312±0.579 ⁴⁾		3500	0.066	0.3382	0.1708
9-X-W-052 -				NM?		-	-						
9-X-W-051 -				NM?		-	-						
9-X-W-050 -				NM?		-	-						
9-X-W-049 I				NM		-	-			3000	4.0E-4	0.1	0.0096
9-X-W-048 I				NM		-	-			3400	9.0E-4	0.286	0.0139
9-X-W-047 N	1			NM		-				4250	0.0434	1.0094	0.1108
9-X-W-046 N	1			NM?		-				3400	0.0604	0.286	0.156
)-X-W-045 -				NM?		-							
		Con	tinued on next na	ge									

	Tabl	e 3.25 – Continued									
Object A	Alt ID	DM ID SpT	INS ³	Accret. Membership ⁵	$\log(\dot{M}_{acc})(M_{\odot}/yr)^4$	Bin	Class ⁶ EW(H α) ⁴	EW(Li) ⁴	T _{eff} L _{bol}	Mass _{Te}	ff Mass _{Lbol}
C69-X-W-044 -				NM?			II				
C69-X-W-043 I				NM			III		6250 2.0759	2.1305	1.609
C69-X-W-042 w				NM			-		3750 1.0E-4	0.4936	0.0053
C69-X-W-042 e				NM			-		3750 0.0011	0.4936	0.0152
C69-X-W-042 c				NM			-		2700 4.0E-4	0.0361	0.0096
C69-X-W-041 I				NM?			III		3750 0.0855	0.4936	0.2192
C69-X-W-040 M				NM?			III		4000 0.155	0.7341	0.3585
C69-X-W-039 w				NM			III		6000 0.3116	2.0869	0.5851
C69-X-W-039 c				NM			-		4000 0.0012	0.7341	0.0157
C69-X-W-038 s				NM			-		4500 0.0062	1.2911	0.0324
C69-X-W-038 c				NM?			-				
C69-X-W-037 M				NM?			-		3750 0.0727	0.4936	0.1887
C69-X-W-036 M				NM			III		5250 0.3032	1.8909	0.5739
C69-X-W-035 -				NM?			-				
C69-X-W-034 M				NM?			III		4000 0.1161	0.7341	0.2879
C69-X-W-033 +				NM?			-				
C69-X-W-032 z				NM?			_				
C69-X-W-032 s				NM?			_				
C69-X-W-032 e				NM?			III		3750 0.0438	0.4936	0.1118
C69-X-W-032 c				NM?			III		3700 0.045	0.4582	0.115
C69-X-W-031 M				Y			п		1900 0.0046	0.0092	0.0274
C69-X-W-030 e				NM?			-				
C69-X-W-030 c				NM?			I				
C69-X-W-029 M				Y			П		3200 0.1673	0.1839	0.3799
C69-X-W-028 M				Y			п		2500 0.0073	0.0229	0.0359
C69-X-W-027 M				NM			-		5000 0.0555	1.7371	0.1429
C69-X-W-026 -				NM			-				
C69-X-W-025 w				NM			-		3700 0.0018	0.4582	0.0183
C69-X-W-025 e				NM			-		4250 3.0E-4	1.0094	0.0084
C69-X-W-025 c				NM			_		3750 5.0E-4	0.4936	0.0106
C69-X-W-024 s				NM			-		3750 0.0010	0.4936	0.0147
C69-X-W-022 -				NM			_				
C69-X-W-021 -				NM?			_				
C69-X-W-020 I				Y ?			III		7000 12.483	2.2389	2.0673
C69-X-W-019 M				NM			I		4000 0.0088	0.7341	0.0404
C69-X-W-018 I				NM?			Ш		4500 0.2854	1.2911	0.5504
C69-X-W-017 -				NM?			-				
C69-X-W-016 -				NM?			-				
C69-X-W-014 w				NM			Ш		4750 0.0423	1.5313	0.1078
C69-X-W-014 c				Y?			Ш		4500 4.8047	1.2911	1.909
C69-X-W-013 n				NM			-		4000 4.0E-4	0.7341	0.0096
C69-X-W-011 s				NM			_		3400 0.0020	0.286	0.0192
C69-X-W-010 e				NM			_		4000 0.0011	0.7341	0.0152
C69-X-W-010 c				NM			II		4000 0.0033	0.7341	0.0234
C69-X-W-009 s				NM			III		4500 0.1566	1.2911	0.3613
C69-X-W-009 n				NM			_				
C69-X-W-009 c				NM			III		5750 1.1992	2.0433	1.3234
		Conti	nued on next pag	ge							4
	-										

Tal	ble 3.25 – Continued									E Contraction de la contractio
Object Alt ID	DM ID SpT	INS ³	Accret. Membership ⁵	$\log(\dot{M}_{acc})(M_{\odot}/yr)^4$	Bin	Class ⁶ EW(H α) ⁴	EW(Li) ⁴	T _{eff} L _{bol}	Mass _{Tef}	T Mass _{Lbol}
C69-X-W-008 n			NM			-		4500 0.0388	1.2911	0.1
C69-X-W-007 e			NM?			-		1900 4.0E-4	0.0092	0.0096
C69-X-W-007 c			Y			III		3600 0.1249	0.3906	0.3059
C69-X-W-005 w			NM			-		5000 0.0081	1.7371	0.0385
C69-X-W-005 s			NM			-		5500 0.0403	1.9992	0.1025
C69-X-W-002 n			NM			-		4750 0.0055	1.5313	0.0301
C69-X-W-001 n			NM?			-				
C69-X-W-001 c			Y?			III		5000 3.4265	1.7371	1.8097
C69-X-E-112 -			NM?			-				
C69-X-E-111 I			NM			III		6250 0.3009	2.1305	0.5709
C69-X-E-110 -			NM?			-				
C69-X-E-109 w			NM			-		4000 0.0011	0.7341	0.0152
C69-X-E-109 e			NM			-		3700 3.0E-4	0.4582	0.0084
С69-Х-Е-109 с			NM			-		4250 2.0E-4	1.0094	0.0072
C69-X-E-108 -			NM?			-		1800 1.0E-4	0.0081	0.0053
C69-X-E-107 I			NM			-		4000 0.0028	0.7341	0.0219
C69-X-E-106 I			NM?			Ι		1900 3.0E-4	0.0092	0.0084
C69-X-E-105 M			Y?			III		3300 0.0565	0.2342	0.1456
C69-X-E-104 e			Y			_		1200 3.0E-4	0.0036	0.0084
C69-X-E-104 c			Y			III		3700 0.113	0.4582	0.2809
C69-X-E-103 w			NM			-		3100 7.0E-4	0.1365	0.0124
C69-X-E-103 s			NM			-		3000 1.0E-4	0.1	0.0053
C69-X-E-103 c			NM			_		3700 3.0E-4	0.4582	0.0084
C69-X-E-102 s			NM			П		4250 6.0E-4	1.0094	0.0116
C69-X-E-102 e			NM			_		3750 0.0011	0.4936	0.0152
C69-X-E-102 c			NM			Ш		4250 0.0051	1.0094	0.0289
C69-X-E-101 -			NM?			_				
C69-X-E-100 -			NM?			_				
769-X-E-099 g			NM			_		3200 7 0E-4	0 1839	0.0124
769-X-E-098 M			NM			Ш		4000 0.0271	0.7341	0.1
769-X-E-097 M			NM2			_		1900 0.0068	0.0092	0.0343
769-X-E-096 n			NM			_		1,000 0.00000	0.0072	0.05 15
769-X-E-095 -			NM2			_				
769-X-E-094 I			NM			_		3750 9.0F-4	0.4936	0.0139
769-X-E-093 I			NM			П		4250 7.0E-4	1 0094	0.0124
769 X E 093 M			NM2					1400 0 109	0.0049	0.2710
769-X-E-090 g			NM			_		4000 3.0E-4	0.7341	0.0084
769-X-E-089 -			NM2			_		4000 5.01 4	0.7541	0.0004
760 X E 088 c			NM					4000 0.0060	0.7341	0.0317
760 X E 088 n			NM			_		4000 0.0000	0.7341	0.0084
760 X E 088 c			NM			_		4000 5.0E-4	0.7541	0.0004
C60 V E 097 a			NIM2			_				
C07-A-E-U0/ 8			INIVI (NIM 9			- I		1400 405 4	0.0045	0.0116
CON E 086 M			NMI (1		1000 6.0E-4	0.0005	0.0110
C09-A-E-U80 M			I /			111		3200 0.0697	0.1839	0.1807
C09-X-E-085 +			NM?			-		2100 2.281	0.012	1.6492
C69-X-E-083 n			NM			-		4500 7.0E-4	1.2911	0.0124
.:69-X-Е-083 с			NM					2500 2.0E-4	0.0229	0.0072

	Tab	ble 3.25 – Continued									
Object	Alt ID	DM ID SpT	INS ³	Accret. Membership ⁵	$\log(\dot{M}_{acc})(M_{\odot}/yr)^4$	Bin	Class ⁶ EW(H α) ⁴	EW(Li) ⁴	T _{eff} L _{bol}	Mass _{Tef}	f Mass _{Lbol}
C69-X-E-081 e				NM?			-				
C69-X-E-080 -				NM?			I				
C69-X-E-077 g				NM			-		4000 0.0412	0.7341	0.1049
C69-X-E-076 -				NM			-		3700 3.0E-4	0.4582	0.0084
C69-X-E-075 I				NM			-		4000 2.0E-4	0.7341	0.0072
C69-X-E-074 -				NM?			-		1900 0.0013	0.0092	0.0161
C69-X-E-073 I				NM			III		5500 0.0656	1.9992	0.1698
C69-X-E-072 I				Y			III		3600 0.107	0.3906	0.2674
C69-X-E-071 e				NM			-				
C69-X-E-071 c				NM?			III		4500 0.4083	1.2911	0.7044
C69-X-E-070 +				NM?			-				
C69-X-E-069 s				NM			-				
C69-X-E-069 c				NM			III		4500 0.1842	1.2911	0.4079
C69-X-E-068 M				NM			III		5750 0.58	2.0433	0.8932
C69-X-E-067 I				NM?			III		5500 1.405	1.9992	1.4123
C69-X-E-066 I				NM?			I		2800 0.0028	0.0488	0.0219
C69-X-E-065 M				NM			-		4750 0.2038	1.5313	0.4365
C69-X-E-064 I				Y			III		3750 0.1598	0.4936	0.3668
C69-X-E-063 I				NM			-		3750 1.0E-4	0.4936	0.0053
C69-X-E-062 I				NM?			III		5500 1.2955	1.9992	1.3666
C69-X-E-061 I				NM			-		4250 5.0E-4	1.0094	0.0106
C69-X-E-060 n				NM			-		6250 9.0E-4	2.1305	0.0139
C69-X-E-060 c				NM?			III		4750 0.5334	1.5313	0.8442
C69-X-E-059 +				NM?			-				
C69-X-E-057 M				Y			III		4750 4.1627	1.5313	1.8679
C69-X-E-056 -				NM?			-		1900 1.0E-4	0.0092	0.0053
C69-X-E-053 I				NM			-		3700 1.0E-4	0.4582	0.0053
C69-X-E-052 I				NM			-		3750 0.0268	0.4936	0.1
C69-X-E-051 I				NM			II		4750 7.0E-4	1.5313	0.0124
C69-X-E-050 I				NM?			-				
C69-X-E-049 I				NM			-		4250 3.0E-4	1.0094	0.0084
C69-X-E-048 -				NM?			-				
C69-X-E-047 M				NM			III		4500 0.0565	1.2911	0.1456
C69-X-E-046 g				NM			-		3100 2.0E-4	0.1365	0.0072
C69-X-E-045 +				NM			-		4000 1.0E-4	0.7341	0.0053
C69-X-E-044 +				NM?			-				
C69-X-E-043 I				NM			-		4000 2.0E-4	0.7341	0.0072
C69-X-E-042 M				Y			-		7250 98.8	2.2665	3.1783
C69-X-E-040 M				Y			III		3600 0.1304	0.3906	0.3155
C69-X-E-039 -				NM?			-				
C69-X-E-038 w				NM?			-		2100 2.0E-4	0.012	0.0072
C69-X-E-038 c				NM			II		3750 0.0016	0.4936	0.0174
C69-X-E-037 nX				NM			-				
C69-X-E-035 n				NM			-				
C69-X-E-034 w				NM			-		5000 0.0012	1.7371	0.0157
C69-X-E-033 I				NM			-		3100 2.0E-4	0.1365	0.0072
C69-X-E-032 -				NM?			I		1900 0.0015	0.0092	0.017
		Conti	nued on next pag	ge							4

		Table 3.25 – Continued										1
Object	Alt ID	DM ID SpT	INS ³	Accret. Membership ⁵	$\log(\dot{M}_{acc})(M_{\odot}/yr)^4$	Bin	Class ⁶ EW(H α) ⁴	EW(Li) ⁴	T _{eff}	L _{bol}	Mass _{Tef}	Mass _{Lbol}
C69-X-E-02	29 n			NM			-					
C69-X-E-02	28 w			NM			_					
C69-X-E-02	27 n			NM			_		3300	5.0E-4	0.2342	0.0106
C69-X-E-02	26 -			NM?			_		1900	5.0E-4	0.0092	0.0106
C69-X-E-02	23 o			NM			_		4000	0.0010	0.7341	0.0147
C69-X-E-02	21 w			NM			_		4750	4.0E-4	1.5313	0.0096
C69-X-E-02	21 c			NM?			-		1900	2.0E-4	0.0092	0.0072
C69-X-E-02	20 I			Y			III		5000	4.8647	1.7371	1.9113
C69-X-E-01	5 I			NM			III		4000	5.0E-4	0.7341	0.0106
C69-X-E-01	3 I			Y			-		5500	82.106	1.9992	3.0417
C69-X-E-01	2 I			Y?			III		3750	4.3396	0.4936	1.8819
C69-X-E-01	1 e			Y?			-					
C69-X-E-01	0 sX			NM			_					
C69-X-E-00)9 I			Y?			III		4750	4.2826	1.5313	1.8774
C69-X-E-00)7 sX			NM			-					
C69-X-E-00)5 w			NM			_		3750	2.0E-4	0.4936	0.0072
C69-X-E-00)5 c			NM			П		3750	6.0E-4	0.4936	0.0116
C69-X-E-00	03 M			Y			III		5000	2.3562	1.7371	1.664
C69-X-E-00)2 I			NM			Ι		4500	0.0018	1.2911	0.0183

¹ Infrared spectral type (see Section 3.4.1). ² Spectral type photometrically determined by Sacco et al. (2008) (all the remaining spectral types were obtained spectroscopically in this work).

³ Instrumental configuration as follows:

- (1) LRIS R~2650
- (2) LRIS R~950
- (3) MIKE R~11250 (4) B&C R~2600 (5) B&C R~800 (6) TWIN R~1100 (7) CAFOS R~600 (8) FLAMES R~8600 (9) NIRSPEC R~2000

(10) SOFI R~950 (11) IRCS R~200

⁴ Measurement from; ⁵ Membership confirmed by: ¹⁾; DM - Dolan & Mathieu (1999, 2001) ²⁾; S08 - Sacco et al. (2008)
 ³⁾; M08 - Maxted et al. (2008) ⁴⁾; B09 - This work

⁶ Infrared Class derived with the IRAC data in Barrado y Navascués et al. (2007b) or Chapter 2 ("-" indicates that the sources has not been detected in the four IRAC bands).

Chapter 4

The dark cloud Barnard 35

Barnard 35 is a dark cloud located ~2.5° in the SE direction from the λ Ori star. Duerr et al. (1982) first identified a clustering of stars centered around it and it was later confirmed from a statistical point of view by Gomez & Lada (1998). Barnard 35 is located halfway between the CO and dust ring that surrounds the whole star forming region and the star λ Ori itself, it represents quite a different environment than that of Collinder 69. In this chapter we will study the Barnard 35 association, confirming new members and deriving their properties.

This chapter is structured in three parts: Section 4.1 summarizes the spectroscopic surveys already published in the literature for this dark cloud; Section 4.2 deals with the analysis of optical spectra of previously known members and new candidate groups proposed by Morales-Calderón (2008) (based on Spitzer observations). Finally, in Section 4.5 we provide the conclusions of this work.

4.1 Previous Surveys

As stated in Section 3.2, Dolan & Mathieu (1999, 2001) have previously surveyed the whole Lambda Orionis star forming region using, initially, a photometric survey based on H α emission with confirmation of 266 pre-main sequence stars a posteriori using the presence of Li λ 6708 Å in absorption and the radial velocity distribution. Thirty out of these 266 pre-main sequence stars identified by Dolan & Mathieu (1999, 2001) fall within our Spitzer field of view within the B35 area. We consider the 30 objects as bona-fide members of Barnard 35 and will be hereafter called DM members. The faintest member has I = 15 which corresponds to ~0.3 M_{\odot} (assuming an age of 3 Myr).

Duerr et al. (1982) surveyed a region of ~100 square degrees around the star λ Ori identifying nearly 100 H α emission objects. Seven of the Duerr et al. members (3 out of them are in common with the Dolan members) fall within the field of view of our Spitzer images. We consider these 4 objects (more massive than the DM members) as bona-fide members of Barnard 35 and will be hereafter called the DIL members.

Date	Observatory/Telescope/Instrument	Resolution	Wavelength coverage	Number of sources observed observed	Original photometric survey
Nov. 30 - Dec. 11, 2006	CAHA / 2.5m /CAFOS	~600	6200–10350Å	18	DM & Morales-Calderón (2008)
December 5-7, 2006	LICK / 3m Shane / Hamilton	~50000	3800–9750Å	2	DM
Nov. 30 - Dec. 11, 2007	CAHA / 2.5m /CAFOS	~600	6200–10350Å	41	DM & Morales-Calderón (2008)

 Table 4.1: Barnard 35 optical spectroscopic campaigns.

We present the study of the optical spectra of a sample of DM members to Barnard 35 as well as Morales-Calderón (2008) candidate members in Section 4.2.

4.2 Spectroscopy for the Barnard 35 sample

With the Spitzer detections in Morales-Calderón (2008) as the starting point we selected a sample of sources in the effective temperature range from 1500 - 10500 K (as determined by SED fitting, see Appendix C) to obtain optical spectra at different resolutions and study membership/youth, activity and accretion.

As in the previous chapter, the kind of analysis performed over the data depends on the characteristics of the data themselves (mainly resolution) and those of the science targets (for example, the spectral type determination of M stars and brown dwarfs was performed in a different manner than that of hotter stars) and will be explained in the forthcomming sections.

4.2.1 Spectral type determination

As stated before, the sample of candidate members studied for the Barnard 35 dark cloud covers a larger range in temperature (as estimated with the SED of the candidates) than the one selected for Collinder 69. The confirmed M stars and brown dwarfs of the sample were classified following the same scheme described in Section 3.3.1. For the "next step" in temperature, stars up to ~G0 spectral type, we used the templates obtained with CAFOS already mentioned also in Section 3.3.1 (see Fig. 4.1 for several examples).

On the other hand, for the sources showing bluer spectra (four sources in total), corresponding to even hotter effective temperatures, a spectral type was assigned according to the strength of their Ca II triplet and H α over Fe I λ 6495 Å ratio; and the luminosity class was inferred from the O I λ 7776 Å absorption (when measureable) following Danks & Dennefeld (1994). Figure 4.2 shows the relation between the equivalent width of the third component of the Ca II infrared triplet and the spectral type. The same figure highlights the goodness of the equivalent width of the mentioned O I line as a diagnosis of the luminosity class. We are aware that this methodology could present some problems with active or accreting stars, but none of the sources present any emission line and the H α line is clearly in absorption with no visible structure.

As can be inferred from the figure, the Ca II triplet is present in dwarfs but never reaches the strength exhibited in the supergiants. Regarding the behaviour with temperature; in dwarfs,

Figure 4.1: Spectral type determination for three candidate members by comparison with templates obtained with the same instrumental set-up. The "science spectra" are displayed in black and the templates (labelled according to the spectral type) in red. The first pannel (from left to right) shows a source with an effective temperature too high for our spectral templates; to determine its spectral type we used the Ca II triplet and the H α over Fe I (6495 Å) ratio explained in this section.

it starts to be evident at A2, growing in strength up to M0. Regarding supergiants; the triplet is evident at A0, peaking in strength at K3 and remaining quite evident at M2.

In Figure 4.3 we display a spectral sequence obtained applying the criteria explained previously in this section and in Section 3.3.1 to the data obtained in the CAFOS campaign of November 2006. In Table 4.3 we show the estimated spectral types for all the Barnard 35 candidate members observed by us using CAFOS.

4.2.2 Rotational velocities estimation.

As in the previous chapter, we have studied the projected rotational velocity of the sources observed with sufficient resolution to perform this kind of analysis.

In this case, only two sources were observed at high resolution. We followed similar steps as in Section 3.3.2 and we determined that DM248 has a projected rotational velocity of ~40 km/s. The case of DM248 has to be analyzed more carfully. This source, as it will be discussed in the forthcoming Sections, shows a very strong variability in its H α emission. The three values of EW(H α) measured by us (this source has been observed in the three campaigns) as well as the value provided in Dolan & Mathieu (2001) place DM244 well above the saturation criteria of Barrado y Navascués & Martín (2003). Although our high resolution spectra was taken at an apparent minimum of accretion rate (see next Sections for more details), we have tried to estimate the amount of veiling that might be affecting our measurement of the Ca I doublet, and therefore our estimation of the rotational velocity.

In figures 4.4 and 4.5 we show the blue excess detected (when comparing with a source of similar spectral type) in DM244 in 2006 and 2007 on the spectra taken with CAFOS. If we define r_{λ} as the ratio of excess emission over phosopheric emission and we extrapolate the tendency observed in figure 4.5 (where the CAFOS measured H α emission was similar to the high resolution one) we estimate a value of r_{λ} ~0.45. We used this value to correct the measured EW on the Ca I doublet in order to compare this value with the one of the synthesized spectra. The correction was performed according to:

$$r_{\lambda} = \frac{W_{int}}{W_{veiled}} - 1 \tag{4.1}$$

The comparison of the theoretical spectra with our corrected measurments provided us with an estimation of the rotational velocity of DM244 of \sim 30 Km/s.

Figure 4.2: Absorption lines used for the spectral classification of the hottest sources of our sample. **Left-pannel:** Equivalent width in Å of the Ca II λ 8662 Å component of the IRT versus spectral type (from Danks & Dennefeld 1994). **Right-pannel:** Equivalent width in Å of the O I λ 7776 Å line versus spectral type (from Danks & Dennefeld 1994).

Lambda (A)

Figure 4.3: Spectral sequence of Barnard 35 candidate members. From the 2006 campaign with CAFOS.

Figure 4.4: Comparison between the spectra obtained in 2007 of DM244 (at the strongest measured H α emission) and the one of DM245 (with similar spectral type and classified as non-accreting source).

Figure 4.5: Comparison between the spectra obtained in 2006 of DM244 (when a much lower H α emission was detected with respec to the previous figure) and the one of DM247 (with similar spectral type and classified as non-accreting source).

