GO-IRS: GTC Optical Intermediate-Resolution Spectrograph

J. A. Caballero¹, J. Ge², M. Moles^{3,4}, E. Alfaro⁴, D. Montes⁵, Y. P. Jing⁶, J. Chu⁷, A. H. González², T. G. Wang⁷, L. Hao^{6,8}, and the GO-IRS team

- ¹ Centro de Astrobiología, Madrid, Spain
- ² University of Florida, Gainesville, FL, USA
- ³ Centro de Estudios de Física del Cosmos de Aragón, Teruel, Spain
- ⁴ Instituto de Astrofísica de Andaluciía, Granada, Spain
- ⁵ Universidad Complutense de Madrid, Madrid, Spain
- ⁶ Shanghai Astronomical Observatory, Shanghai, China
- ⁷ University of Science and Technology of China, Hefei, China
- ⁸ McDonald Observatory, Austin, TX, USA

Abstract

GO-IRS stands for "GTC Optical Intermediate Resolution Spectrograph". It is the answer of a big team of over 100 experienced researchers and engineers in the United States, China and Spain to the recent call for new instrumentation for the 10.4 m Gran Telescopio Canarias. The GO-IRS main facts are: 1000 MOS fibres in a 15 arcmin circular field of view; 4×400 IFU fibres in the central 2 arcmin; two channels: blue ($\Delta\lambda=0.37$ –0.60 μ m) and red ($\Delta\lambda=0.60$ –1.00 μ m); R=20k, 10k, 5k (red), 2k (blue) and intermediate spectral resolutions; and use of telescope-proof technology (e.g. LAMOST, MARVELS). The GO-IRS Science Team is developing three design reference cases on near-field cosmology in the Milky Way, kinematics and abundances in galaxies of the Local Group and of the local Universe, and astrophysical properties and clustering of distant galaxies at z=1–4. We open our GO-IRS Science Team to all Spanish astronomers interested in working with us. Visit our URL at marvels.astro.ufl.edu/GO-IRS.