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Abstract

Spectroscopic and spectropolarimetric observations with high spectral resolution provide

extremely rich information on the physical conditions of distant celestial objects; sometimes,

even the mere presence of a spectroscopic or polarimetric pattern may offer fundamental

insights. But these are photon-starving techniques. Signals are often at the noise level or

buried in it and, many times, just detection proves difficult. Here we present a Bayesian

technique for the detection of spectropolarimetric signals based on the application of the

non-parametric relevance vector machine to the observations, which allows computing the

evidence for the presence of a signal and its most probable value.

1 Introduction

Spectroscopy and spectropolarimetry are two of the most important techniques in the ob-
servational astrophysics toolbox. By recording the intensity and polarization state of light
at each wavelength we get a quite complete characterization of the state of the light from
the observed object, and from its analysis we may infer all the available information on
the chemical, thermodynamical, and magnetic properties of the plasma that emitted that
light. The main drawback of spectroscopy and spectropolarimetry is that they are often
photon-starving techniques. Spectroscopic observations are characterized by the spectral res-
olution of the spectrograph R = λ/∆λ (∆λ is the wavelength interval within a resolution
element observed at the wavelength λ) which, in the optical and infrared, may typically
range R ∼ 1000 − 1000000 (for low-resolution night-time spectrographs or solar spectro-
graphs, respectively). On the other hand, the fraction of polarized photons P in a light beam
is P ∼ 1-10% for strongly polarized sources and, typically, P . 10−3. Even worse, polariza-
tion is subject to cancellations and P decreases rapidly for low resolution observations. As
a consequence, even with the largest telescopes and the most efficient instrumentation the
number of (polarized) photons finally reaching a resolution element of the detector may be
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very low and close to the noise levels (either the photon noise or the noise of the detection
devices), rendering the detection of the signal difficult.

In this contribution we summarize our recent paper [1], where we show how a Bayesian
non-parametric regression method can be used for the extraction of spectroscopic and/or
spectropolarimetric signals (or any other one-dimensional signal) from noisy observations.
The method is based on relevance vector machines [3], a Bayesian version of the support
vector machine machine learning technique. Several fundamental advantages are gained.
First, we are able to quantify signal detection by computing the evidence ratio between
two models: one that contains the signal of interest plus noise and one in which there is
only noise. Second, the complexity of the signal is automatically adapted to the information
present in the observations. Observations with low noise will facilitate the inference of minute
details in the signal of interest, while very noisy observations will favor simpler (and typically
smoother) signals. Finally, we obtain an estimation of the signal, together with error bars.
We demonstrate the formalism with its application to synthetic and real data.

2 Bayesian signal detection with non-parametric models

Consider the detection of a spectroscopic signal I(λ) (equivalently for spectropolarimetric
signals) in an observation perturbed with Gaussian noise with zero mean and variance σ2. In
principle, two possibilities may be contemplated. One, what we term model M1, that there
is indeed a signal on the observations I(λ) and that it is corrupted with Gaussian noise; the
other, modelM0, that there is not such a signal at all, only Gaussian noise. The two options
give the following models for the observed signal:

d(λi) = I(λi) + εi,

d(λi) = εi, (1)

where we make explicit that the observed signal is sampled at a set of wavelength points
{λi}Ni=1. The correct Bayesian way to proceed in order to test for the presence of the signal
on given observation (that we represent by the vector d, built by stacking the observed fluxes
at all observed wavelength points) is to compute evidence ratio:

R =
p(d|M1)

p(d|M0)
, (2)

where the evidence p(d|M1) is the area below the posterior distribution.

Non-parametric regression relies on the application of a sufficiently general function
that depends only on observed quantities and that is used to approximate the observations.
In our case, the general function is just a linear combination of kernels:

I(λ;w) =

M∑
j=1

wjKj(λ), (3)
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where theKj(λ) functions are arbitrary and defined in advance and wj is the weight associated
to the j-th kernel function. In principle, the number of basis functions that one can include
into the linear regression can be arbitrarily large (even potentially infinite, in some cases).

The linear regression problem is usually solved by computing the least-squares value
of the weights wj . However, it is known that the least-squares solution leads to severe
overfitting and renders the method useless. We considered instead a hierarchical Bayesian
solution to the linear regression problem in which the prior for w is made to depend on a set
of hyperparameters α, which are learnt from the data during the inference process. The final
posterior distribution is then, after following the standard procedure in Bayesian statistics of
including a prior for the newly defined random variables, given by:

p(w,α, σ2|d) =
p(d|w, σ2)p(w,α, σ2)

p(d)
. (4)

Note that the likelihood does depend directly on w and not on the election of α.
Assuming that the prior for α and σ2 are independent and that the prior for w depend on
the hyperparameters α, the previous equation can be trivially modified to read:

p(w,α, σ2|d) =
p(d|w, σ2)p(w|α)p(α)p(σ2)

p(d)
. (5)

The value of the evidence, or marginal posterior, is computed to ensure that the pos-
terior is normalized to unit hyperarea:

p(d) =

∫
dwdαdσ2 p(d|w, σ2)p(w|α)p(α)p(σ2), (6)

where the priors p(w|α), p(α) and p(σ2) are still left undefined.

