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Abstract

In a series of papers we proposed a theory to explain the formation and properties of rings
and spirals in barred galaxies. The building blocks of these structures are orbits trapped
by the invariant manifolds of the periodic orbits around the unstable Lagrangian points
located near the ends of the bar. Here we will first present a comparison of the morphology
of observed and theoretical spirals and rings. We compare the ratio of ring diameters in
theory and in observations and predict that more elliptical rings will correspond to stronger
forcings at and somewhat beyond corotation. We show that the shapes of observed and
theoretical spirals agree and predict that stronger non-axisymmetric forcings will drive more
open spirals. Secondly, we will also present the kinematics along the manifold loci, to allow
comparisons with the observed kinematics along the ring and spiral loci. Finally, we consider
also gaseous arms and their relations to stellar ones.

1 Introduction

This work was initially motivated by observing several images of barred galaxies of different
morphologies, namely barred spirals and ringed galaxies. The outer rings in ringed galaxies
are classfied according the relative orientation of the semi-major axis of the ring with respect
to the semi-major axis of the bar. Thus, there are three possibilities, namely R1 ring if the
two structures are perpendicular, R2 ring if they are parallel and R1R2 ring if both types
of rings are present. The idea of using the invariant manifolds of the periodic orbits located
at the ends of the bar comes from Celestial Mechanics. Invariant manifolds associated to
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periodic orbits are used in the Restricted Three Body Problem and its variations to design
low-cost orbits. They are implicitly related to the transfer of matter. Here we compute the
invariant manifolds in a galactic context, i.e. using a potential that describes the galaxy.

2 Short description of the manifolds and their characteristics

The equations of motion in the rotating reference frame are written in vectorial form as
follows:

r̈ = −∇Φeff − 2(Ω× ṙ), (1)

where r = (x, y, z) is the position vector, Ω = (0, 0,Ω) is the rotation velocity vector around
the z-axis counter-clockwise, and Φeff = Φ − 1

2Ω2 (x2 + y2) is the effective potential. The
potential Φ consists of the superposition of an axisymmetric component plus another bar-
like. The Jacobi constant or energy in the rotating frame is defined as EJ = 1

2 |ṙ|
2 +Φeff. The

system is static, i.e. it does not evolve in time. In this frame, the bar is fixed and located
along the x-axis.

This system has five equilibrium points located in the galactic plane (z = 0) and where
the first derivatives of the effective potential vanish. L1 and L2 are located along the bar’s
semi-major axis and are linearly unstable of the saddle type. L3 is located in the galactic
center and L4 and L5 along the bar’s semi-minor axis. The latter are linearly stable and of
the center type. Around the equilibrium points there exist families of periodic orbits. If we
focus on the orbits around L1 and L2, these are unstable and, thus, they cannot trap material
around them, unlike the stable ones. There exist, however, other type of orbits that drive the
motion. These are called the invariant manifolds. The left panel of Fig. 1 shows the motion
around the equilibrium point L1. In white, we plot the periodic orbit of a given energy while
in green and red we plot the stable and unstable branches of the invariant manifolds. Note
that they remind the saddle behaviour, having two branches in the inner part of the galaxy
and two in the outer part. The invariant manifolds act as flux tubes in phase space that drive
the motion. The unstable branches are formed by orbits that depart from the vicinity of the
periodic orbit, while the stable branches are formed by orbits that approach the periodic
orbit. Thus, the invariant manifolds connect the inner parts of the galaxy with the outer
parts, and vice-versa.

By varying the main parameters of the model, namely the bar pattern speed and the
bar mass/strength, we obtain the different morphologies mentioned in Sect. 1 (see Fig. 2).

