EVN imaging of the LIRGI sample

N. Ramírez-Olivencia¹, E. Varenius², M. Pérez-Torres^{1,3}, A. Alberdi¹, J. Conway², R. Herrero-Illana¹, for the LIRGI collaboration.

Local U/LIRGs as cosmic SFR tracers

- Galaxies can be classified on the basis of its infrared emission. The most powerful emitters on this spectral region are the so called U/LIRGs (Ultra/Lumnous Infrared Galaxies)
- The dusty innermost regions of this kind of galaxies are heated by AGNs , starburst processes, or a combination of both. Discerning which is the heating mechanism requires a deep analysis of the nuclear regions.
- Local U/LIRGs galaxies are expected to be similar to star forming galaxies at high redshift . Hence, the study of local LIRGs is a tool to better understand the main SFR contributors at high z.

Figure: The star formation density of the Local Universe (z=0) is dominated by normal spiral galaxies. However, at approximately z=1/z=2, LIPGs/ULIRGs start to dominate the SFR density (from Magnelli et al. 2009, A&A)

Naím Ramírez Olivencia

naimro@iaa.es

5 GHz VLA

24 Oct 2000

C

(1) IAA-CSIC, Granada, Spain (2) OSO-Chalmers, Onsala, Sweden (3) CEFCA, Teruel, Spain

Specific goals:

As the enormous amount of dust in LIRGs does not allow to observe its central regions in optical and infrared ranges, it is necessary to resort to radio wavelengths for a deep view inside. Moreover high angular resolution observations (from hundreds to milliarcsecond resolution) obtained with radio-interferometers allow us to resolve the overall structure in compact radio sources, and thus: discriminate AGN vs.Starburst i)

- scenarios ii) unveil the largely hidden core-
- collapse SN population measure the energy contribution of iii) AGN and SNe/SNRs.

11 28 35.0 24.5 34.0 33.5 33.0 32.5 32.0 31.6 31.0 20.5 RIGHT ASCENSION (J2001)

33.67 33.46 33.63 33.64 33.63 33.62 33.61 33.60 33.59 Figure: 5 GHz VLA (top) and VLBI (bottom) observations of Arp299. Note the existence of a large population of bright compact sources in the A nucleus, most of them supernovae and supernova remnants (from Pérez-Torres et al. 2009, A&A Letters)

Preliminary results: Ongoing project

•	Once we obtain the cleaned images we measure peak fluxes of the radio sources detected in both bands
	(6 and 18 cm). In that way we infer the spectral indices of each one and obtain unique information of
	the nature of the source: AGN or SNR.

GALAXY		Peak flux [µJy/beam]	rms [µJy/beam]	Spectral Index
IC5298	18cm	106,77	25,63	0,28
	6cm	144,30	26,12	V. K. Children
Mrk331	18cm	285,85	71,20	0,40
	6cm	442,65	42,97	Service Services
III ZW035	18cm	105,31	22,40	1,40
	6cm	475,53	31,05	
IRAS03359+15	18cm	66,028	20,01	0,69
1000	6cm	139,77	25,41	
MCG+12-02-00	18cm	251,91	28,65	0,15
	6cm	298,02	31,55	
NGC2623	18cm	8954	456,4	1,24
2000	6cm	33950	269,2	A COMPANY OF A COMPANY
NGC5256A	18cm	398,35	64,23	-0,53
•	- 6cm	225,90	43,27	
NGC5256B	18cm	85,45	22,52	0,78
	6cm	198,32	41,70	and the second second

Figure (left): NGC2623 in optical wavelengths observed with HST (above). In the inner nuclear regions we detect a bright compact radio source both in 18 cm (bottom left) and 6 cm (bottom right). Table 1 (above): Summary of some of the LIRGI sources observed with the EVN. The spectral index is obtained as the slope of the SED region between the 6 and 18 cm band.

LIRGI (LIRG Inventory)

LIRGI stands for Luminous InfraRed Galaxy Inventory, a legacy project of the eMERLIN radio interferometer in the UK (PIs: John Conway and Miguel Pérez Torres)

1.LIRGI:

42 galaxies with log(L_{IR}/L_{\odot}) >11.4

- D_{max} = 250 Mpc - Dec > 8 deg
 - http://lirgi.iaa.es/

2.GOALS

... included in the well studied GOALS survey (180 U/LRGs). It spans the range of different types of AGNs and starbursts at different wavelengths.

http://goals.ipac.caltech.edu/

3.IRAS Revised bright galaxy sample:

... and the GOALS galaxies belong to the IRAS-Bright Galaxy Sample (Sanders et al. 2003), which includes 629 brightest 60micron extragalactic sources in the whole sky.

LIRGI makes use of the electronic Multi-**Element Remotely Linked Interferometer** Network (e-MERLIN): Interferometric array of 7 antennas

- across the UK.
 - Frequencies: 1.7 and 5.0 GHz
 - Angular resolution: 0.15-0,05 arcsec

Methods:

In this contribution we present preliminary results for a subset of our LIRGI sources observed with european VLBI Network (EVN). We have performed continuum European VLBI Network (EVN) observations:

- > with high resolution (mas)
- > with high sensitivity (mJy/beam)

Quasi-simultaneous observations at both frequencies taken in March and October 2012.

- On-source time ~ 1 hr/target.
- Data calibration and imaging using the AIPS (Astronomical and ImageProcessing System) software.

- > @ 1,7 GHz and 5 GHz