One of the fundamental ideas of relevance vector machines is to regularize the regression
problem by favoring the sparsest solutions, i.e., those that contain the least number of non-
zero elements in w. For this reason, and to keep the analytical tractability, it is advantageous
to use a product of Gaussian functions for p(w|α):

p(w|α) =
M∏
i=1

N (wi|0, α−1
i ), (7)

where N (w|µ, σ2) is a Gaussian distribution on the variable w with mean µ and variance σ2.
Although not obvious, this prior favors small values of w when selecting an appropriate prior
for α. The reason is that, in the hierarchical scheme, the final prior over w is given by the
marginalization:

p(w) =

∫
dα p(w|α)p(α). (8)

If a Jeffreys prior is used for each αi so that p(αi) = α−1
i , we end up with p(wi) ∝ |wi|−1,

which clearly favors small values of wi. In essence, the form of p(w|α) is such that, in the
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Figure 1: Application to the linear polarization signals in the Ca ii H and K lines observed
in the atlas of resampled at 50 wavelength points and with different amounts of noise added
for each row. The dots display the observations, with their associated Gaussian error bars
(with their standard deviation indicated in the panels). Each column shows the results of
the line detection using Gaussian functions of different widths as basis functions. The solid
red curve is the mean of the predictive distribution, together with the range inside one
standard deviation shown in red dotted lines. The blue curves display the contribution of
each individual kernel function. Each panel also displays the evidence ratio and the number
of active basis functions.

limiting case that αi tends to infinity, the marginal prior for wi is so peaked at zero that
is compatible with a Dirac delta. This means that this specific wi does not contribute to
the model of Eq. (3) and can be dropped from the model without impact. This regulariza-
tion proposed by [3] leads to a sparse w vector, so an automatic relevance determination is
implemented in the method.
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3 Example

Our example concerns the observation of the linear polarization signals of the H and K
lines of Ca ii in the UV. These signals have been acquired by [2] at an heliocentric angle
of µ = cos θ = 0.1 and display an enormous amount of spectral signals that are overlapped
with the large-scale structure of the linear polarization of the two Ca ii lines produced by
quantum superinterferences. We have resampled the profile at a spectral resolution of ∼2 Å
to mimick a very low spectral resolution spectropolarimeter. The aim is to show that it is
possible to detect the linear polarization signal even at such low spectral resolutions under
the presence of large noise contaminations.

We have carried out the signal detection procedure for four different levels of Gaussian
noise with different standard deviations, as shown in each row of Fig. 1. Given the original
(resampled to low resolution) signals (shown in green in the figure), we contaminate them
with Gaussian noise so that the S/N in the amplitude peaks of Q/I range from 1 to 10,
approximately. The signal detection is done with basis sets composed of Gaussian functions
of different widths (each column). The results shown in Fig. 1 look very promising because,
even for S/N as low as 1, we can reliably recover the original signal, even though the observed
signal is almost unrecognizable. The recovered signal is surprisingly similar to a smoothed
version of the green curve, specially when the basis width is large, while many of the minute
details of the signal can be estimated correctly if the noise is not too large and the width of
the Gaussian basis is small.

Concerning the evidence ratio, we find evidence for signal in all the cases. However, the
signal detection algorithm points to a moderate evidence for signal for the case with S/N= 1.
The number of active Gaussian functions is usually smaller when the width is larger, with
an upper limit of 10 for the smallest considered noise level and width. In any case, we find
that the exact green curve is systematically inside one standard deviation of the predictive
distribution.

Acknowledgments

Financial support by the Spanish Ministry of Economy and Competitiveness through projects AYA2010-
18029 (Solar Magnetism and Astrophysical Spectropolarimetry) and Consolider-Ingenio 2010 CSD2009-
00038 is gratefully acknowledged. AAR also acknowledges financial support through the Ramón y
Cajal fellowship. This research has benefited from discussions that were held at the International Space
Science Institute (ISSI) in Bern (Switzerland) in February 2010 as part of the International Working
group Extracting information from spectropolarimetric observations: comparison of inversion codes.

References

[1] Asensio Ramos, A. & Manso Sainz, R. 2012, A&A, 547, A113

[2] Gandorfer, A. 2002, The Second Solar Spectrum, Vol. II, Zürich: vdf Hochschulverlag
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