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Abstract

Cluster of galaxies are becoming a powerful tool to constrain cosmological parameters. This

has motivated the design of a new wide-are cluster surveys at mm, optical/near infrared, and

X-ray wavelengths. These surveys will have the potential to find hundred of thousands of

clusters. The principal challenge to precision cosmology with the evolution of the abundance

of clusters is the accurate calibration of the relation between the observables and halo masses.

In this talk we present a method to constrain the scatter in the mass observable relation by

comparing the bias measured in the cluster correlation function with the bias model. Since

our goal will be to contrain the scatter in optical selected cluster in the Dark Energy Survey

(DES) and in the available SDSS cluster samples our observable will be the richness. First

we will study the bias in halos on a past lightcone using N-body simulations to study the

errors that come from the Halo Model prediction. Finally, we assign richness to dark matter

halos in the simulation to test our method.

1 Introduction

The evolution of the abundance of cluster has long been recognized as powerfull tool for
constraining cosmological parameters [9]. The basic idea is to compare the predicted space
density of massive halos to the observed space density of clusters, which can be identified
via optical, X-ray, or CMB observables that should correlate with halo mass. But this mass
estimators are noisy, meaning there can be significant scatter between the observable mass
tracer and cluster mass. Since the mass function is a steeply declining function of mass, a low
level of scatter can change the shape and amplitude of the observed mass function significantly.
Uppscattering of low mass systems into high mass bins can results in a significant boost to
the number of systems with apparently high mass [5].
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Scatter arises from physical variations in cluster properties at fixed halo mass, from
observational noise, and from low level contamination that produces small random fluctua-
tions in the observable. These effects are typically assume to produce a log-normal form of
P (N |M, z), i.e. Gaussian scatter in lnM . The calibration task is then to determine the mean
relation 〈M |N〉 and the standard deviation σlnM called the scatter. In previous studies (see
[8]), the scatter in the mass richness relation at fixed richness of maxBCG cluster sample is
constrained with weak lensing, optical richness estimates and X ray data. Specifically, they
use observational constraints on the mean mass richness relation and the X-ray measurement
of the mean and scatter of the X-ray luminosity as a function of richness.

Here, we present a method to constrain the scatter of the mass richness relation using
the spatial clustering of the cluster themselves, as characterized by the cluster correlation
function [1]. Because the bias of halo clustering depend on mass, the amplitude and the scale-
dependence of clustering provides information about the mass observable relation. However,
in our scales of interest the underlying halo-mass bias is scale-independent. We will use dark
matter simulations to test our method although our goal will be to use it in a real cluster
catalog.

2 Material and method

The two simulation analyzed in this work are the DES volume v1.02 halo mock catalog light
cone sky survey based on the Hubble Volume PO lightcone output [2] and the 3000(Mpc/h)3

volume snapshot at z = 0 [3]. The Friend of Friend (FoF) algorithm is used to determine the
halo mass in the snapshot and the Spherical Overdensity (SO) with ∆ = 200 in the lightcone.

We create richness catalogs with three scatter values in order to measure the richness
bias. We add to every lognormal mass of the dark matter halos in the lightcone lnM , a
variable that follows a lognormal distribution with mean zero a standard deviation σlnM .
For simplicity σlnM will not vary neither with redshift nor mass. Then we assign a richness
value using the mass richness relation determined for the SDSS sample using weak lensing
measurements. A good summary of these is presented in the Appendix of [8] giving

〈Mobs | N〉
1014

= eBM|N

(
N

40

)αM|N
(1)

Therefore, the probability of having the true mass M given the observed richness N follows

P (lnM | N) ∝ exp−(ln(〈Mobs | N〉)− lnM)2

2σ2lnM
(2)

2.1 The theoretical predictions of richness bias using the Halo Model

Taking into account the mass observable relation, the bias expected for the richness value N
is given in terms of halos mass function dn(M,z)

dlnM and the underlying bias b(lnM, z) by

b(N, z) =

∫
dlnM dn

dlnMP (lnM | N)b(lnM, z)∫
dlnM dn

dlnMP (lnM | N)
(3)
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The measured bias factor for a richness cut N > Nth can be estimated using equation 3
through

b(Nth, z) =

∑∞
N=Nth

b(N, z)nmeasured∑∞
N=Nth

nmeasured(N, z)
(4)

where nmeasured is the number of halos per redshift and richness sample measured in the
simulations created as is explained before.

2.2 Bias measurement. Clustering estimator with the two point correla-
tion function.

The richness bias can be obtained from the catalogs created by measuring the two point
correlation function for a richness threshold given by

ξcl(r) = b
2
ξmm(r) (5)

where the matter correlation function is obtained in the usual way via the Fourier transform of
the non linear matter power spectrum ξmm. For an isotropic universe and in three dimensions
is given by

ξmm(r) =
1

2π

∫
PNL(k)

sin(kr)

kr
k2dk (6)

where the PNL is given by the non linear halofit power spectrum [11] for the ΛCDM . We
measure the correlation function for each sample with the Landy-Szalay estimator [4] because
it has the best noise properties, which is given by

ξLS(r) = 1 +
N2
RR

N2
DD

DD(r)

RR(r)
− 2

NRR

NDD

DR(r)

RR(r)
. (7)

In the lightcone simulation we place each data point in its comoving coordinate location
based on its redshift and compute the comoving separation r±∆r/2 between two points using
the vector differences. Random catalogs were constructed according to the radial and angular
distributions.

