Blue compact dwarf galaxies with nitrogen overabundance: a view from integral field spectroscopy E. Pérez-Montero¹, J. M. Vílchez¹, B. Cedrés¹, G. F. Hägele², M. Mollá³, R. García-Benito⁴, Á. I. Díaz², C. Kehrig⁵, and D. Martín-Gordón¹ - $^{\rm 1}$ Instituto de Astrofísica de Andalucía CSIC. Spain - ² Dpto. de Física Teórica de la Universidad Autónoma de Madrid. Spain - ³ Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas. Spain. - ⁴ Kavli Institute for Astronomy and Astrophysics. Beijing. China. - ⁵ Astrophysikaliches Institüt Postdam, Germany. ## Abstract Blue compact dwarf galaxies (BCDs) take up the low end of the distribution of metallicity and nitrogen-to-oxygen (N/O) ratio as derived using collisional emission lines in ionized gaseous nebulae. This chemical status is well explained by chemical evolution models. Nevertheless, there is a subsample of BCDs with large values of N/O which cannot be explained by these models. In this contribution we present Potsdam Multi Aperture Spectrograph (PMAS) integral field spectroscopy (IFS) of a sample of three of these objects. The statistical analysis of the abundances reveals their homogeneity at kpc scales. This preserves WR stars to be the cause of the ISM pollution.