Object	Ηα			HeI	OI	NaI	Call			Campaign
	6563			6678	7776	8200	8498	8542	8662	
	EW(Å)	FW10% (km/s)	FWHM(km/s)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	
B35-I054532.7+091900.6	7.271 ± 0.463	1428.461 ± 125.337	709.925 ± 20.478	-	0.169 ± 0.051	0.294±0.166	-	-	-	2007
B35-I054504.1+092550.0	3.331 ± 0.246	≤ 200.0	≤ 110.0	-0.151±0.073	-	0.301±0.174	0.530±0.037	2.440±0.277	1.437±0.796	2006
DM248	-4.288 ± 0.259	≤ 200.0	≤ 110.0	-0.292±0.183	-	1.446±0.555	0.424±0.023	1.854±0.052	1.799±0.316	2006
DM248	-5.945 ± 0.171	≤ 200.0	≤ 110.0	-0.789±0.306	-	1.028±0.369	-	-	-	2007
B35-1054345.3+093904.8	3.491 ± 1.576	237.3130 ± 85.118	130.177 ± 16.983	-	-	0.906±0.451	0.9/1±0.219	2.152±0.173	1.828±0.341	2006
B35-1054430.0+094015.4	2.399 ± 0.127 2.177 ± 0.286	≤ 200.0 < 200.0	≤ 110.0 < 110.0	-	-	1.489±0.859	0.859 ± 0.252	2.084 ± 0.301 2.217 ± 0.120	2.425±0.419	2006
D35-10544430.0+094013.1	3.177 ± 0.280 3.812 ± 0.254	≤ 200.0 812 2777 + 107 801	≤ 110.0 207 547 ± 12.814	-0.103 ± 0.043	0.403±0.040	0.404±0.138	0.889±0.101	2.21/±0.129	1.891±0.409	2007
B35-1054/32 8±002/21 /	3.813 ± 0.234	312.2777 ± 107.801 336 2008 ± 40 118	297.347 ± 12.814 184.476 ± 0.453	-0.030±0.013	0.434 ± 0.043	0.204±0.093	- 0.742+0.147	$-$ 2 261 ± 0.075	2 579±0 376	2007
B35-I054439 1+091807 8	4.204 ± 0.103 4.372 ± 0.252	720 3364 + 80 118	395 137 + 15 222		0.060+0.023	0.918+0.251	1.625 ± 0.917	3 281+0 597	2 729+0 306	2000
B35-I054449 0+091306 9	3841 ± 0.232	725.5501 ± 00.110 735.0700 ± 91.532	$403\ 219\ \pm\ 13\ 645$	-0.214 ± 0.070	0.186+0.025	0.662+0.298	1 138+0 162	2 536+0 293	3 179+0 316	2007
B35-I054447.7+092321.2	3.114 ± 0.215	< 200.0	< 110.0	-	0.723+0.086	0.759+0.380	1.107+0.042	2.321+0.381	2.921+0.411	2006
B35-I054502.6+090350.0	1.767 ± 0.036	< 200.0	< 110.0	-	_	1.500 ± 0.670	1.117±0.099	2.931±0.085	3.357±0.447	2007
DM241	-17.886 ± 0.251	≤ 200.0	≤ 110.0	-1.431±0.501	-	1.596±0.760	-3.391±0.374	-1.767±0.073	-1.909 ± 0.034	2006
DM241	-25.963 ± 1.201	≤ 200.0	≤ 110.0	-1.298±0.406	_	0.938±0.317	-3.658±0.189	-2.496±0.092	-2.630±0.062	2007
B35-I054515.8+094741.0	1.668 ± 0.242	≤ 200.0	≤ 110.0	-	-	1.341±0.716	1.982 ± 0.707	3.228±1.170	2.623±1.173	2006
B35-IRAC-14252	-93.662 ± 13.366	246.3576 ± 40.145	135.138 ± 12.453	-0.546±0.427	0.456±0.218	0.252 ± 0.083	-0.683±0.184	-2.237±0.617	-0.943±0.469	2007
DM247	-4.473 ± 0.205	≤ 200.0	≤ 110.0	-0.982±0.038	0.399 ± 0.115	1.606 ± 0.827	-	-	-	2006
DM247	-2.995 ± 0.314	≤ 200.0	≤ 110.0	-	-	2.349 ± 0.737	0.200 ± 0.037	2.045 ± 0.326	0.689 ± 0.192	2007
B35-IRAC-45299	-16.987 ± 1.279	897.7811 ± 40.361	492.474 ± 7.144	-	-	1.143 ± 0.348	-	-	-	2007
B35-IRAC-20434	-66.169 ± 2.223	≤ 200.0	≤ 110.0	-	-	2.184 ± 0.765	-	-	-	2007
B35-IRAC-20434	-46.755 ± 1.917	≤ 200.0	≤ 110.0	-	2.154±1.212	2.214±0.879	-	-	-	2006
DM234	-5.170 ± 0.199	560.9170 ± 70.354	307.689 ± 15.234	-0.699±0.412	-	0.787±0.320	0.424 ± 0.087	1.632 ± 0.226	1.464 ± 0.202	2007
DM240	-115.809 ± 9.768	≤ 200.0	≤ 110.0	-1.566 ± 0.501	-	1.357±0.496	0.253±0.175	1.157±0.311	0.465 ± 0.064	2007
DM244	-68.563 ± 0.603	≤ 200.0	≤ 110.0	-1.136±0.605	0.538±0.352	1.809±0.659	0.247 ± 0.000	0.478±0.013	0.081±0.028	2006
DM244	-90.313 ± 5.524	47.96292 ± 15.785	26.3098 ± 9.847	-1.382±0.458	-	1.192±0.454	-1.022±0.346	-0.910±0.144	-1.060±0.170	2007
DM249	-2.882 ± 0.091	≤ 200.0	≤ 110.0	-0.074±0.030	-	1.665±0.769	0.288±0.050	1.985±0.203	1.685±0.289	2006
DM249	-3.081 ± 0.180	≤ 200.0	≤ 110.0 < 110.0	0.721 - 0.255	-	1.351±0.437	-	2 184 0 150	1 075 10 166	2007
DNI258	0.095 ± 0.000	≤ 200.0	≤ 110.0	-0.731±0.233	_	1.205±0.444	0.485±0.054	2.184±0.130	1.975±0.100	2007
B35-I0544430.7+091321.0	2.207 ± 0.343	≤ 200.0 548 3428 ± 67 734	≤ 110.0 300 701 ± 16 982	-0.420±0.115	0 353+0 176	- 0 578±0 302	1.087 ± 0.023	2.078±0.297	2.014±0.092	2007
B35-IBAC-20473	-144823 + 3997	< 200.0	< 110.0	-2 357+0 515	0.555±0.170	1 749+0 771	-10.496+1.445	-12 869+1 160	-9 571+0 169	2007
B35-IRAC-23145	-16306 ± 0.962	<u>-</u> 200.0 631 7487 + 40 256	346543 + 3826	-	_	1 218+0 476	-	-	-	2000
B35-IRAC-23414	1.538 ± 0.277	979.9151 ± 60.741	537.528 ± 49.315	-	-	_	3.232 ± 0.594	3.247±0.124	3.468±0.184	2007
B35-IRAC-46311	-12.199 ± 1.018	< 200.0	< 110.0	-	1.743 ± 1.020	2.210 ± 0.845	0.792 ± 1.041	1.057±0.285	0.264±0.281	2007
DM231	-30.560 ± 0.852	≤ 200.0	≤ 110.0	-2.007±0.660	1.013±0.258	1.530±0.463	0.824±0.430	0.873±0.208	0.592±0.203	2007
DM255	-20.252 ± 0.238	≤ 200.0	≤ 110.0	-0.971±0.200	-	1.993±1.069	1.298±0.716	0.783±0.373	0.315±0.065	2006
DM255	-20.717 ± 0.680	≤ 200.0	≤ 110.0	-	0.626±0.315	1.647 ± 0.514	-	-	-	2007
DM252	-50.226 ± 2.744	≤ 200.0	≤ 110.0	-	-	1.041 ± 0.406	-2.121±0.072	-2.373±0.595	-0.291±0.130	2007
DM252	-43.006 ± 1.366	≤ 200.0	≤ 110.0	-	-	1.362 ± 0.640	-3.181±0.676	-1.864±0.467	-0.997±0.159	2006
DM256	-29.114 ± 0.839	≤ 200.0	≤ 110.0	-1.132 ± 0.981	-	-	-	-	-	2007
B35-I054357.0+091631.7	-166.291 ± 2.928	≤ 200.0	≤ 110.0	-3.610 ± 1.224	-	1.313 ± 0.674	-5.762 ± 0.420	-6.706±1.356	-5.388 ± 0.587	2006
B35-I054428.7+091109.9	2.013 ± 0.117	970.1769 ± 58.109	532.187 ± 16.644	-0.077±0.019	-	-	2.854 ± 0.461	3.291±0.253	2.691±0.391	2007
					Continued	on next page				

Table 4.2: Equivalent width of the main lines observed in the spectra obtained with CAFOS in both campaigns. The symbol "--" indicates that the line is not detectable.

	Table 4	4.2 – Continued								
Object	$H\alpha$			HeI	OI	NaI	CaII			Campaign
	6563			6678	7776	8200	8498	8542	8662	
	EW(Å)	FW10% (km/s)	FWHM(km/s)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	
B35-I054516.9+090718.3	1.681 ± 0.259	≤ 200.0	≤ 110.0	-	-	-	1.202 ± 0.128	3.321±0.208	3.486±0.496	2007
B35-IRAC-13586	-187.987 ± 2.243	≤ 200.0	≤ 110.0	-2.666 ± 0.803	2.445 ± 0.921	2.540 ± 0.969	-7.568±0.953	-7.557±0.949	-6.615 ± 0.308	2006
B35-IRAC-13586	-216.341 ± 37.843	128.4579 ± 35.356	70.4651 ± 20.345	-2.771±0.232	-	1.474 ± 0.465	-11.458±2.236	-12.660±0.868	-10.762 ± 0.241	2007
DM245	-6.869 ± 0.398	≤ 200.0	≤ 110.0	-	0.658 ± 0.421	1.282 ± 0.468	-	-	-	2007
DM259	-5.130 ± 0.190	≤ 200.0	≤ 110.0	-0.277±0.128	0.252 ± 0.077	1.149 ± 0.332	1.274 ± 0.870	1.708 ± 0.394	1.069 ± 0.105	2007
DM259	-4.465 ± 0.135	≤ 200.0	≤ 110.0	-	0.414 ± 0.202	2.320 ± 0.767	1.148 ± 0.135	1.048 ± 0.251	1.184 ± 0.446	2006
DM246	-11.349 ± 0.324	238.0892 ± 64.983	130.602 ± 13.847	-1.304 ± 0.604	1.022 ± 0.726	1.084 ± 0.395	-	-	-	2007
B35-IRAC-12156	-2.135 ± 0.242	670.8591 ± 40.36	367.997 ± 6.488	-0.640 ± 0.560	-	0.932 ± 0.334	0.314 ± 0.044	1.570 ± 0.041	1.334±0.231	2007
B35-IRAC-14785	-67.526 ± 3.047	≤ 200.0	≤ 110.0	-1.396±0.349	1.227 ± 0.200	0.884±0.369	-27.541±4.698	-28.994±4.396	-27.364±0.471	2007
B35-IRAC-17517	-31.732 ± 1.201	≤ 200.0	≤ 110.0	-1.392±0.466	-	1.290 ± 0.504	-1.661±0.313	-1.350 ± 0.523	-0.689 ± 0.205	2007
DM238	-21.918 ± 1.110	≤ 200.0	≤ 110.0	-	-	1.671 ± 0.460	-	-	-	2007
DM243	-45.429 ± 1.337	≤ 200.0	≤ 110.0	-	-	1.793±0.667	-	-	-	2007
B35-IRAC-11994	-82.168 ± 6.860	≤ 200.0	≤ 110.0	-	2.828 ± 1.005	1.649 ± 0.619	-	-	-	2007
B35-IRAC-20473	-141.203 ± 9.209	≤ 200.0	≤ 110.0	-	-	1.249 ± 0.486	-7.001±0.695	-7.836±1.724	-6.739 ± 0.448	2007
B35-IRAC-17409	-68.470 ± 1.865	≤ 200.0	≤ 110.0	-	-	0.130 ± 0.057	-	-	-	2007
B35-IRAC-16286	-17.395 ± 0.622	650.5694 ± 90.444	356.867 ± 1.822	-5.960 ± 0.521	0.549 ± 0.289	1.380 ± 0.346	-	-	-	2007

Object	SpT	EW(H α)crit ¹	LC^2	Alkali Mem ³	$log(\dot{M}_{acc})$	Campaign	Object	SpT	EW(H α)crit ¹	LC^2	Alkali Mem ³	$log(\dot{M}_{acc})$	Campaign
B35-I054532.7+091900.6	B9	Ν	V	-		2007	B35-I054444.0+091014.5	M3	Ν	-	NM		2007
B35-I054504.1+092550.0	F8	Ν	-	-		2006	B35-IRAC-20473	M3	Y	-	Mem	≤-10.95	2006
DM248	K3	Y	IV-V	-	≤ -10.95	2006	B35-IRAC-23145	M3	Y	-	Mem	-6.762±0.390	2007
DM248	K4	Y	IV-V	-	≤ -10.95	2007	B35-IRAC-23414	M3	Ν	-	NM		2007
B35-I054345.3+093904.8	F6	Ν	-	-		2006	B35-IRAC-46311	M3	Ν	-	Mem		2007
B35-I054430.6+094615.4	G2	Ν	III	-		2006	DM231	M3	Y	-	Mem	≤-10.95	2007
B35-I054430.6+094615.1	G5	Ν	Ι	-		2007	DM255	M3	Y	-	Mem	≤-10.95	2006
B35-I054340.9+091443.1	G0	Ν	Ι	-		2007	DM255	M3.5	Y	-	Mem	≤-10.95	2007
B35-I054432.8+092421.4	F6	Ν	IV	-		2006	DM252	M3.25	Y	-	Mem	≤ -10.95	2007
B35-I054439.1+091807.8	K5	Ν	-	-		2007	DM252	M3.5	Y	-	Mem	≤ -10.95	2006
B35-I054449.0+091306.9	K0	Ν	-	NM		2007	DM256	M3.25	Y	-	Mem	≤ -10.95	2007
B35-I054447.7+092321.2	G0	Ν	-	NM		2006	B35-I054357.0+091631.7	M3.5	Y	-	Mem	≤ -10.95	2006
B35-I054502.6+090350.0	K3	Ν	-	Mem		2007	B35-I054428.7+091109.9	M3.5	Ν	-	NM		2007
DM241	K7	Y	-	Mem	≤ -10.95	2006	B35-I054516.9+090718.3	M3.5	Ν	-	NM		2007
DM241	K8	Y	-	Mem	≤ -10.95	2007	B35-IRAC-13586	M3.5	Y	-	Mem	≤ -10.95	2006
B35-I054515.8+094741.0	M1.5	Ν	-	Mem		2006	B35-IRAC-13586	M4	Y	-	Mem	-11.643±0.342	2007
B35-IRAC-14252	M2	Y	-	Mem	-10.500±0.389	2007	DM245	M3.5	Ν	-	Mem		2007
DM247	M2	Ν	-	Mem		2006	DM259	M3.5	Ν	-	Mem		2007
DM247	M3	Ν	-	Mem		2007	DM259	M4	Ν	-	Mem		2006
B35-IRAC-45299	M2.25	Y	-	Mem	-4.182±0.392	2007	DM246	M3.75	Ν	-	Mem		2007
B35-IRAC-20434	M2.5	Y	-	Mem	≤ -10.95	2007	B35-IRAC-12156	M4	Ν	-	NM		2007
B35-IRAC-20434	M3.0	Y	-	Mem	≤ -10.95	2006	B35-IRAC-14785	M4	Y	-	Mem	≤ -10.95	2007
DM234	M2.5	Ν	-	Mem		2007	B35-IRAC-17517	M4	Y	-	Mem	≤ -10.95	2007
DM240	M2.5	Y	-	Mem	≤ -10.95	2007	DM238	M4	Y	-	Mem	≤ -10.95	2007
DM244	M2.5	Y	-	Mem	≤ -10.95	2006	DM243	M4	Y	-	Mem	≤ -10.95	2007
DM244	M3	Y	-	Mem	-12.425±0.153	2007	B35-IRAC-11994	M4.5	Y	-	Mem	≤ -10.95	2007
DM249	M2.5	Ν	-	Mem		2006	B35-IRAC-20473	M4.5	Y	-	Mem	≤ -10.95	2007
DM249	M3	Ν	-	Mem		2007	B35-IRAC-17409	M5.5	Y	-	Mem	≤ -10.95	2007
DM258	M2.5	Ν	-	Mem		2007	B35-IRAC-16286	M6	Ν	-	Mem		2007
B35-I054436.7+091321.6	M3	Ν	-	NM		2007							

Table 4.3: Parameters derived for the CAFOS sample.

¹ Accretion criterion by Barrado y Navascués & Martín (2003).
 ² Luminosity Class based on the O I line.
 ³ Membership based on the measured Na I doublet equivalent widths.

4.2.3 H α and other emission lines: accretion, activity and outflows

As in the previous Chapter, we have used our measured H α equivalent widths and those given in Dolan & Mathieu (1999, 2001) along with the derived spectral types as a diagnosis for accretion. In figure 4.6, a T_{eff} versus EW(H α) diagram is shown. Unlike the case of Collinder 69 where the extinction is quite homogeneous, plenty of dust structure is present in Barnard 35. We have derived an extinction map based on an adaptive star count method; similar to that of Cambresy et al. (1997) for the Chamaleon I dark cloud but adapted to the 2MASS J band and the Barnard 35 galactic latitude. The A_V derived values are shown in Table 4.4 and have been used to deredden the SED of the candidate members prior to the perform the fit. In the figure, we display the derived spectral types transformed into temperatures (according to the temperature scale derived in the previous chapter) for those sources observed by us and the effective temperature derived from the SED fit for the confirmed members by Dolan & Mathieu not observed by us.

There are several sources, namely DM238, DM240, DM243, B35-IRAC-23145 and B35-I054357.0+091631.7 that show very large values of the equivalent width of H α but were classified as Class III according to the IRAC colour-colour diagram (Morales-Calderón 2008). On the other hand, all the sources show large excess at 24 μ m and are therefore classified as transition disks (disks with inner holes). Our H α measurements in two cases are slightly larger but compatible with those from Dolan & Mathieu (2001). Thus these sources might harbour transition actively accreting disks. All the accretion rates measured for these sources but one are upper limits (see Fig. 4.7); the source showing a much larger rate has a value log $\dot{M}_{acc} \sim -6.8$, compatible with other sources showing transitions disks such as LkH α 329 (log $\dot{M}_{acc} \sim -6.1$, Merin et al. 2009, private communication).

On the other hand, the source observed by us showing the largest infrared excess, the Class I source B35-IRAC-14252, is also part of the sample of sources with strongest H α emission (and highest estimated accretion rates).

In this T_{eff} vs. EW(H α) diagram we have highlighted the Class II population overplotting large black circumferences around them. Appart from the five sources classified as transition disks, there are other two sources (DM239 and DM250) for which the EWs provided in Dolan & Mathieu (1999, 2001) locate them among the accretors but for which no infrared excess has been detected at all on our IRAC data. We believe that the spectra obtained by Dolan & Mathieu must have been taking during a flare in both cases.

In general terms, when comparing this diagram with its analog in Collinder 69 (Fig. 3.13) a clear difference shows up; whilst there is a significant fraction of Class II sources that were not classified as active accretors in Collinder 69; every Barnard 35 Class II source observed by our team shows H α equivalent widths too high to only have a chromospheric activity origin. Therefore Barnard 35 seems to be significantly younger than Collinder 69 (as has already been suggested in the literature).

In order to study the variability of the accretion rate in young stellar objects, we observed

ten of the sources during both campaigns (i.e., with a difference of one year). Eight of these sources were Dolan & Mathieu candidates and the remaining two are candidate members proposed by Morales-Calderón (2008). In most of the cases we only obtained upper limits for the accretion rates, but the dramatic changes in the measured H α equivalent widths (see for example DM244) suggest that low mass stars show variable accretion periods as higher mass stars do (see, in Fig. 4.7 the solid black dots with vertical bars from Mendigutia et al 2009, private communication).

Figure 4.6: H α equivalent width versus the effective temperature for confirmed members of Barnard 35. We display data from Dolan & Mathieu (1999, 2001), with filled squares (red ones for those fulfilling the saturation criteria). Our data are displayed with solid dots; red for those above the saturation criteria. Overlapping large circles denote objects with near infrared excess from Spitzer/IRAC data (and open red triangles transition disks). The dotted lines corresponds to the saturation criteria defined by Barrado y Navascués & Martín (2003)

As in the previous chapter we have also tried to relate the H α emission with the properties of the disks. In Fig. 4.8 we show an IRAC colour-colour diagram for the members of Barnard 35 (spectroscopically confirmed members, and highly reliable photometric candidates). We have included information regarding the presence of transition disks (large red triangles) and the intensity of the emission of H α (blue open squares with sizes proportional to the equivalent width measured). Although the sources showing the largest H α emission seem to be located to the upperright part of the diagram (as expected according to the theoretical disk models used to interpret the

Figure 4.7: Mass accretion rates for a wide range of stellar masses. Red filled dots from this work. Crosses are from Calvet et al. (2004); Muzerolle et al. (2005); Mohanty et al. (2005) and Natta et al. (2006). Filled and open black symbols from Mendigutia et al 2009 (private communication), corresponding to the objects with EW(H α) > 10 Å and < 10 Å, respectively. Triangles represent lower limits. The vertical bars over these symbols represent variability measured in time scales of hours – months (not uncertainty in the measurements as is the case for the vertical bars over the points calculated in this work). The dashed line follows $\dot{M}_{acc} \propto M_*^2$, and the dotted lines ± 1 dex.

IRAC colour-colour diagram by Allen et al. 2004), we must note that two of the transition disks (located much closer to the Class III population) show very intense H α emissions.

Figure 4.8: IRAC color-color diagram including information about the nature of the disk and the H α emission of the sources. Sources showing a transition disk have been surrounded by a red triangle. A blue square with a size proportional to the intensity of the H α emission of the sources is also shown in the figure.

4.2.4 Youth indicators using Alkali: Li λ 6708 Å and NaI λ 8200 Å

In order to estimate the youth of our candidates we have followed different approaches according to the resolution of the data or the nature of the source (its spectral type).

For the two sources observed with high resolution, DM244 and DM248, we have de-
tected Li I absorption which confirms their youth and therefore membership to the dark cloud (see Fig. 4.9). We measure values for these two objects of 0.491 ± 0.091 and 0.436 ± 0.067 Å respectively. These values are in good agreement with those measured by Dolan & Mathieu (2001) (0.44 and 0.41 Å respectively). DM244, nevertheless, as stated before, is classified as an accreting source and the effect of the veiling should be taken into account. Once this correction is performed, the actual Lithium I equivalent width for DM244 is 0.540 Å.

Figure 4.9: Detail on the Li I absorption line and H α emission for DM248 and DM244, the two sources observed in high resolution at LICK. Note the double peaked H α emission detected on DM248 and the asymmetric profile of the same emission line on DM244.

In Fig. 4.10 we show the lithium equivalent width measured by Dolan & Mathieu (2001) versus the effective temperatures derived in this work for the confirmed members of Barnard 35. We also show the theoretical equivalent widths from Zapatero Osorio et al. (2002) considering $\log g = 4.0$ and $\log g = 4.5$ and an initial cosmic abundance (A(Li) = 3.1). Note that a significant fraction of our sources lie on top of the theoretical curves, implying that lithium is still preserved at the age of Barnard 35. We also note that, though the Barnard 35 sample is not too large, the mean Li equivalent width measured in Collinder 69 is somewhat larger than the measured in Barnard 35; this could be an effect of the veiling, since, at a first sight, the red solid dots (active accretors according to their H α emission) follow a trend of lower values than the solid black ones. In fact, the source showing the lowest value is DM227, an active accretor studied in the previous Section. In any case, this remains as a suggestion, since, as mentioned before, the statistic is not large enough to arrive to any conclussion.

Regarding the sources with spectral type hotter than K, as stated before, we used the measured equivalent width of the O I λ 7776 Å absorption line as a proxy of the luminosity class (Danks & Dennefeld 1994) to estimate the possible contamination of giants in our sample. From the eight sources observed (two sources were observed in the two campaigns), in three of them

Figure 4.10: Lithium equivalent width versus effective temperature. Confirmed members are displayed as solid dots, where: red ones highlight sources classified as active accretors. Large black circunferences surround Class II sources and open red triangles transition disks. The solid line corresponds to the upper envelope of the values measured in young open clusters such as IC2391, IC2602, the Pleiades and M35. The long-dashed line delimits the areas for weak-line and post-TTauri stars (adapted from Martin 1997 and Martín & Magazzù 1999. Short-dashed and dotted lines correspond to the cosmic abundances – A(Li) = 3.1 – from gravities of Logg=4.5 and 4.0, respectively (curves of growth from Zapatero Osorio et al. 2002).

the signal to noise ratio of the spectra did not allow us to measure the profile of this line. From the remaining seven, two of them show equivalent widths quite high for their spectral type (G1); compatible with them being supergiants (although B35-I054430.6+094615.4 shows some variability and could also be classified a giant). The hottest star (B35-I054532.7+091900.6) shows a value typical of a dwarf, whilst B35-I054432.8+092421.4 was classified as subgiant. The other two sources show values compatible with class IV and class V sources.

Finally, as in the previous chapter, for the cooler sources of the sample (K and M spectral types), we have used the Na I doublet at ~8200 Å as a proxy for youth. As a reference, we have used our own data from Collinder 69 and the data gathered by Maxted et al. (2008) for σ Orionis (with a similar age than Barnard 35, ~3 Myr).

This last criterion had to be applied carefully to the sources that are actively accreting, since the veiling provokes some weakening in the strength of the absorption lines, and members could be wrongly classified as lower luminosity class contaminants. Whenever this could have been the case, we studied the contribution of the veiling and corrected our measurements prior to classifying our sources as members or not.

Figure 4.11: T_{eff} vs EW(NaI) for members and non-members of Barnard 35. Rejected candidates are displayed as plus signs, confirmed members as solid dots, where: red ones highlight sources classified as active accretors. Large black circunferences surround Class II sources and open red triangles transition disks.

In Fig. 4.11 we plot the effective temperature of members and rejected candidates to Barnard 35 against their measured Na I. As we have previously mentioned, some accreting sources show much lower equivalent widht that those measured for similar-temperature members. Although there is a large dispersion, as in the case of Collinder 69 some correlation can be inferred between both quantities.

As can be seen in Table 4.2, there are sources (like in the case of Collinder 69) that show large variations in the measured Na I equivalent width, and others, like DM244 and DM248 for which de differences among the measurements are within the error-bars (like the differences between the Li I measurements by Dolan & Mathieu 2001 and ours).

4.3 The spatial distribution of the members.

In Table 4.4 we have included a column with the final membership assigned to each source. As in the previous chapter, we consider members those labeled as Y? (fulfilling most of the photometric criteria, see previous chapter), Y (highly reliable photometric candidates, see previous chapter for more details) and Y+ (spectroscopically confirmed members; in this case we have included the reference of the work were the spectroscopic confirmation was provided). There are \sim 75 members from which 67 have been labeled as Y or Y+.

The sample of sources that we have in this case is not populated enough to compute the Kuiper statistics and look for correlation in the spatial distribution of disk and diskless sources. Besides, this test would not be very relevant since our candidate selection criteria are completely biased towards the low mass Class II population. In any case, from a cualitative point of view, the confirmed members show a clustered distribution towards the dustier areas (IRAS 100 micron contours are overplotted in blue in the figure).

Finally, it is quite eye-catching the fact the all the "so-called" transition disks (highlighted with open red triangles in Fig. 4.12) are located along the previously mentiones IRAS contours.

4.4 The Hertzsprung-Russell diagram of Barnard 35.

In Fig. 4.13, we show the Hertzsprung–Russell diagram of Barnard 35 including all the (spectroscopically) confirmed members and the reliable (photometric) candidate members. We have overplotted two sets of composed isochrones (to achieve a complete mass range coverage) joining the collections by Siess et al. (2000) and COND by Baraffe et al. (2003) for two ages: 1 and 5 Myr. Taking into account the error bars in the determination of L_{bol} and T_{eff} , there are several sources that lie well below the 5 Myr isochrone; some of them show infrared excesses, and therefore our determinations of these two parameters might be affected (as has been explained before, see Section 3.1).