The variation of the pattern speed and the bar mass/strength does not result in a ran-
dom shape of the invariant manifolds. In the right panel of Fig. 1 we show the 2-dimensional
parameter study. On the x-axis, we decrease the bar pattern speed from left to right and on
the y-axis we increase the bar mass/strength. The colour code is defined as follows: in black
we plot the manifolds with a two-armed spiral; in blue, the R2 rings; in red, the R1R2 rings;
in orange, the R′1 pseudorings and, in green, the R1 rings. Note that the morphologies are
not distributed randomly in the parameter space, but they are grouped in a diagonal form,
i.e. at the top left corner (strong and rapidly rotating bars) we obtain spiral arms and R2

and R1R2 rings, while on the bottom right corner (weak and slowly rotating bars) we obtain
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Figure 1: Left: Motion around the L1 equilibrium point. In gray solid lines, we plot a peri-
odic orbit, while in red and green we plot the unstable and stable branches of the invariant
manifolds, respectively. Right: Two-dimensional parameter study: variation of the bar pat-
tern speed, on the x-axis, and the bar mass/strength, on the y-axis. The colours show the
different morphologies obtained (see text)

Figure 2: The four different morphologies. From left to right, the barred spiral, the R1 ring,
the R2 ring and R1R2 ring.
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Figure 3: Left: The effect of the gas in the manifold orbits. Comparison with test particle
simulations [1]. Right: Axial ratio of the outer ring as a function of the tangential force of
the bar at the corotation radius.

R1 rings and pseudorings.
Another characteristic worth mentioning is the effect of the gas in the orbits described

by the manifolds. [1] uses test particle simulations to study the effect of the gas in the particles
by simulating shocks of gas clouds during the integration. We perform a similar approach by
reducing the kinetic energy at two random positions during the integration. The results are
shown in the left panel of Fig. 3. The black dots are the results of the Schwarz’s simulation
while the pink lines are the manifold orbits affected by the gas.

3 Results

Here we present the results when we compare the modelled structures with observations. We
compare them in two terms, first, morphologically and, sencond, kinematically.

3.1 Morphology

In [3] we perform several comparison with observations regarding the morphology of the
models obtained. One of the comparisons is the axial ratio of the outer ring. [5] computes
the axial ratio of outer R1 rings of statistically deprojected galaxies. Here we use the same
technique in order to compute the axial ratio in the modelled rings. The results are shown
in the right panel of Fig. 3 where we plot the ratio as a function of the bar tangential force
at corotation. The gray shaded region corresponds to the range determined by [5] for typical
axial ratios, the solid line marks the mean ratio, the dashed line, the 1σ deviation and the
dotted line, the 2σ deviation. The different symbols correspond to all the models computed in
the paper with different bar potentials. Note that in all cases, the axial ratio of the modelled
ring falls well within the observed range and the strong correlation between the axial ratio
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Figure 4: The invariant manifolds in the case of ansae bars. Left: global morphology. Center:
inner branches delineating the rectangular shape of bars. Right: zoom in the region of the
equilibrium points.

and the strength of the bar.
Another morphological test is to check whether the type of bar has an influence on the

global morphology, that is, whether ansae bars change the morphology obtained with normal
bars [2]. In this case, we simulate an ansae bar bar adding to the potential two small and
relatively massive disks located at the ends of the bar. By changing the mass of the small
disks we make the equilibrium points to bifurcate obtaining three equlibrium points, instead
of one at each side of the bar. Now L1 and L2 become linearly stable and there appear two
saddle points at both sides. The global morphology, however, does not change. See Fig. 4.

3.2 Kinematics

Here we compute the radial and tangential velocities along the manifolds in the inertial frame
in two different cases, namely the R1 ring and the spiral arms. The results are shown in the
top left and top right panels of Fig. 5, respectively. Note that the amplitudes do not exceed
the 20 km s−1, while the radial velocities in the spiral case, do exceed the value of 50 km s−1.
The red line marks the mean velocity. In the bottom panels, we compute the line-of-sight
velocities in each case for different viewing angles, namely 0◦, 30◦, 45◦, 90◦, 135◦, and 180◦.
The red line here is the fitting to a sine curve. Note that in the ring case we obtain a good
match to the fitting, while the kinematics of the spiral arms seem that they cannot be fitted
to a sine curve, meaning that a sinusoidal curve cannot be used to determine the galaxy
major axis [4].
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Figure 5: Kinematics. Left: kinematics of the R1 ring. Right: kinematics of the spiral arms.
Top panels: radial and tangential velocities in the inertial frame along the manifolds. Bottom
panels: line-of-sight velocities at different viewing angles.
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