

(1) Instituto de Astrofísica de Canarias; (2) Universidad de La Laguna; (3) European Space Astronomy Centre (ESAC)/INSA

Introduction

In the framework of the GLACE project, we have carried out a mapping of emission lines (H α +[NII], H β and [OIII]) in the rich cluster Cl0024+1654 at z=0.4 using the red tunable filter of OSIRIS at the GTC. The observations have been designed to detect, with S/N≥3, emission-line galaxies (ELGs) whose fluxes correspond to SFR up to 2M₀/yr, with a spatial coverage of at least 2 virial radii. Here, we describe the design of the observations and processing steps and present preliminary results corresponding to the H α +[NII] line.

Observations

Aiming to recover the fluxes of sampled lines, we have prepared the observations determining the best sampling and FWHM combination for the OSIRIS TF:

Ha+[NII]	Hβ	[OIII]

FWHM (Å)	12	18	20
Sampling (Å)	6	10	10
N° slices	50	22	27

Raw images from both CCDs. Sky rings can be seen clearly.

Data Processing Scheme

The data reduction has been carried out within the framework of IRAF using a set of TFred tasks*. We have also used Sextractor and IDL for source extraction and flux calibration. The data reduction consists of three stages:

Basic reduction:

- Bias, flatfield and dark corrections.
- Sky rings subtraction (task tringSub2).
- Alignment (tasks geomap and geotran) and convolution to the 'worst' seeing (task tgauss).
- Combination of sets of images according to their tuned wavelength.
- Creation of mosaics merging data from both CCDs. It is essential to keep knowledge of the optical center position across the whole processing to perform a proper wavelength shift correction.
- Creation of a deep image and summed, cleaned and convolved images.
- Astrometry (task ccmap).

Detection and pre-selection of candidates:

- Detection of objects in the deep image and measurement of fluxes in the convolved ones (task tsex).
- Combination of the detections in each wavelength slice into pseudo-spectra (task tespect).
- Creation of a catalog of cosmic-ray/ghost pixel locations
 (task tpull).
- Creation of a catalog of emission-line candidates (task

THE REAL PROPERTY AND A REAL PROPERTY AND

Figure 4.

 $10^{-16} erg s$

 cm^{-2} band⁻¹.

Sample of pseudo-spectra obtained after flux calibration. The vertical lines represents the Ha position according spectroscopic redshift (Moran et al 2005) from DEIMOS spectroscopy (blue) and others (red).

Flux (erg cm⁻² s⁻¹ band⁻¹)

The second se

tscale). The output catalog is filtered for CR/ghost artifacts. Also, double detections are removed.

Flux calibration:

Calculation of the total efficiency of the telescope, optics and detector, $\epsilon(\lambda) = F_m(\lambda) / F_p(\lambda)$, this is the ratio of the measured-to-published flux from the standard.

 For each single observation, conversion from observed flux to true flux in erg s⁻¹ cm⁻² band⁻¹ (total flux within the passband) using the efficiency derived in the previous step.

some of the TFred procedures had to be adapted to OSIRIS and to the number of slices.

Results

From our Ha+[NII] maps we have obtained a raw catalog of 1076 sources. From these, 103 ELG candidates have been extracted. The completeness limit of this sample is ~10⁻¹⁶ erg s⁻¹ cm⁻² band⁻¹ as shown in *Fig.5*. The distribution of star forming galaxies maps the presence of a structure falling from the NW onto the cluster core. This structure has been already reported by other authors (Moran et al 2007; Kneib et al 2003). Work in progress includes a precise deblending of Ha and [NII] lines, and an accurate determination of the line wavelengths. This information will in turn allow us to establish cluster membership, galaxy dynamics and star formation rate.