Figure 4.12: Spatial distribution of the members of Barnard 35 (spectroscopically confirmed and photometric candidates). Active accretors according to the saturation criterion are highlighted in red. We have also included the information regarding the near infrared excess with larger circumferences sourounding the Class II sources and open red triangles sourounding the transition disks.

On the other hand, if we focus on the three sources that do not show infrared excess (but still lie well below the 5 Myr isochrone curve); two of them are "DIL-members". Since the selection criteria applyied by Duerr et al. (1982) consisted only in the detection of H α emission, active late F or G field dwarfs could mimic the emission of a YSO. The remaining object has been observed by us and it was classified as a tentative member since its youth was inferred studying its O I λ 7776 Å absorption; a method that can have caveats when dealing with active sources.

In this case, unlike what happens with Collinder 69, all our sources show an homogeneous distribution in the diagram, regardless whether the source shows infrared excess or it is accreting. We must note in any case that our study (due to the selection criteria applyied to produce the candidate lists) is biased towards the Class II population of Barnard 35 and therefore we are not sensitive to inhomogenities with the Class III population.

Figure 4.13: HR diagram of the confirmed (spectroscopically) and highly reliable (photometric) candidate members of Barnard 35.

4.5 Conclusions

We have analyzed ~ 60 optical spectra from known members and candidate members to the dark cloud Barnard 35. With different criteria based on line and molecular bands strengths, we have derived spectral types for all of them.

By studying youth indicators we have confirmed as new members 18 (plus two possible members) sources and discarded 12. We have also observed and analyzed \sim 20 members already observed by Dolan & Mathieu (1999, 2001).

We have analyzed the variability of the accretion rate of a subset of our sample of sources finding a large amplitude in the variations that do not appear to be correlated with the mass of the central star.

We have derived accretion rates for three sources harbouring so-called transition disks that agree with the few measurements of such disks that have been reported so far.

We have compared the evolutionary status of the disks around sources in Barnard 35 and those of Collinder 69 finding a very significant behaviour; being the latter diks much less active than those studied around members belonging to Barnard 35.

In Table 4.4 we provide a summary of all the parameters derived for the sources studied in this chapter.

Object	SpT	Accret.	Membership ⁵	$\log(\dot{M}_{acc})(M_{\odot}/yr)^4$	Class ⁶	$EW(H\alpha)^4$	EW(Li) ⁴	α Slope	Disk Type	T _{eff}	L _{bol}	Mass _{Teff}	Av
B35-I054340.9+091443.1	G0	N	NM+ (B09)		I/II	3.813±0.254 ⁴⁾		1.333	Thick	5250	0.049 ± 0.0010		1.404
B35-I054345.3+093904.8	F6	Ν			III	3.491±1.576 ⁴⁾				5500	0.074 ± 0.0020		0.362
B35-I054357.0+091631.7	M3.5	Y	Y+ (B09)	≤-10.95	II/III	-166.291±2.928 ⁴⁾		-2.563	Transition	5750	0.228 ± 0.0030		0.861
B35-I054428.7+091109.9	M3.5	Ν	NM+ (B09)		III	2.013±0.117 ⁴⁾		-2.588	Diskless	3300	1.867 ± 0.031		3.456
B35-I054430.6+094615.1	G5	Ν	NM+ (B09)		II	3.177±0.286 ⁴⁾		-1.253	Thick	4400	0.03 ± 0.0		0.062
B35-I054430.6+094615.4	G2	Ν	NM+ (B09)		-	2.399±0.127 ⁴⁾							
B35-I054432.8+092421.4	F6	Ν	Y?+ (B09)		III	4.284±0.105 ⁴⁾		-2.913	Diskless	5500	0.184 ± 0.0030		0.362
B35-I054436.7+091321.6	M3	Ν	NM+ (B09)		-	2.207±0.343 ⁴⁾							3.385
B35-I054439.1+091807.8	K5	Ν	NM?+ (B09)		I/II	4.372±0.252 ⁴⁾				5000	0.042 ± 0.0010		1.425
B35-I054444.0+091014.5	M3	Ν	NM+ (B09)		III	4.051±0.108 ⁴⁾		-2.262	Diskless				7.392
B35-I054447.7+092321.2	G0	Ν	NM+ (B09)		III	3.114±0.215 ⁴⁾		-2.892	Diskless	5250	0.163 ± 0.0030		0.362
B35-I054449.0+091306.9	K0	Ν	NM+ (B09)		III	3.841±0.237 ⁴⁾		-2.739	Diskless				1.912
B35-I054502.6+090350.0	K3	Ν	Y+ (B09)		III	1.767±0.036 ⁴⁾		-2.568	Transition	4250	5.827 ± 0.038	1.023	1.391
B35-I054504.1+092550.0	F8	Ν			-	3.331±0.246 ⁴⁾							
B35-I054515.8+094741.0	M1.5	Ν	Y+ (B09)		-	1.668±0.242 ⁴⁾							
B35-I054516.9+090718.3	M3.5	Ν	NM+ (B09)		III	1.681±0.259 ⁴⁾		-2.548	Diskless	2900	3.098 ± 0.032		2.471
B35-I054532.7+091900.6	B9	Ν	Y? (B09)		III	7.271±0.463 ⁴⁾		-2.805	Diskless	3500	4.065 ± 0.046		0.381
B35-IRAC-10543			Y		Π			-0.921	Thick	1600		0.006	1.106
B35-IRAC-11994	M4.5	Y	Y+ (B09)	≤-10.95	II	-82.168± 6.86 ⁴⁾		-1.483	Thick	2900	0.117 ± 0.001	0.06	0.296
B35-IRAC-12156	M4	Ν	NM+ (B09)		II	$-2.135 \pm 0.242^{(4)}$		-1.427	Thick	3800	0.333 ± 0.006	0.9	1.403
B35-IRAC-12396			Y?		Ι			1.035	Thick				1.392
"			Y?		Ι			1.035	Thick				1.42
B35-IRAC-12913			Y		II			-1.377	Thick	3000		0.08	3.073
B35-IRAC-13586	M3.5	Y	Y+ (B09)	≤-10.95	II	-187.987± 2.243 ⁴⁾		-1.454	Thick	3900		1.05	0.362
"	M4	Y	Y+ (B09)	-11.644±0.343	Π	-216.341± 37.843 ⁴⁾		-1.454	Thick	3900		1.05	0.362
B35-IRAC-14252	M2	Y	Y+ (B09)	-10.5 ± 0.389	Ι	-93.662± 13.366 ⁴⁾		-0.545	Thick		0.115 ± 0.001		0.084
B35-IRAC-14618			Y		Π			-1.093	Thick	1200		0.004	5.4
B35-IRAC-14785	M4	Y	Y+ (B09)	<-10.95	п	$-67.526 \pm 3.047^{(4)}$		-1.031	Thick	3900	0.13 ± 0.001	1.05	2.031
B35-IRAC-14804			Ŷ		Π			-1.188	Thick	1400		0.005	8.346
B35-IRAC-14943			Y?		Ι			2.274	Thick				5.314
B35-IRAC-15004			Y?		Ι			0.514	Thick				5.736
B35-IRAC-15017			Y		п			-1.162	Thick				6.524
B35-IRAC-16286	M6	Ν	Y+ (B09)		п	-17.39±5 0.622 ⁴⁾		-1.09	Thick	3300	0.114 ± 0.001	0.27	0.362
B35-IRAC-16567			Y?		Ι			0.133	Thick				7.756
B35-IRAC-17409	M5.5	Y	Y+ (B09)	<-10.95	п	$-68.47 \pm 1.865^{(4)}$		-0.908	Thick	3100	0.154 ± 0.003	0.14	0.362
B35-IRAC-17517	M4	Y	Y+ (B09)	<-10.95	п	$-31.732 \pm 1.201^{(4)}$		-1.628	Thick	3800	0.338 ± 0.025	0.9	3.203
B35-IRAC-17523			Y		п			-1.201	Thick	3500		0.46	0.362
B35-IRAC-17593			Y		П			-1.061	Thick	2700		0.02	0.362
B35-IRAC-18430			Y		п			-1.053	Thick	3000		0.08	2.642
B35-IRAC-20180			Y		п			-1.419	Thick	3300	0.094 ± 0.001	0.27	1.915
B35-IRAC-20434	M2.5	Y	Y+ (B09)	<-10.95	П	$-66.169 \pm 2.223^{(4)}$		-0.984	Thick	3500	0.149 ± 0.004	0.46	0.362
"	M3.0	Y	Y + (B09)	<-10.95	П	-46.755 ± 1.917^{4}		-0.984	Thick	3500	0.149 ± 0.004	0.46	0.362
B35-IRAC-20473	M3	Ŷ	Y + (B09)	<-10.95	п	-144.823 ± 3.997^{4}		-1.763	Thick	3500	0.396 ± 0.006	0.46	1.082
"	M4.5	Ŷ	Y + (B09)	<-10.95	П	$-141.203 + 9.209^{(4)}$		-1.763	Thick	3500	0.396 ± 0.006	0.46	1.082
B35-IRAC-23145	M3	Ŷ	Y+ (B09)	-6.762 ± 0.39	Ш	$-16.306 \pm 0.962^{4)}$		-2.223	Transition	3800	0.194 ± 0.004	0.9	0.362
		-	Con	tinued on next page	-								

Table 4.4: Summary of the parameters derived in this work for Barnard 35 candidate members and comparison with previous studies.

Object	SpT	Accret.	Membership ⁵	$\log(\dot{M}_{acc})(M_{\odot}/yr)^4$	Class ⁶	$EW(H\alpha)^4$	EW(Li) ⁴	α Slope	Disk Type	T _{eff}	L _{bol}	Mass _{Teff}	A _V
B35-IRAC-23414	M3	Ν	NM+ (B09)		III	1.538 ± 0.277^{4}		-2.824	Transition	3700	1.188 ± 0.012	0.75	0.436
B35-IRAC-24086			Y?		II			-1.467	Thick	2900		0.06	1.148
**			Y ?		Π			-1.467	Thick	2900		0.06	1.152
,,			Y?		Π			-1.467	Thick	2900		0.06	1.149
B35-IRAC-27556			Y		Π			-1.775	Thick	3200	0.057 ± 0.001	0.21	0.362
B35-IRAC-37817			Y		II			-1.776	Thick	3000	0.059 ± 0.001	0.08	0.362
B35-IRAC-45299	M2.25	Y	Y+ (B09)	-4.182 ± 0.392	Π	$-16.987 \pm 1.279^{4)}$		-1.579	Thick	3300		0.27	0.362
B35-IRAC-45860			Y		II			-1.094	Thick	3100	0.133 ± 0.001	0.14	2.226
B35-IRAC-46311	M3	Ν	Y+ (B09)		Π	$-12.199 \pm 1.018^{(4)}$		-1.72	Thick	3100		0.14	0.362
B35-IRAC-47084			Y		Π			-1.699	Thick	3900	0.066 ± 0.001	1.05	0.362
DIL82			Y (DIL)		III			-2.903	Diskless	6000	0.803 ± 0.005	1.84	1.501
DIL85			Y (DIL)		III			-2.832	Diskless	7000	0.544 ± 0.007	2.3	2.217
DIL86			Y (DIL)		III			-2.791	Diskless	4800	0.779 ± 0.008	1.18	0.362
DIL88			Y (DIL)		I/II			-1.08	Thick	2700			
DM217		N	Y+ (DM)		-	-3.35 ¹⁾	0.53			4000		0.72	
DM222		Y	Y+ (DM)		-	-19.371)	0.54			3400		0.23	
DM225		Ν	Y+ (DM)		-	-7.82 ¹⁾	0.6			3900		0.63	
DM227		Y	Y+ (DM)		-	-52.56 ¹⁾	0.31			4000		0.72	
DM228		Ν	Y+ (DM)		-	-0.41 ¹⁾	0.5			4000		0.72	
DM231	M3	Y	Y+ (DM, B09)	≤-10.95	Π	$-49.93^{(1)}; -30.56 \pm 0.852^{(4)}$	0.49	-1.109	Thick	4000	0.838 ± 0.007	0.72	0.385
DM232		N	Y+ (DM)		III	-3.07 ¹⁾	0.6	-2.755	Diskless	3750	0.738 ± 0.006	0.47	0.362
DM233		Ν	Y+ (DM)		III	-4.83 ¹⁾	0.66	-2.855	Diskless	3750	0.601 ± 0.006	0.47	0.362
DM234	M2.5	Ν	Y+ (DM, B09)		Π	-4.1^{1} ; -5.17 ± 0.199^{4}	0.52	-1.45	Thick	4000	0.974 ± 0.01	0.72	0.362
DM235		Ν	Y+ (DM)		III	-2.54 ¹⁾	0.58	-2.789	Diskless	4000	1.472 ± 0.016	0.72	0.362
DM236		Ν	Y+ (DM)		III	-5.27 ¹⁾	0.63	-2.73	Diskless	3500	0.229 ± 0.004	0.28	0.362
DM237		Ν	Y+ (DM)		III	-2.84 ¹⁾	0.64	-2.789	Diskless	3900	0.895 ± 0.007	0.63	1.435
DM238	M4	Y	Y+ (DM, B09)	≤-10.95	III	-26.71^{1} ; -21.918 ± 1.11^{4}	0.62	-2.286	Transition	3400	0.181 ± 0.004	0.23	0.362
DM239		Y	Y+ (DM)		III	-4.64 ¹⁾	0.67	-2.818	Diskless	3750	0.345 ± 0.004	0.47	0.362
DM240	M2.5	Y	Y+ (DM, B09)	≤-10.95	III	$-86.96^{1}; -115.809 \pm 9.768^{4}$	0.54	-2.312	Transition	4000	1.505 ± 0.011	0.72	2.165
DM241	K7	Y	Y+ (DM, B09)	≤-10.95	II	-27.8^{1} ; -17.886 ± 0.251^{4}	0.45	-1.205	Thick	3900	1.814 ± 0.017	0.63	1.276
,,	K8	Y	Y+ (DM, B09)	≤-10.95	II	-27.8^{1} ; -25.963 ± 1.201^{4}	0.45	-1.205	Thick	3900	1.814 ± 0.017	0.63	1.276
DM242		Ν	Y+ (DM)		III	0.35 ¹⁾	0.49	-2.828	Diskless	5600	11.877 ± 0.02	1.62	3.404
DM243	M4	Y	Y+ (DM, B09)	≤-10.95	III	-19.47^{1} ; -45.429 ± 1.337^{4}	0.63	-2.54	Transition	3750	0.332 ± 0.008	0.47	1.991
DM244	M2.5	Y	Y+ (DM, B09)	≤-10.95	П	-96.46^{1} ; -68.563 ± 0.603^{4}	0.44	-1.23	Thick	4000	$2.145 {\pm}~0.015$	0.72	1.516
"	M3	Y	Y+ (DM, B09)	-12.425 ± 0.153	II	-96.46^{1} ; -90.313 ± 5.524^{4}	0.44	-1.23	Thick	4000	2.145 ± 0.015	0.72	1.516
DM245	M3.5	Ν	Y+ (DM, B09)		III	-5.45^{1} ; -6.869 ± 0.398^{4}	0.66	-2.278	Transition	3900	1.247 ± 0.013	0.63	1.191
DM246	M3.75	Ν	Y+ (DM, B09)		П	-25.88^{1} ; -11.349 ± 0.324^{4}	0.68	-1.057	Thick	3900	1.664 ± 0.033	0.63	2.47
DM247	M2	Ν	Y+ (DM, B09)		II	-13.73^{1} ; -4.473 ± 0.205^{4}	0.62	-1.242	Thick	3500	0.646 ± 0.011	0.28	2.359
,,	M3	Ν	Y+ (DM, B09)		П	-13.73^{1} ; -2.995 ± 0.314^{4}	0.62	-1.242	Thick	3500	0.646 ± 0.011	0.28	2.359
DM248	K3	Y	Y+ (DM, B09)	≤-10.95	П	-3.27^{1} ; -4.288 ± 0.259^{4}	0.41	-1.718	Thick	4600	6.875 ± 0.024	1.1	1.394
**	K4	Y	Y+ (DM, B09)	≤-10.95	П	-3.27^{1} ; -5.945 ± 0.171^{4}	0.41	-1.718	Thick	4600	6.875 ± 0.024	1.1	1.394
DM249	M2.5	Ν	Y+ (DM, B09)		Π	-12.08^{1} ; -2.882 ± 0.091^{4}	0.54	-1.351	Thick	4000	2.916 ± 0.017	0.72	2.688
"	M3	Ν	Y+ (DM, B09)		Π	-12.08^{1} ; -3.081 ± 0.186^{4}	0.54	-1.351	Thick	4000	2.916 ± 0.017	0.72	2.688
DM250		Y	Y+ (DM)		III	-22.97 ¹⁾	0.74	-2.761	Diskless	4200	0.615 ± 0.025	0.88	3.552
DM251		Ν	Y+ (DM)		III	-5.29 ¹⁾	0.6	-2.752	Diskless	3500	0.186 ± 0.003	0.28	0.362
DM252	M3.25	Y	Y+ (DM, B09)	≤-10.95	Π	$-33.09^{1)}; -50.226 \pm 2.744^{4)}$	0.5	-1.358	Thick	3500	1.094 ± 0.028	0.28	3.524
**	M3.5	Y	Y+ (DM, B09)	<-10.95	П	-33.09^{1} ; -43.006 ± 1.366^{4}	0.5	-1.358	Thick	3500	1.094 ± 0.028	0.28	3.524

Table 4.4 – Continued

171

	Tabl	e 4.4 – Coi	ntinued										
Object	SpT	Accret.	Membership ⁵	$\log(\dot{M}_{acc})(M_{\odot}/yr)^4$	Class ⁶	$EW(H\alpha)^4$	EW(Li)4	α Slope	Disk Type	T _{eff}	L _{bol}	Mass _{Teff}	Av
DM254		Ν	Y+ (DM)		III	1.57 ¹⁾	0.24	-2.81	Diskless	5500	2.034 ± 0.017	1.57	0.376
DM255	M3	Y	Y+ (DM, B09)	≤-10.95	II	-21.24^{1} ; -20.252 ± 0.238^{4}	0.6	-1.272	Thick	3300	0.915 ± 0.01	0.19	0.878
,,	M3.5	Y	Y+ (DM, B09)	≤-10.95	II	-21.24 ¹⁾ ; -20.717± 0.68 ⁴⁾	0.6	-1.272	Thick	3300	0.915 ± 0.01	0.19	0.878
DM256	M3.25	Y	Y+ (DM, B09)	≤-10.95	II	-32.16^{1} ; -29.114 ± 0.839^{4})	0.52	-1.103	Thick	4000	1.145 ± 0.029	0.72	4.1
DM257		Ν	Y+ (DM)		III	-1.56 ¹⁾	0.49	-2.848	Diskless	5400	9.584 ± 0.027	1.52	3.97
DM258	M2.5	Ν	Y+ (DM, B09)		III	$0.22^{(1)}; 0.695 \pm 0.066^{(4)}$	0.41	-2.408	Transition	3500	0.816 ± 0.008	0.28	1.106
DM259	M3.5	Ν	Y+ (DM, B09)		I/II	-4.79^{1} ; -5.13 ± 0.19^{4})	0.66	-0.149	Thick	3600	0.432 ± 0.006	0.35	1.58
"	M4	Ν	Y+ (DM, B09)		I/II	-4.79^{1} ; -4.465 ± 0.135^{4})	0.66	-0.149	Thick	3600	0.432 ± 0.006	0.35	1.58
DM260		Ν	Y+ (DM)		Ш	-4.35 ¹⁾	0.75	-2.719	Diskless	3700	0.97 ± 0.015	0.43	2.915
DM261		Ν	Y+ (DM)		III	-1.13 ¹⁾	0.41	-2.793	Diskless	4000	1.317 ± 0.013	0.72	0.908

⁴ Measurement from; ⁵ Membership confirmed by: ¹⁾; DM - Dolan & Mathieu (1999, 2001) ⁴⁾; B09 - This work

DIL - Duerr et al. (1982)

⁶ Infrared Class derived with the IRAC data in Barrado y Navascués et al. (2007b) or Chapter 2 ("-" indicates that the sources has not been detected in the four IRAC bands).

Chapter 5

The dark cloud Barnard 30

Barnard 30 is a dark cloud located ~ 2.5° NW of the star λ Ori. Duerr et al. (1982) first identified a stellar cluster centered around it and it was later confirmed from a statistical point of view by Gomez & Lada (1998). Because Barnard 30 is embedded in the CO and dust ring that surrounds the whole Lambda Orionis complex, it represents a quite different environment than that of Collinder 69 and Barnard 35. In this chapter we will study the Barnard 30 association following the same scheme as for Barnard 35.

This chapter is structured in three parts: Section 5.1 shortly summarizes the spectroscopic surveys performed over Barnard 30 that have already been published by other groups; Section 5.2 deals with the analysis of optical spectra of previously known members and new candidate groups proposed by Morales-Calderón (2008). Finally, in Section 5.5 we provide the conclusions of this work.

5.1 Previous Surveys

The Barnard 30 association, as part of the Lambda Orionis Star Forming Region, has also been studied by Dolan & Mathieu (1999, 2001, 2002)) – See Section 3.2 for a summary of their observations. 62 out of the 266 pre-main sequence stars found by those authors fall within the area studied by Morales-Calderón (2008) in B30. We consider those objects bona fide members of the Barnard 30 association and will be called hereafter the DM members. In addition, 15 of the Duerr et al. members not in common with the DM members fall within the Spitzer field of view. We consider these 15 objects as bona-fide members of Barnard 30 (hereafter DIL members).

5.2 Spectroscopy for the Barnard 30 sample

For our spectroscopic campaigns we selected a sample of candidate members to Barnard 30 from those proposed by Morales-Calderón (2008) to confirm their membership to the dark

Date	Observatory/Telescope/Instrument	Resolution	Wavelength coverage	Number of sources observed	Original photometric
				observed	survey
November 20-23, 2006	CAHA / 3.5m / TWIN	~1100	5700–9900Å	29	DM & DIL & Morales-Calderón (2008)
December 5-7, 2006	Lick / 3m Shane / Hamilton	~50000	3800–9750Å	7	DM & DIL & Morales-Calderón (2008)
Nov. 30 - Dec. 11, 2006	CAHA / 2.5m /CAFOS	~600	6200–10350Å	8	DM & Morales-Calderón (2008)
Nov. 30 - Dec. 11, 2007	CAHA / 2.5m /CAFOS	~600	6200–10350Å	4	DM & Morales-Calderón (2008)
January 17-18, 2008	Lick / 3m Shane / KAST	~5000	5650–7050Å	16	DM & Morales-Calderón (2008)

 Table 5.1: Barnard 30 optical spectroscopic campaigns.

cloud and study their properties. And, also, as in the case of Barnard 35 we added to our sample some confirmed members from DM and DIL to study their variability.

In this case, as happened with Collinder 69, we have observations covering a wide range of resolutions, and therefore different analysis techniques were applied depending on the characteristics of the data gathered by us.

5.2.1 Spectral type determination

Like in the previous chapters; to perform the spectral classification of the M candidates we used the spectral indices described in Section 3.3.1 based on depth of some molecular bands (TiO and VO; see Fig. 5.1 for an example of a spectral sequence determined for the TWIN campaign). Nevertheless, the wavelength coverage of the instrumental set-up used during the Lick/KAST campaign was too short in the red domain to apply the mentioned indexes. For this particular dataset we used a different index based on the CaH feature at 6975 Å described in Kirkpatrick et al. (1991). Figure 5.2, extracted from Kirkpatrick et al. (1991) shows the clear correlation between this index and the spectral type of late K and M dwarfs. For the warmest part of the sample, observed with TWIN and expected to be K-type stars based on their estimated T_{eff} , we took spectra of the same set of templates obtained with CAFOS (described in the previous chapter) to use them as comparison (see Fig. 5.3 for an example of a possible contaminant galaxy and a K5 dwarf).

5.2.2 Rotational velocities estimation.

As in the previous chapters, for those sources observed in high resolution (those from the Lick/Hamilton campaign of 2006), we have studied their rotational velocity by comparing the depth of photospheric lines with theoretical spectra synthesized to match the effective temperature of each source and different rotational velocities.

From the 2006-LICK sample, one of the sources did not show Li I in absorption, being classified as non-member we did not study its rotational velocity. Regarding the remaining six sources; all but one are classified as active accretors, and, as explained in the previous chapter, veiling can introduce large uncertainties in the method we are using to determine the rotational velocity of the sources.

DM158, on the other hand shows a very subtle H α emission (see Table 5.2) that can

Figure 5.1: Spectral sequence for members of Barnard 30 observed with CAFOS.

Figure 5.2: CaH index versus spectral type for late K and M dwarfs (from Kirkpatrick et al. 1991). Super-giants are marked by crosses, giants by open circles and dwarfs by filled circles.

be attributed merely to chromospheric activity. We show the comparison with theoretical models for this source in the top-right panel of Fig. 5.8. From this comparison, we derive a value for the projected rotational velocity of this source of 75 Km/s. In the top-left panel of Fig. 5.8 we show the same source, DM158, but this time compared to other two members with the same estimated effective temperature but very different intensities of both lines.