3 Results

3.1 Testing the Halo Model. Halo bias and average bias description

First we want to study the errors that come from the HM predictions with the Sheth &
Thormen 99 [10] prescription to describe the bias for halos. Since the simulation samples are
for halos above a mass threshold, the expected value of bias for a mass sample is

b(M ≥Mth, z) =

∫∞
Mth

dM dn(M,z)
dM b(M, z)∫∞

Mth
dM dn(M,z)

dM

. (8)
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Figure 1: Left panel: Halo Bias model (red line) and bias measurements from LS correlation
function at z=0 (black dots) comparison. Right panel: Bias measurements for halos in
DESv1.02 simulation at redshifts bins 0.2-0.4 (black), 0.4-0.6 (red), 0.6-0.8 (green), 0.8-1
(blue), 1-1.2 (sky-blue), 1.2-1.4 (pink). Solid lines are the the bias model with the best p and
q at the mean value of the redshift bin. Dashed lines are the bias model with the p and q
fiducial values

Figure 1 shows the comparison between the bias predictions using Eq. 8 and the
values measured with the correlation function with Poisson errors in the snapshot and the
lightcone. The results in the snapshot show very good agreement with differences of a few
percent. However, in the lighcone we predict the evolution of the bias with a good accuracy
for the first two bins but for higher redshift the deviations are more significant. Note that
here, we need to obtain the best p and q parameters using a chi square that compare the
mass function model and measurements. See also results of [7].

3.2 Constraining the scatter

We divide the catalogs in redshift bins ∆z and make cuts in richness N to measure the bias
with the two point correlation function. Therefore, we have a set of n bias measurements
bmeasured
i (Nth,∆z), where Nth is the richness threshold. We assume a model for the bias with

parameters θ = (Λ, α,B, σlnM ) given by 3 and 4, where Λ represents the dependence on the
cosmological variables, α and B are the mass-richness parameters and the scatter σlnM . Since
our goal is to constrain the scatter σlnM , we will consider a one dimensional likelihood given
by the conditional probability distribution of the data, L = p(bmeasured|θ = σlnM ).
The probability of all n measurements, the likelihood, is the product of the probabilities of
the individual measurements

L =
n∏
i=1

p(bmeasured
i (Nth, z); θ). (9)

We can transform from the likelihood to the probability for the parameters given the
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Figure 2: Most likely scatter measurement (mean and standard deviation of the Gaussian
distribution) vs true value. Blue dots are the results integrating the richness bias model in
all mass range and red ones are when we integrate in the mass range of our simulation.

data p(θ|bmeasuredi ) using Baye’s Theorem. This requires multiplying by a prior p.d.f. For
simplicity, we dont́ treat with priors and assume we know the cosmological parameters of the
simulation and the α and B parameters. Therefore,

p(σlnM |bmeasuredi ) ∝ L (10)

where we include the normalization factor in the p.d.f that involve σlnM . We perform a
likelihood calculation comparing the bias model predictions with the measurements for the
three catalogs created. We take only the first two redshifts bins where we have good accuracy.
The results in Fig. 2 show how the errors in the scatter that we recover increase when we
take into account the lower limit of mass in the lightcone simulation. Furthermore, as the
predictions of the richness bias tell us, we obtain more accuracy at higher values of the scatter
due to the slope of the mass function. For the true values of σlnM = 0.1, 0.2 and 0.4 we
obtain a relative error of 40, 25 and 13% respectively. In Figure 3 we compare the predictions
from the halo model with the most likely scatter values from the likelihood with the richness
bias measurements from the catalogs created with σlnM true 0.1 and 0.4. We also include
the model with the scatter 1 sigma way from the most likely. We find that the richness bias
measurements with their errors are in agreement with the likelihood results.

4 Conclusion

The results show that we can constrain the scatter using the correlation function of galaxy
clusters. Comparing these results with [8] we obtain similar accuracy for σlnM . Hence this
is a complementary method for constrain the scatter using just one kind of observation. We
still have to study the effects of the photometric errors and the error covariance for the
correlation function. Moreover, since the dominant systematic found is the uncertainty in
halo mass and bias function we want also to test our results with the more recent studies in
N-body simulations such as [12]. The next steps are combine the likelihood for the bias with
the likelihood for the number of clusters as a function of richness and redshift. Therefore
we could constrain the cosmological parameters and at the same time we calibrate the mass
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Figure 3: Richness bias model with most likely scatter value (solid line) and one sigma
away (dashed lines) at mean redshift z=0.3 (black) and z=0.5 (green) for the true scatter
σlnM = 0.2 (left) 0.4 (right). Points are the richness bias measurements.

observable relation with the combined likelihood. These types of analysis are often called
“self calibration” (see [6]).
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