This effective temperature was estimated via SED fitting; in the lower panels of the same figure, we show the SEDs of the three sources. Note the similarities among them (especially between DM153 and DM158) but a first sight of the SED of DM153 already reveals some blue excess caused by the veiling. We have not been able to estimate precisely the veiling affecting DM123 and DM153. We provide the rotational velocity estimated for DM158 as possible upper-limits for the other two sources. The extremely high rotational velocities that would be derive not taking the veiling into account do not fit the commonly observed picture of young sources remaining slow rotator due disk locking (see Fig. 5.9 for an example of the comparison of the measured rotational velocities of young sources, -members of the ~1 Myr Chamaleon I dark cloud harbouring disks-, and older, field dwarfs).

For the cases of DIL38, DM143 and DM166; the three sources were classified as active accretors, and we did not have same temperature-non-accreting template to try to infer the veiling affecting the Ca I doublet region. Therefore we were not able to provide an estimation of the rotational velocities of these sources.

Figure 5.3: Spectral type determination for two candidate members by comparison with templates obtained with the same instrumental set-up. The "science spectra" are displayed in black and the templates (labeled according to the spectral type) in red. The first panel (from left to right) shows a possible galaxy contaminant; even though the slope of the spectrum is compatible with an early M star, the absence of the typical molecular bands lead us to consider it as contaminant. On the second panel we show a K5 V.

 Table 5.2: Equivalent width of the main lines observed in the spectra obtained with Lick/Hamilton.

Object	Hβ	[OI]	[OI]	[OI]	[NII]	Hα			HeI	LiI	[SII]	[SII]	CaII	CaII	CaII
	4861	5577	6300	6364	6581	6563			6678	6708	6717	6731	8498	8542	8662
	EW(Å)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	FW10% (km/s)	FWHM(km/s)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	EW(Å)
B30-I053*	-	-5.396±0.327	-0.425±0.056	-	-0.372±0.038	-2.357±1.594	36.944±4.592	16.998±1.947	-0.117±0.000	-	-0.368±0.050	-0.214±0.004	-	-	-
DIL38	-4.013±0.400	-1.774±0.412	-0.581±0.089	-	-0.222±0.016	-21.442±0.998	314.295±3.30	106.778 ± 0.000	-0.062±0.022	0.302 ± 0.019	-0.150 ± 0.040	-0.236±0.035	-0.157±0.079	-0.447±0.108	-0.393±0.074
DM123	-0.897±0.172	-1.953 ± 0.421	-0.239±0.056	-2.044 ± 1.552	-0.052 ± 0.011	-41.343 ± 2.280	372.750 ± 0.862	153.331±0.654	-0.523 ± 0.082	0.042 ± 0.010	-0.032±0.003	-0.135±0.013	-	-	-
DM143	-	-1.961±0.160	-0.178±0.027	-	-0.391±0.042	-4.934±0.719	312.598 ± 2.500	78.163 ± 0.000	-0.625±0.174	0.299 ± 0.056	-	-0.082±0.015	-	-	-
DM153	-	-1.028±0.175	-0.103 ± 0.004	-0.081 ± 0.011	-	-16.644±0.987	493.070±3.760	343.070 ± 3.560	-	0.306 ± 0.060	-0.533±0.197	-0.100 ± 0.025	-0.059 ± 0.037	-0.035±0.008	-0.154 ± 0.023
DM158	-0.158±0.029	-0.651±0.064	-0.034±0.009	-	-0.107±0.036	-0.975±0.087	170.573 ± 0.980	52.590 ± 0.500	-0.137±0.018	0.479 ± 0.058	-	-0.158±0.034	-	-	-
DM166	-4.232 ± 0.483	-3.171±0.154	-0.369 ± 0.046	-	-0.360 ± 0.040	-37.180 ± 0.989	613.768 ± 1.600	374.221 ± 1.500	-0.157±0.002	0.209 ± 0.011	-0.185 ± 0.045	-0.288±0.067	-	_	-

* B30-I053021.8+120025.4

Object	Hα			HeI	LiI	KI	KI	NaI	CaII	CaII	CaII
	6563			6678	6708	7665	7700	8200	8498	8542	8662
	EW(Å)	FW10% (km/s)	FWHM(km/s)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	EW(Å)
B30-I053013.9+122921.5	0.948±0.426	221.840 ± 18.373	≤85.0	-	-	-	-	2.144±1.073	1.248 ± 0.458	1.850 ± 0.610	5.771±1.753
B30-I053014.4+121211.5	-5.360 ± 0.237	142.639 ± 42.422	27.626 ± 4.923	-	-	1.563 ± 0.112	1.606 ± 0.163	4.357±0.288	0.466 ± 0.112	0.313±0.116	1.003 ± 0.278
B30-I053022.9+122347.1	2.460 ± 0.502	845.736 ± 267.872	606.819 ± 27.302	-	1.007 ± 0.135	-	-	1.677 ± 0.218	0.596 ± 0.032	2.706 ± 0.687	2.270 ± 0.189
B30-I053023.8+121854.9	2.835 ± 0.241	1340.270 ± 65.651	294.795 ± 8.703	-	-	-	-	1.359 ± 0.251	0.701 ± 0.203	2.299 ± 0.486	1.720 ± 0.238
B30-I053055.3+122428.4	2.981±0.306	470.516 ± 38.107	87.979 ± 10.174	-	-	-	-	0.443 ± 0.085	1.140 ± 0.395	3.253 ± 0.211	2.967 ± 0.154
B30-I053131.1+120731.3	-7.320±0.050	≤150.0	≤85.0	-	-	2.182±0.243	2.100 ± 0.183	4.641±0.214	0.071 ± 0.009	1.193 ± 0.175	0.613 ± 0.215
B30-I053151.8+121451.9	-0.728±0.311	1250.293 ± 29.496	391.952 ± 16.726	-0.415±0.240	-	-	-	2.906 ± 0.553	-	-	-
B30-I053156.8+122025.0	-2.365 ± 0.963	888.778 ±231.223	373.238 ±37.970	-0.407±0.190	1.086 ± 0.600	-	-	1.895 ± 0.138	-	-	-
B30-I053158.5+121238.9	4.919±0.033	≤150.0	≤85.0	-	0.786 ± 0.287	-	-	1.520 ± 0.153	0.632 ± 0.071	2.068 ± 1.172	1.972 ± 0.125
B30-I053158.7+122730.3	2.783±0.314	1461.646 ± 41.319	440.915 ± 21.597	-1.133±0.169	0.693±0.315	-	-	0.971 ± 0.112	0.988 ± 0.069	3.589 ± 0.835	2.866 ± 0.198
B30-IRAC-18115	-28.085±0.859	293.380 ± 6.501	157.161 ± 1.630	-1.860 ± 0.105	-	-	-	1.803 ± 0.213	-1.551±0.680	-0.536±0.179	-0.269±0.083
B30-IRAC-21424	-11.285±0.136	378.379 ± 0.184	157.336 ± 0.022	-0.346±0.172	0.968 ± 0.361	-	-	1.024 ± 0.246	-1.136±0.089	-0.550±0.103	-0.445±0.249
B30-IRAC-22957_1*	-50.626±1.226	58.779 ± 4.713	≤85.0	-	-	1.334 ± 1.035	1.349 ± 0.749	0.833 ± 0.250	-	-	-
B30-IRAC-22957_2	-62.734±1.541	486.997 ± 0.000	218.396 ± 0.000	-1.164±0.089	-	-	-	0.955 ± 0.484	-5.073±0.482	-4.314±0.091	-4.724±0.337
B30-IRAC-22957_3	-27.494±0.217	≤150.0	≤85.0	-	-	-	-	0.919 ± 0.322	-	-	-
B30-IRAC-23445	-12.387±0.783	≤150.0	89.735 ± 5.620	-	0.250 ± 0.048	-	-	2.053 ± 0.270	-	-	-
B30-IRAC-23598	-11.206±0.512	172.245 ± 16.088	181.981 ± 3.622	-	-	-	-	1.167 ± 0.304	0.621 ± 0.098	0.685 ± 0.218	0.420 ± 0.022
B30-IRAC-30354	-77.103±1.664	175.246 ± 0.000	26.299 ± 0.000	-	0.108 ± 0.065	-	-	1.958 ± 0.518	-5.704±0.437	-4.086±0.869	-4.035±0.430
B30-IRAC-35766	-8.199 ± 0.479	≤150.0	≤85.0	-	-	-	-	2.439 ± 0.244	0.166 ± 0.082	0.833 ± 0.090	1.225 ± 0.077
B30-IRAC-39428	-17.980±0.245	≤150.0	≤85.0	-	0.529 ± 0.151	-	-	2.054 ± 0.181	-	-	-
B30-IRAC-9196	-5.693±0.536	≤150.0	≤85.0	-	-	-	-	2.263 ± 0.235	-	-	-
DIL37	-153.608 ± 3.517	503.634 ± 1.568	219.943 ± 0.350	-1.757±0.202	0.218 ± 0.197	-	-	1.645 ± 0.169	-1.774±0.423	-2.382±0.660	-1.465±0.404
DIL38	-29.794±0.213	≤150.0	≤85.0	-0.914±0.480	0.815 ± 0.305	-	-	1.832 ± 0.218	-	-	-
DM123	-110.442±0.941	223.536 ± 0.000	83.974 ± 0.000	-2.267±0.836	1.139 ± 0.581	-	-	2.185 ± 0.294	-3.635±0.197	-3.966±0.624	-2.649±0.110
DM125	-10.963±0.148	301.381 ± 2.297	59.857 ± 0.470	-	1.374 ± 0.150	-	-	1.413±0.133	1.186 ± 0.343	1.566 ± 0.429	1.453 ± 0.384
DM135	-3.299±0.127	≤150.0	≤85.0	-	0.518 ± 0.081	-	-	2.256 ± 0.224	1.165 ± 0.043	1.343 ± 0.090	1.349 ± 0.147
DM143	-10.322±0.101	311.349 ± 4.202	138.892 ± 1.069	-0.745±0.309	0.773±0.130	-	-	0.944 ± 0.090	-1.469±0.128	-0.578±0.103	-0.506±0.156
DM172	-88.416±0.804	304.499 ± 0.000	153.100 ± 0.000	-2.851±0.398	0.699 ± 0.240	-	-	1.484 ± 0.165	-1.970±0.329	-1.240±0.255	-1.917±0.778
DM173	-13.466±0.177	≤150.0	57.115 ± 0.217	-	0.360 ± 0.096	-	-	2.081±0.291	-	-	-

Table 5.3: Equivalent width of the main lines observed in the spectra obtained with CAHA/TWIN.

* Three sources were aligned in the slit. The three of them are actively accreting and show other features characteristic of young sources (either LiI, KI or NaI), compatible with membership.

-											
Campaign	Object	$H\alpha$			HeI	KI	OI	NaI	CaII	CaII	CaII
		6563			6678	7665	7776	8200	8498	8542	8662
		EW(Å)	FW10% (km/s)	FWHM(km/s)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	EW(Å)	EW(Å)
2006	B30-I053014.4+121211.5	-3.703±0.499	≤200.0	≤110.0	-	1.680 ± 0.525	0.471±0.188	4.824±1.762	0.318 ± 0.027	1.293 ± 0.504	1.081±0.275
2006	B30-I053131.1+120731.3	-4.824±0.125	2123.886 ± 24.969	167.312 ± 6.582	-	1.885±0.153	-	4.763 ± 2.090	-	-	-
2006	B30-IRAC-18115	-41.550 ± 1.294	≤200.0	≤110.0	-1.232 ± 0.402	1.589 ± 0.324	-	1.687 ± 0.725	-2.974±0.445	-2.696 ± 0.606	-1.121±0.071
2006	B30-IRAC-21424	-9.262±0.335	≤200.0	≤110.0	-	-	-	2.107 ± 0.975	-	-	-
2006	DM125	-16.157±0.199	120.726 ± 10.830	451.563 ± 2.255	-	-	-	2.375 ± 1.205	1.591 ± 0.556	1.900 ± 0.214	1.616 ± 0.321
2006	DM135	-6.804±0.121	≤200.0	≤110.0	-	-	-	2.758±1.343	0.735 ± 0.447	1.745±0.279	0.774±0.113
2006	DM136	-18.334±0.978	≤200.0	≤110.0	-0.896±0.441	-	-	1.783 ± 0.590	-	-	-
2006	DM143	-7.959 ± 0.484	≤200.0	≤110.0	-1.709 ± 0.033	-	0.315 ± 0.124	1.456 ± 0.336	0.208 ± 0.010	0.412 ± 0.084	0.702 ± 0.170
2007	B30-I053052.4+120544.1	4.529 ± 0.528	1305.333 ± 259.940	563.497 ± 37.828	-	-	0.175 ± 0.073	0.102 ± 0.059	0.870 ± 0.093	2.087 ± 0.510	1.780 ± 0.102
2007	DM153	-16.892±0.544	626.601 ± 38.561	381.370 ± 5.955	-	-	-	0.523 ± 0.266	0.626 ± 0.037	1.508 ± 0.200	2.157 ± 0.470
2007	DM158	-0.581±0.065	2510.041 ± 94.654	305.698±34.019	-	-	-	1.342±0.476	0.463 ± 0.083	1.720 ± 0.048	2.152 ± 0.445
2007	DM165	-1.824±0.043	369.630 ± 66.309	353.333±12.820	-	-	0.558 ± 0.246	1.536 ± 0.545	-	-	-

Table 5.4: Equivalent width of the main lines observed in the spectra obtained with CAHA/CAFOS during both campaigns.

-									
Object	$H\alpha$			HeI	LiI				
	6563			6678	6708	SpT	EW(H α)crit ¹	$\log(\dot{M}_{acc})(M_{\odot}/yr)$	Li ²
	EW(Å)	FW10% (km/s)	FWHM(km/s)	EW(Å)	EW(Å)				
B30-I053021.8+120025.4	1.934±0.149	156.407 ± 0.000	28.620 ± 0.000	-	-	K7	Ν		Ν
B30-I053035.4+124735.9	3.931±0.391	967.801 ± 0.000	$280.716 {\pm}\ 0.000$	-0.274±0.021	-	M0.5	Ν		Ν
B30-I053052.4+122512.3	2.031±0.248	683.165 ± 5.547	163.160 ± 1.194	-	-	K7	Ν		Ν
B30-I053159.1+115110.9	0.368 ± 0.104	200.266 ± 6.337	< 125 ³	-	-	K7	Ν		Ν
B30-I053159.2+121440.5	1.213±0.213	972.037 ± 0.000	123.439 ± 0.000	-	-	M0	Ν		Ν
B30-I053206.1+121826.2	1.111 ± 0.114	686.728 ± 83.196	< 125	-0.204±0.028	-	K6	Ν		Ν
B30-I053213.2+120655.3	-7.376±0.473	138.192 ± 9.878	74.300 ± 2.098	-	-	_4	Y		Ν
B30-I053218.9+123106.5	1.142 ± 0.184	438.738 ± 0.000	26.934 ± 0.000	-	-	K7	Ν		Ν
B30-I053221.5+121000.2	0.776±0.365	238.918 ± 9.563	< 125	-	-	K7	Ν		Ν
B30-I053230.4+115722.8	3.129±0.332	982.014 ± 0.000	196.722 ± 0.000	-0.078±0.017	-	M0	Ν		Ν
DM120	-83.750±2.759	343.595 ± 0.000	162.268 ± 0.000	-	0.389 ± 0.119	M1.5	Y	-9.557±0.234	Y
DM153	-14.133±1.818	542.314 ± 0.000	141.186 ± 0.000	-	0.527 ± 0.059	M1	Y	-7.630±0.436	Y
DM158	-1.495±0.284	340.988 ± 74.783	85.482 ± 11.548	-	0.533 ± 0.074	M0	Ν		Y
DM165	-2.845 ± 0.080	215.136 ± 11.935	93.078± 3.056	-	0.560 ± 0.093	M2	Ν		Y
DM166	-111.729±1.163	630.850 ± 0.536	$426.453 {\pm}~0.053$	-0.426±0.183	0.411 ± 0.051	M0	Y	-6.771±0.519	Y
DM174	-16.079±0.675	487.965 ± 7.649	315.874 ± 1.232	-0.324±0.131	0.508 ± 0.016	M0	Y	-8.157±0.741	Y

Table 5.5: Equivalent width of the main lines observed in the spectra obtained with Lick/KAST and parameters derived.

¹ Accretion criterion by Barrado y Navascués & Martín (2003).

² Membership based on the Lithium absorption.

³ FHWM measured in the instrumental response limit.

⁴ Visual inspection of the spectra confirms it as a galaxy.

5.2.3 H α and other emission lines: accretion, activity and outflows

We have observed an interesting variety of H α profiles among the sources of our sample (some of them are displayed in Fig. 5.6). Assymetries and double peaked structures frequently seen in T Tauri stars.

Following the same scheme as in the previous chapters, we used our measured H α equivalent widths and the derive spectral types as a diagnosis for accretion. In figure 5.5 a EW(H α) versus spectral type diagram is shown with the saturation criterion by Barrado y Navascués & Martín (2003) displayed as a dotted line.

This diagram resembles the Barnard 35 case much more than the Collinder 69 one. We found an unexpected feature though; a larger ratio of non accreting vs. accreting Class II sources than in Barnard 35. On the other hand the estimated accretion rates are in general much larger than those derived for Barnard 35.

Regarding variability; from the 16 sources for which we have more than one measurement of the equivalent width of H α (either in different runs from our team or the measurement by Dolan & Mathieu 2001), most of them show variable emission. Only three sources show differences in the measured equivalent width within the error bars. On the other hand there are sources that show differences of ~70 Å (as is the case of DM123) in H α equivalent width which translates in more than 2.5 orders of magnitude variation in the estimated accretion rate. In Fig. 5.4 we display, as we did for the cases of Collinder 69 and Barnard 35, a Mass accretion rate versus stellar mass diagram. We have only been able to estimate accretion rates for the sources observed by us. The variation of the six sources with different estimated accretion rates depending on the H α

Object	Li Mem ¹	T _{eff} ²	vsin(i)(km/s)	EW(H α)crit ³	$log(\dot{M}_{acc})$	$Mass(M_{\odot})^4$	IR Class ⁵
B30-I053021.8+120025.4	Ν	-	-	Ν	-	-	III
DIL38	Y	4800	-	Y	-9.841±0.654	1.18	II
DM123	Y	3750	<75	Y	-9.274±0.836	0.47	II
DM143	Y	3500	-	Y	-9.858±0.987	0.28	I/II
DM153	Y	3750	<75	Y	-8.107±0.364	0.47	II
DM158	Y	3750	75	Ν	-	0.47	II
DM166	Y	5200	-	Y	-6.936±0.155	1.39	II

Table 5.6: Parameters derived from for the Lick/Hamilton sample.

¹ Memebership based on the measured WE(Li).

² Derive fitting synthetic spectra to the SED.
³ Accretion criterion by Barrado y Navascués & Martín (2003).
⁴ Mass derived from the SED fitting and isochrones Baraffe et al. (1998) assuming an age of 1 Myr.

⁵ Infrared class derived from the IRAC photometry.

Table 5.7: Parameters derived for the CAHA/TWIN sample.

Object	SpT	EW(H α)crit ¹	$\log(\dot{M}_{acc})(M_{\odot}/yr)$	Alkali ²	Li ³	Object	SpT	EW(H α)crit ¹	$\log(\dot{M}_{acc})(M_{\odot}/yr)$	Alkali ²	Li ³
B30-I053013.9+122921.5	_4	N		Y	Ν	B30-IRAC-23445	M4.5	Ν		Y	Y
B30-I053014.4+121211.5	M3.75	Ν		Ν	Ν	B30-IRAC-23598	M4.5	Ν		Y	Y
B30-I053022.9+122347.1	K6	Ν		Y	Y	B30-IRAC-30354	M3.5	Y	-11.190 ± 0.187	Y	Y
B30-I053023.8+121854.9	K5	Ν		Y	Ν	B30-IRAC-35766	M4.5	Ν		Y	Y?
B30-I053055.3+122428.4	K4	Ν		Y	Ν	B30-IRAC-39428	M5	Ν		Y	Y
B30-I053131.1+120731.3	M4.25	Ν		Ν	Ν	B30-IRAC-9196	M4.25	Ν		Y	Ν
B30-I053151.8+121451.9	K5	Ν		Ν	Ν	DIL37	M4	Y	-8.004±0.015	Y	Y?
B30-I053156.8+122025.0	K5	Ν		Y	Y	DIL38	M3.5	Y	≤-11.43	Y	Y
B30-I053158.5+121238.9	K7	Ν		Y	Y	DM123	M4	Y	-10.721±0.098	Y	Y
B30-I053158.7+122730.3	K6	Ν		Y	Y	DM125	M3.5	Ν		Y	Y
B30-IRAC-18115	M5	Y	-10.044±0.063	Y	Y	DM135	M3.5	Ν		Y	Y
B30-IRAC-21424	M4	Ν		Y	Y	DM143	M0	Y	-9.869±0.040	Y	Y
B30-IRAC-22957_1	M5.5	Y	-12.319±0.046	Y	Y	DM172	M3	Y	-9.936±0.387	Y	Y
B30-IRAC-22957_2	M4	Y	-8.166±0.055	Y	Ν	DM173	M3.75	Y	≤-11.43	Y	Y
B30-IRAC-22957_3	M5.5	Y	≤-11.43	Y	Ν						

¹ Accretion criterion by Barrado y Navascués & Martín (2003).

² Membership based on the measured Na I and K I doublets equivalent widths.
 ³ Membership based on the presence of Li I in absorption.

⁴ Possible galaxy (see Fig. 5.3).

Table 5.8 :	Parameters	derived	for the	CAHA/CAFO	S sample.

Run	Object	SpT	EW(H α)crit ¹	$\log(\dot{M}_{acc})(M_{\odot}/yr)$	Alkali ²	Run	Object	SpT	EW(H α)crit ¹	$\log(\dot{M}_{acc})(M_{\odot}/yr)$	Alkali ²
2006	B30-I053014.4+121211.5	M3	Ν		Ν	2006	DM136	M2.5	Y	≤-10.95	Y
2006	B30-I053131.1+120731.3	M3.25	Ν		Ν	2006	DM143	M5	Ν		Y
2006	B30-IRAC-18115	M3.75	Y	≤-10.95	Y	2007	B30-I053052.4+120544.1	M2.5	Ν		Ν
2006	B30-IRAC-21424	M4	Ν		Y	2007	DM153	K9	Y	-6.836±0.374	Y
2006	DM125	K9	Y	-11.72±0.105	Y	2007	DM158	M0	Ν		Y
2006	DM135	M2	Ν		Y	2007	DM165	M3	Ν		Y

¹ Accretion criterion by Barrado y Navascués & Martín (2003).

² Membership based on the measured Na I and K I doublets equivalent widths.

emission is highlighted in Fig. 5.4 with a vertical red line line (the remaining variable sources for which we had more than one spectra are not active accretors according to the saturation criterion by Barrado y Navascués & Martín 2003). Again, as in the case of Barnard 35 no mass dependence can be inferred for the variations in the accretion rate, although our sample might be to small to try to infer any kind of conclusion to this respect.

Figure 5.4: Mass accretion rates for a wide range of stellar masses. Red filled dots from this work. Crosses are from Calvet et al. (2004); Muzerolle et al. (2005); Mohanty et al. (2005) and Natta et al. (2006). Filled and open black symbols from Mendigutia et al 2009 (private communication), corresponding to the objects with EW(H α) > 10 Å and < 10 Å, respectively. Triangles represent lower limits. The vertical bars over these symbols represent variability measured in time scales of hours – months (not uncertainty in the measurements as is the case for the vertical bars over the points calculated in this work). The dashed line follows $\dot{M}_{acc} \propto M_*^2$, and the dotted lines ± 1 dex.

Figure 5.5: H α equivalent width versus the spectral type for confirmed members of Barnard 30. We display data from Dolan & Mathieu (1999, 2001), with crosses (larger ones for those fulfilling the saturation criteria). Our data are displayed with solid dots; red for those above the saturation criteria. Overlapping large circles denote objects with near infrared excess from Spitzer/IRAC data. The dotted lines correspondsto the saturation criteria defined by Barrado y Navascués & Martín (2003), whereas the two dashed lines are other criteria which have been used to define Classical TTauri stars.

5.2.4 Youth indicators using Alkali: Li λ6708 Å, KI λ7700 Å and NaI λ8200 Å

As in the previous Chapters we have used different indicators of youth to study the membership to the dark cloud of our candidates. In Fig 5.6 we show the Lithium I absorption present in three confirmed members of the DM sample.

We have confirmed 14 members with these alkali criteria (10 by their measured Lithium absorption, and the remaining four based on the Na I and K I lines). The Li I measurements in common with Dolan & Mathieu (2001) agree within the error bars when taking into account the differences measured in H α ; as a general rule whenever a larger H α emission is measured either by Dolan & Mathieu (2001) or us, a lower equivalent width is given for the Lithium line; what agrees with the veiling "hiding" part of the line. This applies for every source but for DM123, on which we measured a much lower value than the one provided by Dolan & Mathieu (2001). The spectra taken with Hamilton had the lower signal to noise ration from our sample, and therefore our measurement could not be reliable.

In Figure 5.6 we show as an example, a detail of the Lithium absorption observed for three sources during the Hamilton campaign.

In Fig. 5.7 we show the lithium equivalent width (measured on the higher resolution spectra) versus the spectral types derived in Section 5.2.1 for the newly confirmed members of Barnard 30 and previously known members from Dolan & Mathieu (2001). We have also included the sources from Dolan & Mathieu (1999, 2001) that have not been analyzed by us. For comparison, as in the previous chapters, we display data corresponding to a similar age cluster, σ Orionis, as well as an older one, IC2391. We also show the theoretical equivalent widths from Zapatero Osorio et al. (2002) considering log g = 4.0 and log g = 4.5 and initial cosmic abundance (A(Li) = 3.1). Note that a significant fraction of our sources lie on top of the theoretical curves, implying that lithium is still preserved at the age of Barnard 30. We also note that, though the statistics are quite poor, there is a larger scatter on this diagram than on the Barnard 35 analog (Fig. 4.10). Once again the effect of the veiling is quite obvious in this diagram, since the smaller equivalent widths measured among the confirmed members correspond to active accreting sources (solid red dots).

Figure 5.6: Detail on the Li I absorption line and $H\alpha$ emission for several sources observed with Hamilton. Note the variety of profiles shown by the sources.

5.3 The spatial distribution of the members

In Table 5.9 we have included a column with the final membership assigned to each source. We consider members those labeled as Y (highly reliable photometric candidates, see previous chapter for more details) and Y+ (spectroscopically confirmed members; in this case we have included the reference of the work were the spectroscopic confirmation was provided). There are \sim 136 members labeled as Y or Y+.

We have computed the Kuiper statistics to look for correlation in the spatial distribution of disk and diskless sources. As in the case of Collinder 69 we have derived a probability of 99.9% that both populations have not been drawn from the same distribution. In Fig. 5.10 we

Figure 5.7: Lithium equivalent width versus the spectral type. We display data from Dolan & Mathieu (1999, 2001) as crosses, whereas our measurements appear as solid circles. Values for Sigma Orionis low mass stars are displayed as open squares Zapatero Osorio et al. (2002). The Weak-line TTauri stars belonging to Taurus and the Sco-Cen complex are included as plus symbols, whereas the open circles correspond to members of the IC2391 open cluster. The solid line corresponds to the upper envelope of the values measured in young open clusters such as IC2391, IC2602, the Pleiades and M35. The long-dashed line delimits the areas for weak-line and post-TTauri stars (adapted from Martin 1997 and Martín & Magazzù 1999. Short-dashed and dotted lines correspond to the cosmic abundances – A(Li) = 3.1 – from gravities of Logg=4.5 and 4.0, respectively (curves of growth from Zapatero Osorio et al. 2002).

see how the sources harbouring disks seem to be clustered around four specific locations while the Weak-line TTauri population is distributed homogeneously. As in the case of Barnard 35, this clustering phenomenon correlates quite well with the dust emission as inferred from the 100 μ m IRAS contours.

In this figure we can also clearly see how most (all but two) of the sources with high $H\alpha$ emission but have not been clasified as Class II are located outside our IRAC coverage, and therefore no mid-infrared photometry is available for them. The remaining two sources do not show mid-infrared excesses (not even at 24 micron) and the strong $H\alpha$ emission could be attributed to a flare.

Figure 5.8: **Top-left:** Three Barnard 30 members with the same determined effective temperature and disk class but showing very different depth of the absorption lines used to study the rotational velocity. **Top-right:** Rotational velocity determination for the only non-accreting source. **Bot-tom:** SED of the three sources shown on the top-left pannel with the best fitting photospheric model overplotted (Kurucz model of 3750 K).

Figure 5.9: Projected rotational velocites versus H α equivalent width for some Chamaeleon I members with M spectral types (red dots) and a sample of M6–M9 field dwarfs (black dots) from Mohanty & Basri (2003). The projected rotational velocites of the objects of Cha I are from Joergens & Guenther (2001) and the H α equivalent widths from Comerón et al. (2000)

Figure 5.10: Spatial distribution of the members of Barnard 30 (spectroscopically confirmed and photometric candidates). Active accretors according to the saturation criterion are highlighted in red. We have also included the information regarding the near infrared excess with larger circumferences sourounding the Class II sources and open red triangles sourounding the transition disks.

5.4 The Hertzsprung-Russell diagram of Barnard 30.

In Fig. 5.11, we show the Hertzsprung–Russell diagram of Barnard 30 including all the (spectroscopically) confirmed members and the reliable (photometric) candidate members. We have overplotted two sets of isochrones composed (to achieve a complete mass range coverage) joining the collections by Siess et al. (2000) and COND by Baraffe et al. (2003) for two ages: 1 and 5 Myr.

This is the HR diagram showing the largest dispersion from those derived for this thesis; since only half of the photometric-candidates sample has been spectroscopically confirmed, it would reasonable to attribute this dispersion to contamination in our sample. We have checked that this dispersion is also shown among the sources spectroscopically confirmed by us and by Dolan & Mathieu (1999, 2001); Duerr et al. (1982). We think that this dispersion arises from our determination of the extinction and the effect that this parameter has on our determinations of the T_{eff} and L_{bol} of the sources. In any case, we must note that there is a quite large population showing positions in the HR diagram compatible with younger than 1 Myr, confirming B30 as a good candidate to be the youngest associations from those studied in this work.

5.5 Conclusions

We have analyzed 64 optical spectra at different resolutions corresponding to 45 sources: 13 known members to Barnard 30 (from Dolan & Mathieu 2001) and 32 candidate members from Morales-Calderón (2008). The previously known members were observed in order to study their variability (especially the accretion rate) and try to place these variations in context with the age and mass of the sources. The sample of candidate members was observed in order to confirm their membership to the dark cloud and study their properties.

Fourteen from these candidates were confirmed as new members based on the intensities of several alkali lines.

Regarding the variability; most of both, accreting and non-accreting sources would be classified variable according to the comparison of our own measurements of the H α emission and those from Dolan & Mathieu (2001). In fact, accreting sources seem to show larger amplitudes that translate in very large differences in the estimated accretion rates (the largest difference measured arrives to 2.5 orders of magnitude). These large differences have already been reported in the literature on more massive sources. We do not see any dependence of these variations with the stellar mass, although our sample is not significatively large enough to arrive to any definite conclusion.

Figure 5.11: HR diagram of the confirmed (spectroscopically) and highly reliable (photometric) candidate members of Barnard 30. As in the previous figures, the members of Barnard 30 are displayed as solid dots, those active accretors are highlighted in red and Class II sources are surrounded by large black circumferences. The 1 Myr isochrone is plotted as a short-dashed blue curve and the 5 Myr one as a solid blue line.

Object	SpT	Accret.	Membership	$\log(\dot{M}_{acc})(M_{\odot}/y)$	r) ⁴	Class ⁶	$EW(H\alpha)^1 EW($	$H\alpha)^2$		EW(Li) ¹	EW(Li) ²		α Slope	Disk Type	T _{eff}	L _{bol}		Mass _{Teff}	- A _V
B30-I053013.9+122921.5		Ν	NM+ (B09)				0.9	48	0.426						3600.0	0.046	0.0	0.029	0.356
B30-I053014.4+121211.5	M3.75	Ν	NM+ (B09)				-5.	36	0.237						4200.0	0.066	0.0	0.467	0.116
B30-I053014.4+121211.5	M3	Ν	NM+ (B09)				-3.3	703	0.499						4200.0	0.066	0.0	0.467	0.116
B30-I053021.8+120025.4		Ν	NM+ (B09)				-2.3	357	1.594						5250.0	0.25	0.49	1.115	0.84
B30-I053021.8+120025.4	K7	Ν	NM+ (B09)				1.9	34	0.149						5250.0	0.25	0.49	1.115	0.84
B30-I053021.8+120025.4		Ν	NM+ (B09)				-2.3	357	1.594										2.38
B30-I053021.8+120025.4	K7	Ν	NM+ (B09)				1.9	34	0.149										2.38
B30-I053022.9+122347.1	K6	Ν	Y+ (B09)				2.4	46	0.502		1.007	0.135			5250.0	0.139	0.0010	1.115	2.444
B30-I053023.8+121854.9	K5	Ν	NM+ (B09)				2.8	35	0.241						5500.0	0.111	0.0	0.72	1.863
B30-I053035.4+124735.9	M0.5	Ν	NM+ (B09)				3.9	31	0.391						6500.0	0.483	0.0010		2.794
B30-I053052.4+122512.3	K7	Ν	NM+ (B09)				2.0	31	0.248						4600.0	0.269	0.0010	0.355	0.669
B30-I053055.3+122428.4	K4	Ν	NM+ (B09)				2.9	81	0.306						5250.0	0.18	0.0010	1.115	1.538
B30-I053131.1+120731.3	M4.25	Ν	NM+ (B09)				-7.	32	0.05						5600.0	0.385	0.0010	1.18	3.379
B30-I053131.1+120731.3	M3.25	Ν	NM+ (B09)				-4.8	324	0.125						5600.0	0.385	0.0010	1.18	3.379
B30-I053151.8+121451.9	K5	Ν	NM+ (B09)				-0.2	728	0.311						4200.0	0.06	0.0	0.467	1.008
B30-I053156.8+122025.0	K5	Ν	Y+ (B09)				-2.3	365	0.963		1.086	0.6			3600.0	0.021	0.0	0.35	0.116
B30-I053158.5+121238.9	K7	Ν	Y+ (B09)				4.9	19	0.033		0.786	0.287			3700.0	0.041	0.0	0.43	0.116
B30-I053158.7+122730.3	K6	Ν	Y+ (B09)				2.7	83	0.314		0.693	0.315			4750.0	0.11	0.0010	0.355	1.216
B30-I053159.1+115110.9	K7	Ν	NM+ (B09)				0.3	68	0.104						5000.0	0.05	0.0	0.213	0.116
B30-I053159.2+121440.5	M0	Ν	NM+ (B09)				1.2	13	0.213						5600.0	0.21	0.0010	1.18	1.309
B30-I053206.1+121826.2	K6	Ν	NM+ (B09)				1.1	11	0.114						4500.0	0.099	0.0	0.63	0.116
B30-I053213.2+120655.3		Ν	NM+ (B09)				-7.3	376	0.473						5250.0	0.173	0.0010	1.115	0.116
B30-I053218.9+123106.5	K7	Ν	NM+ (B09)				1.1	42	0.184										3.541
B30-I053221.5+121000.2	K7	Ν	NM+ (B09)				0.7	76	0.365						5750.0	0.042	0.0	1.18	0.116
B30-I053230.4+115722.8	MO	Ν	NM+ (B09)				3.1	29	0.332						5600.0	0.189	0.0010	1.18	0.116
B30-IRAC-10420			Y			Π							-1.777	Thick	4200.0	0.166	0.0010	0.467	0.116
B30-IRAC-1053			Y																1.092
B30-IRAC-11448			Y																
B30-IRAC-12438			Y			ш							-2.724	Transition	3800.0	0.208	0.0010	0.754	0.116
B30-IRAC-12629			Y			П							-1.272	Thick	2700.0	0.041	0.0010	0.029	0.116
B30-IRAC-13304			Y												6250.0	0.018	0.0		0.204
B30-IRAC-13402			Y			П							-1.85	Thin	1900.0	0.018	0.0	2.968	0.116
B30-IRAC-1371			Y																2.313
B30-IRAC-16599			Y			п							-0 994	Thick	3400.0	0.65	0.0040	1.052	0.965
B30-IRAC-17792			Ŷ			п							-1 601	Thick	4200.0	0.103	0.0010	0.041	0.116
B30-IRAC-18115	M5	Y	Y + (B09)	-10.044	0.063	П	-28	085	0.859				-0.997	Thick	1900.0	0.205	0.0020	0.0040	0.116
B30-IRAC-18115	M3 75	Y	Y + (B09)	-10.95		п	-41	55	1 294				-0.997	Thick	1900.0	0.205	0.0020	0.0040	0.116
B30-IRAC-19172	110170	•	Y	10.55		T			1.27 .				1 551	Thick	1700.0	0.041	0.152	0.0020	2 866
B30-IRAC-19198			Ŷ			ī							1 373	Thick	1900.0	0.026	0.0010	0.0020	3 383
B30-IRAC-19545			Ŷ			п							-1 794	Thick	5250.0	1 242	0.0040	1 1 1 5	3 201
B30-IRAC-19617			Y			T							0.117	Thick	3600.0	0.017	0.0010	0.029	2 134
B30-IRAC-19802			v			m							-2 316	Thin	1700.0	0.327	0.0020	0.0020	3.025
B30-IRAC-19863			Ŷ			п							-2.213	Thin	2900.0	5.521	0.0020	0.063	5.625
B30-IRAC-20369			Ŷ			п							-0.877	Thick	1700.0	0.066	0.0010	0.0040	2 286
B30-IRAC-20941			Ŷ			п							-1.083	Thick	1900.0	0.178	0.0010	0.0040	2.235
200 11010 20071			Conti	nued on next page									1.505	THER	1,00.0	5.170	5.5010	5.5040	2.235

Table 5.9: Summary of the parameters derived in this work for Barnard 30 candidate members and comparison with previous studies.

	Table 5.9	- Con	tinued															
Object	SpT A	Accret.	Membership	$\log(\dot{M}_{acc})(M_{\odot}/yr)^4$		Class ⁶ EW(H	$(\alpha)^1 \text{ EW}(\text{H}\alpha)^2$	E	EW(Li) ¹ EV	W(Li) ²		α Slope	Disk Type	T _{eff}	L _{bol}		Mass _{Teff}	A _V
B30-IRAC-20993	-		Y			II						-1.029	Thick	4000.0			1.115	
B30-IRAC-21068			Y			I/II						-0.303	Thick	2500.0	1.061	0.0080	0.0060	1.065
B30-IRAC-21232			Y			II						-1.423	Thick	1700.0	0.024	0.0	0.0040	1.795
B30-IRAC-21424	M4	Ν	Y+ (B09)			II	-11.285	0.136	0).968	0.361	-0.822	Thick	1900.0	0.711	0.0050	0.029	2.298
B30-IRAC-21424	M4	Ν	Y+ (B09)			Π	-9.262	0.335				-0.822	Thick	1900.0	0.711	0.0050	0.029	2.298
B30-IRAC-21495			Y			Ι						-0.603	Thick	1700.0	0.057	0.0010	0.276	2.133
B30-IRAC-21677			Y			П						-0.925	Thick	2700.0	0.17	0.0010	0.213	0.116
B30-IRAC-21725			Y			I/II						-0.34	Thick	3500.0	3.283	0.016	1.34	2.742
B30-IRAC-21900			Y			Í/II						-0.178	Thick	1800.0	0.049	0.0	0.0040	0.116
B30-IRAC-22102			Y			ш						-2.171	Transition	4800.0	1.167	0.0040	0.063	2.607
B30-IRAC-22233			Y			П						-1.685	Thick	5000.0	0.481	0.0010	0.063	3.186
B30-IRAC-22362			Ŷ			п						-0.604	Thick	4600.0	2.05	0.0080	0.355	2 608
B30-IRAC-22691			Ŷ			1						-1.449	Thick	3300.0	0.69	0.0040	0.604	2.954
B30-IRAC-22786			Ŷ			1						-1,157	Thick	1700.0	0.119	0.0010	0.0040	2.641
B30-IRAC-22957	M5.5\$^1\$	Y	Y+ (B09)	-12 319	0.046	П	-50 626	1.226				-1.062	Thick	3400.0	0.359	0.0020	0.029	3,389
B30-IRAC-22957	M4\$^2\$	Y	Y + (B09)	-8 166	0.055	П	-62 734	1 541				-1.062	Thick	3400.0	0.359	0.0020	0.029	3 389
B30-IRAC-22957	M5 5\$^3\$	v	$Y_{\pm}(B09)$	-11.43	5.055	П	-27 404	0.217				-1.062	Thick	3400.0	0.359	0.0020	0.029	3 380
B30-IRAC-22/37	M4.5	N	$V_{\pm}(B09)$	-11.45		п	-12 387	0.783	(0.25	0.048	-1.541	Thick	5800.0	0.555	0.0020	0.213	3 613
B30-IRAC-23598	M4.5	N	$V_{\pm}(B09)$			п	-12.307	0.785	(0.25	0.040	-1.144	Thick	3400.0	0.770	0.0020	0.215	2 858
B30-IRAC-25378	1414.5	1	V			п	-11.200	0.512				1 469	Thick	1000.0	0.407	0.0020	0.017	0.41
B30-IRAC-23472			v			п п						-1.408	Thick	1900.0	1.846	0.0020	0.003	0.41
B30-IRAC-20505			v			ш						-1.105	Transition	2000.0	12 270	0.0080	0.213	2 7 4 2
B30-IKAC-26515			I V									1 207	Thiak	2200.0	0.200	0.120	0.72	1 224
D30-IKAC-29908			I V			11						-1.56/	Thick	4800.0	1.24	0.0020	0.215	1.224
D30-IKAC-29937			I V			11						-1.550	Thick	4800.0	1.54	0.0040	0.088	2.992
D30-IKAC-30110			I V			1/11						-0.807	Thick	2300.0	0.965	0.0080	0.905	1 500
D30-IRAC-30172			1 V			1/11						-0.855	THICK	2750.0	1.10	0.0	1.052	1.398
B30-IRAC-30256	112.5	v	Y V. (D00)	11.10	0.107	111	77 102	1.004	0	100	0.065	-2.193	Think	1000.0	1.18	0.0060	1.052	0.110
B30-IRAC-30354	M3.5	r	1 + (B09)	-11.19	0.18/	1	-77.103	1.004	0	0.108	0.065	0.298	Thick	1900.0	0.072	0.0010	0.0040	1.0/2
B30-IRAC-31202			Y			11						-1.230	Thick	2700.0	1.389	0.01	0.0080	0.116
B30-IRAC-31833			Ŷ			11						-1.816	Thick	3500.0	0.115	0.0010	0.019	1.586
B30-IRAC-31902			Y			11						-1.641	Thick	3600.0	0.525	0.0030	0.604	0.116
B30-IRAC-32037			Y			I						-0.998	Thick	1700.0	0.103	0.0010	0.0040	0.116
B30-IRAC-32340			Y			11						-1.103	Thick	3200.0	0.082	0.0010	0.0060	1.72
B30-IRAC-32951			Y			11						-1.502	Thick	5000.0	1.602	0.0050	0.213	3.753
B30-IRAC-33125			Y			1						0.281	Thick	1700.0	0.02	0.127	0.0040	3.813
B30-IRAC-33419			Y			III T						-2.732	Transition			0.045	0.046	4.07
B30-IRAC-33525			Y			II						-0.94	Thick	3500.0	1.571	0.012	0.019	4.805
B30-IRAC-33661			Y			1						-0.111	Thick	1700.0	0.048	0.143	0.0020	4.054
B30-IRAC-33936			Y			I						-1.016	Thick	1700.0	0.228	0.0030	0.0020	4.287
B30-IRAC-34050			Y			I/II						-0.986	Thick	1700.0	0.071	0.0010	0.0030	4.213
B30-IRAC-34119			Y			III						-2.693	Transition	3600.0	1.027	0.0060	0.029	3.97
B30-IRAC-35518			Y			II						-1.729	Thick	3400.0			0.355	
B30-IRAC-35582			Y			Ι						-0.106	Thick	1800.0	0.013	0.0	0.0030	3.389
B30-IRAC-35766	M4.5	Ν	Y+ (B09)			II	-8.199	0.479				-1.608	Thick	6400.0	0.717	0.0010	0.355	4.081
B30-IRAC-37215			Y			II						-1.446	Thick	2500.0	0.441	0.0030	0.0060	0.116
B30-IRAC-37312			Y			II						-1.105	Thick	2100.0			0.0070	
250 marc 57512																		

Object	SpT	Accret.	Membership	$\log(\dot{M}_{acc})(M_{\odot}/yr)^4$	(Class ⁶	$EW(H\alpha)^1$	$EW(H\alpha)^2$		EW(Li)	EW(Li) ²		α Slope	Disk Type	T _{eff}	L _{bol}		Mass _{Teff}	Av
B30-IRAC-40421			Y			II							-1.247	Thick	4750.0	0.059	0.0	0.355	1.772
B30-IRAC-41615			Y			Π							-1.557	Thick	4600.0	1.382	0.0050	1.34	2.987
B30-IRAC-41741			Y			Π							-1.685	Thick	1900.0	0.2	0.0010	0.0060	0.779
B30-IRAC-45191			Y			Ι							0.052	Thick	1700.0	0.0070	0.0	0.0020	1.723
B30-IRAC-45371			Y			I/II							-0.47	Thick	3300.0	0.194	0.0010	0.0090	1.926
B30-IRAC-6876			Y			I							0.538	Thick				0.0020	0.116
B30-IRAC-9196	M4.25	Ν	NM+ (B09)			Π		-5.693	0.536				-1.84	Thin	2500.0	0.041	0.0010	0.276	0.116
DIL12			Y+ (DIL)			?								-	4200.0			0.88	
DIL18			Y+ (DIL)			?								-	4200.0			0.88	
DIL23			Y+ (DIL)			Ш							-2.864	Diskless	4000.0			0.72	
DIL27			Y+ (DIL)			Π							-2.18	Thick	2800.0	0.57	0.0050	1.71	2.168
DIL28			Y+ (DIL)			?								-	4000.0			0.72	
DIL29			Y+ (DIL)			I/II							-0.324	Thick	1900.0	7.202	0.06	1.57	2.031
DIL37	M4	Y	Y+ (DIL, B09)	-8.004	0.015	Π		-153.608	3.517		0.218	0.197	-1.387	Thick	4200.0			0.88	
DIL38	M3.5	Y	Y+ (DIL, B09)	-11.43		Π		-29.794	0.213		0.815	0.305	-0.807	Thick	4800.0			1.18	
DIL38		Y	Y+ (DIL, B09)	-9.841	0.654	Π		-21.442	0.998		0.302	0.019	-0.807	Thick	4800.0			1.18	
DIL39			Y+ (DIL)			Ш							-2.792	Diskless	4200.0	0.747	0.0030	0.23	0.116
DIL43			Y+ (DIL)			?								-	3500.0			0.28	
DIL44			Y+ (DIL)			?								-	3300.0			0.19	
DIL46			Y+ (DIL)			Π							-1.236	Thick	3750.0			0.47	
DM100		Y	Y+ (DM)			?	-95.43			0.51				-	3900.0			0.63	
DM106		Y	Y+ (DM)			?	-31.14			0.58				-	3700.0			0.43	
DM107		Ν	Y+ (DM)			?	-2.75			0.59				-	3750.0			0.47	
DM109		Y	Y+ (DM)			Π ?	-114.32			0.4				-	3000.0			0.09	
DM110		Ν	Y+ (DM)			?	0.39			0.51				-	4400.0			0.98	
DM111		Y	Y+ (DM)			Π ?	-33.76			0.41				-	4200.0			0.88	
DM113		Y	Y+ (DM)			Π	-23.43			0.58			-0.994	Thick	4000.0			0.72	
DM114		Y	Y+ (DM)			?	-39.03			0.6				-	3500.0	0.304	0.0020	0.35	0.116
DM115		Y	Y+ (DM)			I/II	-22.12			0.43			-0.303	Thick	4000.0			0.72	
DM118		Ν	Y+ (DM)			III	-6.09			0.54			-2.739	Diskless	3900.0	0.233	0.0010	0.72	0.23
DM120	M1.5	Y	Y+ (DM, B09)	-9.557	0.234	Π	-171.14	-83.75	2.759	0.24	0.389	0.119	-1.729	Thick	4800.0	0.445	0.0020	0.52	3.174
DM121		Y	Y+ (DM)			Π	-244.76			0.65			-2.213	Thin	2500.0	0.14	0.0010	0.47	0.116
DM123	M4	Y	Y+ (DM, B09)	-10.721	0.098	Π	-127.58	-110.442	0.941	0.28	1.139	0.581	-1.105	Thick	1900.0	0.576	0.0050	0.47	0.608
DM123		Y	Y+ (DM, B09)	-9.274	0.836	Π	-127.58	-41.343	2.28	0.28	0.042	0.01	-1.105	Thick	1900.0	0.576	0.0050	0.47	0.608
DM125	M3.5	Ν	Y+ (DM, B09)			II	-42.62	-10.963	0.148	0.58	1.374	0.15	-1.029	Thick	2500.0	0.432	0.0040	0.28	0.116
DM125	K9	Y	Y+ (DM, B09)	-11.72	0.105	Π	-42.62	-16.157	0.199	0.58			-1.029	Thick	2500.0	0.432	0.0040	0.28	0.116
DM126		Ν	Y+ (DM)			III	2.63			0.22			-2.811	Diskless	4750.0	0.331	0.0010	0.12	1.909
DM127		Ν	Y+ (DM)			III	-7.12			0.72			-2.768	Diskless	3800.0	0.588	0.0030	0.52	0.116
DM129		Ν	Y+ (DM)			III	-0.22			0.46			-2.737	Diskless	5500.0	2.548	0.0070	0.72	0.995
DM131		Ν	Y+ (DM)			III	-3.55			0.66			-2.808	Diskless	3900.0	0.211	0.0010	0.28	0.145
DM134		Ν	Y+ (DM)			?	-2.36			0.53				-	3900.0			0.63	
DM135	M3.5	Ν	Y+ (DM, B09)			II	-4.76	-3.299	0.127	0.64	0.518	0.081	-1.794	Thick	4400.0			0.98	
DM135	M2	Ν	Y+ (DM, B09)			II	-4.76	-6.804	0.121	0.64			-1.794	Thick	4400.0			0.98	
DM136	M2.5	Y	Y+ (DM, B09)	-10.95		II	-15.05	-18.334	0.978	0.5			-1.449	Thick	3750.0			0.47	
DM138		Y	Y+ (DM)			Π ?	-12.18			0.53				-	3900.0			0.63	
DM142		Ν	Y+ (DM)			Ш	0.41			0.48			-2.654	Diskless	4750.0	2.364	0.018	0.72	1.786
DM143	M0	Y	Y+ (DM, B09)	-9.869	0.04	I/II	-4.74	-10.322	0.101	0.45	0.773	0.13	-0.34	Thick	3500.0			0.28	
			Conti	ued on next page															

Table 5.9 – Continued

	Table 5	5.9 – Co	ntinued																
Object	SpT	Accret.	Membership	$\log(\dot{M}_{acc})(M_{\odot}/yr)^4$		Class ⁶	$EW(H\alpha)^1$	$EW(H\alpha)^2$		EW(Li)	EW(Li) ²		α Slope	Disk Type	T _{eff}	L _{bol}		Mass _{Teff}	A _V
DM143		Y	Y+ (DM, B09)	-9.858	0.987	I/II	-4.74	-4.934	0.719	0.45	0.299	0.056	-0.34	Thick	3500.0			0.28	
DM143	M5	Ν	Y+ (DM, B09)			I/II	-4.74	-7.959	0.484	0.45			-0.34	Thick	3500.0			0.28	
DM147		Ν	Y+ (DM)			III	-2.57			0.56			-2.714	Diskless	3750.0	0.592	0.0030	0.63	0.116
DM149		Ν	Y+ (DM)			III	14.2			0.2			-2.783	Diskless	4500.0	0.461	0.0020	0.63	0.285
DM150		Ν	Y+ (DM)			III	-0.83			0.62			-2.856	Diskless	4000.0	0.255	0.0020	0.98	0.116
DM151		Ν	Y+ (DM)			II	1.03			0.27			-1.777	Thick	4800.0			1.18	
DM152		Ν	Y+ (DM)			II	-4.32			0.51			-0.604	Thick	3800.0			0.52	
DM153		Y	Y+ (DM, B09)	-8.107	0.364	II	-15.04	-16.644	0.987	0.43	0.306	0.06	-0.94	Thick	3750.0			0.47	
DM153	M1	Y	Y+ (DM, B09)	-7.63	0.436	II	-15.04	-14.133	1.818	0.43	0.527	0.059	-0.94	Thick	3750.0			0.47	
DM153	K9	Y	Y+ (DM, B09)	-6.836	0.374	II	-15.04	-16.892	0.544	0.43			-0.94	Thick	3750.0			0.47	
DM154		Ν	Y+ (DM)			III	-5.3			0.75			-2.565	Diskless	4000.0	0.176	0.0020	0.91	0.116
DM157		Ν	Y+ (DM)			?	-7.88			0.63				-	3750.0			0.47	
DM158		Ν	Y+ (DM, B09)			II	-1.05	-0.975	0.087	0.5	0.479	0.058	-1.105	Thick	3750.0			0.47	
DM158	M0	Ν	Y+ (DM, B09)			II	-1.05	-1.495	0.284	0.5	0.533	0.074	-1.105	Thick	3750.0			0.47	
DM158	M0	Ν	Y+ (DM, B09)			II	-1.05	-0.581	0.065	0.5			-1.105	Thick	3750.0			0.47	
DM160		Ν	Y+ (DM)			II	-7.99			0.41				Thick	4800.0	5.416	0.028	0.72	4.95
DM161		Y	Y+ (DM)			III	-16.62			0.61			-2.886	Diskless	3500.0	0.442	0.0030	2.06	0.116
DM164		Ν	Y+ (DM)			III	-3.17			0.67			-2.779	Diskless	3800.0	0.256	0.0010	0.23	0.116
DM165	M2	Ν	Y+ (DM, B09)			II	-3.49	-2.845	0.08	0.67	0.56	0.093	-1.502	Thick	3600.0			0.35	
DM165	M3	Ν	Y+ (DM, B09)			II	-3.49	-1.824	0.043	0.67			-1.502	Thick	3600.0			0.35	
DM166		Y	Y+ (DM, B09)	-6.936	0.155	Π	-88.7	-37.18	0.989	0.43	0.209	0.011	-1.536	Thick	5200.0			1.39	
DM166	M0	Y	Y+ (DM, B09)	-6.771	0.519	Π	-88.7	-111.729	1.163	0.43	0.411	0.051	-1.536	Thick	5200.0			1.39	
DM168		Ν	Y+ (DM)			III	-8.25			0.59			-2.724	Transition	4400.0			0.98	
DM169		Ν	Y+ (DM)			III	-1.1			0.6			-2.668	Diskless	4200.0	1.227	0.0050	0.72	0.116
DM172	M3	Y	Y+ (DM, B09)	-9.936	0.387	II	-36.51	-88.416	0.804	0.63	0.699	0.24	-0.925	Thick	4200.0			0.88	
DM173	M3.75	Y	Y+ (DM, B09)	-11.43		II	-30.27	-13.466	0.177	0.57	0.36	0.096	-1.557	Thick	4250.0			0.91	
DM174	M0	Y	Y+ (DM, B09)	-8.157	0.741	II	-36.83	-16.079	0.675	0.65	0.508	0.016	-1.446	Thick	4250.0			0.91	
DM175		Ν	Y+ (DM)			III	-5.06			0.77			-2.536	Diskless	4000.0	0.461	0.0040	0.88	0.116
DM176		Ν	Y+ (DM)			III	-0.44			0.47			-2.762	Diskless	4000.0	0.864	0.0040	1.31	0.116
DM177		Ν	Y+ (DM)			III	-4.15			0.62			-2.819	Diskless	4000.0	0.376	0.0020	0.72	0.116
DM90		Y	Y+ (DM)			II?	-36.74			0.54				-	3900.0			0.63	
DM99		Y	Y+ (DM)			?	-22.88			0.61				-	3800.0			0.52	
			. /																

¹ Measurement from Dolan & Mathieu (1999, 2001) ² Measurement from this work.

Chapter 6

Conclusions

6.1 Collinder 69

We have analyzed ~160 optical and near infrared spectra with a wide range of resolutions of candidate members to the Collinder 69 cluster. Based on different criteria regarding molecular bands absorptions we have provided spectral types for all the sources. Using alkali lines as youth indicators we have confirmed 90 members (and 9 possible members). For those sources of our survey overlaping with radial velocities surveys (by Sacco et al. 2008; Maxted et al. 2008) we obtain very similar results regarding membership.

A summary of the sources analyzed in this cluster can be found in Table 3.25.

For those sources showing large H α equivalent widths (larger than the one expected to arise from chromospheric activity) we have derived accretion rates using mainly the full width at 10% of the flux of the H α emission line (but also the Ca II IRT) obtaining values compatible with those previously reported in the literature for objects of similar mass and age (Mohanty et al. 2005; Natta et al. 2006).

We have studied the accretion and disk evolution of the confirmed members of Collinder 69. In Fig. 3.30 we show the spatial distribution of the confirmed members (either by Dolan & Mathieu 1999, 2001; Sacco et al. 2008; Maxted et al. 2008 or this work) including information about the presence of disk and whether the disk is accreting or not. As can be seen in the figure, the sources with disk show a higher concentration towards the center of the cluster with respect to the diskless population (contrary to what one would expect according to the supernove scenario). In fact, if we assume that actively accreting systems are younger than those which do not show sign of accretion, the youngest population of Collinder 69 is clearly concentrated around the central O population.

With the data from our SUBARU campaign we have confirmed the cool nature of the **the lowest mass candidate members to Collinder 69** reported so far. With derived spectral types L0-L2 corresponding to effective tempetartures of ~ 2000 K (according to the spectroscopic temperature scales derived by Basri et al. 2000), if members, they have estimated masses, following

the 5 Myr DUSTY isochrone by Chabrier et al. 2000, as low as 0.012 M_{\odot} (~12.6 $M_{Jupiter}).$

6.2 Barnard 35

We have analyzed ~ 60 optical spectra from known members and candidate members to the dark cloud Barnard 35. With different criteria based on line and molecular bands strengths, we have derived spectral types for all of them. By studying youth indicators we have confirmed as new members 18 sources and discarded eight.

We have analyzed the variability of the accretion rate of a subset of our sample of sources finding a large amplitude in the variations that do not appear to be correlated with the mass of the central star.

We have derived accretion rates for three sources harbouring so-called transition disks that agree with the few measurements of such disks that have been reported so far.

We have compared the evolutionary status of the disks around sources in Barnard 35 and those of Collinder 69 finding a very significant behaviour; being the latter diks much less active than those studied around members belonging to Barnard 35.

6.3 Barnard 30

We have analyzed 64 optical spectra at different resolutions corresponding to 45 sources: 13 known members to Barnard 30 (from Dolan & Mathieu 2001) and 32 candidate members from Morales-Calderón (2008). The previously known members were observed in order to study their variability (especially the accretion rate) and try to place these variations in context with the age and mass of the sources. The sample of candidate members was observed in order to confirm their membership to the dark cloud and study their properties. Fourteen from these candidates were confirmed as new members based on the intensities of several alkali lines.

The analysis of the presence of accretion in confirmed members known to harbour disks (based on their mid-infrared excesses) led to the preliminar idea that Barnard 30 might not be younger than Barnard 35 (as suggested in the literature). The sample of studied members should be enlarged and some bias should be removed for this suggestion to be confirmed.

Regarding the variability; most of both, accreting and non-accreting sources would be classified variable according to the comparison of our own measurements of the H α emission and those from Dolan & Mathieu (2001). In fact, accreting sources seem to show larger amplitudes that translate in very large differences in the estimated accretion rates (the largest difference measured arrives to 2.5 orders of magnitude). These large differences have already been reported in the literature on more massive sources. We do not see any dependence of these variations with the stellar mass, although our sample is not significatively large enough to arrive to any definite conclusion. The same behaviour has been observed among the Barnard 35 sample.

Chapter 7

Conclusiones

7.1 Collinder 69

Hemos analizado alrededor de 160 espectros de candidatos a miembros de Collinde 69 en los rangos del óptico y el infrarrojo cercano con una amplia diversidad de resoluciones. Basándonos en diversos criterios que conciernen el estudio de bandas moleculares, hemos estimado los tipoes espectrales de estas fuentes. Usando líneas de alcalinos como indicadores de juventud, hemos confirmado 90 miembros y 9 posibles miembros de este cluster. Para aquellas fuentes de nuetro estudio que han sido analizadas también en trabajos basados en el cálculo de velocidades radiales (por Sacco et al. 2008; Maxted et al. 2008) obtenemos resultados muy similares de pertenencia al cúmulo.

Para aquellas fuentes que mostraban grandes anchuras equivalentes de H α (mayor de la que se esperaría poder atribuir a la actividad cromosférica), hemos derivado tasas de acrecimiento usando principalmente la anchura al 10% del flujo de la l'inea de emisión de H α (pero también el triplete infrarrojo del calcio), obteniendo valores compatibles con otros previamente publicados en la literatura para objetos de edad y masa similares (Mohanty et al. 2005; Natta et al. 2006).

Hemos estudiado el acrecimiento y la evolución de los discos en los miembros confirmados de Collinder 69. En la Figura 3.30 mostramos la distribución espacial de los miembros confirmados (bien por Dolan & Mathieu 1999, 2001; Sacco et al. 2008; Maxted et al. 2008 o por este trabajo) incluyendo información sobre la presencia de disco y si éste se encuentra cativamente acretando o no. Como se puede ver en la figure, las fuentes con disco muestran una mayor concentración en torno al centro del cluster con respecto a la población sin disco (contrariamente a lo qeu cabría esperar según la hipoótesis de la explosión de supernova). De hecho, si asumimos que los sistemas que están acretando son en general más jóvenes que aquellos que no muestran signos de acrecimiento, la población más joven de Collinder 69 estaría claramente concentrada alrededor de la población central O.

Con datos de nuestra campaña en SUBARU hemos confirmado la naturaleza extremadamente fría de **los candidatos de masa más baja** propuestos a formar parte de Collinder 69. Con tipos espectrales derivados entre L0 y L2, les corresponden temperaturas efectivas ~ 2000 K (usando en esta estimación la escala de tempertauras derivada por Basri et al. 2000). Si se confirmaran como miembros, tendrían masas (según la isocrona de cinco millones de años de Chabrier et al. 2000) tan bajas como 0.012 M_{\odot} (~12.6 M_{Jupiter}).

7.2 Barnard 35

Hemos analizado ~60 espectros ópticos, principalmente de resolución baja–intermedia de candidatos a miembros de la nube obscura Barnard 35. Siguiendo distintos criterios basados en cocientes de líneas y fuerza de bandas moleculares, hemos derivado tipos espectrales para todos ellos. Estudiando indicadores de juventud hemos confirmado como nuevos miembros 18 de estos candidatos y hemos descartado ocho como contamiantes.

Hemos analizado la variabilidad en la tasa de acrecimiento de un subconjunto de nuestros candidatos, encontrando una gran amplitud en estas variaciones que no parece estar correlacionada con la masa del objeto central.

Hemos derivado tasas de acrecimietno para tres fuentes que albergan discos de transición. Las tasas derivadas som compatibles con las pocas medidas que se han porporcionado hasta ahora para este tipo de objetos.

Hemos comparado el estado evolutivo de los discos entorno a fuentes de Barnard 35 y aquellas de Collinder 69 encontrando una tendencia muy marcada; los discos que rodean a objetos de Collinder 69 parecen ser en término general mucho menos activos que aquellos que rodean a miembros de Barnard 35.

7.3 Barnard 30

Hemos analizado 64 espectros ópticos con distintas resoluciones correspondientes a 45 fuentes: 13 son miembros conocidos de Barnard 30 (de Dolan & Mathieu 2001) y 32 son nuevos candidatos propuestos por Morales-Calderón (2008). Los miembros conocidos preciamente fueron observados para estudiar su variabilidad (especialmente en lo que refiere a la tasa de acrecimiento) y tratar de poner estas variaciones en contexto junto con la edad y la masa de las fuentes. Por otro lado, el conjunto formado por los candidatos propuestos por Morales-Calderón (2008) fueron observados para confirmar la pertenencia a Barnard 30 y estudiar sus propiedades. Catorce de estos candidatos han sido confirmados en base a las intensidades de determinadas líneas de alcalinos.

El analisis sobre la presencia de acrecimiento en miembros ya conocidos que sabemos están rodeados por discos (basándonos en el exceso infrarrojo que presentan estas fuentes) nos condujo a una teoría muy preliminar que sugiere que Barnard 30 no parece ser más joven que Barnard 35 (como se ha sugerido previamente en la lieteratura). El conjunto de miembros estudia-
dos debería de crecer y algunos sesgos referentes a la selección de candidatos deberían de tenerse en cuenta antes de que esta sugerencia pueda ser confirmada.

En cuanto a la variabilidad; la mayor parte de objetos, ya sean acretores activos o no, han sido clasificados como variables según la comparación de nuestras propias medidas de la emisión de H α y aquellas de Dolan & Mathieu (2001). De hecho, Las fuentes que están acretando, parecen mostrar mayores amplitudes en estas variaciones que se traducen en inmensas variaciones en las tasas de acrecimiento estimadas (la mayor diferencia medida en nuestro conjunto llega a los 2.5 órdenes de magnitud). Estas diferencias tan grandes ya han sido anunciadas en la literatura en objetos de mayor masa. De acuerdo con nuestros datos, no se infiere ninguna dependencia de estas variaciones con la masa del objeto central, aunque nuestra muestra parece ser demasiado pequeña como para poder llegar a una conclusión definitiva. La misma falta de dependencia con la masa del objeto central se observa en la muestra de objetos de Barnard 35.

List of publications

The work done during this thesis has given rise to the following publications in international refereed journals:

Papers in refereed journals

- The young, wide and very low mass visual binary Lambda Orionis 167. D. Barrado Y Navascués, A. Bayo, M. Morales-Calderón, N. Huélamo, J. R. Stauffer, and H. Bouy. A&A, 468:L5–L8, June 2007.
- Spitzer: Accretion in Low-Mass Stars and Brown Dwarfs in the λ Orionis Cluster. D. Barrado y Navascués, J. R. Stauffer, M. Morales-Calderón, A. Bayo, G. Fazzio, T. Megeath, L. Allen, L. W. Hartmann, and N. Calvet. ApJ, 664:481–500, July 2007.
- VOSA: virtual observatory SED analyzer. An application to the Collinder 69 open cluster. A. Bayo, C. Rodrigo, D. Barrado Y Navascués, E. Solano, R. Gutiérrez, M. Morales-Calderón, and F. Allard. A&A, 492:277–287, Dec. 2008.
- 4. Structural and compositional properties of brown dwarf disks: the case of 2MASS J04442713+2512164.
 H. Bouy, N. Huélamo, C. Pinte, J. Olofsson, D. Barrado y Navascués, E. L. Martín, E. Pantin, J.-L. Monin, G. Basri, J.-C. Augereau, F. Ménard, G. Duvert, G. Duchêne, F. Marchis, A. Bayo, S. Bottinelli, B. Lefort, and S. Guieu. A&A, 486:877–890, Aug. 2008.
- A deep look into the core of young clusters. II. lambda-Orionis. H. Bouy, N. Huélamo, D. Barrado y Navascués, E. L. Martín, M. G. Petr-Gotzens, J. Kolb, E. Marchetti, M. Morales-Calderón, A. Bayo, E. Artigau, M. Hartung, F. Marchis, M. Tamura, M. Sterzik, R. Koehler, V. D. Ivanov, D. Nuernberger. A&A, Accepted, Jul. 2009.
- A proto brown dwarf candidate in Taurus. D. Barrado y Navascués, M. Morales-Calderón, A. Palau, A. Bayo, I. de Gregorio, C. Eiroa N. Huélamo, H. Bouy, O. Morata. A&A, Accepted, Sept. 2009.

Appendix A

Observations and data reduction

During this thesis we have performed optical and near-infrared observations with the following configurations:

A.1 Medium and high-resolution optical spectroscopy

- 1. LRIS, Low Resolution Imaging Spectrometer, at Keck I telescope in November 2-5, 2002. We made use of the LRIS spectrograph with the 1200 lines/mm grating., covering the spectral range 6425–7692 Å, with a scale of 0.63 Å/pixel and a resolution of about 2 Å, as measured in a NeHe comparison lamp (about R~3500 at λ =7000 Å). Individual exposure time ranges from 120 to 1200 seconds. We took three of these exposures and combine them in order to improve the signal-to-noise and to remove cosmic rays. Note that during the same run we colected low-resolution spectra, which will be described below.
- 2. MIKE, Magellan Inamori Kyocera Echelle, at the Magellan Baade 6.5m telescope in December 11–14, 2002. With our set-up, the spectral coverage in its red arm was 4430–7250 Å. In order to improve the final S/N, we degraded the resolution by rebinning the original data during the readout to 2 and 8 pixels in the spatial and spectral directions, respectively, achieving a resolution of 0.55 Å. To reconstruct the spectra we have used the getchelle routine by Carlos Allende ttp://ebe.as.utexas.edu/stools/
- B&C, Boller & Chivens spectrograph, at the Magellan II telescope (Las Campanas, Chile) in March 9–11, 2003. We made use of the B&C spectrograph with the 1200 l/mm grating. The spectral coverage was 6200-7825 Å, with a scale of 0.79 Å/pixel, and a resolution of 2.5 Åas measured in a HeNeAr comparison lamp (R~2600)
- 4. FLAMES, Fibre Large Array Multi Element Spectrograph, at VLT/UT2 in January 5, 2008. The data reduction was performed using the GIRAFFE gir–BLDRS pipeline vers.

1.12, following the standard steps which include bias subtraction, division by a normalized flat-field, correction for the differences in the fiber transmission, and wavelength calibration using a dispersion solution from a Thorium-Argon arc lamp. The spectra processed by the pipeline are not corrected for instrumental response and sky background, but all measurements were performed after subtracting a sky background spectrum (see Section 3.3.4 for further details on the implications inour measurements of the sky substraction).

5. Hamilton Spectrograph, at the 3m Shane telescope at the Lick Observatory in December 5–7, 2006. The data reduction was performed using the Hamilton starndard pipeline on site. This pipeline follows the standard steps which include bias subtraction, division by a normalized flat-field, sky substraction, and wavelength calibration using a dispersion solution from a Thorium-Argon arc lamp.

A.2 Low resolution Optical spectrocopy

- LRIS, Low Resolution Imaging Spectrometer, during the previiosly mentioned run in November 2-5, 2002. We made use of the 400 l/mm grating with a one arcsec slit. Typical integration times were 300–900 seconds. The wavelength calibration is better than 0.4 Å, the spectral coverage is 6250–9600 Åand the resolution is R~1100 (6.0 Åaround Hα), as measured in a NeAr lamp. The data were processed within the IRAF environment in a standard way.
- 2. B&C, Boller & Chivens spectrograph, also during the run in March 9–11, 2003 at the Magellan II telescope. We used the 300 l/mm grating; this way, the Magellan spectra have slightly worse resolution and larger spectral range (R~800, 5000–10200 Å). Relative flux calibration for the spectra was derived using observations obtained of several spectrophotometric standards. The reduction was carried out in a similar way as in the case of the Keck sample.
- 3. CAFOS, Calar Alto Faint Object Spectrograph, we had several runs at Calar Alto using the CAFOS spectrograph during 2006 and 2007 (see Tables 3.5, 4.2 and 5.2 for details on the specific dates). The data were processed within the IRAF environment in a standard way.
- 4. **TWIN**, we had several runs at Calar Alto using the TWIN spectrograph during 2006 and 2007 (see Tables 3.5, 4.2 and 5.2 for details on the specific dates). In every run we used the T-13 grating and only the data coming from the red arm were processed. The data reduction was performed within the IRAF environment in a standard way.
- 5. Kast Spectrograph, at the 3m Shane telescope at the Lick Observatory in January 17-18, 2008. We used the grating number 4 providing a reolution of ~5000 at 6000 Å. The data

reduction was performed within the IRAF environment in a standard way.

A.3 Low resolution Near Infrared spectrocopy

1. **SOFI, Son of ISAAC,** at NTT (La Silla, Chile) in April 25–27 2006. We used two low-resolution grisms (red and blue) to roughly cover the *JHK* bands on a Hawaii HgCdTe 1024×1024 detector with a plate scale of 0.292''/pix. The blue grism covers $0.95-1.63 \mu m$ and the red grism the region between $1.53-2.52 \mu m$. The corresponding spectral resolutions were 930 and 980 respectively.

The integration time and the number of exposures per target were chosen according to the brightness of the individual sources . In most cases we obtained a total of two blue spectra of the same integration time, and four red spectra. Typical individual integration times were 60-180 s for the blue grism and 60-240 s for the red one for the brightest sources of the sample and up to 3600 s (for each grism) for the faintest. The telescope was nodded 30'' along the slit between consecutive positions following the usual ABBA pattern.

In addition to the program sources we observed several A0V objects (taken with airmasses similar to those of the science objects). These spectra were used (combined with a high-resolution model of Vega) to remove telluric water absorption bands as described by Vacca et al. (2003), and to estimate the instrumental response.

We obtained multiple flat-field images, with both grisms, illuminating a dome screen, using incandescent lamps on and off. A xenon lamp provided the wavelength calibration for our data (consistent with the OH airglow calibration) with an accuracy of 1.2 Å for the blue grism, and 2 Å for the red one (corresponding to 1/5 of the size of the pixel).

To reduce the data we used IRAF. We subtracted one image from another (using pairs of nodded observations) to eliminate the background and sky contribution in a first approximation. This subtraction automatically took care of the dark current and bias level. We flat-fielded our data dividing by the appropriate normalized flat-field for each of the grisms, and bad pixels were replaced by linear interpolation from neighbouring pixels.

We aligned individual exposures and combined the corresponding frames into one blue and one red image per object. Then we shifted all the data, corresponding to each target and grism, to a common position and co-added them.

We used the *twodspec* task APALL to trace and extract the spectra. A further sky subtraction was done by fitting a polynomial to the regions on both sides of the aperture. A non-linear low-order fit to the lines of the xenon lamp was used to calibrate the spectra in wavelength. We verified our wavelength solution using the positions of well known OH sky lines (Oliva & Origlia 1992) finding differences lower than 0.5 Å.

We finally combined the blue and the red grism spectra for each object and eliminated regions of deep atmospheric absorptions from our analysis as not satisfactory corrections were obtained in these regions. The useful spectral ranges are: 9300–11000 Å, 11600–13300 Å, 14900–17800 Å, and 20500–25000 Å, with some edge effects at the very beginning and very end of the first an last intervals, respectively. To test the flux calibration, we have computed synthetic magnitudes applying the normalized relative spectral response (from Cohen et al. 2003) to the calibrated spectra; and we have compared them to the magnitudes given in the 2MASS catalogue. We have obtained differences of less than 10% in flux, which are equivalent to ~ 0.1 mag. In Fig. A.1 we can see our calibrated spectra (black solid lines), the photometry from 2MASS (red circles) and the synthetic calculated photometry (blue triangles). The deep atmospheric absorptions regions have been removed from the spectra and are shown as shadowed grey rectangles in the figures.

2. NIRSPEC, the Near InfRared echelle SPECtrograph, at Keck II (Mauna Kea observatory) in December 22–23 2004 and December 9 2005. In both campaigns we used the same filter: Nirspec-3, a J band filter covering the wavelength region 1.143-1.375 μ m. The corresponding spectral resolution is ~2000. Again, classical ABBA pattern was followed to perform the observations, and standard A0V were observed at simmilar air masses to correct the terrestrial atmospheric signatures. In this case, the data reduction process was carried out using the IDL based software REDSPEC.

This software performs all the previously described procedures in an pseudo-automatic (some interactivity with the user is required) manner. In this case we did not scale our spectra using sinthetic photometry since our analysis was focussed on the study of the alkali lines, and therefore the spectra were normalized.

3. IRCS, the InfraRed Camera and Spectrograph, at SUBARU (NAOJ, Mauna Kea observatory) in November 10 2008. We used the "Grism HK" covering a wavelength range of 1.4–2.5 μ m at a very low resolution of ~200. The spectra of the science targets, spectral templates and AOV "standards" were obtained following an ABBA pattern. The reduction of the data was performed using IRAF and following the steps described in detail for the NTT campaign.

Figure A.1: Spectrophotometry of the sample of field targets. The sequence is ordered in terms of the spectral type assigned in the literature (see Table **??**).

Appendix B

Automating the measurement of line properties.

In short; one of the most difficult steps to automate when measuring line properties is the determination of the continuum on top of which the line lies. Even when this task is performed manually, different astronomers might select different points as the bases of the continum when, for example, facing a noisy spectrum or a line embedded in a molecular band. The code that we have developed tries to solve this problem proceeding in an iterative way.

First of all it locates where the actual peak of the line is; in this step the wavelength calibration accuracy is taken into account providing limits in the wavelength coverage where the search for the peak of the line is carried out. Once this task is accomplished, two regions are defined: one to the right and another to the left of the estimated central wavelength; the width of the regions is fixed to 100 points to be statistically significant (and therefore the width in wavelength units would depend on the resolution of the spectra). A linear fit using those regions is performed (red dotted line in Fig B.1). With this attempt to define a continiuum (the linear fit), the code calculates a first guess of the FWHM (red cross in Fig B.1).

For the second iteration, the code considers that the line is a gaussian, and, therefore, FWHM = $2 \times \sqrt{2 \times \log(2)} \times \sigma$. Assuming that at a distance of $\pm 10\sigma$ one should be outside the line, two new regions on the spectra are selected: starting at $\pm 10\sigma$ from the wavelength of the peack and ending at the same limits as before. These two regions are close to the edges of the line unless the line has a very wide double peaked structure.

At this point the code will perform two linear fits in a sequential way; a second continuum is derived with a linear fit to these new regions of the spectra close to the edges of the line, and the third one with another lineal fitting, but this time considering only those data-points that differ from the second continuum less than once the dispersion of the difference between the actual spectra and this second continuum (the blue dots in Fig B.1 represent those data-points considered to define a third continuum and the blue dashed line is the resulting one). Once the third guess on the locus of the continuum is estimated, the code calculates a second iteration of the FWHM (blue cross in Fig B.1). Assuming one more time that the line can be described with a gaussian (and calculating the associated σ), it considers three pairs of lambdas in the spectra to make the final measurements (pairs located at $\pm 3\sigma$, $\pm 4\sigma$ and $\pm 5\sigma$ from the lambda of the peak). As a final refinement, for each selected pair of wavelengths; for example λ_1 and λ_2 corresponding to $\lambda_{\text{peak}} \pm 3\sigma$ the code checks whether the linear continuum defined by (λ_1 ,F(λ_1)), (λ_2 ,F(λ_2)) intersects the wings of the line; when this is the case (for example the upper-left pannel of Fig B.1), the code will use the third continuum to perform the measurements.

Prior to provide these measururements, the code substracts the instrumental profile from the values estimated for the FWHM and $FW_{10\%}$ considering that the FWHM of the convolution ($G_{measured}$) of two gussians (G_{instr} , G_{line}) follows:

$$FWHM(G_{measured}) = \sqrt{FWHM(G_{instr})^2 + FWHM(G_{line})^2}$$
(B.1)

and that FWHM and FW_{10%} relate accordig to: FW_{10%} = $\sqrt{\frac{\log(2)}{\log(10)}} \times$ FWHM.

The final product is the mean of the three measurements for each parameter (FWHM, FW_{10%} and EW) and their corresponding standard deviation σ .

Figure B.1: Example of the output of the code designed to measure EW, FWHM and FW_{10%} of the different lines detected on the spectra in an automatic manner. In this case we show four of the measured lines on the averaged MIKE spectra obtained for LOri031: H α at 6562.80Å, He I at 6678.15Å, Li I at 6707.8Å and S II at 6717.0Å. For each case the canonical wavelength for the measured line and the actual wavelength where the line has been found in our spectra are displayed o the title of the plot (all of them within the errors on wavelength calibration). The iterative process in the continiuum determination is diplayed using different colours: red for the first iteration (including the first guess for the half maximum flux value, red cross), blue for the second one (filled blue dots on the datapoints used to refine the first continiuum, blue cross showin the second half maximum estimation) and the three green lines (filled, dotted and dashed) representing the final determined continuum.

Appendix C

Virtual Observatory SED Analyser

Studying the physical parameters of a large population of sources belonging to the same cluster is advantageous, since properties can be infered not only for individual sources but also for the association as a whole, a clear example is the age, since we can assume that all objects in that particular cluster are coeval.

Whenever an astronomer wants to derive physical parameters and properties by comparing observed SEDs with theoretical data, a first mandatory step is to compile all the photometric/spectral information available for each source in order to be able to decide which model best reproduces the observed data. On the other hand, there are different collections of models (consisting of thousands of individual models) that we might want to compare to the observations.

Trying to compile all this information for each object one by one with classical methodologies and then compare the built SED with all the available models can be very tedious and time consuming. VOSA (VO Sed Analyzer) is a tool designed to ease this processes by performing the following tasks in an automatic manner:

• Read user photometry-tables. The input file can be either an ASCII table or a VOTable but with a specific format consisting of eight columns/fields as follows:

Source identifier: this will be used, for instance, as the title of the plots of the fittings.

Coordinates of the source: Right ascension and declination (in J2000) will be used to look for counterparts in various catalogs.

Distance to the source in parsecs: this datum is mandatory in order to estimate the bolometric luminosity of the source. Should this parameter be unknown then a value of "--" should be used and a generic distance of 10 parsecs will be assumed.

Visual extincion (A_V in magnitudes) affecting the source: this value is used to deredden each SED (the Indebetouw et al. 2005 extinction law is applied).

Filter name: a list of the already available filters can be found in the Help menu; new filters can be included upon user request.

Observed flux/magnitude (flux in units of erg/cm²/s/Å).

Flux/magnitude error (same units as in the previous field). For an example of the data input interface see Fig. C.2 in Appendix B. A more detailed description of the file format, available filters, fluxes for zero magnitude, etc. can be accessed from the VOSA Help menu.

- Query several photometrical catalogs accessible through VO services in order to increase the wavelength coverage of the data to be analysed. Currently the user can query the 2MASS All-Sky Point Source Catalog (Skrutskie et al. 2006), the Tycho-2 Catalog (Høg et al. 2000), and the Strömgren uvby-beta Catalog (Hauck & Mermilliod 1998) using different radii according to the astrometic precision of each catalog.
- Query VO-compliant theoretical models (spectra) for a given range of physical parameters.

The user can choose among the different available collections of models (in a future implementation of the tool, it will offer the possibility of accessing any VO-compliant theoretical model collection). These models are accessible in a VO environment from the SVO theoretical data server at http://laeff.inta.es/svo/theory/db2vo/

• Calculate the synthetic photometry of the theoretical spectra (within the range of physical parameters required by the user) for the set of filters used to obtain the observed data (including the dataset coming from the VO photometrical services).

The synthetic photometry is calculated by convolving the filter response curve with the synthetic spectra. Prior to this, both the response curve and the synthetic spectra are interpolated to match the spectral resolution; the area of the response curve is normalised to unity to provide the user with a flux density that can be directly compared with the observed one (see Section C.1 for a formal description of the process).

• Perform a statistical test to determine which model reproduces best the observed data. The provided "best" fitting model is the one that minimises the value of the reduced χ^2 defined as:

$$\chi_r^2 = \frac{1}{N - n_p} \sum_{i=1}^N \left\{ \frac{1}{\sigma_{o,i}^2} (Y_{o,i} - M_d Y_{m,i})^2 \right\}$$

where Y_0 is the observed flux, σ_0 the observational error in the flux, N the number of photometric points, n_P the number of parameters being fitted, Y_m the theoretical flux predicted by the model and M_d the multiplicative dilution factor, defined as $(R/D)^2$, R being the radius of the source and D the distance to the object.

During the fitting process, the tool detects possible infrared excesses (in our scientific case some of the sources might be surrounded by disks). Thus, since the theoretical spectra

correspond to stellar atmospheres, for the calculation of the χ^2 the tool only considers those data points of the SED corresponding to bluer wavelengths than the one where the excess has been flagged.

The excesses are detected by iteratively calculating (adding a new data point from the SED at a time), in the mid-infrared (wavelengths redder than 2.5μ m), the α parameter as defined in Lada et al. (2006) (which becomes larger than -2.56 when the source presents an infrared excess). The last wavelength considered in the fitting process together with the ratio between the total number of points belonging to the SED to those really used are displayed in the result tables.

Once the fitting process is completed, the tool allows the user to check whether any other of the five "best" fits per collection of models (meaning 20 best fits when using the four collections of models available on the server), is more convincing than the one that minimises the χ^2 and choose that one as the best model to include in the final results table. For instance, the user might have a more accurate estimation of the gravity, which is important since changes in the surface gravity of stellar and sub-stellar sources do not produce dramatic differences in the shape of their SEDs (whenever those SEDs have been constructed using photometry from wide filters).

• Use the best-fit model as the source of a bolometric correction.

The best fitting model is used to infer the total observed flux for each source of the sample; this process is performed by integrating the total observed flux (where no excess has been detected), and using the best fitting model to infer that flux in the wavelength range where no observational data is available or some infrared excess has been detected (see Appendix A for a formal description of the procedure). We note that if the model reproduces the data correctly, this estimation is much more accurate than the one obtained using a bolometric correction derived only from a single colour.

Regarding the estimation of the error in the calculated "total observed flux", VOSA uses the model to infer the total flux emitted by the source in the wavelength range where no observational data is provided or some infrared excess has been detected; since we cannot provide any uncertainties for the model itself we have extrapolated the errors of the observed photometry to the whole wavelength range, and therefore we provide an error for the total flux parameter dependent on the accuracy of the provided measurements.

• Provide the estimated bolometric luminosity for each source.

The tool scales the total observed flux to the distance given by the user and therefore estimates the bolometric luminosity of each source in the sample. In those cases where the user has not provided a value of the distance, a generic value of 10 parsecs is assumed:

$$L(L_{\odot}) = 4\pi D^2 F_{obs} \tag{C.1}$$

• Generate a Hertzsprung-Russel diagram with the estimated parameters.

The tool provides the user with the possibility of selecting and overplotting in this diagram different sets of isochrones and evolutionary tracks with masses and ages within the selected range.

• Provide an estimation of the mass and age of each source

VOSA interpolates among the previously mentioned collections of isochrones and evolutionary tracks to estimate the mass and age of each source from the input sample (see the Help menu from VOSA for details on the interpolation processes and possible warning flags).

In order to use VOSA, the user only has to register at the service and start working. The system is based on sessions that can be saved, so that the user can recover the files and results obtained in a previous session (without redoing the fit) and compare those results with new approaches (models, parameters, etc.). These sessions will remain in the system unless there is no activity for seven days (in which case the session will be erased).

C.1 Synthetic photometry.

Starting point: observed magnitudes (in filters G_i) that are translated with the zero point ZP into Jy. Thus, we have a flux density per unit of frequency, that is F_{ν,Gi}. We can also use ZP for F_λ and then have another flux density (in this case F_{λ,Gi}). For each case, the flux is assigned to an effective wavelength/frequency:

$$\lambda_{\rm eff} = \frac{\int \lambda T(\lambda) \, d\lambda}{\int T(\lambda) \, d\lambda} \tag{C.2}$$

• The models are functions $F(\lambda)$ with values in erg/cm²/s/Å, the filters are functions $G_1(\lambda)$ without physical units, but when we normalize the response curves:

$$N_1(\lambda) = G_1(\lambda) / \int_{\lambda} G_1(\lambda') d\lambda', \qquad (C.3)$$

this new function $N_1(\lambda)$ is no longer dimensionless, it has physical units of λ^{-1} . This is the function that we multiply by the model to obtain a synthetic flux density. So,

$$F_{\text{syn,N}} = \int_{\lambda} F_{\text{mod},\lambda}(\lambda) \times N_1(\lambda) d\lambda, \qquad (C.4)$$

with units of $erg/cm^2/s/Å$.

- Our observational data-point corresponds to a **weighted** average of the flux observed through a filter. The process is:
 - The light (F_*) passes through the filter (a function with values between 0 and 1): $F_* \times G_1(\lambda)$
 - This "total amount of light" is translated into a density by dividing by the area enclosed by the filter: $\int_{\lambda} G_1(\lambda) d\lambda$
- To recover the total flux that was observed through the filter G_1 , we multiply the "observed flux density" by the integral of the flux:

$$F_{\text{total},G_1} = F_{G_1} \times \int_{\lambda} G_1(\lambda) d\lambda.$$

This F_{total,G_1} has the required physical units of a flux: erg/cm²/s.

• If we want to compute the bolometric correction using the model, we integrate it:

$$F_M = \int_{\lambda} F(\lambda) d\lambda,$$

subtract the density fluxes corresponding to each filter multiplied by the areas of the filters:

$$F_M - \sum_i (F_{syn,N_i} \times \int_{\lambda} G_i(\lambda) d\lambda)),$$

and add the F_{total,G_i} calculated in the previous step.

This takes into the account the model in correcting for possible intersections among the filter wavelength coverage.

C.2 Workflow.

Figure C.1: Work-flow scheme. The shaded squares represent the input data (top) and the products obtained when the workflow has been completed (bottom-right corner, dashed box). The names of the applications used are written in rounded boxes, and the tasks performed by these applications are listed in rectangular boxes on the left hand side.

12	Spanish Virtual Observatory · Theoretical models	Funded by
SVO I	1/201	
	VOSA	SHIDE F PROVACION
	Sessions Upload files Coordinates VO Phot. Model Fit HR Diag. Save Results Help Logout	
	Upload your own data file (max size=500Kb) It must correspond to the required data format Please, include a description for your file, it is required	
	File to upload: Browse	
	Description:	
	File type: Fluxes C Magnitudes	
	Upload	
	Uploaded files	
	Date Filename Descrip Action 10/06 11:45:00 fichero_hout_final_el_emors_corrected.asci All errors revised Show Ratiova Delate	
	LOri001	
	Position: (83.446583,9.9273611) Distance: 400. pc A ₂ : 0.36209598	
	Filter: CFHT_R CFHT_1 2MASS_J 2MASS_H 2MASS_Ka IRAC_11 IRAC_12 IRAC_13 IRAC_14	
	^med 0562 5225 12518 15504 21539 35634 45110 57593 7554 1593 7554 FLUC: 1.447193=41 1.345174=14 1.048058=14 7.5633278=15 3.061055=15 5.502778=16 2.128558=16 8.649135=17 2.543987e=17	
	ΔF: 5.789771e-17 5.380690e-17 9.223010e-17 6.855728e-17 2.571244e-17 6.803333e-19 3.405533e-19 3.113689e-19 1.017595e-19	
	LOri002	
	Position: (84.043167,10.148583) Distance: 400. pc A _V : 0.36209598	
	Filter: CFHT_R CHT_1 2MA89_J 2MA89_H 2MA99_Ks IRAC_11 IRAC_12 IRAC_13 IRAC_14	
	Fuc: 1.170918e-14 1.204422e-14 1.114782e-14 0.683020e-15 4.176920e-15 7.207456e-16 2.589793e-16 1.123499e-16 3.434906e-17	
	ΔF: 4.883671e-17 4.817687e-17 1.070191e-16 8.889979e-17 3.175979e-17 8.648947e-19 3.107752e-19 4.044596e-19 1.090170e-19	

Figure C.2: Part of the input data in the web interface of the SVO SED fitting tool.

A A	Spanish Virtual	Observatory	Theoretical mo							Funded by
svo					VOSA					MINISTERIO DE CIENCIA E INNOVACIÓN
	Sessions	Upload files	Coordinates	VO Phot.	Model Fit	HR Diag.	Save Results	Help	Logout	
Theoretical apactro Dalessio			di.							
Coelho	2				VO photometry					
cond00 dusty00	* * *			First select the	VO services that	ou want to use				
Kuruoz	*	V 2	MASS All-Sky Po	nt Source Catalog						
Services Filters TSAP	2	2	MASS has uniformly s ian about 1 mJy in es earch radius: 5.	canned the entire sky in ch band, with signal-to-n arcsec	three near-infrared ban oise ratio (SNR) greater	is to detect and cha than 1	racterize point sources brig	hter		
Photometry fit	*			-						
Isochrones			ycho-2 Catalogue he Tycho-2 Catalogue hotometric data for th earch radius: 2.5	is an astrometric referei e 2.5 million brightest sta arcsec	nce catalogue containin rs in the sky.	positions and prop	er motions as well as two-c	olour		
		V 5	tromgren uvby-b	eta Catalogue (Hauc	k+ 1997)					
		T tř S	his catalogue is an up an 63,300 stars in th earch radius: <mark>5</mark> .	dated version of the one e Galaxy and Magellanic arcsec	o published in 1990 (Hai Clouds. Continue	ick and Mermilliod, 1	990) and contains data fo.	more		

Figure C.3: Photometrical catalogs to be queried with the respective search radii.

		Spanish	Virtual O	bservator	ry The	eoretic	al model	s												Funded I
svo										VO	SA									
			Ses	sions	Uploa	d files	Coor	dinates	VO Phot	Mode	el Fit	HR Diag.	Sav	e Results	1	Help	L	ogout		
Theoretical spec Dalessio	itra P																			
Coelho	*									VO phot	ometry									
cond00	*														23	1				
dusty00	*		Object				2MAS	2MASS All-Sky Point Source Catalog					Tycho-2 Catalogue (Ha					by-beta Ca :k+ 1997)	atalogue	
Services	•	Label	RA	DEC	Save	Δ	RA	DEC			Ks	Save	Δ RA	DEC B	v	Save A	RA	DEC u	v b y	,
Filters	۶	LOri001	83:26:47	9:55:38	~	0.31	83:26:48	9:55:38	10.595±0.022	11.297±0.022	10.426±0.021									
TSAP	*	LOri002	84:02:35	10:08:54	~	0.16	84:02:35	10:08:54	10.329±0.023	11.230±0.024	10.088±0.019									
Isochrones		LOri003	83:58:51	9:56:31	~	0.35	83:58:51	9:56:30	10.725±0.022	11.416±0.023	10.524±0.023									
-	-	LOri004	83:56:53	9:45:50	~	0.49	83:56:53	9:45:49	10.780±0.023	11.359±0.022	10.548±0.021									
		LOri005	83:28:24	9:43:08	~	0.14	83:28:24	9:43:08	10.549±0.022	11.378±0.022	10.354±0.023									

Figure C.4: 2MASS photometry found. We will use these JHKs measurements in those objects for which we do not have our own photometrical data.

Model fit

	NextGen
teff:	2500 - 10000 T (Min/Max value for the effective temperature for the model. Temperatures are given in K)
logg:	3.5 - 4.5 - (Min/Max value for Log(G) for the model.)
	DUSTY00
teff:	1800 - 2500 - (Min/Max value for the effective temperature for the model. Temperatures are given in K)
logg:	3.5 • 4.5 • (Min/Max value for Log(G) for the model.)
	COND00
teff:	100 - 1800 - (Min/Max value for the effective temperature for the model. Temperatures are given in K)
logg:	3.5 - 4.5 - (Min/Max value for Log(G) for the model.)
	Kurucz
teff:	(Min/Max value for the effective temperature for the model. Temperatures are given in K)
logg:	3.50 ▼ - 4.50 ▼ (Min/Max value for Log(G) for the model.)
	(Min/Max value for the Metallicity for the model.)

Figure C.5: Range of parameters queried for each collection of synthetic spectra.

Model fit

								Hide G	raphs						
Object	Model	Teff	LogG	Metallicity	X ²	Md	Ftot	ΔFiot	Fobs/Ftot	D (pc)	Lbol/Lsun	ΔL _{bol} /L _{sun}	λ_{last}	N _{fit} /N _{tot}	Data VOtables
LOri001	Kurucz	4000	3.50	0.00	1.71e+2	4.02e-1	1.91e-10	5.61e-13	0.48	4.00e+2	9.52e-1	2.80e-3	79594	9/9	Photometry Synth.Spectrum
LOri002	NextGen	3800	4.5	0	1.44e+3	1.75e-20	2.04e-10	6.37e-13	0.48	4.00e+2	1.02e+0	3.18e-3	79594	9/9	Photometry Synth.Spectrum
LOri003	Kurucz	4000	3.50	0.00	5.05e+2	3.82e-1	1.76e-10	5.12e-13	0.47	4.00e+2	8.78e-1	2.55e-3	79594	9/9	Photometry Synth.Spectrum
LOri004	Kurucz	3750	4.00	0.00	2.82e+2	4.57e-1	1.65e-10	4.91e-13	0.48	4.00e+2	8.23e-1	2.45e-3	79594	9/9	Photometry Synth.Spectrum
LOri005	NextGen	4000	4.0	0	8.26e+2	1.28e-20	1.82e-10	5.47e-13	0.48	4.00e+2	9.10e-1	2.73e-3	79594	9/9	Photometry Synth.Spectrum
LOri006	Kurucz	4000	3.50	0.00	3.36e+2	3.28e-1	1.54e-10	4.91e-13	0.47	4.00e+2	7.66e-1	2.45e-3	79594	9/9	Photometry Synth.Spectrum
LOri007	Kurucz	4000	4.50	0.00	2.49e+2	2.81e-1	1.33e-10	4.34e-13	0.48	4.00e+2	6.61e-1	2.17e-3	79594	9/9	Photometry Synth.Spectrum
LOri008	Kurucz	4000	3.50	0.00	4.43e+2	3.16e-1	1.49e-10	4.91e-13	0.48	4.00e+2	7.44e-1	2.45e-3	79594	9/9	Photometry Synth.Spectrum
LOri009	NextGen	4000	3.5	0	6.22e+1	8.30e-21	1.19e-10	3.77e-13	0.49	4.00e+2	5.96e-1	1.88e-3	79594	9/9	Photometry Synth.Spectrum
LOri010	NextGen	4200	4.0	0	1.87e+2	6.50e-21	1.15e-10	3.69e-13	0.48	4.00e+2	5.73e-1	1.84e-3	45110	7/9	Photometry Synth.Spectrum
LOri011	NextGen	3900	4.5	0	1.20e+3	1.11e-20	1.41e-10	4.67e-13	0.47	4.00e+2	7.06e-1	2.33e-3	79594	9/9	Photometry Synth.Spectrum
LOri012	NextGen	4000	4.5	0	6.56e+2	8.75e-21	1.25e-10	4.02e-13	0.48	4.00e+2	6.22e-1	2.00e-3	79594	9/9	Photometry Synth.Spectrum
LOri013	NextGen	3700	4.5	0	3.50e+2	1.15e-20	1.23e-10	3.88e-13	0.49	4.00e+2	6.12e-1	1.93e-3	79594	9/9	Photometry Synth.Spectrum
LOri014	Kurucz	4000	4.50	0.00	4.70e+1	2.25e-1	1.08e-10	3.48e-13	0.49	4.00e+2	5.37e-1	1.74e-3	79594	9/9	Photometry Synth.Spectrum
LOri015	Kurucz	4000	3.50	0.00	8.73e+1	2.32e-1	1.12e-10	3.55e-13	0.49	4.00e+2	5.60e-1	1.77e-3	79594	9/9	Photometry Synth.Spectrum
LOri016	Kurucz	3750	4.50	0.00	5.53e+2	2.78e-1	1.01e-10	3.30e-13	0.47	4.00e+2	5.06e-1	1.65e-3	45110	7/9	Photometry Synth.Spectrum
LOri017	NextGen	4200	4.0	0	7.56e+1	5.16e-21	9.06e-11	2.74e-13	0.48	4.00e+2	4.52e-1	1.36e-3	79594	9/9	Photometry Synth.Spectrum
LOri018	Kurucz	3750	3.50	0.00	4.31e+2	2.74e-1	9.86e-11	3.02e-13	0.47	4.00e+2	4.91e-1	1.51e-3	79594	9/9	Photometry Synth.Spectrum
LOri019	Kurucz	3750	3.50	0.00	1.90e+2	2.56e-1	9.33e-11	3.04e-13	0.48	4.00e+2	4.65e-1	1.52e-3	79594	9/9	Photometry Synth.Spectrum
LOri020	NextGen	3600	4.5	0	2.96e+2	1.04e-20	9.75e-11	3.52e-13	0.48	4.00e+2	4.86e-1	1.75e-3	79594	9/9	Photometry Synth.Spectrum
LOri021	Kurucz	4000	3.50	0.00	3.08e+2	1.76e-1	8.23e-11	2.66e-13	0.47	4.00e+2	4.10e-1	1.33e-3	79594	9/9	Photometry Synth.Spectrum
LOri022	Kurucz	3750	4.00	0.00	1.76e+2	2.33e-1	8.54e-11	2.59e-13	0.48	4.00e+2	4.26e-1	1.29e-3	57593	8/9	Photometry Synth.Spectrum
LOri023	NextGen	4000	4.5	0	2.35e+2	5.80e-21	8.18e-11	2.61e-13	0.47	4.00e+2	4.08e-1	1.30e-3	79594	9/9	Photometry Synth.Spectrum
LOri024	Kurucz	3750	3.50	0.00	2.22e+2	2.25e-1	8.23e-11	3.00e-13	0.48	4.00e+2	4.11e-1	1.50e-3	79594	9/9	Photometry Synth.Spectrum
LOri025	NextGen	3700	4.5	0	1.37e+3	9.61e-21	9.45e-11	4.50e-13	0.44	4.00e+2	4.71e-1	2.25e-3	79594	9/9	Photometry Synth.Spectrum
LOri026	NextGen	3700	4.5	0	4.81e+2	8.16e-21	8.63e-11	3.03e-13	0.48	4.00e+2	4.30e-1	1.51e-3	79594	9/9	Photometry Synth.Spectrum
LOri027	NextGen	4000	4.5	0	2.35e+2	4.90e-21	7.03e-11	2.22e-13	0.48	4.00e+2	3.51e-1	1.11e-3	79594	9/9	Photometry Synth.Spectrum
LOri028	Kurucz	3750	4.00	0.00	1.26e+2	1.58e-1	5.87e-11	1.85e-13	0.49	4.00e+2	2.93e-1	9.22e-4	79594	9/9	Photometry Synth.Spectrum
LOri029	NextGen	3100	4.5	0	7.28e+3	1.94e-20	9.01e-11	2.54e-13	0.40	4.00e+2	4.49e-1	1.27e-3	35634	6/10	Photometry Synth.Spectrum
LOri030	NextGen	3700	4.5	0	2.15e+2	6.10e-21	6.39e-11	2.22e-13	0.48	4.00e+2	3.19e-1	1.11e-3	79594	9/9	Photometry Synth.Spectrum
LOri031	NextGen	3800	4.5	0	2.77e+2	5.65e-21	6.52e-11	2.24e-13	0.47	4.00e+2	3.25e-1	1.12e-3	79594	9/9	Photometry Synth.Spectrum
LOri032	NextGen	3700	4.5	0	1.70e+2	5.76e-21	6.09e-11	2.10e-13	0.48	4.00e+2	3.04e-1	1.05e-3	79594	9/9	Photometry Synth.Spectrum
LOri033	NextGen	3700	4.5	0	7.12e+2	6.25e-21	6.37e-11	2.69e-13	0.46	4.00e+2	3.17e-1	1.34e-3	79594	9/9	Photometry Synth.Spectrum
LOri034	NextGen	3000	4.0	0	1.77e+4	2.27e-20	8.66e-11	2.16e-13	0.36	4.00e+2	4.32e-1	1.08e-3	35634	6/10	Photometry Synth.Spectrum
LOri035	NextGen	3700	4.5	0	1.61e+2	5.09e-21	5.35e-11	1.82e-13	0.48	4.00e+2	2.67e-1	9.09e-4	79594	9/9	Photometry Synth.Spectrum

Figure C.6: Several rows of the "master-table" with all the fittings.

Figure C.7: First page from the graphical results output.

							LOri08	6						
Model	T _{eff}	LogG	Metallicity	X ²	Md	Ftot	∆F _{tot}	F _{obs} /F _{tot}	D (pc)	L _{bol} /L _{sun}	∆L _{bol} /L _{sun}	λ_{last}	N _{fit} /N _{tot}	Action
NextGen	3400	4.5	0	9.18e+1	1.08e-21	8.14e-12	4.09e-14	0.49	4.00e+2	4.06e-2	2.04e-4	79594	9/9	Best See
NextGen	3500	4.5	0	1.40e+2	9.38e-22	8.06e-12	4.09e-14	0.49	4.00e+2	4.02e-2	2.04e-4	79594	9/9	Best See
NextGen	3600	4.0	0	2.41e+2	9.16e-22	8.48e-12	4.09e-14	0.47	4.00e+2	4.23e-2	2.04e-4	79594	9/9	Best See
NextGen	3700	4.0	0	2.91e+2	8.09e-22	8.44e-12	4.09e-14	0.47	4.00e+2	4.21e-2	2.04e-4	79594	9/9	Best See
NextGen	3500	4.0	0	3.68e+2	1.02e-21	8.45e-12	4.09e-14	0.47	4.00e+2	4.21e-2	2.04e-4	79594	9/9	Best See
Kurucz	3500	3.50	0.00	5.98e+2	2.88e-2	8.10e-12	4.09e-14	0.49	4.00e+2	4.04e-2	2.04e-4	79594	9/9	Best See
Kurucz	3500	4.00	0.00	1.18e+3	2.67e-2	7.81e-12	4.09e-14	0.51	4.00e+2	3.89e-2	2.04e-4	79594	9/9	Best See
Kurucz	3500	4.50	0.00	1.99e+3	2.46e-2	7.50e-12	4.09e-14	0.53	4.00e+2	3.74e-2	2.04e-4	79594	9/9	Best See
Kurucz	3750	3.50	0.00	3.14e+3	1.77e-2	7.34e-12	4.09e-14	0.54	4.00e+2	3.66e-2	2.04e-4	79594	9/9	Best See
Kurucz	3750	4.00	0.00	3.70e+3	1.70e-2	7.20e-12	4.09e-14	0.55	4.00e+2	3.59e-2	2.04e-4	79594	9/9	Best See
DUSTY00	2500	4.5	0	1.01e+4	2.94e-21	7.10e-12	4.09e-14	0.56	4.00e+2	3.54e-2	2.04e-4	79594	9/9	Best See
DUSTY00	2500	4.0	0	1.02e+4	2.93e-21	7.12e-12	4.09e-14	0.56	4.00e+2	3.55e-2	2.04e-4	79594	9/9	Best See
DUSTY00	2500	3.5	0	1.03e+4	2.92e-21	7.13e-12	4.09e-14	0.56	4.00e+2	3.56e-2	2.04e-4	79594	9/9	Best See
DUSTY00	2400	4.5	0	1.16e+4	3.23e-21	6.85e-12	4.09e-14	0.58	4.00e+2	3.41e-2	2.04e-4	79594	9/9	Best See
DUSTY00	2400	4.0	0	1.17e+4	3.20e-21	6.88e-12	4.09e-14	0.58	4.00e+2	3.43e-2	2.04e-4	79594	9/9	Best See
COND00	1800	4.0	0	1.63e+4	7.24e-21	5.80e-12	4.09e-14	0.69	4.00e+2	2.89e-2	2.04e-4	79594	9/9	Best See
COND00	1800	4.5	0	1.64e+4	7.33e-21	5.83e-12	4.09e-14	0.68	4.00e+2	2.91e-2	2.04e-4	79594	9/9	Best See
COND00	1800	3.5	0	1.65e+4	7.12e-21	5.78e-12	4.09e-14	0.69	4.00e+2	2.88e-2	2.04e-4	79594	9/9	Best See
COND00	1600	3.5	0	1.68e+4	1.01e-20	5.47e-12	4.09e-14	0.73	4.00e+2	2.73e-2	2.04e-4	79594	9/9	Best See
COND00	1700	4.0	0	1.70e+4	8.45e-21	5.63e-12	4.09e-14	0.71	4.00e+2	2.81e-2	2.04e-4	79594	9/9	Best See

Figure C.8: Example of the "small table" showing the 20 best fits for an individual object (LOri086).

Figure C.9: Graphical output from VOSA for a source with infrared excess (LOri048). The black dots highlight those data points not considered when performing the fitting process.

HR Diagram

Choose the parameter ranges that you want to use for the diagram

V	NextGen Isochrones
	Theoretical Evolutionary Tracks from Baraffe, Chabrier, Allard, Hauschildt, 1998, A&A, 337, 403 "Evolutionary models for solar metallicity low-mass stars: mass-magnitude relationships and color-magnitude diagrams" and Baraffe, Chabrier, Allard, Hauschildt, 2001, A&A, accepted "Evolutionary models for low-mass stars and brown dwarfs: uncertainties and limits at very young ages".
	t: 0.00100 - 7.94328 - (Min/Max value for the age of the star. Ages are given in Gyr)
~	NextGen Evolutionary Tracks
	Theoretical Evolutionary Tracks from Baraffe, Chabrier, Allard, Hauschildt, 1998, A&A, 337, 403 "Evolutionary models for solar metallicity low-mass stars: mass-magnitude relationships and color-magnitude diagrams" and Baraffe, Chabrier, Allard, Hauschildt, 2001, A&A, accepted "Evolutionary models for low-mass stars and brown dwarfs: uncertainties and limits at very young ages"
	m: 0.020 - 1.400 - (Min/Max value for the mass of the star. Masses are given in Msun)
~	DUSTY99 Isochrones
	Theoretical Evolutionary Tracks from Chabrier, Baraffe, Allard, Hauschildt, 2000, ApJ,542, 464 "Evolutionary models for very-low-mass stars and brown dwarfs with dusty atmospheres" and Baraffe, Chabrier, Allard, Hauschildt, 2002, A&A, 382, 563 "Evolutionary models for low-mass stars and brown dwarfs: uncertainties and limits at very young ages"
	t: 0.001 - 10.000 - (Min/Max value for the age of the star. Ages are given in Gyr)
~	DUSTY99 Evolutionary Tracks
	Theoretical Evolutionary Tracks from Chabrier, Baraffe, Allard, Hauschildt, 2000, ApJ,542, 464 "Evolutionary models for very-low-mass stars and brown dwarfs with dusty atmospheres" and Baraffe, Chabrier, Allard, Hauschildt, 2002, A&A, 382, 563 "Evolutionary models for low-mass stars and brown dwarfs: uncertainties and limits at very young ages"
	m: 0.0010 - 0.1000 - Min/Max value for the mass of the star. Masses are given in Msun)
~	COND99 Isochrones
	Theoretical Isochrones from Baraffe, Chabrier, Barman, Allard, Hauschildt, 2003A&A402701B \n "Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458"
	t: 0.001 - 10.000 - (Min/Max value for the age of the star. Ages are given in Gyr)
~	COND99 Evolutionary Tracks
	Theoretical Evolutionary tracks from Baraffe, Chabrier, Barman, Allard, Hauschildt, 2003A&A402701B \n "Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458"
	m: 0.0005 - 0.1000 - (Min/Max value for the mass of the star. Masses are given in Msun)
	Continue

Figure C.10: Range of parameters queried for each collection of isochrones and evolutionary tracks.

Figure C.11: HR diagram of the members of Collinder 69 for which no infrared excess was detected. Isochrones corresponding to ages of 1, 5, 10, 12.5, 16, 20, 25, 50, 100 and 800 Myrs are displayed for the NextGen collection, and those corresponding to ages of 1, 5, 10, 50, 100,120 and 500 Myr for the DUSTY collection. Evolutionary tracks are also displayed for masses between $0.001M_{\odot}$ and $1.4M_{\odot}$ (including both, NextGen and DUSTY collections).

Bibliography

- Adams, F. C., Lada, C. J., & Shu, F. H. 1987, ApJ, 312, 788
- Allard, F., Guillot, T., Ludwig, H.-G., et al. 2003, in IAU Symposium, Vol. 211, Brown Dwarfs, ed. E. Martín, 325–+
- Allen, L. E., Calvet, N., D'Alessio, P., et al. 2004, ApJS, 154, 363
- Andre, P. & Montmerle, T. 1994, ApJ, 420, 837
- Andre, P., Ward-Thompson, D., & Barsony, M. 1993, ApJ, 406, 122
- Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. 1998, VizieR Online Data Catalog, 333, 70403
- Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 2002, A&A, 382, 563
- Baraffe, I., Chabrier, G., Barman, T. S., Allard, F., & Hauschildt, P. H. 2003, A&A, 402, 701
- Barrado y Navascués, D. 2006, A&A, 459, 511
- Barrado y Navascués, D., Bayo, A., Morales-Calderón, M., et al. 2007a, A&A, 468, L5
- Barrado y Navascués, D., Béjar, V. J. S., Mundt, R., et al. 2003, A&A, 404, 171
- Barrado y Navascués, D., García López, R. J., Severino, G., & Gomez, M. T. 2001, A&A, 371, 652
- Barrado y Navascués, D. & Martín, E. L. 2003, AJ, 126, 2997
- Barrado y Navascués, D., Mohanty, S., & Jayawardhana, R. 2004a, ApJ, 604, 284
- Barrado y Navascués, D., Stauffer, J. R., Bouvier, J., Jayawardhana, R., & Cuillandre, J.-C. 2004b, ApJ, 610, 1064
- Barrado y Navascués, D., Stauffer, J. R., Morales-Calderón, M., et al. 2007b, ApJ, 664, 481
- Barrado y Navascués, D., Zapatero Osorio, M. R., Martín, E. L., et al. 2002, A&A, 393, L85

- Basri, G. 1997, Memorie della Societa Astronomica Italiana, 68, 917
- Basri, G., Mohanty, S., Allard, F., et al. 2000, ApJ, 538, 363
- Béjar, V. J. S., Martín, E. L., Zapatero Osorio, M. R., et al. 2001, ApJ, 556, 830
- Bessell, M. S. 1991, AJ, 101, 662
- Bildsten, L., Brown, E. F., Matzner, C. D., & Ushomirsky, G. 1997, ApJ, 482, 442
- Bontemps, S., Andre, P., Terebey, S., & Cabrit, S. 1996, A&A, 311, 858
- Bouvier, J., Stauffer, J. R., Martin, E. L., et al. 1998, A&A, 336, 490
- Bouy, H., Huelamo, N., Barrado y Navascues, D., et al. 2009a, ArXiv e-prints
- Bouy, H., Huélamo, N., Martín, E. L., et al. 2009b, A&A, 493, 931
- Bromm, V. & Larson, R. B. 2004, ARA&A, 42, 79
- Burgasser, A. J. 2002, PhD thesis, AA(CALIFORNIA INSTITUTE OF TECHNOLOGY)
- Burgasser, A. J., Kirkpatrick, J. D., Brown, M. E., et al. 2002, ApJ, 564, 421
- Burgasser, A. J., Tinney, C. G., Cushing, M. C., et al. 2008, ApJ, 689, L53
- Burrows, A., Marley, M., Hubbard, W. B., et al. 1997, ApJ, 491, 856
- Caballero, J. A., López-Santiago, J., de Castro, E., & Cornide, M. 2009, AJ, 137, 5012
- Calvet, N., Muzerolle, J., Briceño, C., et al. 2004, AJ, 128, 1294
- Cambresy, L., Epchtein, N., Copet, E., et al. 1997, A&A, 324, L5
- Casagrande, L., Flynn, C., & Bessell, M. 2008, MNRAS, 389, 585
- Chabrier, G. & Baraffe, I. 1997, A&A, 327, 1039
- Chabrier, G., Baraffe, I., Allard, F., & Hauschildt, P. 2000, ApJ, 542, 464
- Chen, H., Myers, P. C., Ladd, E. F., & Wood, D. O. S. 1995, ApJ, 445, 377
- Cohen, M., Wheaton, W. A., & Megeath, S. T. 2003, AJ, 126, 1090
- Comerón, F., Fernández, M., Baraffe, I., Neuhäuser, R., & Kaas, A. A. 2003, A&A, 406, 1001
- Comerón, F., Neuhäuser, R., & Kaas, A. A. 2000, A&A, 359, 269
- Cruz, K. L. & Reid, I. N. 2002, AJ, 123, 2828

- Danks, A. C. & Dennefeld, M. 1994, PASP, 106, 382
- Dolan, C. J. & Mathieu, R. D. 1999, AJ, 118, 2409
- Dolan, C. J. & Mathieu, R. D. 2001, AJ, 121, 2124
- Dolan, C. J. & Mathieu, R. D. 2002, AJ, 123, 387
- Duerr, R., Imhoff, C. L., & Lada, C. J. 1982, ApJ, 261, 135
- Dunham, M. M., Crapsi, A., Evans, II, N. J., et al. 2008, ApJS, 179, 249
- Epchtein, N., Deul, E., Derriere, S., et al. 1999, A&A, 349, 236
- Fazio, G. G., Hora, J. L., Allen, L. E., et al. 2004, ApJS, 154, 10
- Fernández, M. & Comerón, F. 2001, A&A, 380, 264
- Finkbeiner, D. P. 2003, ApJS, 146, 407
- Fitzpatrick, E. L. 1999, PASP, 111, 63
- Geballe, T. R., Knapp, G. R., Leggett, S. K., et al. 2002, ApJ, 564, 466
- Gomez, M. & Lada, C. J. 1998, AJ, 115, 1524
- Gómez, M. & Persi, P. 2002, A&A, 389, 494
- González Hernández, J. I., Caballero, J. A., Rebolo, R., et al. 2008, A&A, 490, 1135
- Goodman, J. 1993, ApJ, 406, 596
- Hartmann, L. 1999, Physics Today, 52, 60
- Hartmann, L., Hewett, R., & Calvet, N. 1994, ApJ, 426, 669
- Hartmann, L., Megeath, S. T., Allen, L., et al. 2005, ApJ, 629, 881
- Hauck, B. & Mermilliod, M. 1998, A&AS, 129, 431
- Høg, E., Fabricius, C., Makarov, V. V., et al. 2000, A&A, 355, L27
- Indebetouw, R., Mathis, J. S., Babler, B. L., et al. 2005, ApJ, 619, 931
- Irwin, M. & Lewis, J. 2001, New Astronomy Review, 45, 105
- Jansen, F., Lumb, D., Altieri, B., et al. 2001, A&A, 365, L1
- Jayawardhana, R., Ardila, D. R., Stelzer, B., & Haisch, Jr., K. E. 2003a, AJ, 126, 1515

- Jayawardhana, R., Luhman, K. L., D'Alessio, P., & Stauffer, J. R. 2002a, ApJ, 571, L51
- Jayawardhana, R., Mohanty, S., & Basri, G. 2002b, ApJ, 578, L141
- Jayawardhana, R., Mohanty, S., & Basri, G. 2003b, ApJ, 592, 282
- Joergens, V. & Guenther, E. 2001, A&A, 379, L9
- Jones, H. R. A., Longmore, A. J., Jameson, R. F., & Mountain, C. M. 1994, MNRAS, 267, 413
- Kenyon, S. J. & Hartmann, L. 1995, ApJS, 101, 117
- Kirkpatrick, J. D., Henry, T. J., & McCarthy, Jr., D. W. 1991, ApJS, 77, 417
- Kirkpatrick, J. D., Reid, I. N., Liebert, J., et al. 1999, ApJ, 519, 802
- Kirkpatrick, J. D., Reid, I. N., Liebert, J., et al. 2000, AJ, 120, 447
- Lada, C. J. 1987, in IAU Symposium, Vol. 115, Star Forming Regions, ed. M. Peimbert & J. Jugaku, 1–17
- Lada, C. J., Muench, A. A., Luhman, K. L., et al. 2006, AJ, 131, 1574
- Lawson, W. A., Feigelson, E. D., & Huenemoerder, D. P. 1996, MNRAS, 280, 1071
- Leggett, S. K. 1992, ApJS, 82, 351
- Leggett, S. K., Allard, F., Berriman, G., Dahn, C. C., & Hauschildt, P. H. 1996, ApJS, 104, 117
- Leggett, S. K., Allard, F., Dahn, C., et al. 2000, ApJ, 535, 965
- Leggett, S. K., Allard, F., Geballe, T. R., Hauschildt, P. H., & Schweitzer, A. 2001, ApJ, 548, 908
- Lonsdale, C. J., Smith, H. E., Rowan-Robinson, M., et al. 2003, PASP, 115, 897
- Luhman, K. L. 1999, ApJ, 525, 466
- Luhman, K. L., Adame, L., D'Alessio, P., et al. 2007, ApJ, 666, 1219
- Luhman, K. L., Stauffer, J. R., Muench, A. A., et al. 2003, ApJ, 593, 1093
- Makovoz, D. & Khan, I. 2005, in Astronomical Society of the Pacific Conference Series, Vol. 347, Astronomical Data Analysis Software and Systems XIV, ed. P. Shopbell, M. Britton, & R. Ebert, 81-+
- Margulis, M. & Snell, R. L. 1989, ApJ, 343, 779
- Martin, E. L. 1997, A&A, 321, 492

- Martín, E. L., Delfosse, X., Basri, G., et al. 1999, AJ, 118, 2466
- Martín, E. L., Dougados, C., Magnier, E., et al. 2001, ApJ, 561, L195
- Martín, E. L. & Magazzù, A. 1999, A&A, 342, 173
- Martin, E. L., Rebolo, R., & Zapatero-Osorio, M. R. 1996, ApJ, 469, 706
- Mason, K. O., Breeveld, A., Much, R., et al. 2001, A&A, 365, L36
- Massey, P. 2003, ARA&A, 41, 15
- Maury, A. C. & Pickering, E. C. 1897, Annals of Harvard College Observatory, 28, 1
- Maxted, P. F. L., Jeffries, R. D., Oliveira, J. M., Naylor, T., & Jackson, R. J. 2008, MNRAS, 385, 2210
- McMahon, R. G., Walton, N. A., Irwin, M. J., et al. 2001, New Astronomy Review, 45, 97
- Miyazaki, S., Komiyama, Y., Sekiguchi, M., et al. 2002, PASJ, 54, 833
- Mohanty, S. & Basri, G. 2003, ApJ, 583, 451
- Mohanty, S., Basri, G., & Jayawardhana, R. 2005, Astronomische Nachrichten, 326, 891
- Mohanty, S., Jayawardhana, R., & Barrado y Navascués, D. 2003, ApJ, 593, L109
- Mohanty, S., Jayawardhana, R., Huelamo, N., & Mamajek, E. 2007, ApJ, in press
- Morales-Calderón, M. 2008, PhD thesis, UNIVERSIDAD AUTÓNOMA DE MADRID
- Morgan, W. W., Keenan, P. C., & Kellman, E. 1943, An atlas of stellar spectra, with an outline of spectral classification (Chicago, Ill., The University of Chicago press [1943])
- Mouschovias, T. C. 1991, NATO ASIC, Proc. 342, 449
- Murdin, P. & Penston, M. V. 1977, MNRAS, 181, 657
- Muzerolle, J., Hartmann, L., & Calvet, N. 1998, AJ, 116, 455
- Muzerolle, J., Luhman, K. L., Briceño, C., Hartmann, L., & Calvet, N. 2005, ApJ, 625, 906
- Myers, P. C., Adams, F. C., Chen, H., & Schaff, E. 1998, ApJ, 492, 703
- Myers, P. C. & Ladd, E. F. 1993, ApJ, 413, L47
- Nakajima, T., Oppenheimer, B. R., Kulkarni, S. R., et al. 1995, Nature, 378, 463
- Natta, A. & Testi, L. 2001, A&A, 376, L22

- Natta, A., Testi, L., Comerón, F., et al. 2002, A&A, 393, 597
- Natta, A., Testi, L., Muzerolle, J., et al. 2004, A&A, 424, 603
- Natta, A., Testi, L., & Randich, S. 2006, A&A, 452, 245
- Neuhaeuser, R., Wolk, S. J., Torres, G., et al. 1998, A&A, 334, 873
- Oliva, E. & Origlia, L. 1992, A&A, 254, 466
- Oppenheimer, B. R., Kulkarni, S. R., Matthews, K., & Nakajima, T. 1995, Science, 270, 1478
- Padoan, P. & Nordlund, Å. 2002, ApJ, 576, 870
- Padovani, P., Allen, M. G., Rosati, P., & Walton, N. A. 2004, A&A, 424, 545
- Pasquini, L., Avila, G., Blecha, A., et al. 2002, The Messenger, 110, 1
- Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. 1997, A&A, 323, L49
- Pickering, E. C. 1890, Annals of Harvard College Observatory, 27, 1
- Pontoppidan, K. M., Dullemond, C. P., van Dishoeck, E. F., et al. 2005, ApJ, 622, 463
- Rebolo, R., Martin, E. L., & Magazzu, A. 1992, ApJ, 389, L83
- Reid, I. N., Burgasser, A. J., Cruz, K. L., Kirkpatrick, J. D., & Gizis, J. E. 2001, AJ, 121, 1710
- Reid, I. N., Hawley, S. L., & Gizis, J. E. 1995, AJ, 110, 1838
- Reid, I. N., Kirkpatrick, J. D., Gizis, J. E., et al. 2000, AJ, 119, 369
- Reipurth, B. & Clarke, C. 2001, AJ, 122, 432
- Rieke, G. H., Young, E. T., Engelbracht, C. W., et al. 2004, ApJS, 154, 25
- Sacco, G. G., Franciosini, E., Randich, S., & Pallavicini, R. 2008, A&A, 488, 167
- Santiago, B. X., Gilmore, G., & Elson, R. A. W. 1996, MNRAS, 281, 871
- Schiavon, R. P., Barbuy, B., Rossi, S. C. F., & Milone, A. 1997, ApJ, 479, 902
- Scholz, A., Geers, V., Jayawardhana, R., et al. 2009, ApJ, 702, 805
- Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23
- Shu, F. H., Najita, J., Ruden, S. P., & Lizano, S. 1994, ApJ, 429, 797
- Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593

- Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
- Strüder, L., Briel, U., Dennerl, K., et al. 2001, A&A, 365, L18
- Terebey, S., Shu, F. H., & Cassen, P. 1984, ApJ, 286, 529
- Testi, L., Natta, A., Oliva, E., et al. 2002, ApJ, 571, L155
- Tinney, C. G., Mould, J. R., & Reid, I. N. 1993, AJ, 105, 1045
- Tsalmantza, P., Kontizas, E., Cambrésy, L., et al. 2006, A&A, 447, 89
- Turner, M. J. L., Abbey, A., Arnaud, M., et al. 2001, A&A, 365, L27
- Vacca, W. D., Cushing, M. C., & Rayner, J. T. 2003, PASP, 115, 389
- Ventura, P., Zeppieri, A., Mazzitelli, I., & D'Antona, F. 1998, A&A, 331, 1011
- Wade, C. M. 1958, Australian Journal of Physics, 11, 388
- Wainscoat, R. J., Cohen, M., Volk, K., Walker, H. J., & Schwartz, D. E. 1992, ApJS, 83, 111
- White, R. J. & Basri, G. 2003, ApJ, 582, 1109
- Wilking, B. A., Greene, T. P., & Meyer, M. R. 1999, AJ, 117, 469
- York, D. G., Adelman, J., Anderson, Jr., J. E., et al. 2000, AJ, 120, 1579
- Young, K. E., Harvey, P. M., Brooke, T. Y., et al. 2005, ApJ, 628, 283
- Zapatero Osorio, M. R., Béjar, V. J. S., Bihain, G., et al. 2008, A&A, 477, 895
- Zapatero Osorio, M. R., Béjar, V. J. S., Pavlenko, Y., et al. 2002, A&A, 384, 937
- Zhang, C. Y., Laureijs, R. J., Chlewicki, G., Wesselius, P. R., & Clark, F. O. 1989, A&A, 218, 231